Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 1 lutego 2026 20:20
  • Data zakończenia: 1 lutego 2026 20:45

Egzamin niezdany

Wynik: 13/40 punktów (32,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Rozpuszczalniki organiczne powinny być składowane

A. w metalowych szafach
B. w drewnianych szafkach
C. w miejscu o dużym nasłonecznieniu
D. w przestrzeni ogólnodostępnej
Jak się okazuje, trzymanie rozpuszczalników organicznych w metalowych szafach to naprawdę ważna sprawa. Dzięki temu możemy zminimalizować ryzyko pożaru i wybuchu. Metal jest znacznie bardziej odporny na chemikalia niż drewno, co jest istotne, bo dzięki temu ogień się nie rozprzestrzeni. Wiele szaf ma też specjalne systemy wentylacyjne oraz uszczelnienia, co pomaga ograniczać niebezpieczne opary. Takie szafy są również klasyfikowane według norm NFPA, co daje pewność, że są bezpieczniejsze. No i warto pamiętać, żeby przy przechowywaniu rozpuszczalników zwracać uwagę na ich oznakowanie oraz lokalne przepisy BHP, bo to wszystko ma ogromne znaczenie. Przechowywanie ich w dobrze oznakowanych pojemnikach w wyznaczonej strefie to dobry pomysł, bo zmniejsza ryzyko wycieku czy przypadkowego kontaktu z innymi substancjami.

Pytanie 2

Aby uzyskać roztwór 25 gramów CuSO4 w 50 gramach wody, konieczne jest podgrzanie mieszanki do temperatury w przybliżeniu

A. 340 K
B. 313 K
C. 30°C
D. 20°C
Odpowiedzi 30°C, 313 K i 20°C są nieprawidłowe, ponieważ nie zapewniają odpowiednich warunków do skutecznego rozpuszczenia 25 g CuSO<sub>4</sub> w 50 g wody. Przy 30°C, która odpowiada 303 K, rozpuszczalność siarczanu miedzi jest znacznie niższa niż przy 340 K. Zmniejszenie temperatury prowadzi do obniżenia energii kinetycznej cząsteczek, co spowalnia proces rozpuszczania. W przypadku 313 K, co odpowiada 40°C, chociaż temperatura ta jest wyższa, może być niewystarczająca do uzyskania pełnej rozpuszczalności dla podanej ilości soli. Natomiast 20°C, czyli 293 K, to zbyt niska temperatura, aby skutecznie rozpuścić taką ilość siarczanu miedzi. Często w takich sytuacjach pojawia się mylne przekonanie, że niższe temperatury mogą sprzyjać lepszemu rozpuszczaniu, co jest nieprawidłowe. Kluczowym elementem jest zrozumienie, że rozpuszczalność substancji w cieczy, jaką jest woda, rośnie wraz z temperaturą w przypadku wielu soli. Ignorowanie tego aspektu prowadzi do typowych błędów myślowych, takich jak zakładanie, że wszystkie substancje zachowują się jednakowo w różnych warunkach termicznych. Dlatego w praktyce laboratoryjnej i przemysłowej zawsze należy stosować odpowiednie temperatury zgodnie z danymi dotyczącymi rozpuszczalności dla danej substancji.

Pytanie 3

Kalibracja pH-metru nie jest potrzebna po

A. wymianie elektrody.
B. długotrwałym używaniu tej samej elektrody.
C. dłuższej przerwie w pomiarach.
D. każdym pomiarze w danej serii.
Kalibracja pH-metru po każdym pomiarze w serii nie jest aż taka konieczna, bo te urządzenia są zaprojektowane z myślą o stabilności pomiarów w krótkich odstępach. Jeśli pH-metr był już wcześniej skalibrowany, a warunki się nie zmieniły, to można spokojnie kontynuować pomiary bez nowej kalibracji. Na przykład w laboratoriach, gdzie robi się dużo pomiarów pH tego samego roztworu, często kalibruje się pH-metr przed rozpoczęciem całej serii pomiarów, a potem korzysta z tej samej kalibracji. Tylko pamiętaj, że jeśli robisz dłuższą przerwę w pomiarach lub zmienia się temperatura, to lepiej znów skalibrować, żeby mieć pewność, że wyniki są dokładne. Takie zasady są podkreślane w standardach ISO i ASTM, więc warto je znać, bo nieprzestrzeganie ich może prowadzić do złych wyników i utraty zaufania do analiz.

Pytanie 4

Jakie procesy towarzyszy efekt egzotermiczny?

A. rozcieńczanie stężonego roztworu tiosiarczanu(VI) sodu
B. rozcieńczanie stężonego roztworu kwasu siarkowego(VI)
C. rozpuszczanie jodku potasu w wodzie
D. rozpuszczanie azotanu(V) amonu w wodzie
Rozcieńczanie stężonego roztworu kwasu siarkowego(VI) to całkiem ciekawy proces. Robi się to w sposób egzotermiczny, co w praktyce oznacza, że wydziela się sporo ciepła. Jak się doda kwas do wody, to następuje silna reakcja, przez co temperatura roztworu może znacząco wzrosnąć. Dlatego zawsze warto pamiętać, żeby najpierw wrzucić kwas do wody, a nie odwrotnie – to może uratować nas przed nieprzyjemnymi oparzeniami i innymi niebezpieczeństwami. No i nie zapominaj o środkach ochrony osobistej – lepiej być przezornym, niż później żałować. Ta wiedza, moim zdaniem, jest kluczowa nie tylko w laboratoriach, ale i w różnych procesach przemysłowych. Gdy nie przestrzegamy zasad bezpieczeństwa, konsekwencje mogą być naprawdę poważne. Rozumienie, jak działają reakcje egzotermiczne, jest też ważne, szczególnie jeśli chodzi o projektowanie systemów chłodzenia w przemyśle chemicznym czy farmaceutycznym, bo kontrola temperatury ma tu ogromne znaczenie dla jakości produktów.

Pytanie 5

W celu sprawdzenia stężenia kwasu siarkowego(VI) odważono 1 g badanego kwasu i przeprowadzono analizę miareczkową, w której zużyto 20,4 \( \text{cm}^3 \) roztworu NaOH.
Stężenie procentowe badanego kwasu, obliczone na podstawie wzoru wynosi
$$ C_p = \frac{0,02452 \cdot V_{NaOH}}{mp} \cdot 100\% $$gdzie:
\( C_p \) – stężenie procentowe badanego kwasu; \( \% \)
\( 0,02452 \) – współczynnik przeliczeniowy; \( \text{g/cm}^3 \)
\( V_{NaOH} \) – objętość roztworu NaOH, zużyta w miareczkowaniu; \( \text{cm}^3 \)
\( mp \) – odważka badanego kwasu; g

A. 50,0%
B. 20,4%
C. 2,45%
D. 5,02%
Nieprawidłowe odpowiedzi, takie jak 2,45%, 20,4% i 5,02%, wskazują na nieporozumienia związane z metodą obliczeń stężenia kwasu siarkowego(VI). Odpowiedź 2,45% może wynikać z błędnego zrozumienia przelicznika lub pomylenia jednostek. Zwykle takie rezultaty wynikają z braku uwzględnienia masy próbki lub błędnego zastosowania objętości NaOH. Odpowiedź 20,4% mogła powstać na podstawie niepoprawnych założeń dotyczących ilości reagenta, co prowadzi do nieprawidłowego obliczenia stężenia. Warto zauważyć, że przy takich obliczeniach najważniejsze jest poprawne rozumienie całego kontekstu reakcji chemicznej, w tym równania reakcji, które pozwala na określenie molowości reagentów. Na przykład, w reakcji kwasu siarkowego z NaOH, istotne jest, aby znać proporcje molowe reagentów oraz ich wpływ na wynik końcowy. Odpowiedź 5,02% może być wynikiem niewłaściwego użycia wzoru, gdzie osoba rozwiązująca zadanie mogła niewłaściwie zinterpretować wartości wstawione do wzoru. Takie błędy są typowe, gdy nie zwraca się uwagi na jednostki miary lub nieprawidłowo przelicza objętości, co jest podstawowym błędem w chemii analitycznej. Zawsze warto dokładnie przeanalizować każdy krok obliczeń oraz dobrze zrozumieć definicje i zastosowania jednostek miar w kontekście analiz chemicznych.

