Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 10 lutego 2026 00:03
  • Data zakończenia: 10 lutego 2026 00:22

Egzamin zdany!

Wynik: 26/40 punktów (65,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Która z poniższych czynności jest częścią oględzin przy konserwacji wirnika silnika komutatorowego?

A. Wyważanie
B. Sprawdzenie kondycji wycinków komutatora
C. Weryfikacja braku zwarć międzyzwojowych
D. Pomiar rezystancji izolacji
Odpowiedzi, które nie dotyczą sprawdzenia stanu wycinków komutatora, choć mogą wydawać się związane z konserwacją silników komutatorowych, nie odpowiadają na kluczową kwestię oględzin wirnika. Wyważenie wirnika jest istotne dla eliminacji drgań, które mogą prowadzić do uszkodzeń łożysk i innych komponentów, jednak nie jest to bezpośrednia czynność związana z ocena stanu komutatora. Pomiar rezystancji izolacji to ważny krok w ocenie stanu izolacji uzwojeń silnika, ale również nie dotyczy bezpośrednio stanu wycinków komutatora. Z kolei sprawdzenie braku zwarć międzyzwojowych jest kluczowe dla bezpieczeństwa i niezawodności silnika, jednak nie dotyczy to bezpośrednio stanu komutatora, który jest kluczowym elementem zapewniającym poprawną pracę silnika. Zrozumienie, że każda z tych czynności odgrywa swoją rolę w konserwacji silnika, jest ważne, ale nie wszystkie są równorzędne w kontekście oględzin wirnika. Często można spotkać się z mylnym przekonaniem, że te wszystkie czynności służą temu samemu celowi, podczas gdy każda z nich ma swoją specyfikę oraz odmienny wpływ na działanie silnika. Dlatego kluczowe jest skupienie się na właściwych czynnościach konserwacyjnych, które odpowiadają na konkretne potrzeby diagnostyczne silnika, a nie tylko na ogólnych działaniach związanych z jego konserwacją.

Pytanie 2

Jaka jest bezwzględna wartość błędu pomiarowego natężenia prądu, jeśli multimetr pokazał wynik 30,0 mA, a dokładność miernika podana przez producenta dla zastosowanego zakresu pomiarowego wynosi
±(1 % + 2) cyfry?

A. ±0,3 mA
B. ±0,5 mA
C. ±3,2 mA
D. ±2,0 mA
Aby obliczyć bezwzględną wartość błędu pomiaru natężenia prądu, musimy wziąć pod uwagę zarówno procentowy błąd pomiaru, jak i błąd wyrażony w cyfrach. Dokładność miernika wynosi ±(1 % + 2) cyfry. Przy wyniku 30,0 mA, obliczamy 1 % z tej wartości: 1 % z 30,0 mA to 0,3 mA. Następnie dodajemy 2 cyfry, które w przypadku pomiaru 30,0 mA oznaczają 0,2 mA. Zatem całkowity błąd pomiaru wynosi: 0,3 mA + 0,2 mA = 0,5 mA. Wartość błędu ±0,5 mA oznacza, że rzeczywista wartość natężenia prądu może wynosić od 29,5 mA do 30,5 mA. Zrozumienie błędów pomiarowych jest kluczowe w praktyce inżynierskiej, szczególnie w zastosowaniach wymagających precyzyjnych pomiarów prądów elektrycznych, takich jak w automatyce czy elektronice. Użycie multimetru z podaną dokładnością pozwala na rzetelne oceny i podejmowanie decyzji opartych na danych pomiarowych.

Pytanie 3

Narzędzie przestawione na ilustracji przeznaczone jest do

Ilustracja do pytania
A. profilowania żył przewodów.
B. zaciskania końcówek oczkowych.
C. zaciskania końcówek tulejkowych.
D. zdejmowania powłoki z przewodu.
Profilowanie żył przewodów jest kluczowym procesem w pracach elektrycznych, który zapewnia właściwe przygotowanie przewodów do dalszej obróbki, takiej jak ich łączenie czy izolacja. Narzędzie przedstawione na ilustracji, mianowicie szczypce okrągłe, jest idealne do tego celu dzięki swojej stożkowej budowie, która umożliwia formowanie przewodów w różne kształty. Takie profilowanie pozwala na łatwe wprowadzenie żył do złączek, co zwiększa efektywność i bezpieczeństwo całej instalacji. Zgodnie z normami branżowymi, odpowiednie przygotowanie końców przewodów ma kluczowe znaczenie dla zapewnienia ich stabilności i minimalizacji ryzyka zwarć. W praktyce, profesjonalni elektrycy często korzystają z tego rodzaju narzędzi, aby dostosować przewody do specyficznych wymogów instalacji, co poprawia jakość wykonywanej pracy oraz wpływa na trwałość całej instalacji. Dobrą praktyką jest również przeszkolenie pracowników w zakresie używania takich narzędzi oraz regularne kontrolowanie ich stanu technicznego, aby uniknąć błędów w obróbce przewodów.

Pytanie 4

W jaki sposób odbywa się sterowanie oświetleniem w układzie wykonanym według schematu montażowego przedstawionego na rysunku?

Ilustracja do pytania
A. Klawisze 1a i 2a sterują żarówką B, a klawisze 1b i 2b sterują żarówką A
B. Klawisze 1a i 2a sterują żarówką A, a klawisze 1b i 2b sterują żarówką B
C. Klawisze 1a i 1b sterują żarówką B, a klawisze 2a i 2b sterują żarówką A
D. Klawisze 1a i 1b sterują żarówką A, a klawisze 2a i 2b sterują żarówką B
Poprawna odpowiedź wskazuje, że klawisze 1a i 2a sterują żarówką B, a klawisze 1b i 2b sterują żarówką A. Taki układ jest typowym schematem dla oświetlenia schodowego, co umożliwia włączanie i wyłączanie oświetlenia z dwóch niezależnych miejsc. W praktyce, jest to szczególnie przydatne w długich korytarzach, na klatkach schodowych oraz w pomieszczeniach z dwoma wejściami. Klawisze połączone w układzie schodowym pozwalają na elastyczne zarządzanie oświetleniem, co zwiększa komfort użytkowania przestrzeni. Ważnym aspektem takiego rozwiązania jest także bezpieczeństwo, ponieważ umożliwia użytkownikom łatwe dostosowanie oświetlenia w zależności od potrzeb, co jest zgodne z zasadami ergonomii i dobrych praktyk projektowych w zakresie oświetlenia. Zastosowanie układów schodowych w obiektach publicznych, takich jak szkoły czy biura, również potwierdza ich praktyczność oraz adaptacyjność w różnych warunkach użytkowych.

Pytanie 5

Kontrola instalacji elektrycznych, które są narażone na szkodliwe działanie warunków atmosferycznych lub destrukcyjne oddziaływanie czynników występujących podczas eksploatacji budynku, powinna odbywać się nie rzadziej niż raz na

A. 4 lata
B. rok
C. kwartał
D. 2 lata
Przeprowadzanie kontroli instalacji elektrycznych narażonych na szkodliwe wpływy atmosferyczne co najmniej raz w roku jest zgodne z normami bezpieczeństwa oraz dobrymi praktykami w branży budowlanej. Regularne inspekcje pozwalają na wczesne wykrycie potencjalnych problemów, takich jak korozja czy uszkodzenia izolacji, co może znacząco obniżyć ryzyko awarii elektrycznych. Na przykład, w przypadku instalacji znajdujących się na zewnątrz budynków, narażonych na opady deszczu, śniegu czy zmiany temperatury, roczna kontrola pozwala na ocenę stanu technicznego wszystkich elementów. Dzięki temu możemy podjąć działania prewencyjne, takie jak wymiana uszkodzonych części czy poprawa izolacji, co przekłada się na bezpieczniejsze użytkowanie budynków. Dodatkowo, zgodnie z przepisami prawa budowlanego oraz normami PN-IEC 60364, regularne kontrole są niezbędne dla zapewnienia bezpieczeństwa użytkowników oraz zgodności z normami technicznymi.

Pytanie 6

Do której czynności przeznaczone jest narzędzie przedstawione na ilustracji?

