Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 18 grudnia 2025 19:22
  • Data zakończenia: 18 grudnia 2025 19:57

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Na rysunku przedstawiono schemat działania maszyny do formowania blach. Który z wymienionych podzespołów zastosowano w tym urządzeniu?

Ilustracja do pytania
A. Przekładnię ślimakową.
B. Mechanizm różnicowy.
C. Przegub Cardana.
D. Przekładnię maltańską.
Przekładnia maltańska jest kluczowym elementem w maszynach formujących blachy, ponieważ przekształca ruch obrotowy ciągły w ruch obrotowy przerywany. W praktyce, jej zastosowanie jest nieocenione w procesach, gdzie wymagane jest precyzyjne kontrolowanie cyklu pracy, jak na przykład w maszynach do wycinania lub formowania elementów blaszanych. Przekładnia ta jest szeroko stosowana w przemyśle, zwłaszcza w produkcji maszyn CNC, gdzie zachowanie dokładności w ruchu jest kluczowe. Charakterystyczna konstrukcja z krzyżem maltańskim pozwala na uzyskanie stabilnej i powtarzalnej pracy, co jest zgodne z najlepszymi praktykami w inżynierii mechanicznej. Warto również zauważyć, że przekładnie maltańskie są często stosowane w zegarmistrzostwie oraz w mechanizmach napędowych, co świadczy o ich wszechstronności oraz wysokiej niezawodności.

Pytanie 2

Zgodnie z wytycznymi producenta przedstawionymi w tabeli układ sterowniczy urządzenia mechatronicznego pracującego przy napięciu zasilania 24 V DC należy połączyć przewodami w kolorach żółto-zielonym oraz

Nazwa przewoduOznaczenie przewodu lub zacisku kodem alfanumerycznymOznaczenie przewodu kolorem
Przewód liniowy 1 (AC)
Przewód liniowy 2 (AC)
Przewód liniowy 3 (AC)
L1
L2
L3
czarnym lub
brązowym, lub szarym
Przewód neutralny (AC)N
Przewód środkowy (AC)Mniebieskim
Przewód dodatni (DC)L+czerwonym
Przewód ujemny (DC)L-czarnym
Przewód ochronny
Przewód ochronno-neutralny
Przewód ochronno-liniowy
Przewód ochronno-środkowy
PE
PEN
PEL
PEM
żółto-zielonym
A. czerwonym i czarnym.
B. czarnym i niebieskim.
C. brązowym i niebieskim.
D. szarym i niebieskim.
Odpowiedź jest poprawna, ponieważ zgodnie z wytycznymi producenta, przewód dodatni w układach zasilania DC oznaczony jest kolorem czerwonym, a przewód ujemny kolorem czarnym. W praktyce, oznaczenia kolorami przewodów mają na celu ułatwienie prawidłowego podłączenia komponentów elektronicznych i mechatronicznych, minimalizując ryzyko błędów, które mogą prowadzić do uszkodzenia urządzeń. Użycie przewodów w kolorach czerwonym i czarnym jest zgodne z powszechnie przyjętymi standardami, jak np. normy IEC 60446, które definiują oznaczenia kolorów przewodów elektrycznych. W kontekście układów zasilania 24 V DC, prawidłowe podłączenie przewodów jest kluczowe dla zapewnienia stabilności i bezpieczeństwa systemu. Dodatkowo, w przypadku błędnego podłączenia, mogą wystąpić usterki w działaniu urządzenia, a nawet jego trwałe uszkodzenie, co podkreśla znaczenie przestrzegania ustalonych zasad i norm w praktyce inżynierskiej.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Jakie czynności są niezbędne do utrzymania sprawności urządzeń hydraulicznych?

A. Regularna wymiana rozdzielacza
B. Codzienna wymiana oleju
C. Regularna wymiana filtrów
D. Miesięczny demontaż oraz montaż pomp
Okresowa wymiana filtrów w urządzeniach hydraulicznych jest kluczowa dla zapewnienia ich sprawności oraz wydajności. Filtry hydrauliczne mają za zadanie zatrzymywać zanieczyszczenia, które mogą uszkodzić pompy, zawory oraz inne elementy układu hydraulicznego. Zanieczyszczenia te mogą pochodzić z różnych źródeł, takich jak procesy tarcia wewnętrznych komponentów, a także z zewnątrz, na przykład w wyniku nieprawidłowego napełniania systemu olejem. Regularna wymiana filtrów zgodnie z zaleceniami producentów oraz standardami branżowymi, takimi jak ISO 4406, pozwala na minimalizację ryzyka awarii oraz wydłużenie żywotności całego systemu hydraulicznego. Przykładem dobrych praktyk jest wprowadzenie harmonogramu konserwacji, który uwzględnia częstotliwość wymiany filtrów, co pozwala na monitorowanie stanu oleju oraz zanieczyszczeń w systemie. Taka praktyka jest szczególnie ważna w zastosowaniach przemysłowych, gdzie nieprzewidziane przestoje mogą generować znaczne straty finansowe.

Pytanie 6

Jakie rozszerzenie nazwy pliku w systemie Windows wskazuje na pliki wykonywalne?

A. exe
B. bmp
C. sys
D. ini
Rozszerzenie .exe w Windows to pliki, które pozwalają na uruchamianie programów i aplikacji. Zawierają one kod, który system operacyjny potrafi odczytać i wykonać. Przykładowo, gdy uruchamiasz Worda lub jakąkolwiek grę, to właśnie plik .exe działa w tle. Często pliki te są używane jako instalatory, co sprawia, że instalacja nowego oprogramowania jest naprawdę łatwa. Ale trzeba uważać, bo pliki .exe mogą być też niebezpieczne – czasem mogą zawierać wirusy. Dlatego zawsze warto ściągać je tylko z miejsc, które znamy i którym ufamy. I dobrze jest przeskanować te pliki przed uruchomieniem, żeby zminimalizować ryzyko infekcji. Poza tym, Windows ma różne narzędzia, dzięki którym możemy kontrolować, jakie pliki .exe się uruchamiają, co na pewno zwiększa bezpieczeństwo systemu.

