Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 8 grudnia 2025 01:17
  • Data zakończenia: 8 grudnia 2025 01:21

Egzamin zdany!

Wynik: 24/40 punktów (60,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie optymalne odległości X, Y i Z należy zachować, trasując przebieg przewodów instalacji podtynkowej, przedstawionej na rysunku?

Ilustracja do pytania
A. A.
B. C.
C. D.
D. B.
Odpowiedź C (30 cm, 15 cm, 30 cm) jest prawidłowa, ponieważ odpowiada ogólnym normom i przepisom dotyczącym instalacji elektrycznych podtynkowych, które są kluczowe dla zapewnienia bezpieczeństwa oraz funkcjonalności. Zachowanie takich odległości od krawędzi ścian i otworów drzwiowych minimalizuje ryzyko uszkodzenia przewodów podczas dalszych prac budowlanych, takich jak wiercenie lub montaż elementów wykończeniowych. W praktyce, odpowiednia separacja przewodów od konstrukcji budynku pozwala na uniknięcie przegrzewania się instalacji, co z kolei redukuje ryzyko pożaru. Zgodnie z normą PN-IEC 60364, minimalne odległości są ustalone na podstawie analizy potencjalnych zagrożeń, co czyni je standardem w branży. Dodatkowo, zachowanie tych odległości ułatwia ewentualną konserwację oraz naprawy, co jest istotne w dłuższej perspektywie użytkowania budynku. Przykładem zastosowania tej wiedzy jest planowanie rozkładu gniazdek elektrycznych w nowoczesnych wnętrzach, gdzie estetyka i funkcjonalność muszą iść w parze z bezpieczeństwem. W związku z tym, odpowiedź C jest nie tylko zgodna z przepisami, ale także praktyczna w codziennym użytkowaniu instalacji elektrycznych.

Pytanie 2

Aby ocenić efektywność ochrony przez automatyczne odcięcie zasilania w systemie TN instalacji elektrycznej, konieczne jest

A. określenie czasu oraz prądu zadziałania wyłącznika RCD
B. przeprowadzenie pomiarów impedancji pętli zwarcia
C. wykonanie pomiaru rezystancji uziemienia
D. zweryfikowanie ciągłości połączeń w instalacji
Sprawdzanie ciągłości połączeń w instalacji, chociaż ważne dla ogólnego bezpieczeństwa, nie jest bezpośrednio związane z oceną skuteczności wyłączenia zasilania w systemie TN. Często można mylnie sądzić, że zapewnienie ciągłości połączeń jest wystarczające do zapewnienia bezpieczeństwa użytkowników. Jednakże nawet jeśli ciągłość połączenia jest zachowana, nie gwarantuje to, że zabezpieczenia, takie jak wyłączniki różnicowoprądowe (RCD), zadziałają w odpowiednim czasie. Wyznaczanie czasu i prądu zadziałania wyłącznika RCD jest również istotne, ale nie dostarcza informacji o impedancji pętli zwarcia, która jest kluczowa do oceny, czy ochrona przed zwarciami jest wystarczająca. Mierzenie rezystancji uziemienia to kolejny ważny aspekt, ale jego wyniki nie zastąpią pomiaru impedancji pętli zwarcia, który jest bezpośrednim wskaźnikiem skuteczności działania zabezpieczeń przy wystąpieniu niebezpiecznych sytuacji. W związku z tym, pomiar impedancji pętli zwarcia powinien być priorytetem dla inżynierów i techników zajmujących się instalacjami elektrycznymi, aby zapewnić ich właściwe działanie w sytuacjach awaryjnych.

Pytanie 3

Przewód oznaczony symbolem PEN to przewód

A. ochronny
B. wyrównawczy
C. ochronno-neutralny
D. uziemiający
Symbol PEN (Protective Earth and Neutral) oznacza przewód ochronno-neutralny, który łączy w sobie funkcje przewodu neutralnego (N) oraz przewodu ochronnego (PE). Jest on stosowany w instalacjach elektrycznych, zwłaszcza w systemach TN-C, aby zapewnić zarówno przewodnictwo prądu roboczego, jak i ochronę przed porażeniem elektrycznym. W praktyce, przewód PEN odgrywa kluczową rolę w bezpieczeństwie instalacji, ponieważ umożliwia skuteczne uziemienie i jednocześnie zapewnia powrót prądu do źródła. W przypadku awarii, przewód ochronny automatycznie przejmuje funkcję przewodu neutralnego, co minimalizuje ryzyko porażenia prądem. Zgodnie z normami, takimi jak PN-IEC 60439, instalacje muszą być projektowane i wykonywane z uwzględnieniem zasady, że przewód ochronno-neutralny powinien być odpowiednio oznakowany oraz dobrze izolowany. Praktyczne zastosowanie przewodu PEN można zaobserwować w budynkach mieszkalnych, gdzie często łączy się go z systemami uziemiającymi dla zwiększenia bezpieczeństwa użytkowników.

Pytanie 4

Podaj rodzaj i miejsce uszkodzenia w trójfazowym silniku indukcyjnym o uzwojeniach połączonych w gwiazdę, jeżeli wyniki pomiarów rezystancji jego uzwojeń przedstawione są w tabeli.