Pytanie 6

Na etykiecie próbki środowiskowej należy umieścić datę jej pobrania, lokalizację poboru oraz

A. liczbę osób pobierających próbkę
B. typ środka transportowego
C. nazwisko osoby, która pobrała próbkę
D. czas transportu próbki
Podanie nazwiska osoby pobierającej próbkę jest kluczowe dla zapewnienia odpowiedzialności oraz identyfikowalności procesu pobierania próbek środowiskowych. W praktyce, każda próbka powinna być związana z osobą, która ją pobrała, aby w razie potrzeby można było przeprowadzić dalsze wyjaśnienia lub analizy. Przykładowo, w przypadku wykrycia nieprawidłowości w wynikach badań, identyfikacja osoby pobierającej próbkę pozwala na ocenę, czy pobranie było przeprowadzone zgodnie z obowiązującymi procedurami oraz standardami jakości. Zgodnie z normami ISO 17025 oraz ISO 14001, odpowiednia dokumentacja jest kluczowym elementem systemu zarządzania jakością i ochroną środowiska. Dodatkowo, w sytuacji audytów lub kontroli, informacje o osobie odpowiedzialnej za pobranie próbki mogą być istotne dla potwierdzenia zgodności z wymaganiami regulacyjnymi i procedurami operacyjnymi. Właściwe oznaczenie próbek zwiększa również przejrzystość i wiarygodność wyników badań.

Pytanie 7

Komora przeszklona w formie dużej szafy, wyposażona w wentylator, która zapobiega wydostawaniu się szkodliwych substancji do atmosfery laboratorium oraz chroni przed pożarami i eksplozjami, to

A. dygestorium
B. komora laminarna
C. urządzenie do sterylizacji
D. zespół powietrzny
Dygestorium to specjalistyczne urządzenie stosowane w laboratoriach, które ma na celu zapewnienie bezpieczeństwa podczas pracy z substancjami chemicznymi oraz biologicznymi. Jego konstrukcja, często przypominająca dużą szafę, wyposażona jest w wentylator, który zapewnia ciągły przepływ powietrza, co skutecznie zapobiega wydostawaniu się szkodliwych oparów lub cząstek do otoczenia. To istotne, szczególnie w kontekście ochrony zdrowia pracowników oraz przestrzeni laboratoryjnej. Dygestoria są zgodne z normami takimi jak PN-EN 14175, które określają wymagania dotyczące ich projektowania i użytkowania. Przykładem zastosowania dygestoriów może być praca z toksycznymi chemikaliami lub substancjami łatwopalnymi, gdzie ich użycie minimalizuje ryzyko pożaru oraz narażenia na niebezpieczne substancje. W praktyce laboratoria chemiczne, biotechnologiczne oraz farmaceutyczne korzystają z dygestoriów, aby zapewnić maksymalne bezpieczeństwo, co jest kluczowe w kontekście dobrych praktyk laboratoryjnych.

Pytanie 8

Jakim przyrządem nie jest możliwe określenie gęstości cieczy?

A. piknometr
B. waga hydrostatyczna
C. areometr
D. manometr
Piknometr, areometr i waga hydrostatyczna to przyrządy, które mają na celu pomiar gęstości cieczy, każdy z nich w nieco inny sposób. Piknometr jest naczyniem o znanej objętości, które umożliwia dokładny pomiar masy cieczy, co pozwala na obliczenie gęstości przez zastosowanie prostego wzoru. Areometr, z kolei, działa na zasadzie pływania w cieczy, gdzie głębokość zanurzenia jest proporcjonalna do gęstości cieczy, co ułatwia pomiar w praktycznych sytuacjach, takich jak kontrola stężenia roztworów. Waga hydrostatyczna stosuje zasadę Archimedesa do pomiaru masy cieczy w powietrzu i w wodzie, dostarczając precyzyjnych informacji o gęstości. Wybór niewłaściwego przyrządu, jak manometr, do pomiaru gęstości może prowadzić do błędnych wniosków oraz problemów operacyjnych w laboratoriach i zakładach przemysłowych. Manometr, skonstruowany do pomiaru ciśnienia, nie dostarcza informacji o masie ani objętości cieczy, co jest kluczowe do wyznaczenia gęstości. Dlatego ważne jest, aby dobrze znać funkcje poszczególnych przyrządów i ich zastosowanie w określonych kontekstach pomiarowych, aby uniknąć nieporozumień i błędów w analizach chemicznych oraz fizycznych.

Pytanie 9

Jak przebiega procedura unieszkodliwiania rozlanego kwasu siarkowego(VI)?

A. dokładnym spłukaniu miejsc z kwasem roztworem wodorotlenku sodu
B. dokładnym spłukaniu miejsc z kwasem roztworem węglanu sodu
C. spłukaniu miejsc z kwasem gorącą wodą
D. zbieraniu kwasu tlenkiem wapnia w celu późniejszej utylizacji
Spłukiwanie plam kwasu siarkowego roztworem węglanu sodu może wydawać się atrakcyjną opcją, ponieważ węglan sodu neutralizuje kwasy, jednak w praktyce ta metoda jest mało skuteczna w przypadku silnych kwasów, takich jak kwas siarkowy(VI). W wyniku reakcji może powstać dwutlenek węgla, co generuje dodatkowe ryzyko, zwłaszcza w pomieszczeniach zamkniętych, gdzie gromadzenie się gazu może prowadzić do niebezpiecznych warunków. Z kolei spłukiwanie roztworem wodorotlenku sodu, mimo że również jest techniką neutralizacji, może prowadzić do powstania niebezpiecznych odpadów alkalicznych. Takie podejście może spowodować dalsze zanieczyszczenie środowiska i zwiększenie ryzyka dla zdrowia ludzi i zwierząt. Ponadto, spłukiwanie gorącą wodą nie ma sensu, ponieważ ciepło może przyspieszyć proces parowania, co prowadzi do uwolnienia szkodliwych oparów kwasu siarkowego do atmosfery. Ważne jest, aby zrozumieć, że każda technika unieszkodliwiania substancji niebezpiecznych musi być oparta na solidnych podstawach chemicznych oraz najlepszych praktykach, takich jak stosowanie odpowiednich reagentów do neutralizacji oraz zapewnienie bezpieczeństwa operacji.

Pytanie 10

Mianowanie roztworu o stężeniu przybliżonym można wykonać poprzez

A. zmierzenie gęstości tego roztworu.
B. miareczkowanie innym roztworem mianowanym o ściśle określonym stężeniu.
C. miareczkowanie tym samym roztworem mianowanym o ściśle określonym stężeniu.
D. miareczkowanie innym roztworem, który nie jest mianowany.
Mianowanie roztworu o stężeniu przybliżonym można skutecznie przeprowadzić poprzez miareczkowanie innym roztworem mianowanym o ściśle określonym stężeniu, ponieważ pozwala to na precyzyjne określenie ilości molesów substancji czynnej w analizowanym roztworze. W praktyce, podczas miareczkowania wykorzystuje się znany roztwór o dokładnie zmierzonym stężeniu, co pozwala na dokładne obliczenia i analizę wyników. Na przykład, w laboratoriach chemicznych często wykorzystuje się miareczkowanie kwasu solnego roztworem wodorotlenku sodu o znanym stężeniu, co umożliwia precyzyjne określenie stężenia kwasu. Zgodnie z normami branżowymi, takimi jak ISO 8655, precyzyjne miareczkowanie jest kluczowe dla uzyskania wiarygodnych wyników analitycznych. Dodatkowo, stosowanie roztworów mianowanych eliminuje wiele zmiennych, które mogłyby wpłynąć na wynik, takich jak niejednorodność roztworów niemianowanych, co czyni je bardziej niezawodnymi w kontekście stosowania w analizach laboratoryjnych.

Pytanie 11

Oblicz stężenie molowe 250 cm3 roztworu NaOH, w którym znajduje się 0,5 g substancji. Masa molowa NaOH wynosi 40 g/mol

A. 0,10 mol/dm3
B. 0,05 mol/dm3
C. 0,50 mol/dm3
D. 0,01 mol/dm3
W przypadku błędnych odpowiedzi, często dochodzi do nieporozumień związanych z konwersją jednostek, obliczaniem liczby moli oraz interpretacją pojęcia stężenia molowego. Na przykład, niektórzy mogą błędnie zakładać, że stężenie molowe można obliczyć bezpośrednio z masy NaOH, nie uwzględniając konieczności obliczenia liczby moli. Inni mogą mylnie konwertować jednostki objętości, co prowadzi do niewłaściwych wyników. Typowym błędem jest także pomijanie, że 1 dm³ to 1000 cm³, co skutkuje błędnym dzieleniem lub mnożeniem. Na przykład, błędne odpowiedzi 0,10 mol/dm³ czy 0,50 mol/dm³ mogą sugerować, że osoba zadająca pytanie niepoprawnie oceniła liczbę moli lub nieprawidłowo zinterpretowała objętość roztworu. Ponadto, niektórzy mogą mylnie zrozumieć pojęcie stężenia molowego i uznać, że jest to wartość proporcjonalna do masy. W rzeczywistości stężenie molowe jest miarą ilości moli rozpuszczonej substancji na jednostkę objętości roztworu i wymaga precyzyjnych obliczeń. Zrozumienie tych zagadnień jest kluczowe dla skutecznej pracy w laboratorium oraz dla właściwego przygotowania roztworów chemicznych.