Ilustracja do pytania
A. Do ściągania izolacji z żył przewodów.
B. Do zaciskania końcówek tulejkowych.
C. Do zaciskania końcówek oczkowych.
D. Do docinania przewodów.
To, co widzisz na obrazku, to szczypce do ściągania izolacji. To naprawdę ważne narzędzie, jeśli pracujesz z kablami elektrycznymi. Mają one fajną budowę, bo mają regulowany ogranicznik, dzięki czemu możesz dokładnie ściągnąć izolację i nie uszkodzić samego przewodu. Jak już wiesz, do podłączania przewodów elektrycznych trzeba dobrze przygotować te kable, dlatego te szczypce są wręcz niezbędne. W elektryce bezpieczeństwo jest priorytetem, więc robienie tego z dużą uwagą zmniejsza ryzyko zwarć i innych problemów. Kiedy wszystko jest dobrze połączone, to znaczy, że instalacja będzie trwała i bezpieczna. No i nie można zapomnieć, że używając takich szczypiec, oszczędzasz czas, co na budowie albo przy modernizacji instalacji jest super ważne.

Pytanie 7

Wyłącznik różnicowoprądowy o oznaczeniu P304 63-30-AC posiada znamionowy prąd różnicowy wynoszący

A. 0,03 mA oraz napięcie znamionowe 63 V
B. 0,03 mA oraz znamionowy prąd ciągły 63 mA
C. 0,03 A oraz napięcie znamionowe 63 V
D. 0,03 A i znamionowy prąd ciągły 63 A
Wyłącznik różnicowoprądowy o oznaczeniu P304 63-30-AC ma znamionowy prąd różnicowy wynoszący 0,03 A oraz znamionowy prąd ciągły 63 A. To oznaczenie wskazuje na zdolność urządzenia do wykrywania prądów różnicowych, co jest kluczowe w zapobieganiu porażeniom prądem oraz pożarom spowodowanym uszkodzeniami izolacji. W praktyce, taki wyłącznik znajduje zastosowanie w instalacjach elektrycznych, gdzie wymagana jest wysoka ochrona przed prądami różnicowymi, na przykład w obiektach użyteczności publicznej, mieszkalnych czy przemysłowych. Zgodnie z normą IEC 61008, wyłączniki różnicowoprądowe są klasyfikowane według ich prądów różnicowych, a ich stosowanie jest zalecane w miejscach, gdzie istnieje ryzyko wystąpienia zwarcia lub uszkodzenia izolacji. Poprawne działanie tego typu urządzenia przyczynia się do zwiększenia bezpieczeństwa użytkowników oraz ochrony mienia, co czyni je nieodłącznym elementem nowoczesnych instalacji elektrycznych.

Pytanie 8

Ile pomiarów izolacyjnej rezystancji należy przeprowadzić, aby zidentyfikować uszkodzenie w przewodzie YDY3x 6 450/700 V?

A. 9
B. 12
C. 3
D. 6
Prawidłowa odpowiedź to 3 pomiary rezystancji izolacji, co wynika z praktyków oceny stanu izolacji przewodów elektroenergetycznych. W przypadku przewodów YDY3x 6 450/700 V, które są typowymi przewodami stosowanymi w instalacjach elektrycznych, kluczowe jest przeprowadzanie pomiarów rezystancji izolacji w różnych punktach. Zgodnie z normą PN-IEC 60364-6, co najmniej trzy pomiary powinny być wykonane dla każdej fazy przewodu oraz dodatkowo dla przewodu neutralnego i ochronnego. W praktyce, pomiary powinny obejmować zarówno wartości rezystancji międzyfazowej, jak i rezystancji do ziemi. Przykładowo, jeśli wykonasz pomiar izolacji na długości przewodu, który wykazuje niską rezystancję, może to wskazywać na uszkodzenie izolacji w tym obszarze. Dodatkowo, regularne pomiary rezystancji izolacji pozwalają na wczesne wykrywanie potencjalnych problemów, co jest istotne dla zapewnienia bezpieczeństwa i niezawodności instalacji elektrycznej.

Pytanie 9

Urządzenie przedstawione na zdjęciu służy do

Ilustracja do pytania
A. sprawdzania ciągłości przewodów.
B. pomiaru rezystancji uziemienia urządzenia.
C. kontroli prądu upływu.
D. określania kolejności faz zasilających.
Urządzenie przedstawione na zdjęciu to tester kolejności faz, co można zidentyfikować dzięki jego oznaczeniom, takim jak L1, L2, L3, które wskazują na różne fazy zasilające. W kontekście instalacji elektrycznych, poprawna kolejność faz jest kluczowa dla zapewnienia prawidłowego działania urządzeń oraz bezpieczeństwa instalacji. Niepoprawna kolejność może prowadzić do poważnych problemów, takich jak uszkodzenie sprzętu czy ryzyko porażenia prądem. Tester ten jest często używany przez elektryków do weryfikacji instalacji przed rozpoczęciem pracy, co pozwala na uniknięcie potencjalnych zagrożeń. Zgodnie z normami branżowymi, takimi jak PN-IEC 60364, zapewnienie poprawnej kolejności faz jest obowiązkowe w instalacjach trójfazowych. Przykłady zastosowania tego urządzenia obejmują kontrolę w przemyśle, w budynkach komercyjnych oraz w instalacjach domowych, gdzie prawidłowe zasilanie jest kluczowe dla funkcjonowania wielu urządzeń elektrycznych.

Pytanie 10

Którego z narzędzi należy użyć do wkręcenia przedstawionego elementu w nagwintowany otwór?

Ilustracja do pytania
A. Klucza nasadowego.
B. Wkrętaka typu torks.
C. Wkrętaka krzyżowego.
D. Klucza ampulowego.
Wybór narzędzia do wkręcania elementów w nagwintowane otwory jest kluczowy dla efektywności oraz bezpieczeństwa pracy. Użycie wkrętaka typu torks mogłoby wydawać się logiczne, jednak ostatecznie jest to niewłaściwe podejście, ponieważ wkrętak torks jest przeznaczony do obsługi wkrętów z łbami torx, które mają zupełnie inny kształt. Niepoprawne pomylenie wkrętaka torks z kluczem ampulowym może prowadzić do uszkodzenia łba śruby, co z kolei uniemożliwi dalsze wkręcanie. Klucz nasadowy to kolejne narzędzie, które w tym przypadku nie sprawdzi się, ponieważ jest on przeznaczony do pracy z śrubami i nakrętkami o łbach sześciokątnych lub kwadratowych, a nie z łbami sześciokątnymi wewnętrznymi. Użycie klucza nasadowego do śrub z gwintem wewnętrznym może skutkować zbyt luźnym dopasowaniem i poślizgiem narzędzia, co zwiększa ryzyko uszkodzenia zarówno narzędzia, jak i śruby. Ponadto, wkrętak krzyżowy również nie jest odpowiednim wyborem, gdyż jest on zaprojektowany do pracy z wkrętami o łbach krzyżowych, co uniemożliwia wkręcanie śrub z łbem sześciokątnym wewnętrznym. Klucz ampulowy to jedyne narzędzie, które zapewnia odpowiednie dopasowanie, skuteczność i bezpieczeństwo, co jest niezbędne w każdym działaniu związanym z montażem lub demontażem elementów mechanicznych.

Pytanie 11

W jakiej kolejności należy włączać styczniki w układzie przedstawionym na schemacie, aby przeprowadzić prawidłowy rozruch silnika, przy zamkniętym wyłączniku Q1?

Ilustracja do pytania
A. Najpierw K1M i K41M, następnie wyłączyć K41M, a włączyć K42M
B. W odstępach czasu kolejno: K1M, K42M, K41M
C. W odstępach czasu kolejno: K41M, K42M, K1M
D. Najpierw K1M i K42M, następnie wyłączyć K42M, a włączyć K41M
Wybór innej odpowiedzi, która sugeruje inną kolejność włączania styczników w układzie, zawiera poważne błędy koncepcyjne, które mogą prowadzić do nieprawidłowego działania silnika i potencjalnego uszkodzenia systemu. Na przykład, jeżeli stycznik K1M zostanie włączony jako pierwszy, a K41M nie zostanie aktywowany, silnik zacznie pracować w pełnym obciążeniu bez wcześniejszego zmniejszenia prądu rozruchowego. Taki proces może prowadzić do nadmiernego prądu, co z kolei zwiększa ryzyko przegrzania i uszkodzenia uzwojeń silnika. Włączenie stycznika K42M przed K41M nie tylko nie jest zgodne z zasadami bezpieczeństwa, ale także może prowadzić do nieprawidłowego działania silnika w trybie gwiazdy, co neguje jego zalety. W kontekście dobrych praktyk, stosowanie się do ustalonej sekwencji włączania styczników jest kluczowe dla zapewnienia długotrwałej i bezawaryjnej pracy układów elektrycznych. Niewłaściwe podejście do rozruchu silnika może skutkować poważnymi konsekwencjami finansowymi i operacyjnymi, dlatego tak ważne jest przestrzeganie ustalonych procedur, które opierają się na zasadzie minimalizacji ryzyka i maksymalizacji efektywności działania całego układu.