Pytanie 7

Na którym rysunku przedstawiono mocowanie kołnierzowe siłowników pneumatycznych?

Ilustracja do pytania
A. A.
B. C.
C. D.
D. B.
Poprawna odpowiedź to "B". Rysunek B przedstawia siłownik pneumatyczny z kołnierzem montażowym, który jest kluczowym elementem w instalacjach pneumatycznych. Kołnierz montażowy umożliwia stabilne połączenie siłownika z innymi komponentami maszyny, zapewniając odpowiednie ułożenie i minimalizując drgania podczas pracy. W praktyce zastosowanie kołnierza jest szczególnie istotne w kontekście urządzeń, które wymagają precyzyjnego pozycjonowania, takich jak roboty przemysłowe czy automatyczne linie produkcyjne. Warto zwrócić uwagę na standardy montażowe, takie jak ISO 6431, które określają wymiary i tolerancje kołnierzy. Dobrze zaprojektowane mocowanie kołnierzowe nie tylko zwiększa bezpieczeństwo, ale także ułatwia konserwację siłowników poprzez szybki dostęp do ich elementów. Dodatkowo, prawidłowe mocowanie wpływa na żywotność siłownika, zmniejszając ryzyko uszkodzeń związanych z niewłaściwym zamocowaniem.

Pytanie 8

Trójfazowy silnik elektryczny o podanych parametrach zasilany jest z sieci.
Silnik elektryczny: moc P = 4 kW i cosφ = 0,75
Zasilany z sieci: 400 V; 3/PE ~, 50 Hz.
Prąd pobierany przez silnik z sieci jest równy

A. 10,00 A
B. 13,33 A
C. 5,77 A
D. 7,70 A
Poprawna odpowiedź wynika z obliczeń mocy dla trójfazowego silnika elektrycznego. Moc czynna (P) silnika można obliczyć za pomocą wzoru P = √3 × U × I × cos(φ), gdzie U to napięcie zasilania, I to prąd, a cos(φ) to współczynnik mocy. W tym przypadku mamy 4 kW mocy, współczynnik mocy 0,75 oraz napięcie 400 V. Obliczając prąd, przekształcamy wzór do postaci I = P / (√3 × U × cos(φ)). Podstawiając wartości, otrzymujemy I = 4000 W / (√3 × 400 V × 0,75) co daje około 7,70 A. Dzięki tym obliczeniom możemy zrozumieć, jak ważne jest uwzględnienie wszystkich parametrów w obliczeniach elektrycznych. Praktyczne zastosowanie tej wiedzy ma miejsce przy projektowaniu instalacji elektrycznych oraz doborze zabezpieczeń, które muszą być odpowiednio dobrane do wartości prądu znamionowego urządzeń. W branży elektrycznej standardy dotyczące doboru mocy i prądu są kluczowe dla zapewnienia bezpieczeństwa oraz efektywności energetycznej.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Który z przedstawionych na rysunkach podzespołów urządzenia pneumatycznego zapewnia redukcję ciśnienia i zatrzymanie cząstek stałych w układzie zasilania sprężonym powietrzem?

Ilustracja do pytania
A. A.
B. B.
C. D.
D. C.
Odpowiedź B jest poprawna, ponieważ filtr z regulatorem ciśnienia pełni kluczową rolę w układzie zasilania sprężonym powietrzem. Filtr usuwa zanieczyszczenia, takie jak cząstki stałe, krople wody i oleju, co jest istotne dla zachowania prawidłowego funkcjonowania urządzeń pneumatycznych. Regulacja ciśnienia jest niezbędna, aby uniknąć uszkodzeń systemu spowodowanych nadmiernym ciśnieniem. Przykładem praktycznego zastosowania jest przemysł motoryzacyjny, gdzie sprężone powietrze wykorzystuje się do zasilania narzędzi pneumatycznych. W tym kontekście, filtr z regulatorem ciśnienia zapewnia nie tylko bezpieczeństwo, ale także efektywność operacyjną, redukując ryzyko awarii sprzętu. Normy takie jak ISO 8573-1 definiują wymagania jakości powietrza sprężonego, co potwierdza znaczenie filtracji i regulacji w każdym systemie pneumatycznym. Przestrzeganie dobrych praktyk w zakresie konserwacji tych elementów pozwala na dłuższą żywotność i niezawodność urządzeń.

Pytanie 11

Na podstawie ilustracji z instrukcji obsługi rotametru wskaż sposób jego montażu.

Ilustracja do pytania
A. Rotametr należy montować w pozycji poziomej z przepływem czynnika z lewej do prawej.
B. Rotametr należy montować w pozycji poziomej z przepływem czynnika z prawej do lewej.
C. Rotametr należy montować w pozycji pionowej z przepływem czynnika z dołu do góry.
D. Rotametr należy montować w pozycji pionowej z przepływem czynnika z góry do dołu.
Rotametry są urządzeniami pomiarowymi, które w celu uzyskania najbardziej dokładnych wyników muszą być montowane w określony sposób. Zgodnie z ilustracją, rotametr powinien być zainstalowany w pozycji pionowej, z przepływem czynnika z dołu do góry. Taka konfiguracja zapewnia, że siła grawitacji działa na element pomiarowy rotametru, co wpływa na jego prawidłowe działanie oraz stabilność wskazań. W momencie, gdy ciecz lub gaz przepływa od dołu do góry, wirnik rotametru unosi się, a jego położenie wskazuje na wartość przepływu. Kluczowe jest, aby pamiętać o tym, że montaż rotametru w niewłaściwej pozycji, na przykład poziomej, może prowadzić do zafałszowania wyników, co z kolei może wpłynąć na dalsze procesy technologiczne. W kontekście przemysłowym, przestrzeganie tych zasad jest zgodne z normami branżowymi, co zapewnia nie tylko dokładność pomiarów, ale również bezpieczeństwo i efektywność operacyjną.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Siłownik, zasilany sprężonym powietrzem o ciśnieniu roboczym 8 bar, ma maksymalną liczbę cykli nmax = 50/min oraz zużywa 1,4 litra powietrza w trakcie jednego cyklu. Jakie parametry powinna mieć sprężarka tłokowa do zasilania tego siłownika?

