Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 19 grudnia 2025 12:23
  • Data zakończenia: 19 grudnia 2025 12:39

Egzamin zdany!

Wynik: 24/40 punktów (60,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W jaki sposób można aktywować samowzbudną, bocznikową prądnicę prądu stałego, która nie uruchamia się z powodu braku magnetyzmu szczątkowego?

A. Zwiększyć opór w obwodzie wzbudzenia
B. Podłączyć prądnicę na krótko do pracy silnikowej
C. Zmienić sposób podłączenia w obwodzie wzbudzenia
D. Odwrócić kierunek prędkości obrotowej na przeciwny
Zmiana kierunku prędkości obrotowej na przeciwny nie wprowadzi żadnych korzyści w kontekście wzbudzenia prądnicy. W rzeczywistości, aby prądnica mogła wytwarzać prąd, wirnik musi obracać się w określonym kierunku, który jest zgodny z kierunkiem, w którym została zaprojektowana. Obrót w przeciwnym kierunku może prowadzić do dalszych problemów z generowaniem magnetyzmu i nie spowoduje automatycznego wzbudzenia urządzenia. Zwiększenie rezystancji w obwodzie wzbudzenia również jest niewłaściwym rozwiązaniem, ponieważ wysoka rezystancja zmniejsza przepływ prądu, co uniemożliwia skuteczne wzbudzenie maszyny. W obwodzie wzbudzenia powinno się dążyć do minimalizowania oporów, aby zapewnić odpowiednią ilość prądu wzbudzenia. Zmiana podłączenia w obwodzie wzbudzenia, choć teoretycznie mogłaby pomóc w niektórych konfiguracjach, w praktyce nie rozwiązuje problemu utraty magnetyzmu. Niewłaściwe podłączenie może wręcz pogorszyć sytuację, prowadząc do braku wzbudzenia. Typowe błędy myślowe w tym kontekście obejmują nieporozumienie dotyczące zasad działania prądnic oraz niewłaściwe podejście do analizy ich stanu technicznego. Kluczowym aspektem w sytuacji utraty magnetyzmu jest zastosowanie metody, która pozwoli na chwilowe uruchomienie prądnicy z zewnętrznym źródłem mocy, co skutecznie przywróci jej zdolność do wzbudzania się.

Pytanie 2

Aby zmierzyć naprężenia normalne (ściśnięcia, rozciągnięcia), należy użyć

A. pirometru
B. tensometru
C. tachometru
D. termometru
Tensometr jest urządzeniem służącym do pomiaru naprężeń normalnych, takich jak ściskanie i rozciąganie. Działa na zasadzie pomiaru odkształceń, które następnie przelicza na wartości naprężeń zgodnie z zasadą Hooke'a. Dzięki temu, tensometry są niezwykle ważne w inżynierii mechanicznej i materiałowej, gdzie precyzyjne pomiary naprężeń są kluczowe dla oceny wytrzymałości materiałów oraz konstrukcji. Przykłady zastosowania tensometrów obejmują badania wytrzymałościowe elementów konstrukcyjnych, takich jak belki, stropy czy mosty. W standardach takich jak ISO 9513 określono metody kalibracji tensometrów, co pozwala na uzyskanie wiarygodnych wyników. Dobre praktyki w stosowaniu tensometrów obejmują również ich odpowiedni dobór do rodzaju materiału oraz warunków pomiarowych, co zapewnia rzetelność i dokładność uzyskanych wyników. Dodatkowo, stosowane są różne typy tensometrów, w tym tensometry foliowe, które umożliwiają pomiary na różnorodnych powierzchniach, co zwiększa ich wszechstronność w zastosowaniach inżynieryjnych.

Pytanie 3

Z przedstawionego rysunku złożeniowego (a) oraz schematu montażowego (b) pompy zębatej wynika, że

Ilustracja do pytania
A. koło zębate montowane na wale i zablokowane kołkiem.
B. do montażu pokrywy potrzebne są 2 wkręty.
C. koło pasowe montowane jest przed uszczelnieniem.
D. pokrywa mocowana jest do korpusu przed montażem wału i osi.
W tej analizie pytania widać parę błędów, które mogą prowadzić do błędnych wniosków. Sporo ludzi myśli, że koło pasowe przed uszczelnieniem to kluczowy element, ale w pompie zębatej najważniejsze jest dobrze zamocowane koło zębate. Koło pasowe ma swoje miejsce, ale nie jest najważniejsze w kontekście działania pompy. Co do drugiego błędnego założenia — twierdzenie, że do zamontowania pokrywy trzeba dwa wkręty, to też pomyłka. Ilość wkrętów różni się w zależności od modelu, a skupienie się tylko na liczbie może sprawić, że przegapisz inne istotne wymagania dotyczące dokręcania. Ponadto, twierdzenie, że pokrywa montowana jest do korpusu przed wałem, to błąd. Kolejność montażu jest naprawdę ważna dla prawidłowego działania całego układu. Złe podejście do montażu może niesamowicie obniżyć efektywność działania pompy. W inżynierii istotne jest, aby ściśle trzymać się dokumentacji i standardów branżowych, które określają, jak prawidłowo montować i obsługiwać te urządzenia.

Pytanie 4

Technik, podczas naprawy urządzenia mechatronicznego, doznał porażenia prądem elektrycznym, upadł na ziemię i przestał oddychać. Osoba udzielająca pierwszej pomocy powinna zainicjować działania ratunkowe?

A. po wezwaniu pomocy medycznej
B. po poinformowaniu osoby przełożonej
C. po upływie kilkunastu sekund, sprawdzając w tym czasie tętno
D. natychmiastowo i kontynuować do momentu przybycia ratownika medycznego
Odpowiedź, że osoba udzielająca pomocy powinna niezwłocznie podjąć akcję ratunkową i prowadzić ją do przybycia ratownika medycznego, jest poprawna z kilku powodów. W sytuacji, gdy pracownik jest porażony prądem i stracił przytomność, czas jest kluczowy. Niezwłoczna interwencja może uratować życie, a każdy opóźnienie zwiększa ryzyko poważnych konsekwencji zdrowotnych. Zgodnie z wytycznymi Europejskiej Rady Resuscytacji (ERC), pierwsza pomoc powinna być udzielana jak najszybciej, aby zapewnić dostęp do oddechu i krążenia. Należy ocenić sytuację, zabezpieczyć miejsce zdarzenia oraz sprawdzić, czy osoba jest przytomna. Jeśli nie oddycha, konieczne jest rozpoczęcie resuscytacji krążeniowo-oddechowej (RKO), a jednocześnie należy wezwać pomoc medyczną. Przykładowo, w przypadku porażenia prądem elektrycznym, istotne jest również upewnienie się, że źródło prądu zostało odłączone, aby uniknąć dalszego zagrożenia. Działania te są zgodne z najlepszymi praktykami w zakresie pierwszej pomocy i podkreślają znaczenie szybkiej reakcji w sytuacjach zagrożenia życia.

Pytanie 5

Jakie jest moment obrotowy na wale silnika synchronicznego o mocy 3,14 kW przy prędkości obrotowej 3000 obr/min?