Pytanie 12

W miejsce cyfr dobierz symbole graficzne rodzaju przewodów, zachowując kolejność.

Ilustracja do pytania
A. B.
B. D.
C. C.
D. A.
Odpowiedź D jest poprawna, ponieważ zgodnie z zasadami podłączania przewodów w instalacjach elektrycznych, oznaczenia przewodów mają kluczowe znaczenie dla ich prawidłowego funkcjonowania. Przewód oznaczony grubą kropką reprezentuje przewód neutralny (N), podczas gdy przewody bez oznaczeń to przewody fazowe (L). W analizowanym schemacie widzimy, że do łącznika dochodzi przewód fazowy, a jego wyjście również prowadzi do przewodu fazowego. Odpowiedź D ilustruje tę sytuację, przedstawiając dwa przewody fazowe oraz jeden neutralny, co jest zgodne z normami i dobrymi praktykami branżowymi. Właściwe podłączenie przewodów jest istotne, aby zapewnić bezpieczeństwo instalacji oraz jej właściwe działanie. Przykładowo, w instalacjach oświetleniowych, prawidłowe oznaczenie i podłączenie przewodów ma kluczowe znaczenie dla uniknięcia zwarć oraz zapewnienia nieprzerwanego dostępu do energii elektrycznej.

Pytanie 13

Schemat przedstawia układ podłączenia żarówki

Ilustracja do pytania
A. fluorescencyjnej.
B. sodowej.
C. rtęciowej.
D. łukowej.
No cóż, wybór lamp sodowych, łukowych albo rtęciowych nie był najlepszy. Te lampy działają na innych zasadach niż fluorescencyjne. Na przykład, lampy sodowe używają wyładowań w parze sodu i dają specyficzne żółte światło, co nie pasuje do schematu. Lampy łukowe, które często spotykasz na ulicy, działają na ciągłym wyładowaniu w gazie, więc mają zupełnie inny układ. A lampy rtęciowe, mimo że też wykorzystują wyładowania, mają różne części, jak dławiki, które nie występują w lampach fluorescencyjnych. Moim zdaniem, błędy w myśleniu mogą wynikać z mylenia różnych typów lamp i ich zasad działania. Zrozumienie tych różnic jest ważne, bo złe podłączenie może prowadzić do problemów. Dobrze jest też pamiętać, że są normy IEC, które mówią o odpowiednich technologiach do różnych źródeł światła.

Pytanie 14

Jakie są minimalne wartości napięć znamionowych, jakie powinien posiadać przewód użyty do instalacji jednofazowej w sieci 230/400 V, prowadzonej w otworach prefabrykowanych budynków?

A. 450/750 V
B. 600/1000 V
C. 300/300 V
D. 300/500 V
Odpowiedź 450/750 V jest na pewno dobra. Przewody w instalacjach jednofazowych przy 230/400 V muszą mieć odpowiednie napięcie, żeby wszystko działało bezpiecznie. Jak chodzi o przewody w budynkach, zwłaszcza te, co prowadzą przez gotowe elementy budowlane, ważne, żeby ich izolacja była przystosowana do wyższych napięć. To zmniejsza szanse na jakieś uszkodzenia. Przewody 450/750 V są zgodne z normą PN-EN 60228, która określa wymagania dla takich przewodów. Użycie przewodów o wyższym napięciu daje większą ochronę przed przebiciami i innymi problemami elektrycznymi. W praktyce są one często wykorzystywane zarówno w budownictwie mieszkalnym, jak i przemysłowym, więc można powiedzieć, że to dość uniwersalne i bezpieczne rozwiązanie.

Pytanie 15

Jaką wartość natężenia prądu wskazuje miliamperomierz ustawiony na zakresie 400 mA?

Ilustracja do pytania
A. 130 mA
B. 106 mA
C. 170 mA
D. 208 mA
W przypadku, gdy wybrano inną wartość niż 208 mA, można zauważyć, że takie błędne odpowiedzi mogą wynikać z kilku nieporozumień dotyczących odczytów z miliamperomierza. Często zdarza się, że osoby nie zwracają uwagi na położenie wskazówki lub nie potrafią prawidłowo oszacować wartości, co skutkuje błędnymi wnioskami. Wartości takie jak 130 mA, 170 mA czy 106 mA są znacznie niższe niż rzeczywiste wskazanie. To może sugerować, że osoba udzielająca takiej odpowiedzi nie przeanalizowała dokładnie skali, na której dokonuje się pomiaru, lub nie rozumie, jak działa miliamperomierz. Zrozumienie, jak interpretować odczyty, jest niezbędne w praktyce inżynierskiej. Odczytywanie wartości z miliamperomierza wymaga precyzyjnego spojrzenia na wskaźnik, a także uwzględnienia tolerancji błędu pomiaru, co jest szczególnie istotne w obwodach wymagających ścisłej kontroli parametrów. Zastosowanie niewłaściwej wartości prądu w projektach elektronicznych może prowadzić do uszkodzenia komponentów lub niewłaściwego działania całego układu. Dlatego tak ważne jest, aby umiejętnie korzystać z narzędzi pomiarowych i rozumieć ich zasady działania.

Pytanie 16

Jakie mogą być przyczyny nadmiernego przegrzewania się wyłącznika nadmiarowo-prądowego podczas długotrwałego zasilania sprawnego odbiornika?

A. Zbyt wysoka moc zasilanego odbiornika
B. Niewłaściwe napięcie zasilania
C. Zbyt niski prąd znamionowy wyłącznika
D. Słabo dokręcone złącza wyłącznika
Nieodpowiednie napięcie zasilające, za mały prąd znamionowy wyłącznika oraz zbyt duża moc zasilanego odbiornika mogą wydawać się logicznymi przyczynami nadmiernego nagrzewania się wyłącznika nadmiarowo-prądowego, jednak nie są one bezpośrednio związane z tym zjawiskiem w kontekście długotrwałego zasilania sprawnego odbiornika. Niewłaściwe napięcie zasilające może prowadzić do problemów z wydajnością urządzeń, jednak niekoniecznie skutkuje to nadmiernym nagrzewaniem się samego wyłącznika. Prąd znamionowy wyłącznika jest zaprojektowany tak, aby tolerować określone wartości prądu, a jego nadmierne obciążenie może rzeczywiście prowadzić do przegrzewania, lecz w przypadku sprawnego odbiornika działającego w granicach norm, nie powinno to być problemem. Z kolei zbyt duża moc zasilanego odbiornika może sprawić, że wyłącznik zareaguje i zadziała, co ochroni obwód, a nie spowoduje jego przegrzania. W praktyce, najczęściej występującym problemem jest właśnie niewłaściwe dokręcenie zacisków, co podkreśla rolę odpowiedniego montażu i konserwacji w zapewnieniu bezpieczeństwa i efektywności systemów elektrycznych.

Pytanie 17

Jakie działania należy podjąć po odłączeniu zasilania, aby zgodnie z PN-HD 60364-6:2008 Instalacje elektryczne niskiego napięcia, przeprowadzić pomiar rezystancji izolacji kabli?