A. wydajność 5,3 m3/h, ciśnienie maksymalne 1,0 MPa
B. wydajność 3,6 m3/h, ciśnienie maksymalne 1,0 MPa
C. wydajność 5,3 m3/h, ciśnienie maksymalne 0,7 MPa
D. wydajność 3,6 m3/h, ciśnienie maksymalne 0,7 MPa
Wybrane odpowiedzi nie spełniają wymagań dotyczących wydajności lub ciśnienia roboczego sprężarki, co może prowadzić do niedostatecznej efektywności zasilania siłownika. Na przykład, odpowiedzi z wydajnością 3,6 m3/h są niewystarczające, ponieważ całkowite zapotrzebowanie siłownika wynosi 4,2 m3/h. Użycie sprężarki o niższej wydajności skutkuje ryzykiem obniżenia ciśnienia w systemie, co może prowadzić do nieprawidłowego działania siłownika. Kolejnym błędem jest wybór sprężarki z maksymalnym ciśnieniem 0,7 MPa (7 bar), które jest niższe niż wymagane ciśnienie robocze 8 bar. Użycie sprężarki, która nie osiąga wymaganego ciśnienia, skutkuje brakiem możliwości wydajnego zasilania siłownika, co może prowadzić do jego uszkodzenia. W kontekście inżynierii mechanicznej i pneumatyki, kluczowe jest, aby sprzęt był dobrany do specyficznych wymagań aplikacji, w tym ciśnienia i wydajności, aby zapewnić optymalne działanie systemu. Wybierając sprężarkę, zawsze warto uwzględniać margines bezpieczeństwa, by uniknąć sytuacji, w których urządzenia mogą pracować na granicy swoich możliwości, co znacznie wpływa na ich żywotność oraz efektywność operacyjną. Zgodnie z normami i praktykami branżowymi, odpowiednia specyfikacja sprzętu jest kluczowa dla zapewnienia niezawodności systemu pneumatycznego.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Narzędzie pomiarowe, przedstawione na rysunku, służy do sprawdzania

Ilustracja do pytania
A. płaskości powierzchni.
B. promieni zaokrągleń.
C. skoku gwintów metrycznych.
D. szerokości szczelin między powierzchniami.
Narzedzie przedstawione na rysunku to kaliber promieniowy, który jest specjalistycznym narzędziem pomiarowym przeznaczonym do dokładnego sprawdzania promieni zaokrągleń. Jego działanie opiera się na wykorzystaniu zestawu płytek o różnych promieniach, które umożliwiają dopasowanie ich do zaokrąglonej krawędzi analizowanej części. Dzięki temu można precyzyjnie określić promień zaokrąglenia, co jest kluczowe w wielu branżach, w tym w inżynierii mechanicznej i produkcji. Przykładowo, w przemyśle motoryzacyjnym, precyzyjne pomiary promieni zaokrągleń są niezbędne do zapewnienia bezpiecznego i efektywnego działania elementów układu kierowniczego oraz innych mechanizmów. Kalibry promieniowe są zgodne z normami ISO oraz ANSI, co zapewnia ich wysoką jakość i niezawodność w zastosowaniach przemysłowych. W praktyce, stosowanie tego narzędzia pozwala na minimalizację błędów produkcyjnych oraz poprawę jakości końcowych produktów.

Pytanie 18

W celu sprawdzenia poprawności działania układu przedstawionego na schemacie, zmierzono napięcie zasilania. Wskaż wynik pomiaru, który świadczy, że napięcie zasilania jest prawidłowe?

Ilustracja do pytania
A. 230 V
B. 380 V
C. 400 V
D. 24 V
Tak, 230 V to jest właściwe napięcie! Wiesz, w polskich instalacjach jednofazowych właśnie to napięcie jest standardowe. Używamy tego w domach, a także w różnych obiektach przemysłowych średniej wielkości. Jak dobrze się orientujesz, normy europejskie też to potwierdzają. Jak mierzysz napięcie i pokazuje 230 V, to znaczy, że wszystko działa jak należy. Dzięki temu sprzęty, które mamy w domach, jak lampy czy lodówki, funkcjonują bez problemu. Z drugiej strony, 24 V to już inna historia – to napięcie niskonapięciowe, które częściej spotykasz w automatyce. A 380 V czy 400 V to napięcia trójfazowe, które są stosowane w przemyśle, a nie u nas w domach. Więc można by powiedzieć, że 230 V to taki „złoty środek” dla naszych potrzeb elektrycznych.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

W celu zmniejszenia prędkości wysuwu tłoczyska siłownika pneumatycznego dwustronnego działania należy zastosować zawór