A. 10 Nm
B. 1 Nm
C. 986 Nm
D. 9 420 Nm
W przypadku momentu obrotowego na wale silnika synchronicznego, istnieje kilka kluczowych koncepcji, które mogą prowadzić do błędnych odpowiedzi. Moment obrotowy jest miarą siły, która powoduje obrót ciała wokół osi. Odpowiedzi takie jak 986 Nm, 1 Nm, czy 9 420 Nm nie uwzględniają prawidłowego przeliczenia mocy na moment obrotowy. Często mylnie przyjmuje się, że moc silnika bezpośrednio przekłada się na moment obrotowy, co jest nieprawidłowe. Prawidłowe obliczenie wymaga uwzględnienia zarówno mocy, jak i prędkości obrotowej. Typowym błędem jest także mylenie jednostek, zwłaszcza przy konwersji mocy z kilowatów na waty, co może prowadzić do znacznych niedoszacowań lub przeszacowań momentu obrotowego. Przykładowo, odpowiedź 986 Nm sugeruje, że silnik jest znacznie bardziej mocny niż to wynika z podanych danych. Z drugiej strony, odpowiedzi takie jak 1 Nm czy 10 Nm również nie oddają rzeczywistej wartości momentu, co może wpłynąć na niewłaściwy dobór napędu w praktycznych zastosowaniach przemysłowych. Dokładne zrozumienie tych zasad jest kluczowe dla inżynierów i techników, aby unikać potencjalnych problemów w projektowaniu układów napędowych.

Pytanie 6

Które narzędzie przeznaczone jest do cięcia niezbrojonych przewodów pneumatycznych z tworzyw sztucznych?

Ilustracja do pytania
A. A.
B. C.
C. D.
D. B.
Narzędzie oznaczone literą A, czyli nożyce do cięcia rur, zostało zaprojektowane specjalnie do precyzyjnego cięcia niezbrojonych przewodów pneumatycznych wykonanych z tworzyw sztucznych. Dzięki swojej konstrukcji, nożyce te zapewniają czyste i równe cięcia, co jest kluczowe w aplikacjach pneumatycznych, gdzie szczelność połączeń ma kluczowe znaczenie dla efektywności systemu. Użycie odpowiednich narzędzi do cięcia zapobiega uszkodzeniom materiału oraz minimalizuje ryzyko powstawania nieszczelności. W praktyce, zastosowanie nożyc do cięcia rur w instalacjach pneumatycznych jest powszechne w przemyśle, gdzie konieczne jest precyzyjne i szybkie przygotowanie przewodów do montażu, co jest zgodne z normami ISO 4414 dotyczącymi bezpieczeństwa w systemach pneumatycznych. Warto podkreślić, że stosowanie nożyc dedykowanych do tych materiałów jest najlepszą praktyką, która prowadzi do zwiększenia efektywności oraz bezpieczeństwa operacji.

Pytanie 7

W celu zwiększenia wskaźnika lepkości w układzie hydraulicznym oraz zmniejszenia zużycia jego elementów należy użyć oleju o oznaczeniu

DodatkiRodzaj oleju
HHHLHMHVHG
AntyutleniająceTakTakTakTak
Chroniące przed korozjąTakTakTakTak
Polepszające smarnośćTakTakTak
Zmniejszające zużycieTakTakTak
Zwiększające wskaźnik lepkościTak
O szczególnych właściwościach smarującychTak
A. HV
B. HH
C. HM
D. HL
Odpowiedź HV jest poprawna, ponieważ oleje hydrauliczne o oznaczeniu HV (High Viscosity Index) zawierają dodatki, które zwiększają wskaźnik lepkości. Oznacza to, że ich lepkość zmienia się w mniejszym stopniu w zależności od temperatury, co jest kluczowe w zastosowaniach hydraulicznych, gdzie stabilność lepkości w różnych warunkach roboczych jest niezwykle istotna. Użycie oleju o wysokim wskaźniku lepkości zapewnia lepszą ochronę elementów hydraulicznych, co przekłada się na ich dłuższą żywotność i mniejsze zużycie. Przykładem zastosowania oleju HV może być hydraulika stosowana w maszynach budowlanych, gdzie zmienne warunki pracy i temperatura mogą wpływać na wydajność systemu. Praktyki branżowe zalecają stosowanie olejów HV w sytuacjach, gdy urządzenia działają w szerszym zakresie temperatur, co minimalizuje ryzyko ich uszkodzenia i poprawia efektywność działania.

Pytanie 8

Urządzenie, którego dane techniczne przedstawiono w tabeli,

Ciecz roboczaOlej mineralny
WydajnośćDm3/min47 przy n=1450 min-1, p=1 MPa
Ciśnienie na wlocieMPa-0,02 (podciśnienie) do 0,5 (nadciśnienie)
Ciśnienie na wylocieMPamax. 10
Ciśnienie przeciekówMPamax. 0,2
Moment obrotowyNmmax. 235
Prędkość obrotowaobr/min1 000 do 1 800
Optymalna temperatura pracyK313÷338
Filtracjaμm16
A. steruje kierunkiem przepływu oleju.
B. otwiera i zamyka przepływ oleju.
C. utrzymuje stałe ciśnienie niezależnie od kierunku przepływu oleju.
D. wytwarza strumień oleju w układach i urządzeniach hydraulicznych.
Wybór nieprawidłowej odpowiedzi może wynikać z nieporozumienia dotyczącego funkcji urządzeń hydraulicznych. Na przykład, odpowiedzi sugerujące, że urządzenie steruje kierunkiem przepływu oleju, otwiera i zamyka przepływ, lub utrzymuje stałe ciśnienie, dotyczą innych typów urządzeń, takich jak zawory. Zawory kierunkowe są używane do zmiany kierunku przepływu medium, a zawory ciśnieniowe regulują ciśnienie w systemie, ale nie są w stanie generować strumienia oleju. Typowy błąd w myśleniu polega na myleniu funkcji pompy z funkcją zaworów, co jest powszechnym problemem wśród osób uczących się hydrauliki. Kluczowe jest zrozumienie, że pompy służą do przemieszczania oleju, a nie jego regulacji. Aby poprawnie rozwiązywać takie zadania, warto zwrócić uwagę na parametry techniczne podawane w opisach urządzeń oraz na ich zastosowanie w praktyce. Znajomość typów urządzeń oraz ich specyficznych ról w układzie hydraulicznym jest fundamentalna dla zrozumienia i efektywnego wykorzystania technologii hydraulicznej.

Pytanie 9

Na rysunkach przedstawiono nakrętkę

Ilustracja do pytania
A. kwadratową.
B. motylkową.
C. koronową.
D. radełkową.
Nakrętka koronowa, przedstawiona na rysunku, jest powszechnie stosowanym elementem złącznym, charakteryzującym się sześciokątnym kształtem oraz wypustami na zewnętrznej krawędzi. Te wypusty pozwalają na łatwe dokręcanie i odkręcanie nakrętki za pomocą klucza, co jest kluczowe w wielu zastosowaniach inżynieryjnych i mechanicznych. Nakrętki koronowe są często wykorzystywane w konstrukcjach maszyn, gdzie wymagana jest wysoka siła zaciągająca oraz odporność na luzowanie się połączeń. Dzięki ich konstrukcji, umożliwiają one uzyskanie lepszego momentu dokręcania, co jest zgodne z dobrymi praktykami w inżynierii mechanicznej. Warto również zauważyć, że zastosowanie nakrętek koronowych jest preferowane w standardach takich jak ISO 4032, które regulują wymiary i tolerancje dla takich elementów złącznych. Używanie nakrętek koronowych przyczynia się do zwiększenia bezpieczeństwa połączeń mechanicznych, minimalizując ryzyko ich awarii.

Pytanie 10

Jakie środki ochrony osobistej powinien używać pracownik obsługujący tokarkę precyzyjną?