Rezystancja między zaciskamiWynik
U - V15 Ω
V - W15 Ω
W - U20 Ω
A. Zwarcie międzyzwojowe w fazie W
B. Przerwa w uzwojeniu fazy V
C. Przerwa w uzwojeniu fazy W
D. Zwarcie międzyzwojowe w fazie V
Przerwa w uzwojeniu fazy V oraz zwarcie międzyzwojowe w fazie W to odpowiedzi, które mogą wydawać się logiczne na pierwszy rzut oka, jednak analiza pomiarów rezystancji wskazuje na błędne interpretacje. Przerwa w uzwojeniu fazy V skutkujełaby znacznie wyższą rezystancją między zaciskami U-V i V-W, co jest sprzeczne z danymi, które pokazują mniejsze wartości rezystancji. Taki błąd myślowy często wynika z niepoprawnego założenia, że wszystkie rezystancje powinny być jednorodne, co w praktyce nie zawsze ma miejsce, zwłaszcza w obliczu uszkodzeń. Natomiast zwarcie międzyzwojowe w fazie W, choć również może wydawać się możliwą przyczyną uszkodzenia, nie znajduje potwierdzenia w pomiarach, które jasno wskazują na asymetrię w rezystancjach, a nie na zjawisko zwarcia w fazie W. W przypadku zwarcia międzyzwojowego, oczekiwalibyśmy, że rezystancja tej fazy będzie znacznie niższa niż w innych fazach, co nie jest zgodne z wynikami. Takie nieporozumienia mogą prowadzić do niewłaściwego diagnozowania problemów w silnikach indukcyjnych, co w efekcie może skutkować dalszymi uszkodzeniami i kosztownymi naprawami. Ważne jest zrozumienie różnicy pomiędzy przerwą w uzwojeniu a zwarciami, oraz umiejętność analizy danych pomiarowych w kontekście ich praktycznego zastosowania.

Pytanie 5

Które z przedstawionych na rysunkach narzędzi przeznaczone jest do zaciskania końcówek tulejkowych izolowanych?

Ilustracja do pytania
A. D.
B. A.
C. C.
D. B.
Narzedzie przedstawione na rysunku C. to szczypce do zaciskania końcówek tulejkowych izolowanych, co czyni tę odpowiedź prawidłową. Te szczypce są specjalnie zaprojektowane do precyzyjnego zaciskania końcówek, co zapewnia solidne połączenie elektryczne. W praktyce, zastosowanie takich narzędzi jest kluczowe w instalacjach elektrycznych, gdzie jakość połączeń wpływa na bezpieczeństwo i niezawodność systemów. Szczypce te charakteryzują się odpowiednio wyprofilowanymi końcówkami, które umożliwiają równomierne rozłożenie siły podczas zaciskania, co zapobiega uszkodzeniu izolacji oraz samej końcówki. W standardach branżowych, takich jak IEC 60947, podkreśla się wagę stosowania właściwych narzędzi do obróbki końcówek w celu zapewnienia wysokiej jakości połączeń. Prawidłowo używane szczypce do zaciskania przyczyniają się do długotrwałej eksploatacji instalacji oraz minimalizują ryzyko awarii związanych z słabymi połączeniami elektrycznymi.

Pytanie 6

Na którym rysunku przedstawiono prawidłowy sposób wykorzystania zacisku śrubowego?

Ilustracja do pytania
A. B.
B. D.
C. C.
D. A.
Rysunek A przedstawia prawidłowy sposób wykorzystania zacisku śrubowego, co jest kluczowe dla zapewnienia stabilności i bezpieczeństwa połączenia. W tej konfiguracji śruba jest odpowiednio dokręcona do elementu, co pozwala na zminimalizowanie luzów oraz zwiększa trwałość połączenia. Zaciski śrubowe są powszechnie stosowane w przemyśle i rzemiośle do łączenia różnych elementów, takich jak deski w meblarstwie czy elementy metalowe w konstrukcjach. Przy prawidłowym użyciu, zaciski te mogą wytrzymać znaczne obciążenia, co czyni je niezastąpionymi w wielu zastosowaniach. Ważne jest również, aby podczas dokręcania śruby zachować odpowiedni moment obrotowy, aby nie uszkodzić materiału. Dobre praktyki obejmują również regularne sprawdzanie stanu zacisków oraz ich ponowne dokręcanie w miarę potrzeb, co zapewnia długotrwałe i niezawodne użytkowanie.

Pytanie 7

Na którym rysunku przedstawiono przewód instalacyjny wtynkowy typu YDYt?

Ilustracja do pytania
A. B.
B. A.
C. C.
D. D.
Poprawna odpowiedź to B, ponieważ przewód instalacyjny wtynkowy typu YDYt jest miedzianym przewodem jednodrutowym, który ma charakterystyczną izolację z PVC. Takie przewody są projektowane do stosowania w instalacjach elektrycznych, w miejscach, gdzie można je przybijać do ścian bez ryzyka uszkodzenia izolacji. Na zdjęciu B widzimy przewód, w którym żyły są oddzielone, co rzeczywiście odpowiada normom dla przewodów tego typu. Przewody YDYt są często wykorzystywane w instalacjach wewnętrznych, gdzie ich układ nie wymaga dodatkowej ochrony mechanicznej. Dzięki swojej konstrukcji, przewody te pozwalają na łatwy montaż i estetyczne wykończenie, co jest szczególnie ważne w budynkach mieszkalnych i biurowych. W praktyce oznacza to, że instalatorzy mogą je stosować w różnych konfiguracjach, co wpływa na elastyczność projektowania instalacji elektrycznych. Zgodność z normami PN-EN 60228 oraz PN-EN 50525-2-21 potwierdza ich jakość oraz bezpieczeństwo użytkowania.