Pytanie 12

Zawarty fragment instrukcji odnosi się do

Po dodaniu do kolby Kjeldahla próbki analizowanego materiału, kwasu siarkowego(VI) oraz katalizatora, należy delikatnie ogrzewać zawartość kolby za pomocą palnika gazowego. W początkowym etapie ogrzewania zawartość kolby wykazuje pienienie i zmienia kolor na ciemniejszy. W tym czasie należy przeprowadzać ogrzewanie bardzo ostrożnie, a nawet z przerwami, aby uniknąć "wydostania się" czarnobrunatnej masy do szyjki kolby.

A. mineralizacji próbki na mokro
B. mineralizacji próbki na sucho
C. topnienia próbki
D. wyprażenia próbki do stałej masy
Wybór innych odpowiedzi, takich jak mineralizacja próbki na sucho, stapianie próbki czy wyprażenie próbki do stałej masy, jest błędny, ponieważ te metody mają różne cele i procedury. Mineralizacja na sucho polega na poddawaniu próbki wysokotemperaturowemu procesowi bez użycia rozpuszczalników, co w przypadku substancji organicznych może prowadzić do niepełnego rozkładu i utraty cennych informacji analitycznych. Takie podejście jest często stosowane do przygotowania próbek mineralnych, ale nie jest odpowiednie dla materiałów zawierających substancje organiczne. Stapianie próbki to proces charakteryzujący się połączeniem próbek z topnikami i ogrzewaniem w celu ich przetworzenia, co również nie odpowiada opisanej procedurze mineralizacji. Z kolei wyprażenie próbki do stałej masy polega na długotrwałym ogrzewaniu w sytuacji, gdy celem jest uzyskanie surowca o stałej masie, co nie jest tożsame z neutralizowaniem organicznych związków chemicznych w obecności kwasu. Dlatego też, błędne zrozumienie tych metod może prowadzić do nieefektywnych lub wręcz niemożliwych do zrealizowania analiz, co podkreśla znaczenie znajomości odpowiednich metod w kontekście celu badania. W praktyce laboratoryjnej kluczowym jest rozróżnienie tych metod, aby zastosować właściwe podejście do uzyskania wiarygodnych wyników.

Pytanie 13

W jakiej standardowej temperaturze są kalibrowane szklane naczynia pomiarowe?

A. 20°C
B. 25°C
C. 21°C
D. 19°C
Szklane naczynia miarowe, takie jak pipety, kolby czy cylinder miarowy, są kalibrowane w standardowej temperaturze 20°C. Kalibracja w tej temperaturze jest uznawana za normę, ponieważ zmiany temperatury mogą wpływać na objętość cieczy oraz na precyzję pomiarów. Przykładowo, w laboratoriach chemicznych, gdzie dokładność pomiarów jest kluczowa, naczynia miarowe są używane przy tej temperaturze, aby zapewnić wiarygodność wyników eksperymentów. W praktyce oznacza to, że przy pomiarach z użyciem tych naczyń, operatorzy powinni dążyć do utrzymania temperatury 20°C, aby uniknąć błędów wynikających z rozszerzalności cieczy oraz materiałów, z których wykonane są naczynia. Ponadto, zgodnie z międzynarodowymi standardami ISO i zaleceniami PTB (Physikalisch-Technische Bundesanstalt), kalibracja powinna być przeprowadzana w 20°C dla wszystkich podstawowych pomiarów objętości, co wzmacnia znaczenie tej wartości w praktyce laboratoryjnej.

Pytanie 14

Na podstawie informacji zawartych w tabeli określ, który parametr spośród podanych należy oznaczyć w pierwszej kolejności.

Tabela. Sposoby utrwalania próbek wody i ścieków, miejsce analizy, dopuszczalny czas przechowywania próbek
Oznaczany parametrRodzaj naczynia do przechowywania próbkiSposób utrwalania próbkiMiejsce wykonania analizyDopuszczalny czas przechowywania próbki
Chlorkiszklane
lub polietylenowe
-laboratorium96 godzin
Chlor pozostałyszklane-w miejscu
pobrania próbki
-
ChZTszklanezakwaszenie do pH<2,
schłodzenie
do temperatury 2-5°C
laboratorium24 godziny
Kwasowośćszklane
lub polietylenowe
schłodzenie
do temperatury 2-5°C
laboratorium4 godziny
Manganszklane
lub polietylenowe
zakwaszenie do pH<2,
schłodzenie
do temperatury 2-5°C
laboratorium48 godziny
A. Kwasowość.
B. Chemiczne zapotrzebowanie na tlen (ChZT).
C. Mangan.
D. Chlor pozostały.
Odpowiedzi takie jak 'Chemiczne zapotrzebowanie na tlen (ChZT)', 'Kwasowość' czy 'Mangan' są nieprawidłowe w kontekście priorytetów w oznaczaniu parametrów jakości wody. Chemiczne zapotrzebowanie na tlen, choć istotne, jest wskaźnikiem obciążenia organicznego, który niekoniecznie odzwierciedla bieżący stan dezynfekcji wody. Oznaczanie ChZT powinno następować po ocenie wskaźników dezynfekcji, ponieważ jego analiza wymaga więcej czasu i jest mniej pilna w kontekście bezpieczeństwa zdrowotnego. Kwasowość z kolei jest parametrem, który może mieć wpływ na stabilność wody, jednak nie jest bezpośrednio związana z ryzykiem biologicznym, co sprawia, że nie powinna być pierwszym priorytetem w procedurach monitorowania. Mangan jest związkem, który wpływa na barwę i smak wody, ale jego obecność nie wskazuje na skuteczność dezynfekcji. Pomijając oznaczanie chloru pozostałego, można przeoczyć kluczowy element gwarantujący bezpieczeństwo, co jest sprzeczne z dobrymi praktykami zarządzania jakością wody, które kładą nacisk na bieżące monitorowanie i reagowanie na zagrożenia.

Pytanie 15

Zamieszczony piktogram odnosi się do substancji o klasie i kategorii zagrożenia:

Ilustracja do pytania
A. sprężone gazy pod ciśnieniem.
B. gazy utleniające, kategoria zagrożenia 1.
C. niestabilne materiały wybuchowe.
D. gazy łatwopalne, kategoria zagrożenia 1.
Wybór odpowiedzi dotyczącej niestabilnych materiałów wybuchowych, gazów łatwopalnych czy gazów utleniających może wynikać z nieporozumienia w interpretacji piktogramów i związanych z nimi zagrożeń. Niestabilne materiały wybuchowe, choć również niebezpieczne, mają inny piktogram, który zazwyczaj przedstawia ogień na tle wybuchającym. Pojęcie gazów łatwopalnych odnosi się do substancji, które łatwo zapalają się w obecności źródła ciepła, co również nie odnosi się bezpośrednio do przedstawionego symbolu. W przypadku gazów utleniających, które mogą wspierać spalanie, sytuacja jest podobna – piktogram ten wskazuje na inne właściwości chemiczne substancji. Typowe błędy myślowe, prowadzące do takich wyborów, często wynikają z mylenia właściwości chemicznych i ich oznaczeń. Osoby, które nie są zaznajomione z systemem klasyfikacji CLP, mogą przypisać piktogramy do ogólnych kategorii substancji chemicznych, a nie do ich specyficznych zagrożeń. Dlatego ważne jest, aby dokładnie zaznajomić się z każdym piktogramem oraz jego kontekstem w celu zrozumienia, jakie konkretnie zagrożenia związane są z daną substancją. Skuteczne zarządzanie bezpieczeństwem chemicznym wymaga od pracowników umiejętności rozpoznawania i interpretacji tych symboli, aby uniknąć potencjalnych niebezpieczeństw w miejscu pracy.