A. Rękawice i nauszniki ochronne
B. Maskę osłaniającą twarz
C. Okulary ochronne
D. Czapkę z daszkiem
Okulary ochronne są kluczowym środkiem ochrony indywidualnej dla pracowników obsługujących tokarki precyzyjne. Ich zastosowanie ma na celu zabezpieczenie oczu przed odłamkami, pyłem oraz innymi niebezpiecznymi substancjami, które mogą powstawać podczas obróbki materiałów. Standardy BHP w przemyśle zalecają noszenie okularów ochronnych z odpowiednimi filtrami, które chronią przed szkodliwym promieniowaniem oraz zapewniają odpowiednią widoczność. Przykładowo, podczas frezowania lub toczenia metalu, mogą występować odpryski, które stanowią bezpośrednie zagrożenie dla wzroku. Dobre praktyki wskazują, że okulary powinny być przystosowane do specyficznych warunków pracy, a ich wybór powinien być zgodny z normami PN-EN 166 oraz PN-EN 170. Ponadto, pracownicy powinni być przeszkoleni w zakresie korzystania z tych środków ochrony, aby maksymalizować ich skuteczność.

Pytanie 11

Na rysunku przedstawiono przekrój siłownika pneumatycznego

Ilustracja do pytania
A. udarowego.
B. tłokowego.
C. tandemu.
D. wielopołożeniowego.
Wybór odpowiedzi dotyczących siłownika wielopołożeniowego wskazuje na pewne nieporozumienie w zakresie rozumienia konstrukcji i działania różnych typów siłowników pneumatycznych. Siłowniki wielopołożeniowe są projektowane w celu realizacji ruchu w wielu etapach, co nie ma zastosowania w przedstawionym rysunku, gdzie istotne elementy siłownika tłokowego są wyraźnie widoczne. Siłownik tandemowy, z kolei, składa się z dwóch lub więcej siłowników połączonych szeregowo, co również nie jest reprezentowane w tym przypadku. Dodatkowo, siłownik udarowy, który ma na celu generowanie ruchów o dużej prędkości i energii, jest konstrukcją znacznie bardziej złożoną i różniącą się zasadniczo od siłownika tłokowego. Zrozumienie tych różnic jest kluczowe dla stosowania odpowiednich rozwiązań w projektach inżynieryjnych. Często błędem jest mylenie funkcji i konstrukcji siłowników, co może prowadzić do niewłaściwego doboru komponentów, a w konsekwencji do awarii systemów. W praktyce, każda aplikacja wymaga analizy specyficznych wymagań dotyczących siłowników, a nieprawidłowe zrozumienie ich typów i zastosowań może skutkować istotnymi problemami technicznymi.

Pytanie 12

W celu zmniejszenia prędkości wysuwu tłoczyska siłownika pneumatycznego dwustronnego działania należy zastosować zawór

Ilustracja do pytania
A. dławiący.
B. zwrotny.
C. dławiąco-zwrotny.
D. zwrotny sterowany.
Wybór niepoprawnej odpowiedzi może wynikać z niepełnego zrozumienia funkcji poszczególnych zaworów w układach pneumatycznych. Zawór zwrotny, na przykład, służy do zezwalania na przepływ medium w jednym kierunku, co oznacza, że nie jest w stanie kontrolować prędkości wysuwu tłoczyska siłownika. W przypadku zastosowania zaworu zwrotnego sterowanego, jego rola polega na umożliwieniu otwierania i zamykania przepływu na podstawie ciśnienia lub innego sygnału, ale również nie oferuje regulacji prędkości samego działania siłownika. Zawór dławiąco-zwrotny, z kolei, łączy funkcje zaworu zwrotnego z regulacją, jednak nie jest to idealne rozwiązanie dla precyzyjnej kontroli prędkości, jaką zapewnia zawór dławiący. Zrozumienie, że regulacja prędkości wymaga ograniczenia przepływu medium, a nie tylko manipulacji kierunkiem jego przepływu, jest kluczowe w prawidłowym doborze komponentów w systemach pneumatycznych. Typowe błędy polegają na myleniu funkcji zaworów oraz przypisywaniu im właściwości, których nie posiadają. Dlatego istotne jest, aby mieć na uwadze, że dla prawidłowego działania siłowników pneumatycznych i zapewnienia ich efektywności, zawór dławiący jest niezbędny, a inne z wymienionych zaworów nie spełniają tej funkcji w taki sam sposób.

Pytanie 13

W normalnych warunkach działania wyłącznika różnicowoprądowego wektorowa suma natężeń prądów sinusoidalnych przepływających w przewodach fazowych oraz neutralnym wynosi

A. 1 A
B. 2 A
C. 0 A
D. 3 A
W przypadku wyłącznika różnicowoprądowego, jego podstawowym zadaniem jest monitorowanie różnicy natężeń prądu między przewodami fazowymi a przewodem neutralnym. W warunkach normalnej pracy, gdy urządzenie działa prawidłowo, suma wektorowa natężeń prądów płynących przez przewody powinna wynosić 0 A. Oznacza to, że prąd wpływający do obwodu przez przewód fazowy jest równy prądowi wypływającemu przez przewód neutralny. Przykładowo, jeśli w obwodzie mamy trzy przewody fazowe, każdy z określonym natężeniem prądu, to ich suma wektorowa, uwzględniająca odpowiednie fazy, powinna wskazywać na zerowe natężenie w przewodzie neutralnym. Zgodnie z normą PN-IEC 61008, wyłączniki różnicowoprądowe są projektowane w taki sposób, aby skutecznie wykrywać różnice prądów oraz zapewniać bezpieczeństwo użytkowników poprzez automatyczne odłączenie obwodu w przypadku wykrycia upływu prądu. Taka funkcjonalność jest kluczowa w instalacjach elektrycznych, gdzie bezpieczeństwo i ochrona przed porażeniem prądem są priorytetami.

Pytanie 14

Parametry zamieszczone w tabeli charakteryzują

ParametrWartość
Wydajność21 l/min
Prędkość obrotowa1500 obr./min
objętość geometryczna14 cm³/obr.
zakres obrotówod 800 do 3500 obr/min
ciśnienie nominalne25 MPa
ciśnienie maksymalne26 MPa
A. silnik elektryczny.
B. pompę hydrauliczną.
C. kompresor olejowy.
D. silnik hydrauliczny.
Wybór silnika hydraulicznego, kompresora olejowego czy silnika elektrycznego jako odpowiedzi jest niepoprawny z kilku kluczowych powodów. Silnik hydrauliczny i silnik elektryczny pełnią zupełnie inne funkcje w systemach mechanicznych. Silnik hydrauliczny jest odpowiedzialny za przetwarzanie energii hydraulicznej na ruch mechaniczny, jednak nie charakteryzuje się parametrami opisanymi w tabeli, takimi jak wydajność w l/min czy ciśnienie nominalne. Z kolei kompresor olejowy ma na celu sprężanie cieczy, co również jest niezgodne z parametrami związanymi z pompami hydraulicznymi. Kompresory są projektowane z myślą o innych zastosowaniach, głównie w obiegu powietrza lub gazów, dlatego ich parametry nie są zbieżne z tymi, które są typowe dla pomp. Typowy błąd myślowy polega na myleniu funkcji różnych urządzeń hydraulicznych z ich właściwościami technicznymi. Aby zrozumieć, dlaczego taka pomyłka występuje, warto zwrócić uwagę na różnice w zastosowaniu tych urządzeń oraz ich podstawowe zasady działania. Przykładowo, parametry hydrauliczne, takie jak ciśnienie i wydajność, są kluczowe dla pomp, ale nie mają bezpośredniego związku z silnikami czy kompresorami. Zrozumienie tych podstawowych różnic jest niezbędne w przemyśle, aby prawidłowo dobierać urządzenia do konkretnych zadań.

Pytanie 15

Na której ilustracji przedstawiono zawór odcinający?