Pytanie 8

Jaki jest minimalny dopuszczalny przekrój przewodów miedzianych stosowanych w budynkach jako wewnętrzne linie zasilające (WLZ)?

A. 4 mm2
B. 6 mm2
C. 10 mm2
D. 16 mm2
Minimalny dopuszczalny przekrój przewodów miedzianych stosowanych w wewnętrznych liniach zasilających (WLZ) wynosi 10 mm2. Ta wartość jest określona przez normy dotyczące instalacji elektrycznych, takie jak PN-IEC 60364, które wskazują na konieczność zabezpieczenia przewodów przed przegrzewaniem oraz zapewnienia odpowiedniej nośności prądowej. Przekrój 10 mm2 jest stosowany, aby zminimalizować straty mocy i zapewnić bezpieczeństwo eksploatacji. Przykładowo, w budynkach jednorodzinnych, gdzie przewody te muszą obsługiwać różnorodne urządzenia elektryczne, zastosowanie przewodów o odpowiednio dużym przekroju pozwala na uniknięcie przeciążeń i potencjalnych zagrożeń pożarowych. W praktyce, stosowanie przewodów o zbyt małym przekroju może prowadzić do ich przegrzewania, co z kolei zwiększa ryzyko awarii systemu zasilania oraz uszkodzenia urządzeń elektrycznych.

Pytanie 9

Którym z przedstawionych na rysunkach wyłączników różnicowoprądowych można zastąpić w trójfazowej instalacji elektrycznej 230/400 V, zabezpieczonej wyłącznikiem S314 B50, uszkodzony mechanicznie wyłącznik RCD o prądzie IΔn = 0,03 A?

Ilustracja do pytania
A. D.
B. C.
C. A.
D. B.
Wyłącznik różnicowoprądowy oznaczony jako A jest prawidłowym wyborem w kontekście zastępowania uszkodzonego mechanicznie wyłącznika RCD. Posiada on prąd znamionowy I_n równy 0,03 A, co jest zgodne z wymaganiami ochrony przed porażeniem elektrycznym oraz zabezpieczeniem obwodów w trójfazowej instalacji 230/400 V. Dodatkowo, jego napięcie znamionowe U_n wynosi 400 V, co czyni go odpowiednim do zastosowań w instalacjach trójfazowych. Wyłączniki RCD są kluczowe dla zapewnienia bezpieczeństwa w instalacjach elektrycznych, gdyż wykrywają różnice prądowe, które mogą wskazywać na uszkodzenie izolacji lub obecność prądu upływowego. W przypadku awarii wyłącznika RCD, istotne jest, aby wymieniony element spełniał te same parametry, aby zapewnić ciągłość ochrony. Wybierając odpowiedni wyłącznik, warto również kierować się normami PN-EN 61008 oraz PN-EN 60947, które regulują kwestie bezpieczeństwa i efektywności działania wyłączników różnicowoprądowych.

Pytanie 10

W jakiej sytuacji poślizg silnika indukcyjnego wyniesie 100%?

A. Gdy silnik będzie zasilany, jego wirnik pozostanie w bezruchu
B. Silnik będzie zasilany prądem w przeciwnym kierunku
C. Silnik będzie funkcjonować w trybie jałowym
D. Wirnik silnika osiągnie prędkość wyższą niż prędkość synchroniczna
Poślizg silnika indukcyjnego określa różnicę między prędkością synchroniczną a rzeczywistą prędkością wirnika. Gdy wirnik jest nieruchomy, oznacza to, że nie porusza się w stosunku do pola magnetycznego wytwarzanego przez uzwojenia statora. W takiej sytuacji prędkość wirnika wynosi 0, a prędkość synchroniczna, zależna od częstotliwości zasilania i liczby par biegunów, jest znacznie wyższa. Z tego powodu poślizg wynosi 100%, co oznacza maksymalne obciążenie silnika, a jego moment obrotowy jest równy zeru, co jest warunkiem niezbędnym do rozpoczęcia pracy silnika. W praktyce taka sytuacja ma miejsce podczas uruchamiania silników, gdy są one podłączane do zasilania, ale wirnik nie ma jeszcze możliwości obrotu, na przykład w przypadku zablokowania. W przemyśle, szczególnie w aplikacjach wymagających dużego momentu rozruchowego, jak w przypadku transportu materiałów, monitoruje się poślizg, aby zapewnić optymalne działanie silników. Zrozumienie poślizgu jest kluczowe dla efektywności energetycznej i żywotności silników indukcyjnych.

Pytanie 11

Podczas wymiany uszkodzonego gniazdka w instalacji powierzchniowej prowadzonej w rurach karbowanych zauważono, że na skutek poluzowania zacisku izolacja jednego z przewodów na odcinku kilku centymetrów straciła elastyczność oraz zmieniła barwę. Jak należy przeprowadzić naprawę tego uszkodzenia?