A. Wyłączyć odbiorniki oraz zapewnić skuteczną ochronę przed możliwością przypadkowego, ponownego załączenia napięcia zasilającego
B. Zasilić badaną instalację napięciem stałym oraz zapewnić skuteczną ochronę przed możliwością przypadkowego, ponownego załączenia napięcia zasilającego
C. Rozłączyć oprawy oświetleniowe, zewrzeć łączniki oświetlenia oraz zapewnić skuteczną ochronę przed możliwością przypadkowego, ponownego załączenia napięcia zasilającego
D. Odłączyć odbiorniki, zewrzeć łączniki oraz zapewnić skuteczną ochronę przed dotykiem bezpośrednim
Poprawna odpowiedź to odłączenie odbiorników oraz zapewnienie skutecznej ochrony przed możliwością przypadkowego, ponownego załączenia napięcia zasilającego. Zgodnie z PN-HD 60364-6:2008, przed przystąpieniem do pomiaru rezystancji izolacji, należy bezwzględnie odłączyć wszelkie odbiorniki elektryczne od instalacji. Takie działanie ma na celu uniknięcie ryzyka porażenia prądem oraz uszkodzenia urządzeń podczas pomiaru. Kluczowym aspektem jest także zapewnienie skutecznej ochrony, co często realizuje się poprzez zastosowanie odpowiednich zabezpieczeń mechanicznych lub elektronicznych, które blokują możliwość przypadkowego włączenia zasilania. Przykładem może być użycie blokady na rozdzielnicy. W praktyce, pomiar rezystancji izolacji wykonuje się najczęściej przy użyciu megomierza, który generuje wysokie napięcie, co może być niebezpieczne dla osób i sprzętu, jeśli nie zostaną podjęte odpowiednie środki ochrony. Prawidłowe przygotowanie do pomiaru jest kluczowe, aby zapewnić bezpieczeństwo oraz dokładność wyników. Dobrą praktyką jest także dokumentacja stanu wyłączenia oraz przeprowadzonych działań, co jest przydatne w kontekście inspekcji i audytów.

Pytanie 18

Na którym rysunku przedstawiono schemat połączeń umożliwiający pomiar energii elektrycznej pobranej przez użytkownika?

Ilustracja do pytania
A. B.
B. A.
C. D.
D. C.
Błędne odpowiedzi mogą być wynikiem nieporozumień co do tego, jak działają liczniki energii i ich podłączenie w obwodach elektrycznych. Schematy A, B i D mogą mieć błędy w połączeniu przewodów fazowych i neutralnych, co prowadzi do złego pomiaru energii. Często myli się, że licznik może być podłączony równolegle do obciążenia, a to wcale nie działa, bo licznik wtedy nie zmierzy przepływu prądu. Właściwy pomiar wymaga szeregowego połączenia, żeby licznik był w torze prądowym. Dodatkowo, jeśli źle rozumie się rolę przewodów, można mieć problem z ich zidentyfikowaniem, co może być niebezpieczne. Warto zwrócić uwagę na normy i przepisy dotyczące instalacji elektrycznych, bo pokazują, jak ważne jest bezpieczeństwo i poprawność podłączeń. Zrozumienie zasad działania systemów pomiarowych oraz ich prawidłowego podłączenia jest kluczowe, żeby zapewnić bezpieczeństwo i efektywność energetyczną w codziennym użytkowaniu energii.

Pytanie 19

Który zestaw oznaczeń literowych barw izolacji żył jest właściwy dla przewodu przedstawionego na ilustracji?

Ilustracja do pytania
A. BU, GY, GNYE
B. BN, BK, GY
C. BK, BU, GY
D. BN, BK, GNYE
Wybranie odpowiedzi "BN, BK, GY" jest poprawne, ponieważ zgodnie z polskimi normami dotyczącymi oznaczeń kolorystycznych przewodów elektrycznych, brązowy (BN) jest kolorem przewodu fazowego, czarny (BK) to przewód neutralny, a żółto-zielony (GY) identyfikuje przewód ochronny. Ta kolorystyka ma kluczowe znaczenie dla bezpieczeństwa i poprawnego działania instalacji elektrycznych. Praktyczne przykłady zastosowania tych zasad można znaleźć w projektach instalacji w budynkach mieszkalnych i przemysłowych, gdzie właściwe oznaczenie przewodów pomoże uniknąć błędów podczas montażu oraz konserwacji. Użycie odpowiednich kolorów pozwala na szybką identyfikację funkcji każdego przewodu, co jest niezbędne w przypadku awarii czy modernizacji. Współczesne standardy, takie jak PN-IEC 60446, podkreślają wagę przestrzegania tych norm w celu zapewnienia bezpieczeństwa osób pracujących z instalacjami elektrycznymi oraz zapobiegania ryzyku porażenia prądem.

Pytanie 20

Jakie napięcie powinno być zastosowane w mierniku podczas pomiaru rezystancji izolacyjnej urządzenia elektrycznego o nominalnym napięciu 230/400 V?

A. 750 V
B. 250 V
C. 1 000 V
D. 500 V
Odpowiedź 500 V jest prawidłowa, ponieważ zgodnie z normami i zaleceniami dotyczącymi pomiarów rezystancji izolacji, napięcie testowe powinno być na poziomie 500 V dla maszyn elektrycznych o napięciu znamionowym 230/400 V. Pomiar taki ma na celu wykrycie ewentualnych uszkodzeń izolacji, które mogą prowadzić do niebezpiecznych sytuacji. W praktyce, napięcie testowe 500 V jest standardem branżowym, szczególnie w przypadku sprzętu niskonapięciowego, gdyż zapewnia wystarczającą moc do przetestowania izolacji bez ryzyka uszkodzenia elementów wrażliwych. Dodatkowo, w wielu krajach stosowane są normy IEC 60364 oraz IEC 61557, które precyzują wymagania dotyczące pomiarów izolacji, a ich przestrzeganie jest kluczowe dla zapewnienia bezpieczeństwa użytkowania maszyn. Przykładowo, w przypadku stacji transformatorowych, regularne pomiary izolacji przy użyciu napięcia 500 V pozwalają na wczesne wykrywanie problemów i zapobieganie awariom, co przekłada się na dłuższą żywotność urządzeń oraz zwiększone bezpieczeństwo operacyjne.

Pytanie 21

Którą funkcję w wyłączniku nadprądowym pełni element wskazany na ilustracji czerwoną strzałką?

Ilustracja do pytania
A. Gasi łuk elektryczny.
B. Reaguje na przeciążenia.
C. Łączy styki.
D. Reaguje na zwarcia.
Zrozumienie roli poszczególnych komponentów wyłączników nadprądowych jest kluczowe dla prawidłowego funkcjonowania systemów ochrony elektrycznej. W przypadku, gdy ktoś identyfikuje bimetaliczny wyzwalacz jako element, który gasi łuk elektryczny, ma miejsce fundamentalne nieporozumienie. Gasić łuk elektryczny to zadanie przypisane innym elementom, takim jak układy łukotłumiące, które skutecznie minimalizują skutki pojawiającego się łuku w momencie rozłączania obwodu. Z kolei odpowiedź sugerująca, że wyzwalacz łączy styki, również jest myląca, ponieważ bimetaliczny wyzwalacz nie ma funkcji fizycznego łączenia styków, lecz jedynie uruchamia mechanizm ich rozłączenia w odpowiedzi na zjawiska prądowe. Jeśli ktoś błędnie interpretuje rolę tego elementu jako reagującą na przeciążenia, może to prowadzić do niebezpiecznych sytuacji. Wyzwalacze przeciążeniowe, choć mogą być zintegrowane w konstrukcji wyłącznika, działają na innej zasadzie i odpowiadają za inny typ anomalii w obwodzie. Istotne jest, aby zrozumieć, że każdy z tych elementów ma swoje specyficzne zadania i pomyłki w ich identyfikacji mogą prowadzić do błędnych wniosków oraz potencjalnych zagrożeń w użytkowaniu instalacji elektrycznych.

Pytanie 22

Jakiej kategorii urządzeń elektrycznych dotyczą przekładniki pomiarowe?

A. Do prądnic tachometrycznych
B. Do indukcyjnych sprzęgieł dwukierunkowych
C. Do wzmacniaczy maszynowych
D. Do transformatorów
Przekładniki pomiarowe są urządzeniami elektrycznymi, które zaliczają się do grupy transformatorów. Ich głównym zadaniem jest przekształcanie wysokich wartości prądu lub napięcia na niższe, co umożliwia ich bezpieczne i precyzyjne pomiary. Przekładniki pomiarowe są niezwykle istotne w systemach elektroenergetycznych, gdzie zapewniają ciągłość i dokładność pomiarów w stacjach transformatorowych oraz w rozdzielniach. Na przykład, przekładniki prądowe mogą być używane do monitorowania prądu w liniach przesyłowych, co pozwala na wczesne wykrywanie nieprawidłowości oraz optymalizację działania systemów. W kontekście standardów, przekładniki są zgodne z normami IEC 61869, które regulują wymagania dotyczące ich konstrukcji i testowania. Dzięki temu inżynierowie mogą być pewni, że stosowane urządzenia spełniają określone kryteria jakości i bezpieczeństwa. Zrozumienie roli przekładników pomiarowych w systemach energetycznych jest kluczowe dla każdego specjalisty w dziedzinie elektrotechniki.