Ilustracja do pytania
A. Na ilustracji 4.
B. Na ilustracji 1.
C. Na ilustracji 2.
D. Na ilustracji 3.
Ilustracja 1 przedstawia zawór odcinający, który jest niezbędnym elementem w wielu systemach inżynieryjnych. Zawory odcinające służą do całkowitego zatrzymywania lub umożliwiania przepływu medium, takiego jak woda, gaz czy olej. Dzięki swojej konstrukcji, pozwalają na szybkie i efektywne zamknięcie przepływu, co jest kluczowe w sytuacjach awaryjnych, gdzie może być konieczne natychmiastowe odcięcie zasilania lub przepływu. W praktyce stosuje się je w instalacjach wodociągowych, przemysłowych systemach hydraulicznych oraz w instalacjach gazowych. Ważne jest, aby wybrać odpowiedni rodzaj zaworu odcinającego, dostosowany do specyfiki medium oraz warunków pracy. Zawory te powinny spełniać normy branżowe, takie jak PN-EN 13774, które określają wymagania dla zaworów używanych w systemach instalacyjnych. W kontekście bezpieczeństwa, zawory odcinające są często elementem systemów zabezpieczających, co podkreśla ich istotną rolę w inżynierii i technice.

Pytanie 16

W maszynach wirujących można zdiagnozować nieosiowe położenie wałów, niewyważenie mas wirujących lub ugięcie wałów

A. testerem izolacji
B. tachometrem
C. rejestratorem prądu
D. analizatorem drgań
Analizator drgań jest kluczowym narzędziem w diagnostyce maszyn wirujących, ponieważ umożliwia szczegółową analizę drgań generowanych przez maszyny, co pozwala na wykrycie nieprawidłowości związanych z ich ustawieniem, wyważeniem czy ugięciem wałów. Pomiar drgań jest istotnym elementem monitorowania stanu technicznego maszyn, zgodnie z normami ISO 10816 dotyczącymi oceny stanu maszyn na podstawie pomiarów drgań. Analizator drgań może wykryć różne rodzaje nieprawidłowości, takie jak niewyważenie, które prowadzi do nadmiernych drgań i może skutkować uszkodzeniami łożysk czy innych komponentów. Przykładowo, w przypadku silników elektrycznych, analiza drgań może pomóc w ocenie ich wyważenia oraz identyfikacji problemów z łożyskami, co pozwala na wczesne podjęcie działań serwisowych. W praktyce, regularne monitorowanie drgań może znacznie wydłużyć żywotność maszyn, a także zredukować koszty związane z nieplanowanymi przestojami i naprawami.

Pytanie 17

Przedstawione narzędzie jest wykorzystywane podczas

Ilustracja do pytania
A. frezowania.
B. gwintowania.
C. toczenia.
D. wiercenia.
Odpowiedź "gwintowania" jest prawidłowa, ponieważ narzędzie przedstawione na zdjęciu to gwintownik, który jest przeznaczony do tworzenia gwintów wewnętrznych w otworach. Gwintowanie jest procesem, który pozwala na połączenie elementów mechanicznych, takich jak śruby i nakrętki, co jest niezwykle istotne w wielu branżach, w tym w budownictwie i inżynierii. Gwintowniki są dostępne w różnych typach, takich jak gwintowniki ręczne i maszynowe, które są dobierane w zależności od materiału obrabianego oraz wymagań dotyczących precyzji i głębokości gwintu. Stosowanie gwintowników zgodnie z normami i standardami branżowymi, takimi jak ISO, zapewnia wysoką jakość wykonania oraz zgodność z wymaganiami technicznymi. W praktyce, gwintowanie jest kluczowe w produkcji części maszyn oraz w montażu konstrukcji, gdzie właściwe dopasowanie i trwałość połączeń mają kluczowe znaczenie dla bezpieczeństwa i funkcjonalności finalnych produktów.

Pytanie 18

Cyfrowy tachometr jest narzędziem do mierzenia

A. natężenia przepływu powietrza
B. lepkości cieczy
C. naprężeń w metalach
D. prędkości obrotowej wału silnika
Tachometr cyfrowy to urządzenie, które służy do precyzyjnego pomiaru prędkości obrotowej wału silnika. W praktyce, tachometry cyfrowe są niezbędne w wielu dziedzinach, takich jak motoryzacja, przemysł czy inżynieria. Zasada działania tych urządzeń opiera się na pomiarze liczby obrotów wału w określonym czasie, co pozwala na obliczenie prędkości obrotowej w jednostkach takich jak obroty na minutę (RPM). Przykład zastosowania tachometru cyfrowego można znaleźć w diagnostyce silników, gdzie jego pomiar pozwala na ocenę stanu technicznego oraz efektywności działania jednostki napędowej. W branży motoryzacyjnej, tachometry są często używane do regulacji pracy silnika, co ma wpływ na osiągi pojazdu oraz jego zużycie paliwa. Standardy branżowe, takie jak ISO 9001, podkreślają znaczenie precyzyjnych pomiarów w procesach inżynieryjnych, co czyni tachometry cyfrowe kluczowym elementem w zapewnieniu jakości i efektywności systemów mechanicznych.

Pytanie 19

Którym medium roboczym jest zasilane urządzenie o symbolu graficznym przedstawionym na rysunku?

Ilustracja do pytania
A. Prądem przemiennym.
B. Cieczą hydrauliczną.
C. Prądem stałym.
D. Sprężonym powietrzem.
Cieczą hydrauliczną zasilane są urządzenia, które wykorzystują moc cieczy do generowania siły. W przypadku zaworów hydraulicznych, które widzimy na przedstawionym symbolu, ich głównym zadaniem jest kontrolowanie przepływu cieczy w układach hydraulicznych. Zawory mogą mieć różne funkcje, w tym regulację ciśnienia, kierunku przepływu oraz jego ilości, co jest kluczowe dla prawidłowego funkcjonowania maszyn i urządzeń przemysłowych. Systemy hydrauliczne są powszechnie stosowane w różnych branżach, takich jak budownictwo, przemysł motoryzacyjny i produkcja, gdzie siły generowane przez ciecz są wykorzystywane do napędu narzędzi, podnoszenia ciężarów i sterowania ruchem. Zrozumienie działania zaworów hydraulicznych oraz ich roli w systemach hydraulicznych jest niezwykle istotne, ponieważ prawidłowe ich dobranie i konfiguracja są kluczowe dla efektywności i bezpieczeństwa operacji. Przykładem może być maszyna budowlana, która wykorzystuje hydraulikę do podnoszenia i przemieszczania ciężkich elementów.

Pytanie 20

Zastosowany w podsystemie pneumatycznym zespół, którego wygląd i symbole graficzne przedstawiono na rysunkach, umożliwia

Ilustracja do pytania
A. zasilanie układu pneumatycznego sprężonym powietrzem o stałym ciśnieniu.
B. płynną regulację temperatury sprężonego powietrza zasilającego układ.
C. płynną regulację wilgotności sprężonego powietrza zasilającego układ.
D. zasilanie układu pneumatycznego sprężonym powietrzem o stałej wartości przepływu.
Wybranie odpowiedzi, która sugeruje płynną regulację temperatury sprężonego powietrza, świadczy o nieporozumieniu w zakresie funkcji tego zestawu. Regulacja temperatury powietrza jest procesem, który zazwyczaj nie jest realizowany przez standardowe zespoły przygotowania powietrza. Zamiast tego, standardowe elementy, takie jak chłodnice powietrza, są stosowane do tego celu. Również koncepcja regulacji wilgotności sprężonego powietrza jest mylna. Wilgotność powietrza jest kontrolowana w sposób bardziej zaawansowany, często z użyciem osuszaczy, które eliminują nadmiar wilgoci. Dodatkowo, odpowiedź dotycząca stałej wartości przepływu sprężonego powietrza również odbiega od rzeczywistości. W kontekście pneumatyki, przepływ powietrza może być regulowany, ale zespół przygotowania powietrza, jak ten przedstawiony na zdjęciu, nie ma zastosowania do takiego zadania. Przerwy w zrozumieniu tych różnic mogą prowadzić do nieefektywnego wykorzystania systemów pneumatycznych oraz do potencjalnych awarii. Kluczowe jest zrozumienie, że każdy element w systemie pneumatycznym ma swoje specyficzne zadanie, które nie może być realizowane przez inne urządzenia. Dlatego tak ważne jest, aby znać nie tylko funkcje, ale i ograniczenia poszczególnych komponentów, co jest niezbędne do zapewnienia niezawodności i efektywności operacyjnej w przemyśle.