A. Zaizolować uszkodzoną część izolacji przewodu taśmą
B. Nałożyć koszulkę termokurczliwą na uszkodzoną część izolacji przewodu
C. Wymienić wszystkie przewody na nowe o większej średnicy
D. Wymienić uszkodzony przewód na nowy o identycznej średnicy
Wybór wymiany uszkodzonego przewodu na nowy o takim samym przekroju jest najlepszym rozwiązaniem w tej sytuacji. Uszkodzenia izolacji przewodów mogą prowadzić do poważnych konsekwencji, takich jak zwarcia, przegrzewanie się lub nawet pożary. Przewody elektryczne muszą być w pełni sprawne, aby zapewnić bezpieczeństwo i prawidłowe działanie instalacji. Wymiana na przewód o takim samym przekroju gwarantuje, że nie dojdzie do przeciążenia obwodu, co mogłoby wystąpić w przypadku zastosowania przewodu o większym przekroju. Zgodnie z normami PN-IEC 60364, przewody powinny być dobrane do obciążenia, a ich izolacja musi być nienaruszona. Praktyka wymiany przewodów na nowe jest zgodna z dobrymi praktykami branżowymi, które zalecają stosowanie materiałów wysokiej jakości oraz przestrzeganie zasad BHP podczas pracy z instalacjami elektrycznymi.

Pytanie 12

Jakie parametry ma wyłącznik różnicowoprądowy, zastosowany w instalacji zasilającej mieszkanie, której schemat ideowy przedstawiono na rysunku?

Ilustracja do pytania
A. Prąd znamionowy 10 A oraz charakterystykę B
B. Prąd znamionowy 16 A oraz charakterystykę B
C. Prąd znamionowy 25 A i prąd znamionowy różnicowy 30 mA
D. Prąd znamionowy 30 mA i prąd znamionowy różnicowy 25 A
Wyłącznik różnicowoprądowy z parametrami, jak prąd znamionowy 25 A i prąd różnicowy 30 mA, to naprawdę ważny element w zabezpieczaniu elektryki w mieszkaniach. Prąd znamionowy 25 A mówi nam, ile maksymalnie może on przenieść, co jest kluczowe, bo musimy myśleć o zasilaniu domowych sprzętów. Z kolei prąd różnicowy 30 mA to wartość, która bardzo dobrze chroni przed porażeniem, bo jak zauważy różnicę w prądzie, to odetnie zasilanie. Te wartości są zgodne z normami PN-EN 61008-1 i PN-EN 60947-2, które mówią, jak powinny być projektowane wyłączniki. Używając takich parametrów, zapewniamy bezpieczeństwo i ochronę przed ewentualnymi awariami. Fajnie jest także regularnie sprawdzać wyłączniki różnicowoprądowe, żeby mieć pewność, że działają, a można to łatwo zrobić przyciskiem testowym, który jest na każdym z tych urządzeń.

Pytanie 13

Podczas montażu instalacji elektrycznej w pomieszczeniach wilgotnych, należy zastosować gniazda wtykowe o minimalnym stopniu ochrony

A. IP55
B. IP33
C. IP20
D. IP44
Podczas instalacji elektrycznej w pomieszczeniach wilgotnych niezwykle istotne jest zapewnienie odpowiedniego poziomu ochrony przed wilgocią i kurzem, co jest kluczowe dla bezpieczeństwa użytkowników. Stopień ochrony IP44 wskazuje, że urządzenie jest zabezpieczone przed ciałami obcymi większymi niż 1 mm oraz przed wodą bryzgającą z dowolnego kierunku. Dlatego właśnie IP44 jest minimalnym wymogiem w wilgotnych pomieszczeniach, takich jak łazienki czy kuchnie. W praktyce oznacza to, że gniazda i wtyczki muszą być odpowiednio uszczelnione, aby zapobiec wnikaniu wilgoci, co mogłoby prowadzić do zwarcia i awarii systemu elektrycznego. Zastosowanie IP44 to standard branżowy, który zapewnia bezpieczeństwo użytkowników oraz długotrwałe działanie instalacji elektrycznej. Moim zdaniem, znajomość tych norm to absolutna podstawa dla każdego elektryka, który chce wykonywać swoją pracę zgodnie z obowiązującymi przepisami i zapewnić komfort oraz bezpieczeństwo użytkownikom.

Pytanie 14

Widoczny zanik w obwodzie instalacji elektrycznej może zapewnić

A. ochronnik przeciwprzepięciowy
B. wyłącznik instalacyjny płaski
C. wyłącznik różnicowoprądowy
D. bezpiecznik instalacyjny
Bezpiecznik instalacyjny jest kluczowym elementem zabezpieczeń obwodów elektrycznych, który pełni funkcję zabezpieczającą przed przeciążeniem oraz zwarciem. Jego głównym zadaniem jest przerwanie obwodu w momencie, gdy prąd przekracza ustalony poziom, co minimalizuje ryzyko uszkodzenia instalacji oraz pożaru. W praktyce, bezpiecznik instalacyjny montowany jest w rozdzielni elektrycznej i można go łatwo zresetować lub wymienić po wystąpieniu awarii. Stosowanie bezpieczników zgodnie z normą PN-EN 60898-1 zapewnia skuteczną ochronę przed nadmiernym prądem i przeciążeniem, co jest niezbędne w bezpiecznym użytkowaniu instalacji elektrycznych. Warto zaznaczyć, że bezpieczniki instalacyjne powinny być dobrane odpowiednio do charakterystyki obwodu oraz zastosowanych urządzeń, co zwiększa ich efektywność.