Pytanie 23

Która z poniższych działań jest zaliczana do czynności konserwacyjnych instalacji elektrycznych w domach i obiektach użyteczności publicznej?

A. Instalacja nowych punktów świetlnych
B. Wymiana uszkodzonych gniazd wtyczkowych
C. Przesunięcie miejsc montażu opraw oświetleniowych
D. Zamiana zużytych urządzeń na nowe
Wymiana uszkodzonych gniazd wtyczkowych jest kluczowym elementem prac konserwacyjnych instalacji elektrycznych w mieszkaniach oraz budynkach użyteczności publicznej. Gniazda wtyczkowe stanowią bezpośredni punkt dostępu do energii elektrycznej, a ich uszkodzenie może prowadzić do poważnych zagrożeń, takich jak zwarcia, pożary czy porażenia prądowe. Właściwe utrzymanie gniazd wtyczkowych zgodnie z normami PN-IEC 60364 oraz PN-EN 60669 zapewnia bezpieczeństwo użytkowników i niezawodność instalacji. Wymiana uszkodzonych gniazd powinna być przeprowadzana przez wykwalifikowanych elektryków, którzy potrafią ocenić stan instalacji oraz wybrać odpowiednie komponenty do wymiany. Praktycznym przykładem jest sytuacja, gdy w wyniku uszkodzenia mechanicznego gniazdo nie działa poprawnie, co może wpływać na funkcjonalność podłączonych urządzeń. Regularne przeglądy oraz wymiana uszkodzonych części to praktyka zgodna z zasadami bezpieczeństwa i efektywności energetycznej.

Pytanie 24

Wyznacz minimalny przekrój żył miedzianych przewodu, kierując się kryterium obciążalności długotrwałej, przy maksymalnej dopuszczalnej gęstości prądu wynoszącej 8 A/mm2, dla odbiornika o prądzie znamionowym 15,5 A.

A. 2,5 mm2
B. 4 mm2
C. 1,5 mm2
D. 6 mm2
Odpowiedź 2,5 mm² jest poprawna, ponieważ obciążalność długotrwała przewodów miedzianych powinna być dobrana na podstawie maksymalnej gęstości prądu, która wynosi 8 A/mm². Aby obliczyć minimalny wymagany przekrój żyły dla prądu znamionowego 15,5 A, należy podzielić ten prąd przez maksymalną gęstość prądu: 15,5 A / 8 A/mm² = 1,9375 mm². W praktyce zaokrąglamy wynik do najbliższego standardowego rozmiaru, co daje 2,5 mm². Zgodnie z normami, dobór odpowiedniego przekroju żyły jest kluczowy dla zapewnienia bezpieczeństwa i efektywności w instalacjach elektrycznych. Zbyt mały przekrój może prowadzić do przegrzewania się przewodów, co zwiększa ryzyko pożaru oraz uszkodzeń sprzętu. W zastosowaniach praktycznych, takich jak zasilanie urządzeń przemysłowych czy domowych, wybór właściwego przekroju żył jest niezbędny dla długotrwałej niezawodności systemu zasilania. Przykładem może być instalacja elektryczna w budynkach mieszkalnych, gdzie przewody muszą być odpowiednio dobrane do obciążenia, aby zapewnić komfort i bezpieczeństwo użytkowników.

Pytanie 25

Zdjęcie przedstawia przewód

Ilustracja do pytania
A. YDYp 3x1,5 750 V
B. YLY 3x1,5 500 V
C. YDYn 3x1,5 500 V
D. YDY 3x1,5 750 V
Przewód przedstawiony na zdjęciu to przewód typu YDYp 3x1,5 750 V, co można rozpoznać po zastosowaniu symboliki w oznaczeniach. Oznaczenie 'Y' wskazuje na materiał izolacji, w tym przypadku poliwinitowy. Druga litera 'D' oznacza, że przewód wykonany jest z drutu miedzianego, co zapewnia jego dużą przewodność elektryczną. Z kolei 'Y' ponownie odnosi się do dodatkowej warstwy izolacji, a 'p' oznacza, że przewód ma formę płaską. Taki typ przewodu jest często wykorzystywany w instalacjach elektrycznych w budynkach, gdzie występuje potrzeba oszczędności miejsca oraz estetyki. Przewody płaskie, jak YDYp, są idealne do układania w ścianach, podłogach, czy w innych przestrzeniach, gdzie ich rozmiar pozwala na łatwe ukrycie. Napięcie znamionowe 750 V czyni je odpowiednim rozwiązaniem do wielu standardowych aplikacji, co czyni je zgodnym z normami PN-EN 50525, dotyczącymi przewodów elektrycznych. Wybór właściwego przewodu ma kluczowe znaczenie dla bezpieczeństwa i efektywności instalacji elektrycznej, dlatego znajomość ich właściwości jest niezbędna w pracy elektryka.

Pytanie 26

Który z przedstawionych na rysunkach zestawów narzędzi należy dobrać do montażu elementów mieszkaniowych instalacji elektrycznych?

Ilustracja do pytania
A. C.
B. B.
C. A.
D. D.
Zestaw narzędzi oznaczony literą C to właściwy wybór do montażu elementów mieszkaniowych instalacji elektrycznych, ponieważ zawiera narzędzia izolowane. Narzędzia te mają specjalną powłokę, która minimalizuje ryzyko porażenia prądem, co jest kluczowe, gdy pracujemy z instalacjami elektrycznymi. Przykładowo, obcęgi i szczypce izolowane pozwalają na precyzyjne manipulowanie przewodami bez obawy o kontakt z napięciem. Standardy bezpieczeństwa, takie jak normy IEC 60900, definiują wymagania dotyczące narzędzi używanych w środowiskach elektrycznych, w tym wymagania dotyczące izolacji. Ponadto, dobór narzędzi zgodnych z tymi normami jest często wymogiem w profesjonalnych pracach elektrycznych, co zapewnia nie tylko bezpieczeństwo, ale również efektywność pracy. Zastosowanie odpowiednich narzędzi może znacząco zwiększyć komfort oraz bezpieczeństwo w trakcie realizacji zadań montażowych.

Pytanie 27

Którą klasę ochronności posiada oprawa oświetleniowa oznaczona przedstawionym symbolem graficznym?

Ilustracja do pytania
A. I
B. 0
C. II
D. III
Wybór niepoprawnej odpowiedzi może wynikać z błędnego zrozumienia klasyfikacji opraw oświetleniowych oraz ich oznaczeń. Klasa ochronności I wskazuje na urządzenia, które wymagają uziemienia, co oznacza, że ich konstrukcja jest oparta na izolacji podstawowej i dodatkowej, co czyni je bardziej podatnymi na uszkodzenia w przypadku awarii izolacji. Użytkownicy mogą mylić klasy ochronności z poziomem bezpieczeństwa, sądząc, że klasa I jest bardziej bezpieczna niż klasa II, podczas gdy w rzeczywistości klasa II, dzięki podwójnej izolacji, nie wymaga uziemienia i może być stosowana w bardziej zróżnicowanych warunkach. Klasa III, która również nie wymaga uziemienia, dotyczy urządzeń zasilanych niskonapięciowych, co czyni ją nieodpowiednią dla standardowych opraw oświetleniowych działających na napięciu sieciowym. Odpowiedź 0 sugeruje brak klasy ochronności, co jest koncepcją błędną, gdyż każda oprawa oświetleniowa musi posiadać oznaczenie dotyczące swojej klasy ochronności. Użytkownicy mogą również nie zdawać sobie sprawy, że niespełnienie wymogów klasy ochronności, może prowadzić do poważnych konsekwencji zdrowotnych i prawnych. Zrozumienie tych różnic jest kluczowe dla zapewnienia bezpieczeństwa i zgodności z obowiązującymi normami branżowymi.