Ilustracja do pytania
A. zwrotny.
B. zwrotny sterowany.
C. dławiąco-zwrotny.
D. dławiący.
Wybór niepoprawnej odpowiedzi może wynikać z niepełnego zrozumienia funkcji poszczególnych zaworów w układach pneumatycznych. Zawór zwrotny, na przykład, służy do zezwalania na przepływ medium w jednym kierunku, co oznacza, że nie jest w stanie kontrolować prędkości wysuwu tłoczyska siłownika. W przypadku zastosowania zaworu zwrotnego sterowanego, jego rola polega na umożliwieniu otwierania i zamykania przepływu na podstawie ciśnienia lub innego sygnału, ale również nie oferuje regulacji prędkości samego działania siłownika. Zawór dławiąco-zwrotny, z kolei, łączy funkcje zaworu zwrotnego z regulacją, jednak nie jest to idealne rozwiązanie dla precyzyjnej kontroli prędkości, jaką zapewnia zawór dławiący. Zrozumienie, że regulacja prędkości wymaga ograniczenia przepływu medium, a nie tylko manipulacji kierunkiem jego przepływu, jest kluczowe w prawidłowym doborze komponentów w systemach pneumatycznych. Typowe błędy polegają na myleniu funkcji zaworów oraz przypisywaniu im właściwości, których nie posiadają. Dlatego istotne jest, aby mieć na uwadze, że dla prawidłowego działania siłowników pneumatycznych i zapewnienia ich efektywności, zawór dławiący jest niezbędny, a inne z wymienionych zaworów nie spełniają tej funkcji w taki sam sposób.

Pytanie 21

Który typ łożyska należy zastosować w zespole mechanicznym wiedząc, że średnica gniazda wynosi 35 mm, jego wysokość wynosi 11 mm, natomiast średnica zewnętrzna wału wynosi 10 mm?

TYPWymiary
dDB
7200 B10309
7300 B103511
7202 B153511
7302 B154213
7203 B174012
7207 B357217
7307 B358021
Ilustracja do pytania
A. Typ 7202 B
B. Typ 7307 B
C. Typ 7300 B
D. Typ 7200 B
Typ łożyska 7300 B jest odpowiedni do podanych wymiarów, ponieważ jego średnica wewnętrzna wynosi 10 mm, co idealnie pasuje do średnicy zewnętrznej wału, oraz wysokość wynosi 11 mm. W przypadku zastosowań mechanicznych, wybór właściwego łożyska jest kluczowy dla zapewnienia efektywności i trwałości całego zespołu. Wybierając łożysko, warto także zwrócić uwagę na jego zdolność do przenoszenia obciążeń, co w typie 7300 B jest zapewnione dzięki odpowiedniej konstrukcji i zastosowanym materiałom. Takie łożysko znajduje szerokie zastosowanie w maszynach przemysłowych, gdzie wymagana jest precyzja i niezawodność. Należy również pamiętać, że dobór łożyska powinien być zgodny z normami ISO oraz innymi standardami branżowymi, co zapewnia jego funkcjonalność w różnych aplikacjach. W praktyce, stosowanie właściwego typu łożysk pozwala na minimalizację awarii oraz zwiększenie wydajności pracy maszyn.

Pytanie 22

Spośród wymienionych zjawisk fizycznych, w urządzeniach przekształcających liniowe przemieszczenie na sygnał elektryczny, najczęściej stosowane jest zjawisko

A. zwane efektem Dopplera
B. piezoelektryczne
C. magnotorezystancji (Gaussa)
D. magnetooptyczne (Faradaya)
Zjawiska piezoelektryczne, zwane efektem Dopplera oraz magnetooptyczne (Faradaya) z pewnością są interesującymi i ważnymi fenomenami, jednak nie odnoszą się one bezpośrednio do przekształcania przemieszczenia liniowego na sygnał elektryczny w takim samym stopniu jak magnotorezystancja. Zjawisko piezoelektryczne polega na generowaniu ładunku elektrycznego w materiale pod wpływem mechanicznego nacisku, co czyni je użytecznym w niektórych zastosowaniach, ale nie w kontekście szerokiego zakresu czujników przemieszczenia. Efekt Dopplera, z kolei, odnosi się do zmiany częstotliwości fali w przypadku ruchu źródła lub obserwatora, co ma zastosowanie głównie w akustyce i optyce, a nie w pomiarze przemieszczenia. Zjawisko magnetooptyczne (Faradaya) związuje się z oddziaływaniem pola magnetycznego na światło, oraz zmiany jego polaryzacji, co ma ograniczone zastosowanie w kontekście przemieszczenia liniowego. Błąd w wyborze odpowiedzi może wynikać z mylnego przekonania o uniwersalności tych zjawisk, mimo że każde z nich posiada swoje specyficzne zastosowanie. W kontekście czujników przemieszczenia, kluczowe jest rozumienie, które zjawiska oferują najlepsze właściwości dla danych aplikacji, a magnotorezystancja wyróżnia się tutaj jako najbardziej efektywne rozwiązanie. Analizując temat, warto zwrócić uwagę na standardy i praktyki branżowe, które wskazują na preferencje dotyczące wyboru odpowiednich technologii w zależności od wymagań aplikacji.

Pytanie 23

Jakie jest zastosowanie przedstawionego na ilustracji elementu?