Pytanie 21

Watomierz jest urządzeniem do pomiaru mocy

A. chwilowej
B. pozornej
C. biernej
D. czynnej
Watomierz, jako urządzenie pomiarowe, jest kluczowym narzędziem w dziedzinie elektroenergetyki, służącym do pomiaru mocy czynnej. Moc czynna, wyrażana w watach (W), to ta część mocy, która jest rzeczywiście wykorzystywana do wykonywania pracy, na przykład zasilania urządzeń elektrycznych. Watomierze znajdują zastosowanie zarówno w przemyśle, jak i w domowych instalacjach elektrycznych, umożliwiając monitorowanie zużycia energii i optymalizację procesów. Dzięki kilku typom watomierzy, w tym analogowym i cyfrowym, możemy dokładnie określić, ile energii zostaje przekształcone w pracę użyteczną, co jest kluczowe dla oceny efektywności energetycznej systemów elektrycznych. W praktyce, pomiar mocy czynnej pozwala na oszacowanie kosztów zużycia energii oraz wykrywanie niesprawności w urządzeniach, co jest zgodne z najlepszymi praktykami w zarządzaniu energią, w tym normami ISO 50001.

Pytanie 22

W co musi być wyposażony tłok siłownika, aby czujnik kontaktronowy umieszczony w sposób przedstawiony na rysunku sygnalizował jego położenie?

Ilustracja do pytania
A. W element światłoczuły.
B. W rdzeń ferrytowy.
C. W lustro.
D. W magnes.
Odpowiedź 'W rdzeń ferrytowy' nie jest dobra, bo chociaż rdzenie ferrytowe mają swoje zastosowania w elektronice, to nie mają nic wspólnego z działaniem czujników kontaktronowych. Służą one raczej do zwiększania indukcyjności w cewkach czy transformatorach, co w kontekście detekcji pozycji tłoka nie ma sensu. Podobnie odpowiedź 'W lustro' nie pasuje – lustra używa się w systemach optycznych, a nie do detekcji magnetycznej. Czujniki kontaktronowe reagują na pole magnetyczne, a nie na światło, więc lustro ich nie aktywuje. Z kolei 'W element światłoczuły' też jest nietrafione, bo te elementy są zaprojektowane do reakcji na światło, a nie na pole magnetyczne. Kiedy mówimy o detekcji pozycji tłoka, musimy używać odpowiednich technologii, jak magnesy i czujniki kontaktronowe, które działają na bazie pola magnetycznego. Często popełniany błąd to mylenie różnych metod detekcji, co prowadzi do złych wyborów komponentów.

Pytanie 23

Z wymienionych materiałów wybierz ten, który jest najczęściej używany w produkcji łożysk ślizgowych?

A. Teflon
B. Polistyren
C. Epoksyt
D. Żeliwo białe
Teflon, znany również jako politetrafluoroetylen (PTFE), jest materiałem, który ze względu na swoje unikalne właściwości, jest powszechnie stosowany w produkcji łożysk ślizgowych. Jego niska współczynnik tarcia, wysoka odporność na chemikalia oraz doskonałe właściwości dielektryczne czynią go idealnym wyborem w aplikacjach, gdzie minimalizacja tarcia jest kluczowa. Teflon jest często wykorzystywany w łożyskach w przemyśle motoryzacyjnym oraz w różnych maszynach przemysłowych, gdzie wymagana jest wysoka wydajność i długotrwała niezawodność. W produkcji łożysk ślizgowych Teflon może być stosowany samodzielnie lub w połączeniu z innymi materiałami, co pozwala na osiągnięcie jeszcze lepszych parametrów. Jako materiał o wysokiej wytrzymałości na ściskanie, Teflon może pracować w trudnych warunkach, co jest istotne w kontekście standardów jakości, takich jak ISO 9001, które podkreślają znaczenie trwałości i niezawodności komponentów przemysłowych. Dodatkowo, ze względu na swoje właściwości samosmarujące, łożyska wykonane z Teflonu wymagają mniejszej konserwacji, co przekłada się na obniżenie kosztów operacyjnych.

Pytanie 24

Na którym rysunku przedstawiono szkic przekroju prawidłowo zaciśniętej końcówki przewodu w obszarze z izolacją?

Ilustracja do pytania
A. C.
B. B.
C. A.
D. D.
Wybór innych odpowiedzi może prowadzić do licznych problemów związanych z bezpieczeństwem i efektywnością instalacji elektrycznych. Wiele z tych niepoprawnych opcji może sugerować błędy w zakresie izolacji lub niewłaściwego zaciskania końcówek przewodów. Na przykład, gdy końcówka przewodu jest zaciśnięta nieprawidłowo, może to powodować, że izolacja nachodzi na nitki przewodu. Taki stan prowadzi do ryzyka zwarcia, ponieważ może dojść do kontaktu przewodów z elementami metalowymi, co jest szczególnie niebezpieczne w instalacjach wysokoprądowych. Ponadto, nieodpowiednie zaciśnięcie może skutkować zwiększonym oporem na styku, co może prowadzić do przegrzewania się i w konsekwencji do uszkodzenia materiałów izolacyjnych. W praktyce, wiele błędów wynika z nieuwagi lub braku odpowiedniej wiedzy na temat standardów technicznych dotyczących zaciskania. Kluczowe jest, aby osoby pracujące z instalacjami elektrycznymi były świadome tych zasad i regularnie poszerzały swoją wiedzę na temat najlepszych praktyk w branży. Ignorowanie tych wskazówek może prowadzić do poważnych konsekwencji, w tym do awarii instalacji czy nawet zagrożenia życia.

Pytanie 25

Zastępcza rezystancja obwodu widziana od strony zacisków A i B wynosi

Ilustracja do pytania
A. 3/2 ohma
B. 2/3 ohma
C. 3 ohmy
D. 1/3 ohma
Wybór odpowiedzi 3/2 ohma, 1/3 ohma lub 3 ohmy wskazuje na pewne nieporozumienia w zakresie obliczania zastępczej rezystancji w obwodach elektrycznych. Przede wszystkim, jeśli ktoś pomylił się w obliczeniach, to mógł przyjąć nieprawidłowe zasady dotyczące łączenia rezystorów. Rezystancje w układzie szeregowym sumujemy, co często bywa mylone z równoległym łączeniem rezystorów, gdzie stosujemy wspomniane wcześniej równanie 1/R = 1/R1 + 1/R2. Wybór odpowiedzi 3/2 ohma może sugerować, że osoba ta zsumowała rezystancje szeregowe bez uwzględnienia obwodu równoległego, co prowadzi do wyższej wartości zastępczej niż w rzeczywistości. Podobnie, wybór 1/3 ohma może wynikać z błędnego zastosowania wzoru do obliczania rezystancji równoległej lub pomyłki w obliczeniach. Z kolei odpowiedź 3 ohmy sugeruje poważne nieporozumienie związane z całkowitą rezystancją w obwodzie, co jest niezgodne z zasadami analizy obwodów elektrycznych. Dlatego kluczowe jest zrozumienie, jak obie metody wpływają na wyniki oraz właściwe zastosowanie odpowiednich wzorów. Błąd w doborze metody obliczeniowej może prowadzić do nieprawidłowych wyników i w konsekwencji do awarii w projektowanych układach elektrycznych.