Pytanie 28

Który z wymienionych parametrów można zmierzyć przedstawionym przyrządem?

Ilustracja do pytania
A. Rezystancję izolacji.
B. Impedancję pętli zwarcia.
C. Rezystancję uziemienia.
D. Czas wyłączenia wyłącznika nadprądowego.
Zrozumienie różnicy między różnymi pomiarami elektrycznymi jest kluczowe dla prawidłowego funkcjonowania instalacji elektrycznych. Wybór rezystancji uziemienia jako odpowiedzi jest błędny, ponieważ chociaż niektóre mierniki wielofunkcyjne mogą mieć możliwość pomiaru tego parametru, nie jest to funkcja, która jest standardowo dostępna w każdym modelu. Rezystancja uziemienia jest pomiarem, który ocenia skuteczność systemu uziemiającego, a jego niewłaściwe pomiary mogą prowadzić do wadliwego funkcjonowania ochrony przeciwporażeniowej. Kolejnym błędnym wyborem jest rezystancja izolacji, która mierzy integralność izolacji elektrycznej, a jej pomiar wymaga innych technik oraz odpowiednich testerów izolacji, które są zaprojektowane specjalnie do tego celu. Użytkownicy często mylą te dwa pojęcia, co może wynikać z braku wiedzy na temat specyfiki funkcji różnych przyrządów. Czas wyłączenia wyłącznika nadprądowego również nie jest mierzony przez standardowy miernik wielofunkcyjny. Jest to proces, który zwykle wymaga bardziej zaawansowanego sprzętu testowego, w tym analizatorów jakości energii elektrycznej. Właściwe rozumienie tych zasad jest niezbędne dla zapewnienia bezpieczeństwa i skuteczności instalacji elektrycznych, a także do przestrzegania norm i standardów branżowych. W przypadku błędnych odpowiedzi istotne jest, aby przyjąć podejście analityczne i przyjrzeć się, dlaczego takie wybory mogą być mylne, co pomoże uniknąć podobnych pomyłek w przyszłości.

Pytanie 29

Który układ połączeń watomierza jest zgodny ze schematem pomiarowym pokazanym na rysunku?

Ilustracja do pytania
A. D.
B. B.
C. A.
D. C.
Wybór innej opcji niż C wynika z nieporozumienia dotyczącego zasad prawidłowego pomiaru mocy czynnej przy użyciu watomierza. W wielu przypadkach, osoby uczące się mylnie zakładają, że cewka prądowa powinna być połączona równolegle z obciążeniem, co jest błędne. Równoległe połączenie cewki prądowej wprowadzałoby do pomiaru dodatkowe zmiany, prowadząc do błędnych wyników. Cewka prądowa ma za zadanie mierzyć prąd płynący przez obciążenie, a jej poprawne połączenie szeregowe zapewnia, że cały prąd, który jest mierzony przez watomierz, jest tym, który rzeczywiście przepływa przez obciążenie. Ponadto, błędne połączenie cewki napięciowej również wprowadzałoby istotne zniekształcenia w pomiarze, ponieważ nie mierzyłaby ona napięcia na obciążeniu, co jest kluczowe dla obliczenia mocy czynnej. W praktyce, każdy z tych błędów może prowadzić do nieprawidłowych obliczeń i nieefektywnego zarządzania energią elektryczną. Zrozumienie podstawowych zasad związanych z pomiarem mocy czynnej oraz zastosowanie ich w praktyce jest kluczowe dla uzyskania dokładnych wyników oraz zapewnienia odpowiedniego zarządzania systemami elektrycznymi.

Pytanie 30

Zdjęcie przedstawia

Ilustracja do pytania
A. listwę montażową.
B. drabinkę kablową.
C. szynę łączeniową.
D. płytkę zaciskową.
Szyna łączeniowa to kluczowy element w instalacjach elektrycznych, służący do łączenia przewodów neutralnych w rozdzielnicach. Odpowiedź jest poprawna, ponieważ zdjęcie przedstawia właśnie ten element. Szyny łączeniowe są wykorzystywane w celu zapewnienia efektywności i bezpieczeństwa instalacji, umożliwiając łatwe połączenie wielu przewodów w jednym punkcie. Dzięki nim, instalacje są bardziej uporządkowane, co pozwala na łatwiejszą konserwację i zarządzanie okablowaniem. W praktyce, szyny łączeniowe są projektowane zgodnie z normami IEC oraz PN-EN, co zapewnia ich wysoką jakość i bezpieczeństwo. Zastosowanie szyn łączeniowych jest szczególnie istotne w rozdzielnicach, gdzie konieczne jest zminimalizowanie ryzyka zwarcia i zapewnienie niezawodności działania systemu. Warto również zaznaczyć, że różne typy szyn mogą być dostosowane do specyficznych potrzeb instalacji, co czyni je niezwykle wszechstronnym rozwiązaniem.

Pytanie 31

Którą z wymienionych czynności należy wykonać podczas oględzin instalacji elektrycznej?

A. Sprawdzić wizualnie osprzęt, zabezpieczenia i środki ochrony przeciwporażeniowej.
B. Wymienić wyłącznik różnicowoprądowy w rozdzielnicy.
C. Poprawić mocowanie przewodów w urządzeniach elektrycznych.
D. Zmierzyć rezystancję izolacji przewodów.
Prawidłowo wybrana czynność dotyczy oględzin, czyli podstawowego, wstępnego etapu sprawdzania instalacji elektrycznej. Oględziny zgodnie z dobrą praktyką i normami (np. PN-HD 60364) polegają właśnie na wizualnym sprawdzeniu osprzętu, zabezpieczeń oraz środków ochrony przeciwporażeniowej, bez wykonywania jeszcze jakichkolwiek prac montażowych czy pomiarowych. Chodzi o to, żeby najpierw „rzucić okiem” na całość: czy gniazda, łączniki, obudowy rozdzielnic, przewody, listwy zaciskowe, wyłączniki nadprądowe i różnicowoprądowe są dobrze zamontowane, nieuszkodzone mechanicznie, bez śladów przegrzania, nadpaleń, pęknięć, luzów, prowizorek itp. Moim zdaniem to jest taki etap, na którym doświadczony elektryk już bardzo dużo widzi, zanim w ogóle podłączy miernik. Podczas oględzin sprawdza się też, czy zostały zastosowane właściwe środki ochrony przeciwporażeniowej: czy są odpowiednie przekroje przewodów ochronnych, czy przewody PE i PEN są prawidłowo oznaczone kolorystycznie, czy zaciski ochronne są dokręcone i dostępne, czy obudowy urządzeń klasy I są połączone z przewodem ochronnym, czy zastosowane wyłączniki RCD odpowiadają wymaganiom danej instalacji (prąd znamionowy, prąd różnicowy, typ AC/A/B). Patrzy się również, czy osprzęt ma odpowiedni stopień ochrony IP do miejsca montażu, np. w łazienkach, na zewnątrz, w pomieszczeniach wilgotnych, bo to jest bardzo ważne z punktu widzenia bezpieczeństwa. W praktyce oględziny wykonuje się zawsze przed pomiarami, bo jeżeli coś jest ewidentnie źle zamontowane, uszkodzone albo niezgodne z dokumentacją, to nie ma sensu od razu mierzyć – najpierw trzeba usunąć widoczne usterki. Dobrą praktyką jest też porównanie stanu faktycznego z dokumentacją techniczną i schematami: czy zabezpieczenia są takie, jak wpisano w projekcie, czy obwody są prawidłowo opisane w rozdzielnicy, czy nie ma „samowolek” i dziwnych przeróbek. Takie sumienne oględziny bardzo często pozwalają uniknąć późniejszych problemów eksploatacyjnych, a przede wszystkim zwiększają bezpieczeństwo użytkowników instalacji.