Ilustracja do pytania
A. Zamiana prądu stałego na prąd przemienny.
B. Zamiana prądu przemiennego na prąd stały.
C. Filtrowanie zakłóceń napięcia sieciowego.
D. Obniżanie napięcia sieciowego.
Zrozumienie funkcji elementów elektronicznych jest kluczowe dla poprawnego rozwiązywania zagadnień z zakresu elektroniki. W przypadku błędnych odpowiedzi, warto zwrócić uwagę na różnice między pojęciami prądu zmiennego a prądem stałym oraz na funkcje różnych komponentów. Twierdzenie, że element ten służy do filtrowania zakłóceń napięcia sieciowego, pokazuje nieporozumienie w zakresie zastosowania mostka prostowniczego. Filtrowanie zakłóceń to zadanie, które przypisuje się układom filtrów, a nie prostownikom. Z kolei stwierdzenie, że mostek prostowniczy obniża napięcie, jest mylne, ponieważ jego rola polega na konwersji, a nie na redukcji wartości napięcia. Odpowiedzi sugerujące zamianę prądu stałego na prąd przemienny również są błędne, ponieważ to zadanie jest realizowane przez inwertery, a nie prostowniki. Popularnym błędem myślowym jest mylenie tych funkcji, co często wynika z niepełnego zrozumienia działania urządzeń elektronicznych. W praktyce, aby skutecznie stosować różne elementy w obwodach elektrycznych, konieczne jest głębsze poznanie ich specyfiki oraz standardów, które regulują ich użycie. Dobrą praktyką jest również studiowanie schematów blokowych, które ukazują, jak poszczególne komponenty współdziałają w szerszym kontekście, co może pomóc w uniknięciu pomyłek w przyszłości.

Pytanie 24

Oceń na podstawie przedstawionej na rysunku dokumentacji stan łożysk silnika napędowego o mocy 35 kW bez specjalnych fundamentów, jeżeli prędkość drgań łożysk zmierzona podczas przeglądu wynosi 1,9 mm/s.

UrządzenieKlasa IKlasa IIKlasa IIIKlasa IV
Prędkość
drgań RMS
mm/s
0.28
0.45
0.71
1.12
1.8
2.8
4.5
7.1
11.2
18
28
45.9

Legenda tabeli:

Stan dobry
Stan zadawalający
Stan przejściowo dopuszczalny
Stan niedopuszczalny

Klasa I: poszczególne podzespoły silników i urządzeń stanowią integralną część urządzenia podczas normalnej pracy. Przykładem urządzeń w tej kategorii są silniki elektryczne o maksymalnej mocy 15 kW.

Klasa II: średniej wielkości urządzenia (zwykle silniki elektryczne o mocy od 15 kW do 75 kW) bez specjalnych fundamentów, sztywno zamontowane silniki lub urządzenia (do 300 kW) na specjalnych fundamentach.

Klasa III: duże silniki napędowe i inne duże urządzenia z wirującą masą zamontowane na sztywnych i ciężkich podstawach, stosunkowo sztywne w kierunku pomiaru drgań.

Klasa IV: duże silniki napędowe i inne duże urządzenia z wirującą masą zamontowane na podstawach, stosunkowo podatnych w kierunku mierzonych drgań (np. turbo generatory i turbiny gazowych o mocy wyjściowej powyżej 10 MW).

A. Zadawalający.
B. Przejściowo dopuszczalny.
C. Niedopuszczalny.
D. Dobry.
Odpowiedź 'Zadawalający' jest w porządku, bo patrząc na tabelę, prędkość drgań 1,9 mm/s to stan, który nie wymaga od razu interwencji. Dla silników 35 kW bez specjalnych fundamentów wygląda na to, że jeśli mamy wartości RMS drgań w okolicy 1,5-2,5 mm/s, to wszystko gra. To znaczy, że łożyska pracują w miarę dobrze i nie ma co się martwić o poważne awarie. Z mojego doświadczenia, umiejętność rozpoznawania tych drgań jest super ważna w utrzymaniu ruchu, bo dzięki temu można wychwycić problemy na wczesnym etapie. Regularne pilnowanie tych parametrów w naszej pracy obniża koszty napraw, a efektywność produkcji rośnie.

Pytanie 25

Silnik krokowy dysponuje 4 uzwojeniami wzbudzającymi, z których każde ma 8 nabiegunników. Jakie będzie przesunięcie kątowe silnika przypadające na pojedynczy krok przy sterowaniu jednym uzwojeniem?

A. 11°15'
B. 5°38'
C. 2°49'
D. 22°30'
Odpowiedzi 22°30', 2°49' i 5°38' zawierają błędne obliczenia, które mogą wynikać z nieprawidłowego rozumienia działania silników krokowych oraz zasadności ich podziału na kroki. Odpowiedź 22°30' może sugerować, że osoba myśli o 18 krokach na obrót, co jest nieprawidłowe w kontekście tego silnika. Taki błąd może prowadzić do nieefektywnego stosowania silników krokowych w aplikacjach wymagających wysokiej precyzji. Z kolei opcja 2°49' sugeruje bardzo dużą liczbę kroków na pełny obrót, co z kolei implikuje, że liczba uzwojeń i nabiegunników została źle zinterpretowana. Odpowiedź 5°38' również wskazuje na zrozumienie mechanizmu działania silnika, ale z niewłaściwym wyliczeniem kroków na obrót, co może prowadzić do błędnych ustawień w systemach automatyzacji. Kluczowym aspektem przy pracy z silnikami krokowymi jest świadomość tego, że każde uzwojenie i nabiegunnik wpływa na dokładność i wydajność mechanizmu. W przemyśle i automatyce, gdzie precyzja jest krytyczna, błędy w obliczeniach mogą prowadzić do poważnych konsekwencji w procesach technologicznych, dlatego istotne jest, by dobrze rozumieć sposób obliczania kątów przesunięcia w silnikach krokowych.