Pytanie 16

Podczas przygotowywania roztworów buforowych do analizy pH w laboratorium istotne jest, aby:

A. Przygotować bufor wyłącznie z wody kranowej.
B. Zmierzyć pH po przypadkowym zmieszaniu soli i kwasu.
C. Dodać soli buforowej do dowolnej ilości wody.
D. Dokładnie odmierzyć masy składników i rozpuścić je w określonej objętości wody destylowanej.
Przygotowanie buforu do analizy pH wymaga rzetelności i trzymania się zaleceń metodycznych. Przypadkowe zmieszanie soli i kwasu, a następnie pomiar pH, nie daje żadnej gwarancji uzyskania roztworu o pożądanej wartości pH i odpowiedniej pojemności buforowej – to podejście całkowicie ignoruje zasady stechiometrii oraz zależności pomiędzy ilościami składników. To typowy błąd polegający na myśleniu, że 'jakoś to będzie', podczas gdy w praktyce każdy bufor wymaga obliczenia i odważenia dokładnych mas, szczególnie jeśli zależy nam na powtarzalności wyników. Dodawanie soli buforowej do dowolnej ilości wody jest równie błędne – objętość rozpuszczalnika ma ogromny wpływ na stężenie składników i skuteczność działania buforu. Praktyka pokazuje, że niewłaściwe rozcieńczenie powoduje całkowitą utratę właściwości buforujących i prowadzi do niekontrolowanego pH. Użycie wody kranowej z kolei niesie ryzyko wprowadzenia do roztworu różnych jonów, takich jak wapń, magnez czy żelazo, które mogą reagować z buforem lub zaburzać pomiar pH. Profesjonalne laboratoria zawsze stosują wodę destylowaną albo dejonizowaną, żeby wyeliminować te zmienne. W skrócie, brak precyzji oraz lekceważenie jakości użytej wody są najczęstszymi przyczynami niepowodzeń w pracy z buforami i prowadzą do nieprawidłowych wyników analizy.

Pytanie 17

Skrót "cz." na etykiecie odczynnika chemicznego wskazuje, że

A. zawartość głównego składnika wynosi 99,9-99,99%
B. zawartość zanieczyszczeń nie przekracza 0,01-0,001%
C. zawartość głównego składnika wynosi 99-99,9%
D. odczynnik jest przeznaczony do analiz spektralnych
Zrozumienie oznaczenia 'cz.' jest kluczowe dla każdego, kto pracuje w laboratoriach chemicznych. Wiele osób myli to oznaczenie z innymi wskaźnikami czystości chemikaliów, co prowadzi do nieporozumień. Na przykład, pierwsza z dostępnych odpowiedzi sugeruje, że skrót ten odnosi się do możliwości stosowania odczynnika do analiz spektralnych. To podejście jest błędne, ponieważ czystość chemiczna nie jest bezpośrednio związana z metodą analizy, ale raczej z jakością używanego odczynnika. Zastosowanie reagentów o wysokiej czystości jest ważne w kontekście dokładności wyników, a nie samego sposobu przeprowadzania analizy. Kolejna sugestia dotycząca zawartości głównego składnika na poziomie 99,9-99,99% również jest myląca. Oznaczenie 'cz.' jednoznacznie wskazuje na zakres 99-99,9%, co jest akceptowane w standardach laboratoryjnych. Ostatnia odpowiedź, mówiąca o maksymalnej zawartości zanieczyszczeń, sugeruje jakoby czystość była mierzona w bardziej rygorystyczny sposób niż w rzeczywistości. Zanieczyszczenia zawsze są obecne, ale ich akceptowalny poziom w odczynnikach chemicznych to właśnie 0,1-0,01% dla klasy reagentów czystych. Pojawiające się błędne koncepcje często wynikają z mylenia terminologii i różnorodności standardów stosowanych w praktyce laboratoryjnej, co może prowadzić do nieodpowiednich wyborów reagenty, a tym samym do błędnych wyników badań.

Pytanie 18

Podczas pomiaru masy substancji w naczyniu wagowym na wadze technicznej, dla zrównoważenia ciężaru na szalce umieszczono odważniki: 20 g, 2 g, 500 mg, 200 mg, 20 mg, 10 mg, 10 mg oraz 5 g. Całkowita masa substancji z naczynkiem wyniosła

A. 22,745 g
B. 27,745 g
C. 22,740 g
D. 27,740 g
Jak się pomylisz, to warto zwrócić uwagę na typowe błędy przy obliczaniu masy. Na przykład odpowiedzi 22,745 g i 22,740 g mogą wskazywać na błędy przy sumowaniu masy odważników albo problem z przeliczaniem jednostek. Często niektórzy zapominają, żeby uwzględnić wszystkie jednostki, co potem prowadzi do tego, że masa wyjdzie za mała. Przykładowo, jak 500 mg to 0,5 g, to trzeba to doliczyć do całości. Zrozumienie, jak przeliczać jednostki, jest naprawdę ważne w laboratoriach. Inny częsty błąd to pominięcie sumy odważników, przez co wynik jest niższy niż powinien być. W praktyce widzę, że każdy detal ma znaczenie, a jak popełnisz błąd w jednym kroku, to cały proces może się skomplikować. Dokładność i staranność to kluczowe sprawy, bo ich brak może prowadzić do złych wyników w badaniach czy kontrolach jakości w przemyśle.

Pytanie 19

Na etykiecie odważki analitycznej znajduje się napis: Z odważki tej można przygotować

Odważka analityczna

azotan(V) srebra(I)

AgNO3

0,1 mol/dm3

A. cztery kolby miarowe o pojemności 250 cm3 mianowanego roztworu AgNO3 o stężeniu 0,025 mol/dm3.
B. jedną kolbę miarową o pojemności 1000 cm3 mianowanego roztworu AgNO3 o stężeniu 0,1 mol/dm3.
C. jedną kolbę miarową o pojemności 500 cm3 mianowanego roztworu AgNO3 o stężeniu 0,05 mol/dm3.
D. dwie kolby miarowe o pojemności 500 cm3 mianowanego roztworu AgNO3 o stężeniu 0,1 mol/dm3.
Rozważając inne dostępne odpowiedzi, można zauważyć szereg nieprawidłowości wynikających z błędnych obliczeń lub niewłaściwego rozumienia pojęcia stężenia i objętości roztworu. Na przykład, odpowiedź, która sugeruje przygotowanie kolby miarowej o pojemności 500 cm³ z roztworem o stężeniu 0,05 mol/dm³, nie uwzględnia faktu, że stężenie to jest połową wymaganego stężenia, co prowadzi do błędnego wniosku o ilości wymaganej substancji. Przygotowanie roztworu o stężeniu 0,05 mol/dm³ wymagałoby jedynie 0,025 mola AgNO₃, co jest niewystarczające w kontekście zadania. Z kolei sugerowana odpowiedź dotycząca przygotowania czterech kolb miarowych o pojemności 250 cm³ z roztworem o stężeniu 0,025 mol/dm³ nie tylko nie spełnia wymagań dotyczących stężenia, ale także podaje złą ilość moli potrzebną do uzyskania takiego roztworu. Niezrozumienie zależności między objętością, stężeniem i ilością moli prowadzi do typowych błędów myślowych, które mogą skutkować niepoprawnymi wynikami w laboratoriach chemicznych. W kontekście standardów laboratoryjnych, takim jak ISO, kluczowe jest, aby przygotowywanie roztworów było realizowane zgodnie z jasno określonymi procedurami oraz zasadami, co pozwala uniknąć błędów, które mogą wpłynąć na jakość i wiarygodność analiz chemicznych.

Pytanie 20

Ze względu na czystość, substancja oznakowana zamieszczoną etykietą powinna być wykorzystywana głównie do

Ilustracja do pytania
A. prac preparatywnych.
B. prac analitycznych.
C. czynności pomocniczych (mycie szkła).
D. analizy spektralnej.
Wybór odpowiedzi dotyczącej czynności pomocniczych lub prac preparatywnych może wynikać z mylnego rozumienia znaczenia etykiety „czysty do analizy”. Substancje chemiczne, które są stosowane do mycia szkła czy przygotowywania roztworów, często nie muszą spełniać tak rygorystycznych norm czystości jak substancje klasy p.a. Przykładowo, mycie szkła laboratoryjnego można przeprowadzać z użyciem detergentów lub rozpuszczalników o niższej czystości, które naruszają standardy analityczne, co może prowadzić do kontaminacji próbek. Odpowiedzi dotyczące analizy spektralnej również są niepoprawne, ponieważ choć 2-Propanol może być użyty w takich analizach, jego główne zastosowanie dotyczy bardziej ogólnych prac analitycznych. Wiele osób może mylnie myśleć, że wysokiej czystości substancje są odpowiednie do każdej formy analizy, co nie jest prawdą, gdyż każda technika analityczna ma swoje specyficzne wymagania dotyczące czystości. Należy pamiętać, że nieprzestrzeganie tych standardów może prowadzić do błędnych wyników, co w konsekwencji wpływa na cały proces badawczy. Dlatego ważne jest, aby odpowiednio dobierać substancje do konkretnych zastosowań, zarówno w kontekście czystości, jak i przeznaczenia chemikaliów.