Pytanie 32

Zakres działania wyzwalaczy elektromagnetycznych w nadprądowych wyłącznikach instalacyjnych o charakterystyce B mieści się w zakresie

A. 20-30 krotności prądu znamionowego
B. 10-20 krotności prądu znamionowego
C. 3-5 krotności prądu znamionowego
D. 5-10 krotności prądu znamionowego
Wyzwalacze elektromagnetyczne w wyłącznikach instalacyjnych nadprądowych o charakterystyce B są zaprojektowane do działania w określonym zakresie prądów zwarciowych, co zapewnia skuteczną ochronę obwodów elektrycznych. W przypadku wyłączników charakterystyki B obszar zadziałania wynosi 3-5 krotności prądu znamionowego. Oznacza to, że przy prądzie zwarciowym, który osiąga wartość od 3 do 5 razy wyższą niż nominalny prąd wyłącznika, następuje jego natychmiastowe wyłączenie. Dzięki temu, wyłączniki te skutecznie chronią przed skutkami przeciążeń i zwarć, co jest kluczowe w instalacjach elektrycznych w budynkach mieszkalnych oraz przemysłowych. Przykładowo, jeśli wyłącznik ma prąd znamionowy 10 A, zadziała przy prądzie zwarciowym w zakresie 30 A do 50 A. Tego typu wyłączniki są zalecane do zastosowań, gdzie istnieje ryzyko wystąpienia krótkotrwałych, ale intensywnych prądów, jak w przypadku silników elektrycznych czy transformatorów. Dodatkowo, zgodnie z normą IEC 60898, wyłączniki te powinny być stosowane w obwodach, gdzie istotna jest ochrona przed skutkami zwarć, co czyni je jednym z podstawowych elementów systemów zabezpieczeń elektrycznych.

Pytanie 33

Które z podanych narzędzi nie jest potrzebne do zamontowania listew elektroinstalacyjnych na ścianach z użyciem kołków rozporowych?

A. Poziomnica
B. Ściągacz izolacji
C. Piła do metalu
D. Młotek
Ściągacz izolacji to narzędzie, które głównie służy do ściągania izolacji z przewodów elektrycznych, ale do montażu listew elektroinstalacyjnych nie będzie potrzebny. Podczas montażu najważniejsze jest, żeby dobrze umiejscowić listwy na ścianie i upewnić się, że są równo przyczepione. Do tego wystarczą podstawowe narzędzia, jak poziomnica, młotek czy kołki rozporowe. ściągacz nie jest tu konieczny, bo nie pracujemy bezpośrednio z przewodami. Warto korzystać z odpowiednich narzędzi do danego zadania, bo to poprawia efektywność pracy i zmniejsza ryzyko uszkodzeń. Dlatego przy montażu listew najważniejsze są poziomica i młotek do wbijania kołków, żeby wszystko było stabilne i na poziomie.

Pytanie 34

Którego z przedstawionych przyrządów pomiarowych należy użyć w celu wyznaczenia tras ułożenia przewodów elektrycznych w instalacjach podtynkowych?

Ilustracja do pytania
A. B.
B. D.
C. C.
D. A.
Odpowiedź D. jest poprawna, ponieważ detektor przewodów elektrycznych to specjalistyczne narzędzie, które umożliwia lokalizację przewodów w ścianach oraz innych elementach budowlanych. W przypadku instalacji podtynkowych, gdzie przewody są ukryte, kluczowe jest precyzyjne określenie ich położenia, aby uniknąć uszkodzeń podczas prac remontowych czy budowlanych. Detektory te działają na zasadzie wykrywania pola elektromagnetycznego emitowanego przez przewody, co pozwala na ich skuteczną lokalizację bez potrzeby przeprowadzania skomplikowanych badań. Dzięki zastosowaniu detektorów, można również zminimalizować ryzyko uszkodzenia istniejących instalacji. W branży elektrycznej stosowanie tego typu przyrządów jest zgodne z zasadami bezpieczeństwa oraz dobrymi praktykami, co podkreśla ich znaczenie w planowaniu i realizacji instalacji elektrycznych.

Pytanie 35

W jakim z podanych układów sieciowych pojawia się przewód PEN?

A. TN-S
B. TN-C
C. IT
D. TT
Odpowiedź TN-C jest poprawna, ponieważ w tym układzie sieciowym przewód PEN (przewód ochronny-neutralny) pełni podwójną funkcję, łącząc funkcję uziemiającą z funkcją neutralną. Oznacza to, że jeden przewód jest odpowiedzialny zarówno za ochronę przed porażeniem elektrycznym, jak i za przewodzenie prądu neutralnego. Układ TN-C jest często stosowany w nowoczesnych instalacjach elektrycznych w budynkach mieszkalnych oraz przemysłowych, gdzie zapewnia wysoki poziom bezpieczeństwa oraz efektywności energetycznej. Zgodnie z normami PN-IEC 60364, stosowanie przewodu PEN w układzie TN-C umożliwia uproszczenie instalacji poprzez redukcję liczby przewodów oraz zmniejszenie ryzyka błędów podłączeniowych. Przykładem zastosowania układu TN-C mogą być instalacje w dużych budynkach biurowych, gdzie przewód PEN efektywnie łączy punkt neutralny transformatora z systemem uziemiającym budynku, co zwiększa bezpieczeństwo i stabilność zasilania elektrycznego.

Pytanie 36

Ile wynosi natężenie prądu fazowego pobieranego przez odbiornik trójfazowy powstały z połączenia w gwiazdę trzech jednakowych grzałek rezystancyjnych po 100 Ω każda, przy zasilaniu go z sieci o napięciu 230/400 V?

A. 6,9 A
B. 1,3 A
C. 2,3 A
D. 4,0 A
W tego typu zadaniu największy problem zwykle wynika z pomylenia napięcia fazowego z liniowym oraz z nieprawidłowego kojarzenia zależności między prądem a sposobem połączenia odbiornika. Odbiornik jest połączony w gwiazdę, każda grzałka 100 Ω wisi między fazą a punktem gwiazdowym, czyli pracuje na napięciu 230 V, a nie 400 V. Jeśli ktoś wziął napięcie 400 V do obliczeń, to automatycznie wychodzi zawyżony prąd, bo z prawa Ohma I = U / R. Dla 400 V i 100 Ω wyszłoby 4 A, co kusi, bo jest w odpowiedziach, ale jest to typowy błąd: użycie napięcia międzyfazowego w sytuacji, gdy element jest zasilany napięciem fazowym. W układzie gwiazdy napięcie na każdej fazie (na każdym odbiorniku) jest niższe o pierwiastek z trzech od napięcia międzyfazowego. Drugi typowy błąd to mieszanie zależności prądowych z układu trójkąta z układem gwiazdy. W trójkącie prąd przewodowy jest większy od prądu fazowego o czynnik √3, natomiast w gwieździe prąd fazowy jest równy przewodowemu. Jeśli ktoś próbował tu coś mnożyć lub dzielić przez √3 przy prądzie, to też prowadzi do wyników typu 1,3 A czy 6,9 A, które po prostu nie mają fizycznego sensu przy zadanych danych. Warto pamiętać prostą zasadę: w gwieździe liczymy prąd z napięcia 230 V dla sieci 230/400 V, a w trójkącie – z 400 V. Dopiero po poprawnym ustaleniu napięcia dla pojedynczej fazy można mówić o dalszych przeliczeniach, np. o mocy całkowitej P = 3·U_f·I_f przy odbiorniku rezystancyjnym. Moim zdaniem dobrze jest przy każdym takim zadaniu najpierw narysować sobie prosty schemat gwiazdy i podpisać na nim napięcie fazowe oraz międzyfazowe, wtedy od razu widać, że użycie 400 V do pojedynczej grzałki jest błędem. To jest też bardzo praktyczne przy rzeczywistych instalacjach – błędne założenie napięcia skutkuje złym doborem zabezpieczeń i przekrojów przewodów, co jest niezgodne z PN-HD 60364 i po prostu niebezpieczne dla instalacji.

Pytanie 37

Jakie zadanie dotyczy konserwacji instalacji elektrycznej?

A. Zmiana rodzaju zastosowanych przewodów
B. Wymiana uszkodzonych źródeł światła
C. Instalacja dodatkowego gniazda elektrycznego
D. Modernizacja rozdzielnicy instalacji elektrycznej
Wymiana zepsutych źródeł światła to naprawdę istotny kawałek roboty przy konserwacji instalacji elektrycznej. Chodzi o to, żeby nasze oświetlenie działało bez zarzutu i żeby użytkownicy czuli się bezpiecznie. Jak żarówki czy świetlówki się psują, to mogą zdarzyć się nieprzewidziane awarie, a czasem może być to nawet niebezpieczne i prowadzić do pożaru. Fajnie jest pamiętać o regularnej wymianie, bo to zgodne z normami, na przykład PN-EN 50110-1, które mówią, jak dbać o instalacje elektryczne. Dobrym przykładem jest to, jak trzeba kontrolować stan źródeł światła w miejscach publicznych. Ich awaria to nie tylko niewygoda, ale także może zagrażać bezpieczeństwu ludzi. A jeśli wymieniamy te źródła światła na czas, to także dbamy o efektywność energetyczną, co jest zgodne z normami ochrony środowiska.