Pytanie 26

Aby zabezpieczyć połączenia gwintowe przed niekontrolowanym odkręceniem, należy zastosować przeciwnakrętkę oraz wykorzystać

A. dwoma kluczami płaskimi
B. jednym kluczem nasadowym
C. dwoma kluczami nasadowymi
D. jednym kluczem płaskim
Wybór jednego klucza płaskiego do zabezpieczenia połączeń gwintowych jest niewłaściwą strategią, ponieważ nie zapewnia równomiernego i stabilnego mocowania. Klucz płaski, używany w pojedynkę, nie może skutecznie zapobiec odkręceniu się nakrętki, szczególnie w sytuacjach narażonych na wibracje lub zmiany temperatury, które mogą powodować luzowanie się połączeń. Użycie jednego klucza płaskiego prowadzi do zwiększonego ryzyka uszkodzenia gwintu, ponieważ siła zastosowana do obracania nakrętki może być niestabilna i wymuszać nieprawidłowe obciążenia na połączeniu. Podobnie, korzystanie z dwóch kluczy nasadowych lub jednego klucza nasadowego w takim kontekście również nie jest optymalne. Klucze nasadowe, choć mogą być efektywne w kilku zastosowaniach, nie zapewniają takiego samego poziomu kontroli nad obydwoma elementami gwintowymi jak klucze płaskie. Klucze nasadowe mogą łatwo zsuwać się z nakrętek, zwłaszcza przy zmieniających się obciążeniach, co dodatkowo zwiększa ryzyko poluzowania. W praktyce, kluczowe jest zrozumienie, że odpowiednie narzędzia i techniki zabezpieczania połączeń gwintowych odgrywają kluczową rolę w zapewnieniu ich trwałości i funkcjonalności. Zachowanie standardów montażowych oraz konserwacyjnych jest istotnym elementem w inżynierii, który wpływa na bezpieczeństwo i wydajność całych konstrukcji.

Pytanie 27

W celu oceny stanu technicznego przycisku S1 wykonano pomiary rezystancji, których wyniki przedstawiono w tabeli. Na ich podstawie można stwierdzić, że przycisk S1 posiada styk

Nazwa elementuPomiar rezystancji styków w Ω
Przed przyciśnięciemPo przyciśnięciu
Przycisk S10,22
A. NO, który jest sprawny.
B. NC, który jest niesprawny.
C. NC, który jest sprawny.
D. NO, który jest niesprawny.
Wybór odpowiedzi, która sugeruje, że przycisk S1 ma styk NO (Normally Open) i jest niesprawny, jest nieprawidłowy z kilku powodów. Styk NO charakteryzuje się tym, że w normalnym stanie obwód jest otwarty, co oznacza, że nie przewodzi prądu. W przypadku przycisku S1, rezystancja 0,22 Ω przed naciśnięciem wskazuje na zamknięty styk, a nie otwarty, co jest kluczową informacją. Ponadto, jeśli przycisk byłby uszkodzony, oczekiwalibyśmy, że nie będzie zmiany rezystancji bądź będzie ona w granicach wartości, które nie wskazują na sprawne działanie. Typowe błędy myślowe prowadzące do błędnych wniosków mogą obejmować mylenie funkcji styku czy nierozumienie zasad działania elementów elektronicznych. Przykładowo, w obwodach alarmowych zastosowanie styków NO jest rzadziej spotykane, ponieważ w przypadku ich normalnie otwartego stanu, jakiekolwiek uszkodzenie, które spowoduje ich zamknięcie, nie wywoła pożądanej reakcji w systemie. Właściwe rozumienie działania styku i jego charakterystyki jest kluczowe dla projektowania niezawodnych systemów, co jest zgodne z najlepszymi praktykami inżynierii elektrycznej.

Pytanie 28

Na którym rysunku przedstawiono szkic przekroju prawidłowo zaciśniętej końcówki przewodu w obszarze z izolacją?

Ilustracja do pytania
A. B.
B. A.
C. C.
D. D.
Odpowiedź D jest prawidłowa, ponieważ przedstawia szkic przekroju końcówki przewodu, który spełnia kluczowe wymagania dotyczące prawidłowego zaciskania. W przypadku prawidłowo zaciśniętej końcówki przewodu, niezwykle ważne jest, aby zapewnić dobry kontakt elektryczny, co pozwala na minimalizację oporu i strat energii. Na rysunku D widzimy, że izolacja przewodu została odpowiednio odcięta, a nitki przewodu nie są uszkodzone, co jest zgodne z zasadami dobrych praktyk w zakresie elektryki. W praktyce, stosowanie takich zasad zapobiega przegrzewaniu się końcówek, a także ryzyku awarii instalacji elektrycznej. Prawidłowe zaciskanie końcówek jest kluczowym elementem w instalacjach elektrycznych, ponieważ niewłaściwe połączenia mogą prowadzić do zwarć i pożarów. Dlatego też, zrozumienie i stosowanie się do tych zasad ma ogromne znaczenie, szczególnie w kontekście bezpieczeństwa w pracy z instalacjami elektrycznymi.

Pytanie 29

Na rysunku przedstawiono

Ilustracja do pytania
A. rezystor.
B. tyrystor.
C. diodę.
D. tranzystor.
Tyrystor to element półprzewodnikowy, który składa się z trzech elektrod: anodowej, katodowej oraz bramki (elektrody sterującej). Jego unikalna budowa pozwala na kontrolowanie dużych prądów za pomocą niewielkich sygnałów. W praktyce, tyrystory są szeroko stosowane w aplikacjach, które wymagają sterowania mocą, takich jak w układach prostownikowych, regulatorach mocy i systemach zasilania. Dzięki swojej zdolności do pracy w wysokich napięciach i prądach, tyrystory znajdują zastosowanie w zasilaczach oraz w układach energoelektroniki. Standardy dotyczące tyrystorów, takie jak IEC 60747, określają wymagania techniczne dla tych elementów, co zapewnia ich bezpieczeństwo i niezawodność w aplikacjach przemysłowych. Dodatkowo, tyrystory są często używane w układach zapłonowych w silnikach spalinowych oraz w systemach oświetleniowych, co pokazuje ich wszechstronność i ważną rolę w nowoczesnej elektronice.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

Na rysunku przedstawiono zrzut ekranu i ustawienia oscyloskopu. Jaka jest amplituda sygnału przedstawionego na ekranie?