Pytanie 26

Wskaż zawór, który należy zamontować w miejsce szarego prostokąta, aby w układzie przedstawionym na schemacie zapewnić uruchomienie siłownika wyłącznie po jednoczesnym naciśnięciu obu zaworów rozdzielających.

Ilustracja do pytania
A. A.
B. C.
C. D.
D. B.
W przypadku wybrania niepoprawnej odpowiedzi, na przykład A, B lub D, występują istotne nieporozumienia dotyczące funkcji zaworów oraz ich zastosowania w układach pneumatycznych. Zawory te nie są zaprojektowane do realizacji logiki AND, co oznacza, że nie mogą zapewnić wymaganego działania siłownika tylko po jednoczesnym naciśnięciu obu zaworów. Wybór zaworu, który nie odpowiada na logikę AND, prowadzi do sytuacji, w której aktywacja siłownika może nastąpić po naciśnięciu jednego z zaworów, co jest niezgodne z wymaganiami bezpieczeństwa. Tego typu błędy mogą wynikać z mylnego zrozumienia działania zaworów lub braku wiedzy na temat ich podstawowych funkcji. Wiele osób może zakładać, że każdy zawór rozdzielający będzie w stanie zrealizować złożone operacje logiczne, co nie jest prawdą. Kluczowe jest zrozumienie, że w układach pneumatycznych różne zawory mają różne funkcje i nie każdy typ zaworu nadaje się do realizacji specyficznych wymagań operacyjnych. Błędne podejście do projektowania takich układów może prowadzić do nie tylko do awarii systemu, ale także do poważnych zagrożeń dla bezpieczeństwa użytkowników. Dlatego tak ważne jest dokładne zapoznanie się z zasadami działania poszczególnych komponentów oraz ich zastosowaniem w kontekście całego układu.

Pytanie 27

Jakiego klucza należy użyć, aby odkręcić śrubę z walcowym łbem i sześciokątnym gniazdem?

A. Imbusowego
B. Dynamometrycznego
C. Płaskiego
D. Nasadowego
Odpowiedzi płaskiego, nasadowego i dynamometrycznego są nieprawidłowe z różnych powodów. Klucz płaski, choć jest popularnym narzędziem, nie sprawdzi się w przypadku śrub z gniazdem sześciokątnym, ponieważ jego konstrukcja nie pasuje do kształtu gniazda. W takich sytuacjach zastosowanie klucza płaskiego może prowadzić do poślizgu i uszkodzenia zarówno narzędzia, jak i śruby. Klucz nasadowy, mimo iż jest użyteczny w wielu zastosowaniach, również nie jest odpowiedni, ponieważ jego gniazdo nie jest zoptymalizowane do pracy ze śrubami imbusowymi. Klucze nasadowe są przeznaczone głównie do śrub z łbem sześciokątnym zewnętrznym. Klucz dynamometryczny, z kolei, jest narzędziem służącym do przykręcania śrub z określonym momentem obrotowym, co oznacza, że jest stosowany w sytuacjach, gdzie ważne jest precyzyjne dokręcenie. Jednakże, bez odpowiedniego klucza do wstępnego luzowania takich śrub, dynamometryczny nie będzie miał zastosowania. Dlatego klucz imbusowy jest jedynym narzędziem, które zapewnia efektywne i bezpieczne wykręcanie śrub z łbem walcowym i gniazdem sześciokątnym, dzięki czemu unikamy błędów i potencjalnych uszkodzeń.

Pytanie 28

Na podstawie fragmentu instrukcji serwisowej sprężarki tłokowej wskaż, która z wymienionych czynności konserwacyjnych powinna być wykonywana najczęściej.

CzynnośćCykle
Filtr ssącykontrolowanieco tydzień
czyszczenieco 60 godzin eksploatacji
wymianazależnie od potrzeb (co najmniej raz w roku)
Kontrola stanu olejucodziennie przed uruchomieniem
Wymiana olejupierwsza wymianapo 40 godzinach eksploatacji
kolejna wymianaraz w roku
Spust kondensatuco najmniej raz w tygodniu
Czyszczenie zaworu zwrotnegoco najmniej raz w roku
Pasek klinowykontrola naprężeniaco tydzień
wymianaw przypadku zużycia
A. Wymiana paska klinowego.
B. Czyszczenie zaworu zwrotnego.
C. Kontrola stanu oleju.
D. Wymiana filtra ssącego.
Kontrola stanu oleju jest kluczowym elementem konserwacji sprężarek tłokowych. Regularne sprawdzanie poziomu i jakości oleju zapewnia prawidłowe smarowanie wszystkich ruchomych części, co wpływa na ich trwałość oraz efektywność energetyczną urządzenia. Niekontrolowanie stanu oleju może prowadzić do zwiększonego tarcia, a w konsekwencji do poważnych uszkodzeń silnika. Zgodnie z zaleceniami producentów, kontrola oleju powinna odbywać się codziennie przed rozpoczęciem pracy sprężarki. Dodatkowo, w przypadku wykrycia zanieczyszczeń oleju, jego wymiana powinna być przeprowadzona natychmiastowo, aby zapobiec dalszym uszkodzeniom. Przykładowo, w warunkach przemysłowych, gdzie sprężarki pracują non-stop, regularna kontrola oleju staje się kluczowym elementem strategii utrzymania ruchu, co przyczynia się do mniejszych kosztów eksploatacji oraz dłuższej żywotności maszyn.

Pytanie 29

Na rysunku przedstawiono zawór rozdzielający przystosowany do sterowania

Ilustracja do pytania
A. hydraulicznego.
B. elektrycznego.
C. pneumatycznego.
D. mechanicznego.
Wybór mechanicznych, hydraulicznych lub elektrycznych systemów sterowania wskazuje na niewłaściwe zrozumienie podstawowych różnic między tymi technologiami a systemami pneumatycznymi. Zawory mechaniczne zazwyczaj opierają się na fizycznych ruchach elementów, takich jak dźwignie czy sprężyny, co ogranicza ich zastosowanie w bardziej złożonych systemach automatyzacji. Z kolei systemy hydrauliczne wykorzystują ciecz pod ciśnieniem, co wymaga bardziej skomplikowanej konstrukcji oraz materiałów odpornych na wysokie ciśnienia, co może prowadzić do wyższych kosztów i większej wagi całego systemu. Zawory hydrauliczne są również bardziej skomplikowane w obsłudze i utrzymaniu. Z kolei systemy elektryczne opierają się na sygnałach elektrycznych, co wymaga zasilania oraz układów sterujących. Tego rodzaju systemy mogą być bardziej wrażliwe na zakłócenia i wymagają dodatkowych elementów zabezpieczających. Każda z tych technologii ma swoje zastosowanie, jednak w kontekście zaworu rozdzielającego, który przedstawiono na rysunku, istotne jest zrozumienie, że jego konstrukcja oraz parametry są dostosowane do pracy w systemach pneumatycznych, co odróżnia je od innych technologii. Typowym błędem myślowym jest utożsamianie ogólnej funkcji zaworu z konkretnymi wymaganiami technicznymi, co prowadzi do nieprawidłowych wniosków dotyczących jego przeznaczenia.