Pytanie 15

Do zacisku odbiornika podłączonego na stałe w instalacji TN-S oznaczonego symbolem graficznym przedstawionym na rysunku należy podłączyć przewód

Ilustracja do pytania
A. wyrównawczy.
B. neutralny.
C. odgromowy.
D. ochronny.
Wybór odpowiedzi "ochronny" jest trafiony! W instalacji TN-S przewód, który widzisz na rysunku, to rzeczywiście przewód ochronny (PE). Jego głównym zadaniem jest ochrona użytkowników przed porażeniem prądem. Dzięki temu przewód odprowadza niebezpieczne napięcia do ziemi, co zmniejsza ryzyko wypadków. W systemach TN-S przewód ochronny jest oddzielony od neutralnego (N), co jest zgodne z zasadami bezpieczeństwa. Ważne, żeby ten przewód był dobrze podłączony, bo wtedy ochronne urządzenia, jak wyłącznik różnicowoprądowy, będą działać tak jak powinny. Dobrze jest też regularnie sprawdzać, czy przewody ochronne są w dobrym stanie, żeby mieć pewność, że ich działanie jest skuteczne. Jeśli chcesz bardziej zgłębić temat, popatrz na normy PN-IEC 60364 i PN-HD 60364 – tam znajdziesz konkretne wytyczne dotyczące instalacji elektrycznych.

Pytanie 16

Jakie zmiany w parametrach obwodu elektrycznego wiążą się z zamianą przewodu typu ADYt 3×2,5 na przewód typu YDYt 3×2,5?

A. Zwiększenie wartości prądu dopuszczalnego długotrwale oraz wzrost rezystancji izolacji
B. Obniżenie wartości prądu dopuszczalnego długotrwale oraz wzrost rezystancji izolacji
C. Zwiększenie wartości prądu dopuszczalnego długotrwale oraz obniżenie rezystancji izolacji
D. Obniżenie wartości prądu dopuszczalnego długotrwale oraz obniżenie rezystancji izolacji
Wybór przewodu YDYt 3×2,5 w miejsce ADYt 3×2,5 prowadzi do wzrostu wartości prądu dopuszczalnego długotrwale oraz poprawy rezystancji izolacji. Przewód YDYt charakteryzuje się lepszymi parametrami technicznymi, w tym wyższą dopuszczalną temperaturą pracy oraz lepszą odpornością na czynniki zewnętrzne, co zwiększa jego bezpieczeństwo i trwałość. Standardy PN-IEC 60228 oraz PN-EN 50525 wskazują, że przewody YDYt mają lepszą wydajność w warunkach długotrwałego obciążenia, co pozwala na ich zastosowanie w instalacjach, gdzie przewidywane są większe obciążenia prądowe. Przykładem mogą być instalacje w budynkach mieszkalnych lub przemysłowych, gdzie przewody te mogą być używane do zasilania urządzeń wymagających większych mocy. Dodatkowo, poprawa rezystancji izolacji wpływa na zmniejszenie ryzyka wystąpienia zwarć oraz uszkodzeń instalacji, co jest kluczowe w kontekście bezpieczeństwa użytkowania. Warto również zauważyć, że wyższa jakość przewodów wpływa na ich żywotność oraz zmniejsza koszty eksploatacyjne związane z potrzebą częstych napraw lub wymiany.

Pytanie 17

Na którym rysunku przedstawiono przewód spawalniczy OnS-1?

Ilustracja do pytania
A. B.
B. A.
C. C.
D. D.
Odpowiedź B jest poprawna, ponieważ przewód spawalniczy OnS-1 charakteryzuje się specyficzną konstrukcją, która jest dostosowana do spawania łukowego. Składa się z wielu cienkich drutów miedzianych, które są skręcone w pęczki, co zapewnia doskonałe przewodnictwo elektryczne oraz elastyczność. Tego typu przewody są szeroko stosowane w przemyśle spawalniczym, gdzie kluczowe jest utrzymanie wysokiej jakości połączeń oraz efektywności procesów spawania. W praktyce, wybór odpowiedniego przewodu spawalniczego ma bezpośredni wpływ na jakość realizowanych zadań oraz trwałość spoin. Ponadto, przewody takie jak OnS-1 spełniają normy IEC 60228 oraz EN 50525, które określają wymagania dotyczące przewodów elektrycznych, co czyni je niezawodnym wyborem dla profesjonalnych spawaczy. Zrozumienie konstrukcji i zastosowania przewodów spawalniczych jest kluczowe, aby uniknąć problemów związanych z wydajnością i bezpieczeństwem podczas pracy.