Ilustracja do pytania
A. 6V
B. 4V
C. 2V
D. 8V
Wybór innej odpowiedzi niż 4V świadczy o nieporozumieniu w zrozumieniu pojęcia amplitudy sygnału. Na oscyloskopie, sygnał jest reprezentowany graficznie, a jego amplituda to maksymalne odchylenie od osi zerowej. Wartości takie jak 8V, 2V czy 6V mogą wydawać się odpowiednie, ale nie są one zgodne z przedstawionym sygnałem na zrzucie ekranu. Amplituda 8V sugerowałaby, że sygnał mógłby się wychylać nawet bardziej, co nie znajduje potwierdzenia w pomiarach, ponieważ sygnał nie przekracza 4V. Odpowiedź 2V z kolei mogłaby sugerować, że sygnał osiąga tylko jedno wychylenie, co również jest błędne, ponieważ na oscyloskopie widoczne są zarówno wychylenia dodatnie, jak i ujemne. Z kolei 6V jako odpowiedź również nie ma podstaw, ponieważ suma wychyleń nie osiąga takiej wartości. Typowym błędem logicznym prowadzącym do tych odpowiedzi jest pomijanie zasady, że amplituda to maksymalne wychylenie w stosunku do zera, a nie suma dwóch niezależnych odchyleń. Kluczowe jest zrozumienie, że amplituda sygnału jest miarą jego intensywności oraz że każde odchylenie powinno być analizowane w kontekście skali oscyloskopu. Z tego względu, nauka interpretacji sygnałów na oscyloskopie ma fundamentalne znaczenie dla inżynierów i techników w dziedzinie elektroniki.

Pytanie 32

Który z elementów tyrystora ma funkcję sterowania?

A. Katoda
B. Źródło
C. Anoda
D. Bramka
Bramka tyrystora, znana również jako terminal bramkowy, odgrywa kluczową rolę w jego działaniu, pełniąc funkcję sterującą. W momencie dostarczenia sygnału sterującego na bramkę, dochodzi do zainicjowania przewodzenia prądu pomiędzy anodą a katodą. Tyrystory są szeroko stosowane w aplikacjach wymagających precyzyjnego zarządzania dużymi prądami i napięciami, takich jak prostowniki, regulatory mocy oraz układy przełączające. Dzięki możliwości sterowania prądem za pomocą niskiego napięcia na bramce, tyrystory pozwalają na zdalne zarządzanie obciążeniem bez konieczności stosowania skomplikowanych układów mechanicznych. W praktyce, tyrystory z bramką są kluczowe w systemach automatyki przemysłowej, gdzie stabilna i efektywna kontrola mocy jest niezbędna do zapewnienia prawidłowego funkcjonowania maszyn.

Pytanie 33

Jaką metodę należy wykorzystać do połączenia szkła z metalem?

A. Klejenie
B. Spawanie
C. Zgrzewanie
D. Nitowanie
Klejenie to najskuteczniejsza metoda łączenia szkła z metalem ze względu na różnice w ich właściwościach fizycznych i chemicznych. Szkło jest materiałem kruchym, a metal - plastycznym, co sprawia, że tradycyjne metody, takie jak zgrzewanie czy spawanie, mogą prowadzić do uszkodzenia szkła. Klejenie wykorzystuje specjalistyczne kleje, które tworzą mocne, elastyczne połączenie, a także mogą dostosować się do różnic w rozszerzalności cieplnej obu materiałów. W praktyce, odpowiednie kleje epoksydowe lub akrylowe są często stosowane do takich aplikacji, umożliwiając trwałe i estetyczne łączenie. W branży budowlanej i w przemyśle, klejenie szkła do metalowych elementów jest powszechnie stosowane w oknach strukturalnych, elewacjach oraz w produkcji mebli. Dobrą praktyką jest również stosowanie gruntów, które poprawiają adhezję kleju do powierzchni, co zwiększa trwałość i odporność połączenia na różne czynniki zewnętrzne. Takie podejście jest zgodne z normami ISO dotyczących klejenia i pozwala na uzyskanie wysokiej jakości połączeń.

Pytanie 34

Jaki czujnik jest stosowany do pomiaru prędkości obrotowej wału silnika?

A. Mostek tensometryczny
B. Potencjometr obrotowy
C. Prądnica tachometryczna
D. Selsyn trygonometryczny
No więc, selesyn trygonometryczny, mostek tensometryczny i potencjometr obrotowy to elementy, które nie są do pomiaru prędkości obrotowej wału silnika. Selesyn trygonometryczny jest używany do przenoszenia informacji o położeniu, ale nie do pomiaru prędkości. Z kolei mostek tensometryczny służy do mierzenia odkształceń, co sprawia, że lepiej się nadaje do analizy sił czy obciążeń, a nie prędkości obrotowej. Potencjometr obrotowy znowu mierzy kąt obrotu, generując napięcie proporcjonalne do tego kąta, ale nie daje nam informacji o tym, jak szybko ten kąt się zmienia. Często w kontekście pomiaru prędkości pojawiają się błędne założenia co do tych urządzeń, co może prowadzić do kiepskiego projektowania systemów pomiarowych. Jak wybierasz czujniki do analizy prędkości obrotowej, ważne jest, żeby rozumieć, że prądnica tachometryczna daje najbardziej precyzyjne dane dzięki swojej konstrukcji i zasadzie działania, co czyni ją standardem w branży.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Który z wymienionych zaworów hydraulicznych powinien być zainstalowany w układzie, aby prędkość obrotowa silnika hydraulicznego pozostawała stała, niezależnie od zmian wartości momentu obciążenia na wale?