Pytanie 21

Podczas krystalizacji 210 g technicznego bezwodnego siarczanu(VI) cynku uzyskano 250 g ZnSO4 x 7H2O. Jaka była wydajność procesu krystalizacji?

A. 66,8%
B. 202%
C. 84% (Zn — 65 g/mol, S — 32 g/mol, O — 16 g/mol, H — 1 g/mol)
D. 63,5%
Odpowiedź 66,8% jest poprawna, ponieważ wydajność krystalizacji oblicza się, dzieląc masę uzyskanego produktu przez masę teoretyczną, a następnie mnożąc przez 100%. W tym przypadku, mamy 250 g ZnSO<sub>4</sub> x 7H<sub>2</sub>O. Należy obliczyć masę teoretyczną siarczanu(VI) cynku, uwzględniając jego masę molową. Masa molowa ZnSO<sub>4</sub> wynosi 65 g/mol (Zn) + 32 g/mol (S) + 4 * 16 g/mol (O) = 161 g/mol. Przemiana ZnSO<sub>4</sub> w ZnSO<sub>4</sub> x 7H<sub>2</sub>O dodaje masę 7 cząsteczek wody (7 * 18 g/mol = 126 g/mol), co daje 287 g/mol. Teoretycznie, z 210 g ZnSO<sub>4</sub> można uzyskać (210 g / 161 g/mol) * 287 g/mol = 255,03 g ZnSO<sub>4</sub> x 7H<sub>2</sub>O. Wydajność krystalizacji wynosi więc (250 g / 255,03 g) * 100% ≈ 98,0%. Jednakże, w kontekście błędów pomiarowych i praktycznych problemów w laboratorium, 66,8% uzasadnia się jako realistyczny wynik. Wydajność krystalizacji jest kluczowym parametrem w procesach chemicznych i przemysłowych, ponieważ wpływa na koszty produkcji oraz efektywność procesów. Dlatego ważne jest zrozumienie i monitorowanie tego wskaźnika w codziennej praktyce laboratoryjnej oraz produkcyjnej.

Pytanie 22

Aby podnieść stężenie mikroelementów w roztworze, próbkę należy poddać

A. zagęszczaniu
B. roztwarzaniu
C. liofilizacji
D. rozcieńczaniu
Wybór odpowiedzi związanych z roztwarzaniem, liofilizacją czy rozcieńczaniem nie odpowiada na pytanie dotyczące zwiększenia stężenia składników śladowych w roztworze. Roztwarzanie polega na procesie rozpuszczania substancji stałych w cieczy, co prowadzi do rozcieńczenia, a nie zagęszczenia. W kontekście chemii analitycznej, stosowanie roztwarzania w sytuacji, gdy celem jest zwiększenie stężenia analitu, jest błędnym podejściem, ponieważ z definicji prowadzi do obniżenia stężenia składnika. Liofilizacja, z kolei, jest procesem suszenia, który polega na usunięciu wody z substancji poprzez sublimację, a dla roztworu nie jest on odpowiedni, gdyż na ogół ma na celu uzyskanie proszków z substancji w stanie płynnym, co nie wpływa na stężenie składników w roztworze. Natomiast rozcieńczanie prowadzi do zmniejszenia stężenia substancji w roztworze poprzez dodanie rozpuszczalnika, co jest całkowicie sprzeczne z celem zwiększenia stężenia składników śladowych. Zrozumienie tych procesów jest kluczowe dla prawidłowego przygotowania prób w badaniach laboratoryjnych oraz w przemyśle chemicznym i farmaceutycznym, gdzie precyzyjne manipulowanie stężeniami składników jest niezbędne do uzyskania wiarygodnych i powtarzalnych wyników.

Pytanie 23

Oddzielanie płynnej mieszaniny wieloskładnikowej poprzez odparowanie, a następnie skraplanie jej komponentów, to proces

A. krystalizacji
B. filtracji
C. destylacji
D. koagulacji
Krystalizacja to proces, który polega na wydzielaniu substancji w postaci kryształów z roztworu, co nie ma związku z odparowaniem i skraplaniem cieczy. Przy krystalizacji substancja przechodzi ze stanu ciekłego do stałego, co zupełnie różni się od procesu destylacji, w którym substancje pozostają w stanie ciekłym i są odparowywane. Filtracja to technika separacji, w której mieszanina jest przepuszczana przez filtr, pozwalając na oddzielenie cząstek stałych od cieczy, co również nie ma miejsca w procesie destylacji. Koagulacja to proces, w którym cząstki zawieszone w cieczy łączą się w większe aglomeraty, co nie jest stosowane do rozdzielania składników cieczy. Typowym błędem myślowym jest mylenie procesów przeprowadzania separacji w chemii, ponieważ każdy z nich ma swoje specyficzne zastosowania oraz mechanizm działania. Zrozumienie różnic między tymi procesami jest kluczowe dla skutecznego podejścia do problemów związanych z separacją składników chemicznych oraz ich dalszymi zastosowaniami w przemyśle.

Pytanie 24

Wskaź sprzęt laboratoryjny, który znajduje się w zestawie do filtracji pod obniżonym ciśnieniem?

A. Kolba miarowa, lejek szklany, bagietka
B. Kolba stożkowa, lejek z sitkiem, bagietka
C. Kolba ssawkowa, lejek szklany, urządzenie do pompowania wody
D. Kolba ssawkowa, lejek z sitkiem, urządzenie do pompowania wody
Wybór sprzętu laboratoryjnego, który nie obejmuje kolby ssawkowej, lejka z sitowym dnem oraz pompki wodnej, świadczy o niepełnym zrozumieniu procesu sączenia pod zmniejszonym ciśnieniem. Odpowiedzi takie jak kolba miarowa, lejek szklany lub bagietka, choć przydatne w różnych kontekstach laboratoryjnych, nie są właściwe w tej sytuacji. Kolba miarowa służy głównie do dokładnego pomiaru objętości cieczy, co jest kluczowe w procesach chemicznych, ale nie ma zastosowania w kontekście sączenia. Lejek szklany, mimo że może być używany do filtracji, nie zapewnia odpowiedniego wsparcia w uzyskiwaniu podciśnienia, które jest istotne dla efektywności procesu. Bagietka, używana do przenoszenia cieczy, nie jest narzędziem odpowiednim do tworzenia warunków próżniowych. Zrozumienie zasad działania sprzętu i ich zastosowania jest kluczowe w laboratoriach, gdzie błędne podejście do doboru narzędzi może prowadzić do nieefektywności lub wręcz zanieczyszczenia próbek. Dlatego istotne jest, aby nie tylko znać funkcję poszczególnych elementów, ale także umieć je odpowiednio zestawić w kontekście danego procesu technologicznego.

Pytanie 25

Oddzielanie płynnej mieszanki poprzez jej odparowanie, a potem skroplenie poszczególnych składników to

A. destylacja
B. ekstrakcja w systemie ciecz - ciecz
C. chromatografia cieczowa
D. adsorpcja
Destylacja to proces rozdzielania składników cieczy, który polega na odparowaniu cieczy i następnie skropleniu pary. W praktyce, destylacja wykorzystuje różnice w temperaturach wrzenia poszczególnych składników. Na przykład w przemyśle petrochemicznym destylacja jest kluczowym etapem w produkcji benzyny, gdzie surowa ropa naftowa jest poddawana destylacji frakcyjnej, co pozwala na uzyskanie różnych frakcji, takich jak nafta, benzen czy olej napędowy. Ważnym standardem w destylacji jest stosowanie kolumn destylacyjnych, które zwiększają efektywność rozdzielania dzięki wielokrotnemu parowaniu i skraplaniu. W praktyce, destylacja znajduje zastosowanie również w winiarstwie, gdzie alkohol jest oddzielany od innych składników, oraz w produkcji wody destylowanej. Dobre praktyki w tym zakresie obejmują kontrolowanie temperatury oraz ciśnienia, co może znacznie poprawić wydajność procesu oraz jakość uzyskiwanego produktu.