Pytanie 18

Kabel oznaczony symbolem DYd 750 jest wykonany z

A. linki pokrytej polwinitem
B. drutu pokrytego gumą
C. linki pokrytej gumą
D. drutu pokrytego polwinitem
Przewód oznaczony symbolem DYd 750 wykonany jest z drutu izolowanego polwinitem, co oznacza, że jego główną funkcją jest zapewnienie odpowiedniej elastyczności oraz odporności na różne czynniki zewnętrzne. Polwinit to rodzaj materiału izolacyjnego, który jest szeroko stosowany w przemyśle elektrotechnicznym ze względu na swoje właściwości dielektryczne oraz odporność na działanie wilgoci i chemikaliów. Przewody tego typu są powszechnie używane w instalacjach elektrycznych, w tym w budownictwie oraz w różnych urządzeniach elektrotechnicznych. Dzięki zastosowaniu drutu, przewód charakteryzuje się lepszą przewodnością elektryczną w porównaniu do linki, co czyni go bardziej efektywnym w aplikacjach wymagających stałego połączenia elektrycznego. W standardach branżowych, takich jak PN-EN 60228, przewody tego typu są klasyfikowane jako posiadające wyspecyfikowane właściwości użytkowe, co czyni je odpowiednimi do różnych zastosowań, w tym zasilania w obiektach przemysłowych oraz mieszkalnych.

Pytanie 19

Ile powinna wynosić minimalna liczba żył przewodów w miejscach oznaczonych X oraz Y na przedstawionym schemacie instalacji elektrycznej, aby po jej wykonaniu zgodnie z tym schematem możliwe było jednoczesne sterowanie oświetleniem w obu punktach oświetleniowych niezależnie czterema łącznikami?

Ilustracja do pytania
A. X – 4 żyły, Y – 4 żyły.
B. X – 5 żył, Y – 5 żył.
C. X – 5 żył, Y – 4 żyły.
D. X – 4 żyły, Y – 5 żył.
Wybrana odpowiedź jest prawidłowa, ponieważ aby umożliwić jednoczesne sterowanie oświetleniem w dwóch punktach za pomocą czterech łączników, zastosowanie odpowiedniej liczby żył w przewodach jest kluczowe. W punkcie X potrzebujemy czterech żył, co pozwala na zainstalowanie łącznika krzyżowego. Taki łącznik wymaga dwóch przewodów do sterowania i dwóch do łączenia z innymi łącznikami. W punkcie Y z kolei, pięć żył jest niezbędnych, ponieważ oprócz czterech żył dla łącznika krzyżowego, potrzebujemy jeszcze jednego przewodu do zasilania samego oświetlenia. W praktyce, stosowanie łączników schodowych i krzyżowych to standard w instalacjach elektrycznych, szczególnie w dużych pomieszczeniach, gdzie wiele punktów oświetleniowych jest sterowanych z różnych miejsc. Dzięki dobrej organizacji przewodów można uniknąć problemów z nieprawidłowym działaniem systemu oświetlenia oraz zapewnić komfort użytkowania, co jest zgodne z dobrymi praktykami branżowymi.

Pytanie 20

Na którą z wymienionych przyczyn, występującą w obwodzie odbiorczym instalacji elektrycznej, musi reagować wyłącznik różnicowoprądowy poprzez samoczynne wyłączenie?

A. Przepięcie
B. Przeciążenie
C. Upływ prądu
D. Zwarcie międzyfazowe
Wyłącznik różnicowoprądowy (RCD) ma na celu ochronę ludzi przed porażeniem prądem elektrycznym oraz zabezpieczenie instalacji elektrycznej przed skutkami upływu prądu. Upływ prądu to sytuacja, w której część prądu roboczego nie wraca do źródła zasilania, lecz przepływa przez inne drogi, co może prowadzić do niebezpiecznych sytuacji. RCD działa na zasadzie monitorowania różnicy prądów pomiędzy przewodem fazowym a przewodem neutralnym. Gdy ta różnica przekroczy ustalony poziom (zazwyczaj 30 mA w instalacjach domowych), RCD natychmiast odłącza zasilanie. Praktycznym zastosowaniem RCD jest instalacja w łazienkach i kuchniach, gdzie istnieje wysokie ryzyko kontaktu z wodą. Warto również podkreślić, że zgodnie z normami PN-IEC 61008, stosowanie RCD jest obowiązkowe w miejscach narażonych na porażenie prądem, co podkreśla znaczenie ich montażu w nowoczesnych instalacjach elektrycznych.

Pytanie 21

Zamieszczony na rysunku zrzut ekranu przyrządu pomiarowego przedstawia wyniki pomiaru

Ilustracja do pytania
A. impedancji pętli zwarcia w sieci trójfazowej.
B. rezystancji izolacji przewodu w sieci trójfazowej.
C. rezystancji izolacji przewodu w sieci jednofazowej.
D. impedancji pętli zwarcia w sieci jednofazowej.
Poprawna odpowiedź wskazuje na pomiar rezystancji izolacji przewodu w sieci jednofazowej, co jest kluczowym aspektem zapewnienia bezpieczeństwa w instalacjach elektrycznych. Na zrzucie ekranu widoczne są wartości rezystancji izolacji między przewodami, co pozwala na ocenę stanu izolacji. Wartości te wyrażane są w megaomach (MΩ), co jest standardem dla pomiarów izolacji, gdzie zaleca się, aby minimalna rezystancja izolacji wynosiła co najmniej 1 MΩ. Regularne pomiary rezystancji izolacji są zgodne z normą PN-EN 61557-2, która określa metody i wymagania dla takich badań. W praktyce, pomiar ten jest kluczowy dla identyfikacji ewentualnych defektów izolacji, które mogą prowadzić do porażenia prądem, a także do uszkodzeń urządzeń elektrycznych. Z tego powodu, zrozumienie i umiejętność interpretacji wyników pomiaru rezystancji izolacji jest niezbędne dla każdego technika elektryka.