A. Zawór dławiąco-zwrotny
B. Rozdzielacz suwakowy
C. Regulator przepływu
D. Zawór przelewowy
Regulator przepływu jest kluczowym elementem w układach hydraulicznych, który umożliwia utrzymanie stałej prędkości obrotowej silnika hydraulicznego, niezależnie od zmian momentu obciążenia na wale. Działa on poprzez automatyczne dostosowanie przepływu cieczy hydraulicznej, co pozwala na zachowanie stabilności pracy urządzenia. Przykładem zastosowania regulatorów przepływu są maszyny budowlane, gdzie zmienne obciążenia są powszechne. W takich aplikacjach, regulator przepływu zapewnia, że silnik hydrauliczny działa w optymalnym zakresie prędkości, co prowadzi do efektywnego zużycia energii i minimalizacji zużycia komponentów. Stosowanie regulatorów przepływu jest zgodne z najlepszymi praktykami w inżynierii hydraulicznej, ponieważ pozwala na zwiększenie wydajności układów oraz przedłużenie żywotności systemów hydraulicznych poprzez eliminację ryzyka przeciążeń. Dodatkowo, w kontekście norm ISO dotyczących systemów hydraulicznych, regulacja przepływu jest uznawana za niezbędny element, który przyczynia się do bezpieczeństwa i funkcjonalności układów hydraulicznych.

Pytanie 37

Na podstawie tabeli kodów paskowych rezystorów wskaż rezystor o wartości rezystancji 1 kΩ i tolerancji 5%.

Kody paskowe rezystorów

KolorWartośćMnożnikTolerancja
± %
Współczynnik temp.
± ppm/K
1 pasek2 pasek3 pasek4 pasekOstatni pasek
czarny00x 1 Ω20200
brązowy11x 10 Ω1100
czerwony22x 100 Ω250
pomarańczowy33x 1 k315
żółty44x 10 k0 - +10025
zielony55x 100 k0.5
niebieski66x 1 M0.2510
fioletowy77x 10 M0,15
szary880,051
biały99
złoty0,1 Ω5
srebrny0,01 Ω10
brak20
Ilustracja do pytania
A. D.
B. B.
C. C.
D. A.
Rezystor o wartości 1 kΩ i tolerancji 5% jest oznaczony paskami w kolorach: brązowy, czarny, czerwony i złoty. Brązowy reprezentuje cyfrę 1, czarny cyfrę 0, czerwony mnożnik 100, a złoty określa tolerancję na poziomie 5%. Odpowiedź A zawiera te kolory, co oznacza, że jest to prawidłowy wybór. W praktyce, umiejętność odczytywania wartości rezystorów z kodów paskowych jest kluczowa w elektronice, ponieważ właściwy dobór rezystorów wpływa na działanie obwodów elektronicznych. W przypadku projektowania układów elektronicznych, tolerancja rezystora ma znaczenie dla stabilności i niezawodności działania urządzenia; 5% tolerancji oznacza, że rzeczywista rezystancja może różnić się od nominalnej o 5% w górę lub w dół. Warto zatem pamiętać, że dobór właściwych komponentów zgodnie z ich specyfikacją jest jednym z podstawowych aspektów inżynierii elektroniki i elektrotechniki.

Pytanie 38

Jakie jest moment obrotowy na wale silnika synchronicznego o mocy 3,14 kW przy prędkości obrotowej 3000 obr/min?

A. 9 420 Nm
B. 1 Nm
C. 986 Nm
D. 10 Nm
Obliczenie momentu obrotowego na wale silnika synchronicznego można przeprowadzić za pomocą wzoru: M = P / (2 * π * n), gdzie M to moment obrotowy w niutonometrach (Nm), P to moc w watach (W), a n to prędkość obrotowa w obrotach na minutę (obr/min). W przypadku mocy 3,14 kW, co odpowiada 3140 W, oraz prędkości obrotowej 3000 obr/min, obliczenia wyglądają następująco: M = 3140 W / (2 * π * (3000/60)) = 10 Nm. Wynik ten jest zgodny z praktycznymi zastosowaniami silników synchronicznych, które często znajdują zastosowanie w aplikacjach przemysłowych. Silniki te charakteryzują się wysoką efektywnością oraz stabilną prędkością obrotową, co czyni je idealnym wyborem do napędu maszyn wymagających precyzyjnej kontroli prędkości. W kontekście standardów branżowych, takie obliczenia są istotne dla prawidłowego doboru silników oraz ich efektywnego wykorzystania w różnych aplikacjach.

Pytanie 39

Którym z wymienionych mediów zasilany jest siłownik przedstawiony na rysunku?

Ilustracja do pytania
A. Energią elektryczną.
B. Roztworem poliglikolu.
C. Sprężonym powietrzem.
D. Olejem hydraulicznym.
Sprężone powietrze jest powszechnie stosowanym medium zasilającym siłowniki pneumatyczne. Na zdjęciu widoczny jest siłownik pneumatyczny, co można rozpoznać dzięki obecności niebieskich węży, charakterystycznych dla systemów pneumatycznych. Siłowniki te są wykorzystywane w wielu aplikacjach przemysłowych, takich jak automatyka, robotyka, czy maszyny pakujące. Ich główną zaletą jest szybkość działania oraz łatwość w regulacji siły i prędkości ruchu. Ponadto, stosowanie siłowników pneumatycznych pozwala na osiągnięcie wysokich prędkości cyklu pracy, a także na ich łatwą integrację w systemach zautomatyzowanych. W kontekście standardów, siłowniki pneumatyczne są zgodne z normami ISO, co zapewnia ich wszechstronność i niezawodność w różnych zastosowaniach. Warto również podkreślić, że wykorzystanie sprężonego powietrza jako medium zasilającego jest zgodne z zasadami ochrony środowiska, gdyż w porównaniu do innych mediów, takich jak olej hydrauliczny, sprężone powietrze nie stwarza ryzyka zanieczyszczenia.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.