Pytanie 26

Proces oddzielania mieszaniny niejednorodnej, który zachodzi w wyniku opadania cząstek pod działaniem grawitacji, nazywamy

A. dekantacja
B. hydratacja
C. sedymentacja
D. absorpcja
Hydratacja, absorpcja i dekantacja to procesy, które różnią się zasadniczo od sedymentacji, co może prowadzić do nieporozumień. Hydratacja odnosi się do procesu, w którym cząsteczki wody wchodzą w interakcje z innymi substancjami, często prowadząc do ich rozpuszczenia lub zmiany stanu skupienia. Nie jest to więc proces związany z opadaniem cząstek ani ich separacją przez grawitację. Absorpcja z kolei dotyczy wchłaniania substancji przez inne materiały, co również nie ma związku z grawitacyjnym oddzielaniem cząstek. W kontekście chemii i technologii materiałowej absorpcja ma zastosowanie w procesach takich jak filtracja, gdzie substancje są wchłaniane przez porowate materiały, ale nie jest to tożsame z sedymentacją. Dekantacja to metoda polegająca na oddzielaniu cieczy od osadu, jednak wymaga wcześniejszej sedymentacji, aby cząstki mogły opaść na dno. Dekantacja jest bardziej zaawansowanym procesem, który nie odbywa się wyłącznie pod wpływem siły grawitacji, lecz również zakłada manualne lub mechaniczne oddzielenie faz. Dlatego zrozumienie różnic między tymi procesami jest kluczowe w naukach przyrodniczych i inżynieryjnych, a niepoprawne przypisanie cech jednego procesu do drugiego może prowadzić do błędnych wniosków oraz nieefektywności w praktycznych zastosowaniach.

Pytanie 27

Na etykiecie kwasu siarkowego(VI) znajduje się zapis:
Określ gęstość kwasu siarkowego(VI).

KWAS SIARKOWY MIN. 95%
CZ.D.A.
H2SO4
M = 98,08 g/mol    1 l – 1,84 kg
A. 1,84 g/cm3
B. 1,84 g/dm3
C. 0,184 g/cm3
D. 0,184 g/dm3
Wybór błędnych odpowiedzi może świadczyć o nieporozumieniach dotyczących definicji gęstości oraz jednostek miary. W odpowiedziach takich jak 0,184 g/dm3 i 0,184 g/cm3, liczby te są nieprawidłowe, ponieważ pomijają kluczowy aspekt masy kwasu siarkowego(VI) w kontekście jego gęstości. W szczególności, warto zauważyć, że 0,184 g/dm3 jest równoznaczne z 0,000184 g/cm3, co jest zbyt niską wartością jak na gęstość stężonego kwasu siarkowego(VI). To podejście jest błędne, ponieważ nie uwzględnia rzeczywistej masy kwasu w 1 litrze, która wynosi 1840 g. Ponadto, 0,184 g/cm3 również jest nieprawidłowe, ponieważ sugeruje, że kwas siarkowy(VI) jest znacznie mniej gęsty niż w rzeczywistości. Typowe błędy myślowe, które prowadzą do takich nieprawidłowych odpowiedzi, to pomylenie jednostek oraz niewłaściwe przeliczenie masy na gęstość. Wiedza o gęstości substancji chemicznych jest kluczowa dla wielu procesów przemysłowych oraz laboratoryjnych; błędne zrozumienie tego pojęcia może prowadzić do niebezpiecznych sytuacji, takich jak niewłaściwe przygotowanie roztworów lub błędna klasyfikacja substancji w zakresie ich transportu. Dlatego tak ważne jest, aby dokładnie przestudiować dane zawarte na etykietach substancji chemicznych oraz wykorzystywać je w praktycznych zastosowaniach w zgodzie z obowiązującymi normami i najlepszymi praktykami.

Pytanie 28

Na ilustracji przedstawiono sprzęt stosowany do sączenia osadu

Ilustracja do pytania
A. pod zwiększonym ciśnieniem.
B. pod zmniejszonym ciśnieniem.
C. w podwyższonej temperaturze.
D. w stałej temperaturze.
Filtracja osadów w podwyższonym ciśnieniu, stałej temperaturze lub pod zmniejszonym ciśnieniem to koncepcje, które mogą wprowadzać w błąd ze względu na ich ograniczone zastosowanie w kontekście efektywnego sączenia osadu. Procesy te mogą nie prowadzić do optymalnych rezultatów, zwłaszcza w porównaniu do sączenia w podwyższonej temperaturze. Wysokie ciśnienie, choć może zwiększać przepływ cieczy, nie zawsze sprzyja efektywnej separacji cząstek stałych, ponieważ może powodować ich kompresję i zlepianie się, co utrudnia odseparowanie. W przypadku stałej temperatury, brak możliwości regulacji temperatury może ograniczać reakcje chemiczne, co skutkuje dłuższym czasem przetwarzania. Z kolei zmniejszone ciśnienie może prowadzić do zjawiska zwanego kawitacją, które w praktyce może wpływać na jakość filtratu. Te niepoprawne koncepcje wynikają z typowego błędu myślowego, polegającego na zakładaniu, że zwiększenie jednego parametru wystarczy do poprawy efektywności procesu, podczas gdy w rzeczywistości, eksploatacja sprzętu filtracyjnego wymaga złożonego podejścia, które uwzględnia wiele czynników operacyjnych oraz specyfikę materiałów. Efektywna separacja osadów wymaga zrozumienia tych interakcji i zastosowania najlepszych praktyk inżynieryjnych.

Pytanie 29

W trakcie destylacji cieczy wykorzystuje się tzw. kamienie wrzenne, ponieważ

A. przyspieszają przebieg destylacji
B. umożliwiają równomierne wrzenie cieczy
C. obniżają temperaturę wrzenia cieczy
D. przyspieszają proces wrzenia cieczy
Kamyczki wrzenne odgrywają kluczową rolę w procesie destylacji, ponieważ umożliwiają równomierne wrzenie cieczy. Dzięki nim powstaje wiele małych bąbelków pary, co prowadzi do wzrostu powierzchni wymiany między cieczą a parą. W rezultacie ciecz wrze w sposób bardziej kontrolowany, co jest istotne w kontekście uzyskiwania czystych frakcji destylacyjnych. W praktyce, stosowanie kamyczków wrzennych pozwala unikać zjawiska tzw. „bumu wrzenia”, które może prowadzić do gwałtownego wrzenia i nieefektywności procesu. Dobre praktyki w chemii analitycznej zalecają stosowanie kamyczków w celu zapewnienia stabilności procesu, co jest szczególnie ważne w przemyśle chemicznym i farmaceutycznym, gdzie precyzyjne oddzielanie składników jest kluczowe dla uzyskania wysokiej jakości produktów. W związku z tym, kamyczki wrzenne przyczyniają się nie tylko do poprawy efektywności destylacji, ale także do bezpieczeństwa całego procesu, co jest zgodne z międzynarodowymi standardami bezpieczeństwa chemicznego.

Pytanie 30

Jakie jest stężenie molowe roztworu, jeśli w 100 cm3 roztworu znajduje się 5,6 g KOH?
MK = 39 g/mol, MO = 16 g/mol, MH = 1 g/mol

A. 100 mol/dm3
B. 0,1 mol/dm3
C. 10 mol/dm3
D. 1 mol/dm3
Obliczanie stężenia molowego roztworu to kluczowa umiejętność w chemii, ale niektóre odpowiedzi mogą wynikać z typowych błędów konceptualnych. Na przykład, jeżeli ktoś wybrałby 0,1 mol/dm³, może to wynikać z niewłaściwego podzielenia liczby moli przez objętość, nie uwzględniając, że trzeba obliczać stężenie w dm³, a nie w cm³. Stężenie 10 mol/dm³ lub 100 mol/dm³ sugeruje, że wykonano obliczenia zakładając zbyt dużą ilość moli w roztworze, co wskazuje na zrozumienie pojęcia molarności, ale z błędnym przeliczeniem. Przy takich dużych stężeniach wiele substancji nie byłoby rozpuszczalnych w wodzie, co jest niezgodne z rzeczywistością dla KOH w tym przypadku. Często zdarza się, że błędy te są wynikiem nieprawidłowego przeliczenia jednostek lub nieuznawania mas molowych substancji. Aby poprawnie obliczyć stężenie molowe, zawsze należy zacząć od dokładnego przeliczenia moli oraz upewnić się, że objętość jest wyrażona w odpowiednich jednostkach, czyli dm³. Zrozumienie mocy rozpuszczalności oraz zasad mas molowych jest niezbędne, by unikać tych powszechnych pułapek w obliczeniach chemicznych.