Pytanie 30

Aby z dużą precyzją identyfikować jedynie obiekty metalowe w odległości do 5 mm, należy zastosować czujnik

A. mechaniczny
B. temperatury
C. indukcyjny
D. ultradźwiękowy
Czujniki indukcyjne są idealnym rozwiązaniem do wykrywania obiektów metalowych, zwłaszcza w bardzo małych odległościach, takich jak 5 mm. Działają na zasadzie indukcji elektromagnetycznej, co pozwala im na detekcję zmian w polu elektromagnetycznym wywołanych obecnością metalu. Dzięki swojej wysokiej czułości i precyzji, czujniki te są szeroko stosowane w automatyce przemysłowej, na przykład w aplikacjach związanych z detekcją obecności części metalowych na liniach montażowych, a także w systemach zabezpieczeń. Standardy branżowe zalecają stosowanie czujników indukcyjnych w sytuacjach, gdzie wymagane jest szybkie i niezawodne wykrywanie metalowych obiektów, co jest szczególnie istotne w środowiskach produkcyjnych. Ich odporność na zanieczyszczenia i działanie czynników zewnętrznych czyni je idealnym wyborem w trudnych warunkach przemysłowych. Ponadto, czujniki te charakteryzują się długą żywotnością oraz niskimi kosztami eksploatacyjnymi, co czyni je bardzo efektywnym rozwiązaniem.

Pytanie 31

Do czego służy klucz dynamometryczny?

A. do dokręcania śrub z określonym momentem obrotowym
B. do odkręcania zardzewiałych śrub
C. do dokręcania śrub w trudno dostępnych miejscach
D. do ułatwienia odkręcania i dokręcania śrub
Klucz dynamometryczny jest niezbędnym narzędziem w sytuacjach, gdzie precyzyjne dokręcanie śrub jest kluczowe dla bezpieczeństwa i funkcjonalności konstrukcji. Umożliwia on osiągnięcie określonego momentu siły, co jest istotne w wielu zastosowaniach, takich jak montaż elementów w silnikach, układach zawieszenia czy też w budowie maszyn. Dobrze dobrany moment dokręcania wpływa na złącza śrubowe, zapobiegając ich poluzowaniu lub uszkodzeniu. W praktyce, na przykład w branży motoryzacyjnej, wiele specyfikacji producentów wyraźnie określa wymagany moment dokręcania dla poszczególnych śrub. Użycie klucza dynamometrycznego zgodnie z tymi specyfikacjami jest kluczowe dla zapewnienia długowieczności i niezawodności elementów, a także uniknięcia niebezpiecznych awarii. Stosowanie klucza dynamometrycznego jest zatem zgodne z dobrymi praktykami i standardami branżowymi, które kładą nacisk na bezpieczeństwo i jakość wykonania.

Pytanie 32

Taśmociąg, który jest napędzany trójfazowym silnikiem indukcyjnym, porusza się w kierunku przeciwnym do oczekiwanego. Co może być tego przyczyną?

A. zwarciem jednej fazy z obudową.
B. przerwą w jednej z faz.
C. błędną sekwencją faz.
D. zwarciem dwóch faz.
Kolejność faz w trójfazowym silniku indukcyjnym to naprawdę istotna sprawa, bo ma duży wpływ na to, w którą stronę silnik się obraca. Te silniki działają dzięki wirującemu polu magnetycznemu, które powstaje właśnie przez różnice między fazami w przewodach. Kiedy zamieniasz miejscami fazy A, B i C, pole zmienia kierunek, no i silnik obraca się w drugą stronę. To ma znaczenie w wielu miejscach, jak na przykład przy taśmociągach w fabrykach, gdzie wszystko musi działać jak należy, żeby nie tracić czasu. Jak już coś nie gra z podłączeniem, to można szybko sprawdzić sytuację z miernikiem fazowym, który pokaże, jak to wygląda. Dlatego warto przestrzegać zasad przy podłączaniu silników, bo to ważne dla ich działania i bezpieczeństwa. Bez tego, mogą się pojawić poważne problemy.

Pytanie 33

Fotorezystor, o charakterystyce jak na rysunku, zastosowany w układzie do pomiaru natężenia oświetlenia, przy natężeniu 1000 lx ma rezystancję wynoszącą około

Ilustracja do pytania
A. 100 Ω
B. 100 kΩ
C. 10 Ω
D. 10 kΩ
Odpowiedź jest słuszna, ponieważ wynika z analizy charakterystyki fotorezystora, która pokazuje zależność rezystancji od natężenia oświetlenia. W praktyce, przy natężeniu 1000 lx, rezystancja wynosi około 100 Ω. Fotorezystory są szeroko stosowane w różnych aplikacjach, takich jak automatyka domowa, oświetlenie zewnętrzne i systemy detekcji światła. Przykładem może być układ, w którym fotorezystor steruje włączaniem lub wyłączaniem oświetlenia w zależności od poziomu światła dziennego. W branży stosuje się również standardy, które określają charakterystyki takich elementów, aby zapewnić ich niezawodność i wydajność w zastosowaniach inżynieryjnych. Właściwe zrozumienie działania fotorezystorów jest kluczowe dla projektowania efektywnych układów elektronicznych, które reagują na zmiany w natężeniu oświetlenia.

Pytanie 34

Silnik krokowy dysponuje 4 uzwojeniami wzbudzającymi, z których każde ma 8 nabiegunników. Jakie będzie przesunięcie kątowe silnika przypadające na pojedynczy krok przy sterowaniu jednym uzwojeniem?

A. 2°49'
B. 11°15'
C. 5°38'
D. 22°30'
Silnik krokowy z czterema uzwojeniami wzbudzającymi i ośmioma nabiegunnikami w każdym uzwojeniu charakteryzuje się określoną ilością kroków na pełny obrót. W tym przypadku mamy 4 uzwojenia, co oznacza, że przy każdym aktywowaniu jednego uzwojenia, silnik wykonuje część obrotu, a liczba nabiegunników wpływa na precyzyjność tego ruchu. Aby obliczyć kąt przesunięcia na krok, należy zastosować wzór: 360° / (Liczba uzwojeń * Liczba nabiegunników). W tym przypadku obliczenia wyglądają następująco: 360° / (4 * 8) = 360° / 32 = 11°15'. Praktyczne zastosowania silników krokowych obejmują zautomatyzowane systemy, w których wymagana jest precyzyjna kontrola pozycji, jak np. w drukarkach 3D, robotyce czy automatyce przemysłowej. Zrozumienie tego obliczenia pozwala na lepsze projektowanie układów sterujących oraz optymalizację ich pracy w różnych aplikacjach.

Pytanie 35

W układzie elektropneumatycznym przedstawionym na ilustracji należy zamontować zawór rozdzielający w wersji

Wersja zaworuW1W2W3W4
Liczba cewek1212
Typ zaworu4/24/35/25/2
Biegunowość zasilaniadowolnadowolnadowolnadowolna
Ilustracja do pytania
A. W4.
B. W2.
C. W1.
D. W3.
Zawór W4 to naprawdę dobry wybór w tym układzie elektropneumatycznym, bo pasuje do wymagań dla systemu z dwoma siłownikami pneumatycznymi. To zawór 5/2, więc ma pięć portów i dwie pozycje. Dzięki temu możemy bardzo dokładnie sterować siłownikami 1M1 i 1M2. W praktyce oznacza to, że każdy z siłowników możemy kontrolować niezależnie, co jest kluczowe, gdy potrzebujemy różne cykle robocze. Wybierając W4, możemy też korzystać ze standardowych komponentów w układach pneumatycznych, co potem ułatwia modyfikacje i konserwację. Przy projektowaniu takich układów trzeba zwracać uwagę na normy branżowe, jak ISO 4414, które mówią o bezpieczeństwie i efektywności w systemach pneumatycznych. Użycie odpowiedniego zaworu jest istotne, bo to zapewnia płynność pracy i zmniejsza ryzyko awarii spowodowanej złym doborem komponentów. Kiedy myślimy nad wyborem zaworu, ważne, żeby uwzględnić takie rzeczy jak ciśnienie robocze, przepływ i rodzaj medium, bo to wszystko wpływa na wydajność układu.