Pytanie 22

Po zmianie przyłączenia elektrycznego w budynku zauważono, że trójfazowy silnik napędzający hydrofor kręci się w kierunku przeciwnym niż przed wymianą przyłącza. Co jest przyczyną takiego działania silnika?

A. brak podłączenia dwóch faz
B. brak podłączenia jednej fazy
C. zamiana jednej fazy z przewodem neutralnym
D. zamiana miejscami dwóch faz
Niepodłączenie dwóch faz, niepodłączenie jednej fazy oraz zamiana jednej fazy z przewodem neutralnym to błędne koncepcje wynikające z niepełnego zrozumienia zasad działania silników elektrycznych i trójfazowych układów zasilania. W przypadku niepodłączenia dwóch faz, silnik nie mógłby w ogóle pracować, ponieważ potrzebne są co najmniej trzy fazy do wygenerowania wirującego pola magnetycznego. Silniki asynchroniczne nie mogą działać na zasilaniu jednofazowym, ponieważ nie są w stanie wytworzyć wymaganego momentu obrotowego. Z kolei w sytuacji niepodłączenia jednej fazy, silnik mógłby działać, ale z obniżoną mocą, co również niebywale rzadko prowadziłoby do zmiany kierunku obrotu. Zamiana jednej fazy z przewodem neutralnym jest również niewłaściwym podejściem, ponieważ w takim przypadku silnik nie byłby w stanie uzyskać wystarczającego napięcia do poprawnej pracy, co skutkowałoby jego zatrzymaniem lub uszkodzeniem. Pamiętajmy, że prawidłowe podłączenie faz jest kluczowe nie tylko dla właściwego działania silników, ale także dla bezpieczeństwa całej instalacji elektrycznej. Typowe błędy myślowe, które prowadzą do takich niepoprawnych wniosków, obejmują nieznajomość zasad trójfazowego zasilania oraz nieuwzględnianie znaczenia kolejności faz w kontekście pracy silnika. Dlatego istotne jest, aby każdy technik lub elektryk posiadał wiedzę na temat konfiguracji oraz standardów instalacyjnych, aby uniknąć tego typu błędów w praktyce.

Pytanie 23

Który z przedstawionych zestawów wyłączników nadprądowych należy dobrać do zabezpieczenia obwodów pralki automatycznej i piekarnika w przedstawionej instalacji elektrycznej?

Ilustracja do pytania
A. Zestaw 3.
B. Zestaw 1.
C. Zestaw 2.
D. Zestaw 4.
Jak źle dobierzesz wyłączniki nadprądowe, to może być nieciekawie, zwłaszcza dla urządzeń elektrycznych. Zestaw 1 z wyłącznikiem o za dużej wartości nominalnej nie będzie działał jak trzeba przy przeciążeniu, a to może uszkodzić pralkę albo piekarnik. Wysokie wartości wyłączników potrafią spowolnić reakcję na awarie, co sprzyja przegrzewaniu sprzętów. A Zestaw 4 ma wyłącznik o za niskiej wartości, co wiąże się z częstymi wyłączeniami przy normalnym użytkowaniu – to może być denerwujące dla klientów. Zestaw 3 pokazuje, że dobór wyłączników nie powinien opierać się tylko na ich wartościach, ale też na charakterystyce sprzętów, które mają chronić. Często ludzie nie myślą o prądach startowych czy chwilowych skokach, które mogą być problematyczne przy uruchamianiu silników w pralce. Dobrze dobrany wyłącznik to taki, który odpowiada nie tylko obliczonemu prądowi roboczemu, ale także specyfice pracy danego sprzętu.

Pytanie 24

Na rysunku przedstawiono oprawę oświetleniową

Ilustracja do pytania
A. lampy przenośnej warsztatowej.
B. lampy biurowej z odbłyśnikiem.
C. wewnętrzną do lampy sodowej.
D. wewnętrzną do lampy punktowej.
Wybór pozostałych odpowiedzi wskazuje na niepełne zrozumienie charakterystyki opraw oświetleniowych oraz ich zastosowania. Odpowiedź wskazująca na lampę biurową z odbłyśnikiem nie uwzględnia faktu, że biurowe źródła światła są zazwyczaj projektowane do pracy w stabilnych warunkach z zachowaniem estetyki oraz ergonomii, a nie do intensywnego użytkowania w zmiennych warunkach, jak ma to miejsce w przypadku lamp przenośnych. Ponadto, lampy biurowe nie są wyposażone w dodatkowe zabezpieczenia przed uszkodzeniami mechanicznymi, co jest kluczowe w przypadku opraw przeznaczonych do warsztatów. Również, wybór lampy wewnętrznej do lampy sodowej jest błędny, ponieważ lampy sodowe są stosowane głównie w przestrzeniach zewnętrznych, takich jak ulice czy parkingi, co nie jest zgodne z kontekstem przedstawionym na zdjęciu. Z kolei lampa punktowa jest projektowana do oświetlania konkretnego miejsca, a nie do rozproszonego oświetlenia w trudnych warunkach, co również przeczy charakterystyce lampy przenośnej warsztatowej. Te nieprawidłowe odpowiedzi wynikają z braku uwzględnienia praktycznych zastosowań oraz specyfikacji technicznych różnych typów oświetlenia, co jest kluczowe w ich poprawnym odróżnianiu w kontekście zastosowań w przemyśle i codziennym życiu.