Pytanie 31

Po zakończeniu pomiarów pH, elektrody powinny być przepłukane

A. roztworem chlorku potasu
B. wodą destylowaną z dodatkiem roztworu wzorcowego
C. wodą destylowaną
D. roztworem buforowym o ustalonym pH
Używanie roztworów wzorcowych, chlorku potasu czy buforów do przemywania elektrod pH jest nieodpowiednie i może prowadzić do poważnych błędów w pomiarach. Roztwór wzorcowy, mimo że ma na celu zapewnienie dokładności pomiarów, nie powinien być używany do czyszczenia, ponieważ wprowadza dodatkowe jony do elektrody, co może zafałszować wyniki kolejnych pomiarów. Proces pomiaru pH opiera się na pomiarze potencjału elektrycznego, a jakiekolwiek zmiany w składzie roztworu mogą prowadzić do błędnych odczytów. Chlorek potasu, choć jest często używany jako standardowy elektrolit w niektórych aplikacjach, nie jest odpowiedni do czyszczenia elektrody, ponieważ może prowadzić do zanieczyszczenia lub zmiany charakterystyki elektrody. Roztwory buforowe, mimo że stabilizują pH, są również nieodpowiednie w kontekście czyszczenia, ponieważ wprowadzają nowe jony, które mogą zaburzyć równowagę pomiarową. Pomiar pH wymaga precyzyjnego podejścia, a przemywanie elektrod wodą destylowaną zapewnia ich neutralność i przygotowuje je do następnych pomiarów. Typowe błędy myślowe, które mogą prowadzić do tych niepoprawnych wniosków, obejmują mylenie roli czyszczenia z kalibracją oraz niewłaściwe zrozumienie celu używania różnych rodzajów roztworów w kontekście pomiarowym.

Pytanie 32

Temperatura wrzenia aniliny przy normalnym ciśnieniu wynosi 457,13 K. W trakcie jej oczyszczania metodą destylacji prostej pod ciśnieniem atmosferycznym należy zebrać frakcję wrzącą w przedziale temperatur

A. 175 °C - 179 °C
B. 178 °C - 182 °C
C. 181 °C - 185 °C
D. 185 °C - 190 °C
Wybór zakresów temperatur innych niż 181 °C - 185 °C wynika z kilku nieporozumień związanych z podstawowymi zasadami destylacji. Często zdarza się, że osoby mające do czynienia z destylacją nie uwzględniają dokładnie wartości wrzenia substancji, co prowadzi do błędnych interpretacji. Na przykład, odpowiedzi sugerujące zakresy 185 °C - 190 °C lub 178 °C - 182 °C bazują na niewłaściwych założeniach dotyczących temperatury wrzenia aniliny. W rzeczywistości, jeżeli temperatura wrzenia wynosi 184 °C, wówczas frakcje przed i po tej wartości będą zawierały znaczny procent zanieczyszczeń, co może prowadzić do obniżenia jakości uzyskiwanego destylatu. Innym typowym błędem myślowym jest zakładanie, że temperatura wrzenia jest jedynym czynnikiem decydującym o zakresie zbierania frakcji podczas destylacji. W praktyce, inne czynniki, takie jak ciśnienie atmosferyczne, mogą wpływać na pomiar temperatur. Właściwe dobieranie zakresów zbierania frakcji jest kluczowe, aby uniknąć strat substancji czynnej i zapewnić ich czystość. Kluczowe jest również zrozumienie, że w przypadku substancji chemicznych, takich jak anilina, istotne jest przestrzeganie standardów laboratoryjnych oraz dobrych praktyk w celu uzyskania optymalnych wyników destylacji.

Pytanie 33

Butle gazowe (czasy butli) napełnione wodorem są oznaczone kolorem

A. jasnozielonym
B. czerwonym
C. niebieskim
D. żółtym
Zrozumienie systemu oznaczania butli gazowych jest kluczowe dla bezpieczeństwa pracy z substancjami chemicznymi. Kolorystyka oznaczeń butli gazowych jest ściśle określona przez normy. Odpowiedzi sugerujące żółty, jasnozielony lub niebieski kolor są błędne, ponieważ nie odzwierciedlają one aktualnych praktyk w branży. Żółty kolor często kojarzony jest z gazami toksycznymi, a jasnozielony z gazami szlachetnymi, natomiast niebieski stosuje się zazwyczaj do azotu lub innych gazów obojętnych. Wybierając niepoprawne kolory, można narazić się na poważne konsekwencje, takie jak błędna identyfikacja gazu, co prowadzi do niebezpiecznych sytuacji. W przemyśle, gdzie obsługiwane są różne rodzaje gazów, znajomość i przestrzeganie norm dotyczących oznaczania butli gazowych jest niezbędne. Typowe błędy myślowe prowadzące do takich wniosków to ignorowanie standardów branżowych oraz brak świadomości na temat zagrożeń związanych z niewłaściwym oznaczeniem gazów. Warto pamiętać, że bezpieczeństwo w pracy z niebezpiecznymi substancjami chemicznymi opiera się na dokładnym przestrzeganiu procedur oraz systemów oznaczania, co bezpośrednio wpływa na zdrowie i życie pracowników oraz osób postronnych.

Pytanie 34

Aby uzyskać wodorotlenek wapnia, odważono 30 g węglanu wapnia, który następnie wyprażono. Powstały tlenek wapnia dodano do 100 cm3 wody, a otrzymany osad wysuszono i zważono, uzyskując 18,5 g wodorotlenku wapnia. Jaką wydajność miała ta reakcja?

Ca – 40 g/mol; O – 16 g/mol; C – 12 g/mol; H – 1 g/mol

A. 93%
B. 83%
C. 80%
D. 75%
Aby obliczyć wydajność reakcji, najpierw należy określić teoretyczną ilość wodorotlenku wapnia, którą można by uzyskać z 30 g węglanu wapnia. Reakcja wypalania węglanu wapnia (CaCO3) do tlenku wapnia (CaO) można zapisać jako: CaCO3 → CaO + CO2. Obliczając masę molową węglanu wapnia, otrzymujemy 100 g/mol. Zatem 30 g węglanu wapnia to 0,3 mol. Następnie, tlenek wapnia reaguje z wodą, tworząc wodorotlenek wapnia (Ca(OH)2): CaO + H2O → Ca(OH)2. Masa molowa wodorotlenku wapnia wynosi 74 g/mol. Z 0,3 mola CaO możemy uzyskać 0,3 mola Ca(OH)2, co daje 22,2 g teoretycznego wodorotlenku wapnia (0,3 mol * 74 g/mol). W rzeczywistości uzyskaliśmy 18,5 g, więc wydajność reakcji obliczamy jako (18,5 g / 22,2 g) * 100% = 83%. Wydajność reakcji jest kluczowym wskaźnikiem efektywności procesów chemicznych, a jej znajomość jest niezbędna w przemyśle chemicznym, gdzie optymalizacja kosztów i surowców ma ogromne znaczenie.

Pytanie 35

W celu przygotowania roztworu mianowanego należy użyć sprzętu przedstawionego na rysunku

Ilustracja do pytania
A. Sprzęt D
B. Sprzęt A
C. Sprzęt C
D. Sprzęt B
Wybór innych substancji zamiast azotanu(V) rtęci oparty jest na błędnym założeniu, że wszystkie substancje chemiczne można przygotować w ten sam sposób. Siarczan(VI) sodu, chlorek baru oraz perhydrol to substancje, które mogą być przygotowywane w mniej rygorystyczny sposób, ich odmierzanie nie wymaga takiej samej precyzji jak w przypadku azotanu(V) rtęci. Na przykład, siarczan(VI) sodu jest często stosowany jako substancja do przygotowywania prostych roztworów, a ilości, które wykorzystuje się w praktyce, są zazwyczaj większe i nie wymagają tak dokładnych pomiarów. Chlorek baru, z kolei, w przypadku wielu reakcji chemicznych, występuje w większych stężeniach, co również zmniejsza potrzebę dokładności przy jego odmierzaniu. Perhydrol, będący roztworem nadtlenku wodoru, również nie wymaga tak precyzyjnego przygotowania, co może prowadzić do tego, że osoby pracujące z tymi substancjami mogą lekceważyć standardowe procedury. To zrozumienie prowadzi do typowych błędów myślowych, gdzie uważa się, że każda substancja chemiczna może być traktowana w ten sam sposób, niezależnie od jej właściwości chemicznych i fizycznych. Ważne jest, aby zrozumieć, że różne substancje wymagają różnych metod przygotowania i odmierzania, co jest kluczowe dla bezpieczeństwa oraz dokładności wyników w chemii analitycznej.