Pytanie 38

Którego z przedstawionych narzędzi należy użyć do potwierdzenia obecności napięcia elektrycznego w przewodzie?

Ilustracja do pytania
A. Narzędzia 4.
B. Narzędzia 2.
C. Narzędzia 3.
D. Narzędzia 1.
Poprawnie wskazane zostało narzędzie 2, czyli próbnik / wskaźnik napięcia. To właśnie tego typu przyrząd służy do bezpośredniego potwierdzenia obecności napięcia elektrycznego w przewodzie. W praktyce elektrycznej mówi się wręcz, że zanim czegokolwiek dotkniesz, najpierw sprawdź, czy jest tam napięcie – i robi się to właśnie wskaźnikiem napięcia. Narzędzie 2 jest zaprojektowane specjalnie do pracy na instalacjach elektrycznych: ma odpowiednią izolację, najczęściej oznaczenie zakresu napięć (np. 12–690 V AC/DC), klasę bezpieczeństwa CAT oraz spełnia wymagania norm, np. PN-EN 61243 dotyczącej wskaźników napięcia. Z mojego doświadczenia to jedno z podstawowych narzędzi w kieszeni elektryka, zaraz obok miernika uniwersalnego. Taki wskaźnik pozwala szybko sprawdzić, czy przewód fazowy jest pod napięciem, czy obwód został poprawnie wyłączony, a także czy nie ma przypadkowego zasilania zwrotnego z innego obwodu. Używa się go np. przy wymianie gniazda, łącznika oświetleniowego, przy pracach w rozdzielnicy, przy sprawdzaniu, który przewód jest fazowy, a który neutralny. Co ważne, profesjonalne wskaźniki napięcia często mają funkcję detekcji napięcia bezdotykowo lub z niewielkim dotykiem, co dodatkowo zwiększa bezpieczeństwo. Dobre praktyki branżowe mówią też o zasadzie: sprawdź – wyłącz – zabezpiecz – ponownie sprawdź. Ten drugi etap sprawdzenia wykonuje się właśnie takim narzędziem jak nr 2, bo zwykły śrubokręt czy inne przyrządy nie dają wiarygodnej informacji o obecności napięcia. Dlatego wybór narzędzia 2 jest jak najbardziej zgodny z praktyką zawodową i przepisami BHP dotyczącymi pracy pod napięciem i w pobliżu napięcia.

Pytanie 39

Przed dokonaniem pomiarów rezystancji izolacyjnej obwodu oświetleniowego, oprócz odłączenia zasilania, co jeszcze należy zrobić?

A. zamontować źródła światła i zamknąć łączniki instalacyjne tego obwodu
B. zamontować źródła światła i otworzyć łączniki instalacyjne tego obwodu
C. wymontować źródła światła i otworzyć łączniki instalacyjne tego obwodu
D. wymontować źródła światła i zamknąć łączniki instalacyjne tego obwodu
Zamontowanie źródeł światła oraz otwieranie łączników instalacyjnych przed pomiarem rezystancji izolacji obwodu oświetleniowego jest nieodpowiednim działaniem, które może prowadzić do wielu problemów technicznych. Po pierwsze, pozostawienie źródeł światła w obwodzie może skutkować ich uszkodzeniem, gdyż wiele z nich nie jest przystosowanych do wytrzymywania napięcia testowego, które może być znacznie wyższe niż nominalne wartości robocze. Przykładowo, podczas testu rezystancji izolacji przy użyciu napięcia 500V, nieodpowiednio zabezpieczone źródła światła mogą ulec uszkodzeniu, co wiąże się z dodatkowymi kosztami naprawy lub wymiany. Podobnie, otwarcie łączników instalacyjnych może prowadzić do nieprzewidywalnych sytuacji, w których obwód może nie być całkowicie odłączony, co może spowodować powstanie niebezpiecznych warunków pracy. Zgodnie z zasadami BHP oraz wytycznymi dotyczącymi pomiarów elektrycznych, istotne jest, aby zawsze upewnić się, że obwód jest w pełni odłączony przed przystąpieniem do jakichkolwiek testów. Nieprzestrzeganie tych zasad może prowadzić do poważnych zagrożeń dla personelu oraz uszkodzeń sprzętu, co jest nieakceptowalne w profesjonalnych instalacjach elektrycznych.

Pytanie 40

Które z wymienionych zaleceń nie dotyczy wykonywania nowych instalacji elektrycznych w pomieszczeniach mieszkalnych?

A. Rozdzielić obwody oświetleniowe od gniazd wtyczkowych.
B. Gniazda wtyczkowe każdego pomieszczenia zasilać z osobnego obwodu.
C. Odbiorniki dużej mocy zasilać z wydzielonych obwodów.
D. Gniazda wtyczkowe w kuchni zasilać z osobnego obwodu.
W nowych instalacjach mieszkaniowych bardzo łatwo pomylić to, co jest realnym wymaganiem norm i dobrej praktyki, z tym co tylko brzmi „logicznie” lub „bezpieczniej”. Wiele osób myśli na przykład, że skoro podział na obwody jest korzystny, to najlepiej byłoby zrobić osobny obwód gniazd dla każdego pomieszczenia. Brzmi to na pierwszy rzut oka rozsądnie, ale z punktu widzenia projektowego i normowego nie ma takiego wymagania, a w typowym mieszkaniu byłoby to po prostu przewymiarowane i mało praktyczne. Normy instalacyjne (jak PN‑HD 60364) oraz zalecenia SEP mówią raczej o konieczności wydzielania pewnych grup odbiorników niż o sztywnym przypisaniu obwodu do każdego pokoju. Bardzo ważnym zaleceniem jest na przykład zasilanie gniazd wtyczkowych w kuchni z osobnego obwodu. Kuchnia jest jednym z najbardziej „prądopożernych” miejsc w mieszkaniu: czajnik, mikrofalówka, ekspres do kawy, zmywarka, lodówka, często piekarnik czy płyta – to wszystko generuje duże obciążenia. Jeden wspólny obwód z innymi pomieszczeniami szybko byłby przeciążony, co groziłoby częstym wybijaniem zabezpieczeń i przegrzewaniem przewodów. Podział obwodów oświetleniowych i gniazd wtyczkowych to też nie jest fanaberia, tylko standardowa zasada. Przy awarii obwodu gniazd (np. zwarcie w jakimś odbiorniku) chcemy, żeby oświetlenie dalej działało, bo zapewnia to bezpieczeństwo poruszania się i umożliwia spokojne zlokalizowanie i usunięcie usterki. Łączenie wszystkiego na jednym obwodzie z punktu widzenia użytkownika i serwisanta jest po prostu niewygodne i mniej bezpieczne. Osobną kwestią są odbiorniki dużej mocy. Płyta indukcyjna, piekarnik elektryczny, pralka, suszarka, klimatyzator – to są urządzenia, które według dobrych praktyk zasila się z wydzielonych obwodów, często z osobnymi zabezpieczeniami i odpowiednio dobranym przekrojem przewodów. Gdyby takie urządzenia „powiesić” na obwodzie ogólnym kilku pomieszczeń, bardzo łatwo o przeciążenie, spadki napięcia, a nawet przegrzanie żył. Typowy błąd myślowy polega na tym, że ktoś chce „maksymalnie rozbić” instalację na obwody, zakładając, że im więcej, tym lepiej i bezpieczniej. W praktyce projektant musi znaleźć rozsądny kompromis: wydzielić kuchnię, oświetlenie, obwody gniazd ogólnych, obwody dla dużych odbiorników, ale nie ma potrzeby tworzenia osobnego obwodu gniazd dla każdego pojedynczego pokoju. To właśnie to ostatnie zalecenie nie jest standardem dla nowych instalacji mieszkaniowych.