Pytanie 36

Jaką czynność zrealizuje polecenie COMPILE w kontekście programowania systemów mechatronicznych?

A. Konwersja kodu binarnego na format dziesiętny
B. Przesłanie programu do kontrolera
C. Przetłumaczenie programu na kod binarny
D. Pobranie programu z kontrolera
Polecenie COMPILE w środowisku do programowania urządzeń mechatronicznych polega na przetłumaczeniu programu na kod binarny, co jest kluczowym krokiem w procesie tworzenia aplikacji dla tych systemów. Tłumaczenie to jest niezbędne, ponieważ mikroprocesory i kontrolery w urządzeniach mechatronicznych operują na poziomie niskiego poziomu, gdzie jedynym zrozumiałym przez nie formacie jest kod binarny. Przykładem zastosowania tej procedury może być programowanie sterowników PLC, gdzie po napisaniu kodu w języku wysokiego poziomu, takim jak ladder diagram czy tekst strukturalny, następuje jego kompilacja do formatu binarnego, który jest następnie interpretowany przez sprzęt. Standardy takie jak IEC 61131-3 definiują różne języki programowania PLC, ale wszystkie wymagają etapu kompilacji. Poprawne przetłumaczenie programu gwarantuje, że algorytmy i logika działania będą realizowane zgodnie z założeniami projektowymi, co jest kluczowe dla funkcjonalności urządzeń mechatronicznych.

Pytanie 37

Wartość natężenia oświetlenia podczas wykonywania precyzyjnych zadań powinna wynosić

A. 800 lx
B. 100 lx
C. 300 lx
D. 600 lx
Wybór natężenia oświetlenia mniejszego niż 800 lx w kontekście precyzyjnych prac wiąże się z wieloma niebezpiecznymi konsekwencjami. Natężenie 600 lx, 300 lx czy 100 lx może wydawać się wystarczające w mniej wymagających warunkach, jednak w przypadku zadań wymagających dużej dokładności, takich jak montaż komponentów elektronicznych lub prace laboratoryjne, zbyt niskie oświetlenie może prowadzić do poważnych błędów. Przykładowo, oświetlenie na poziomie 600 lx może nie dostarczyć wystarczającej widoczności, co zwiększa ryzyko popełnienia błędów, które mogą skutkować uszkodzeniem delikatnych części lub złożeniem wadliwych produktów. Natężenie 300 lx to wartość, która w praktyce jest stosowana w biurach, ale nie jest to poziom odpowiedni dla precyzyjnych prac, gdzie każdy detal ma znaczenie. Natomiast 100 lx to wartość, która mogłaby być tolerowana w pomieszczeniach magazynowych, ale nie w sytuacjach wymagających szczególnej uwagi. Z tego względu, przy podejmowaniu decyzji o poziomie oświetlenia, ważne jest, aby kierować się standardami i zaleceniami branżowymi, które jasno określają wymagania w tej dziedzinie. Nieprawidłowe oszacowanie natężenia oświetlenia może prowadzić do nieefektywności pracy oraz zwiększenia ryzyka wypadków. Z tego względu, dla zapewnienia bezpieczeństwa i jakości, zawsze należy dążyć do osiągnięcia optymalnych warunków oświetleniowych.

Pytanie 38

Przepisy dotyczące usuwania używanych urządzeń elektronicznych nakładają obowiązek

A. przekazać je firmie zajmującej się odbiorem odpadów po wcześniejszym uzgodnieniu
B. wrzucić je do kosza na śmieci
C. pozostawić je obok kontenera na śmieci
D. wyrzucić je do pojemnika na śmieci po wcześniejszym stłuczeniu szyjki kineskopu
Odpowiedź "przekazać je firmie wywożącej śmieci po uprzednim uzgodnieniu" jest prawidłowa, ponieważ zgodnie z przepisami dotyczącymi gospodarki odpadami, w tym szczególnie dotyczy to urządzeń elektronicznych, istnieją ściśle określone procedury ich utylizacji. Utylizacja tego typu odpadów wymaga, aby były one przekazywane do wyspecjalizowanych firm, które mają odpowiednie zezwolenia i zasoby do ich bezpiecznego przetwarzania. Tego rodzaju przedsiębiorstwa posiadają technologie pozwalające na recykling części elektronicznych oraz odpowiednie metody unieszkodliwiania niebezpiecznych substancji, takich jak rtęć czy ołów, które mogą występować w niektórych urządzeniach. Przykładowo, wiele z tych firm oferuje usługi odbioru z miejsca zamieszkania, co ułatwia użytkownikom przestrzeganie przepisów. Przekazanie urządzeń wykwalifikowanym specjalistom nie tylko zapewnia zgodność z prawem, ale również chroni środowisko i zdrowie ludzi, zmniejszając ryzyko zanieczyszczenia.

Pytanie 39

Który z przedstawionych sposobów ułożenia przewodu hydraulicznego jest prawidłowy?

Ilustracja do pytania
A. A.
B. D.
C. C.
D. B.
Zły wybór! To ułożenie przewodu hydraulicznego niestety nie jest odpowiednie, bo może sprawić, że system nie będzie działał jak należy. Opcje A, B i C mają te zagięcia pod ostrymi kątami, co jest naprawdę niekorzystne. Takie zagięcia mogą powodować wzrost oporu przepływu i przez to wydajność systemu leci na łeb na szyję. Niektórzy mogą myśleć, że te zagięcia to nic wielkiego, ale w praktyce prowadzą one do turbulencji, co może zdziałać niezłe szkody. A to nie koniec, bo ich skomplikowane układanie to także problem, jeśli chodzi o konserwację i naprawy. Z tego, co wiem, w hydraulice liczy się prostota, więc lepiej unikać zbędnych zakrętów. Warto trzymać się norm i dobrych praktyk, żeby zabezpieczyć system przed awariami i zagwarantować wydajność.

Pytanie 40

Symbol podany na rysunku umieszczony w polu odczytowym miernika analogowego, oznacza

Ilustracja do pytania
A. napięcie probiercze izolacji 3 kV.
B. ilość podziałek.
C. trójfunkcyjność miernika.
D. napięcie probiercze izolacji 3 V.
Symbol na rysunku to dość znane oznaczenie napięcia probierczego izolacji. Mówiąc dokładniej, 3 kV oznacza, że izolacja urządzenia musi wytrzymać napięcie 3000 V podczas testów. Takie testy są super ważne dla bezpieczeństwa elektrycznego, bo izolacja naprawdę musi nie tylko działać w normalnych warunkach, ale też w przypadku jakiejś awarii. Z mojego doświadczenia, szczególnie przy instalacjach elektrycznych, odpowiednia izolacja to podstawa, żeby chronić zarówno sprzęt, jak i ludzi. W elektrotechnice, według norm jak IEC 61010, przeprowadzanie testów napięciowych izolacji to standardowa praktyka w kontroli jakości. Używanie właściwych wartości napięcia probierczego jest kluczowe, żeby wszystko działało bezpiecznie i nie było uszkodzeń sprzętu.