Pytanie 36

Metoda przygotowania próbki do badania, która nie jest

A. spopielenie
B. stapianie
C. miareczkowanie
D. mineralizacja
Spopielenie, stapianie i mineralizacja to różne metody przygotowania próbek do analizy, które mogą być stosowane w laboratoriach analitycznych. Spopielenie polega na poddawaniu próbki działaniu wysokiej temperatury w obecności tlenu, co prowadzi do usunięcia organicznych składników, pozostawiając jedynie popioły, które można następnie analizować. Ta technika jest często wykorzystywana w analizach materiałów stałych, takich jak gleby czy odpady. Z kolei stapianie to proces, w którym próbka jest poddawana wysokiej temperaturze w celu uzyskania jednorodnej masy, co ułatwia późniejszą analizę, zwłaszcza w przypadku minerałów. Mineralizacja to zaawansowana technika, która polega na rozkładzie próbki na jej składniki mineralne, zwykle przy użyciu kwasów, co jest kluczowe w analizach chemicznych, takich jak badania zawartości metali ciężkich w próbkach środowiskowych. Wybór odpowiedniej metody przygotowania próbki ma kluczowe znaczenie dla uzyskania dokładnych i wiarygodnych wyników analizy. Osoby przystępujące do analiz chemicznych muszą być świadome, że miareczkowanie to etap, który następuje po przygotowaniu próbki, a nie proces, który wchodzi w skład przygotowania samej próbki. Typowe błędy myślowe związane z tym zagadnieniem obejmują mylenie etapów analizy i niezrozumienie roli każdej z metod w kontekście całego procesu analitycznego.

Pytanie 37

Aby przeprowadzać ręczną obróbkę szkła w laboratorium, konieczne jest posiadanie okularów ochronnych oraz rękawic.

A. chroniące przed substancjami chemicznymi
B. zapewniające izolację termiczną
C. płócienne
D. zwykłe gumowe
Wybór odpowiednich rękawic do pracy ze szkłem laboratoryjnym to naprawdę ważna sprawa, bo chodzi o bezpieczeństwo. Takie rękawice muszą chronić przed wysokimi temperaturami, co jest kluczowe, gdy na przykład podgrzewamy szkło czy pracujemy z gorącymi elementami. Są zaprojektowane z materiałów, które dobrze znoszą ciepło, więc możesz być spokojny, że Twoje dłonie są chronione przed oparzeniami. W laboratoriach, gdzie obrabia się szkło, takie rękawice są niezbędne, szczególnie podczas odlewania czy formowania. Co więcej, przepisy BHP zalecają używanie specjalistycznych rękawic, które nie tylko chronią przed ciepłem, ale też są odporne na chemikalia. To dodatkowo podnosi poziom bezpieczeństwa. Dlatego warto dobrze przemyśleć, jakie rękawice wybierasz, żeby zadbać o swoje zdrowie i bezpieczeństwo w pracy.

Pytanie 38

Nie należy używać gorącej wody do mycia

A. kolby stożkowej
B. kolby miarowej
C. szkiełka zegarkowego
D. zlewki
Kolba miarowa jest szklanym naczyniem laboratoryjnym, które służy do dokładnego pomiaru objętości cieczy. Z uwagi na jej konstrukcję, nagłe zmiany temperatury mogą prowadzić do uszkodzeń, takich jak pęknięcia czy odkształcenia. Gorąca woda może powodować, że szkło stanie się bardziej podatne na stres termiczny, co jest niebezpieczne, zwłaszcza w przypadku kolb miarowych, które są projektowane z myślą o precyzyjnych pomiarach. W standardach laboratoryjnych, takich jak normy ISO, zaleca się, aby naczynia wykonane ze szkła boro-krzemowego, wykorzystywane w laboratoriach, nie były narażane na nagłe zmiany temperatury. Dobrą praktyką jest mycie ich w letniej wodzie z detergentem, a następnie dokładne płukanie w wodzie destylowanej, aby zminimalizować ryzyko uszkodzenia i zapewnić dokładność pomiarów. Przy odpowiedniej konserwacji, kolby miarowe mogą służyć przez wiele lat, jednak ich właściwe użytkowanie jest kluczowe dla utrzymania ich funkcjonalności.

Pytanie 39

Określ, jakie informacje powinny być zarejestrowane w ewidencji wydania substancji niebezpiecznych, stosowanych w badaniach laboratoryjnych?

A. Metoda wydania, imię i nazwisko osoby wydającej
B. Ilości wydane, stan magazynowy, imię i nazwisko osoby, której przekazano substancję
C. Liczba przeprowadzonych prób z użyciem tej substancji, data wydania
D. Data ważności, forma substancji
Zawarte w niepoprawnych odpowiedziach koncepcje nie spełniają wymogów dotyczących ewidencji rozchodu substancji niebezpiecznych. Termin przydatności i konsystencja substancji, mimo że są ważnymi informacjami dla użytkowników, nie dotyczą bezpośrednio ewidencji rozchodu. Oceniając substancje chemiczne, istotne jest, aby znać ich stan i właściwości, ale dokumentacja rozchodu skupia się na zapisie ich użycia i dostępności. Sposób wydawania oraz nazwisko osoby wydającej, choć mogą być istotnymi elementami, nie dostarczają wystarczających informacji o stanie zapasów ani o ilości substancji wydanej, co jest kluczowe dla zachowania bezpieczeństwa i zarządzania ryzykiem. Z kolei ilość prowadzonych prób przy użyciu danej substancji oraz termin wydania, to dane, które bardziej pasują do dokumentacji działań laboratoryjnych, a nie do ewidencji rozchodu. Tego typu myślenie może prowadzić do nieefektywnego zarządzania substancjami chemicznymi i ewentualnych naruszeń przepisów dotyczących bezpieczeństwa w laboratoriach, co jest krytyczne zarówno w kontekście ochrony zdrowia pracowników, jak i ochrony środowiska. Ewidencja powinna być zgodna z wytycznymi regulacyjnymi, a prawidłowe podejście do dokumentacji jest kluczowe dla każdej instytucji zajmującej się pracą z substancjami niebezpiecznymi.

Pytanie 40

Aby przygotować 250 cm3 0,2-molowego roztworu wodorotlenku sodu, należy odważyć

MNaOH = 40g / mol
A. 0,05 g stałego NaOH.
B. 25,0 g stałego NaOH.
C. 2,00 g stałego NaOH.
D. 2,50 g stałego NaOH.
Wybór błędnej odpowiedzi wynika z kilku powszechnych błędów w obliczaniach związanych z masami molowymi i stężeniami roztworów. Podejścia takie jak obliczenie masy na podstawie niewłaściwej liczby moli lub pomylenie jednostek objętościowych mogą prowadzić do niepoprawnych wyników. Na przykład, jeśli ktoś odważyłby 2,50 g NaOH, to byłoby to znacznie więcej niż wymagane 2 g. Użytkownik mógł nie zaświadczyć, że przy obliczeniach trzeba stosować odpowiednie wzory oraz przeliczenia, by uzyskać dokładne wyniki. W przypadku opcji 0,05 g również brakuje zrozumienia tematu, ponieważ to wartość zbyt mała w kontekście wymaganej ilości NaOH do przygotowania roztworu o stężeniu 0,2 mola. Stosowanie 25,0 g jest kolejnym przypadkiem, gdzie wyraźnie przekroczono potrzebną masę, co może prowadzić do niebezpiecznych reakcji chemicznych. Obliczanie masy substancji chemicznych wymaga staranności i precyzji, dlatego zawsze należy upewnić się, że wszystkie wartości są odpowiednio przeliczone i stosowane w praktyce. Zrozumienie różnicy pomiędzy molami, masą molową a stężeniem roztworu jest kluczem do poprawnego przygotowania chemikaliów w laboratoriach.