Pytanie 25

W jakim z podanych typów źródeł światła wykorzystuje się zapłonnik?

A. Świetlówka tradycyjna
B. Lampa sodowa
C. Lampa rtęciowa
D. Żarówka halogenowa
Wybór świetlówki tradycyjnej jako źródła światła, w którym stosuje się zapłonnik, jest poprawny z kilku powodów. Świetlówki, jako rodzaj lampy fluorescencyjnej, wymagają zapłonnika, aby uruchomić proces świecenia. Zapłonnik działa na zasadzie wytwarzania iskry, która inicjuje przepływ prądu przez gaz wewnątrz lampy, co jest niezbędne do emisji światła. W praktyce, zastosowanie świetlówek tradycyjnych jest szczególnie powszechne w biurach, szkołach oraz przestrzeniach komercyjnych, gdzie efektywność energetyczna jest kluczowa. Świetlówki zużywają znacznie mniej energii niż tradycyjne żarówki, a ich żywotność jest znacznie dłuższa, co czyni je bardziej ekologicznym oraz ekonomicznym rozwiązaniem. W branży oświetleniowej powszechnie uznaje się, że stosowanie odpowiednich zapłonników w świetlówkach jest standardem, co pozwala na optymalne działanie lamp oraz minimalizuje ryzyko awarii. Warto również zauważyć, że zapłonniki mogą być różne – od elektromagnetycznych po elektroniczne, co wpływa na wydajność i czas rozruchu lampy.

Pytanie 26

Jaką kategorię urządzeń elektrycznych reprezentują przekładniki prądowe?

A. Do indukcyjnych sprzęgieł dwukierunkowych
B. Do transformatorów
C. Do wzmacniaczy maszynowych
D. Do prądnic tachometrycznych
Wybór odpowiedzi spośród wzmacniaczy maszynowych, indukcyjnych sprzęgieł dwukierunkowych czy prądnic tachometrycznych wprowadza w błąd, gdyż te urządzenia pełnią zupełnie inne funkcje i mają odmienną budowę oraz zastosowanie. Wzmacniacze maszynowe są urządzeniami służącymi do wzmacniania sygnałów, co jest kluczowe w procesach automatyzacji i kontroli, ale nie mają bezpośredniego związku z pomiarami prądu. Indukcyjne sprzęgła dwukierunkowe z kolei są stosowane do transmisji momentu obrotowego między dwoma elementami, co również jest oddalone od funkcji przekładników prądowych. Prądnice tachometryczne natomiast są wykorzystywane do pomiaru prędkości obrotowej i koncentrują się na generowaniu sygnałów proporcjonalnych do prędkości obrotowej, co nie ma nic wspólnego z pomiarem prądu elektrycznego. Wybór nieodpowiednich odpowiedzi wynika często z mylnego skojarzenia funkcji tych urządzeń z ich zastosowaniami. Aby zrozumieć różnice, warto zwrócić uwagę na specyfikę działania każdego z tych urządzeń oraz ich zastosowanie w różnych dziedzinach, co jest istotne dla prawidłowego rozumienia i wykorzystania technologii elektrycznej.

Pytanie 27

Odbiornik elektryczny można przyłączyć do sieci typu TN-S stosując gniazdo umieszczone na rysunku

Ilustracja do pytania
A. B.
B. D.
C. C.
D. A.
Gniazdo typu B jest odpowiednie dla systemu TN-S, ponieważ zapewnia oddzielne zaciski dla przewodów ochronnego PE i neutralnego N. W systemie TN-S, kluczowym aspektem jest zachowanie separacji między tymi dwoma przewodami na całej długości instalacji, co minimalizuje ryzyko zakłóceń i zapewnia bezpieczeństwo użytkowników. Przykład zastosowania gniazda typu B można znaleźć w instalacjach elektrycznych w budynkach komercyjnych, gdzie stosowane są różnorodne odbiorniki elektryczne wymagające niezawodnego uziemienia oraz neutralnego przewodu. Dzięki oddzieleniu tych przewodów, osoby obsługujące gniazdo są lepiej chronione przed porażeniem elektrycznym. Zgodność z normami takimi jak PN-EN 60364-4-41, które określają wymagania dotyczące ochrony przed porażeniem elektrycznym, jest kluczowa dla zapewnienia wysokiego poziomu bezpieczeństwa w instalacjach elektrycznych.

Pytanie 28

Jaką rolę odgrywa wyzwalacz elektromagnetyczny w wyłączniku nadprądowym?

A. Zatrzymuje łuk elektryczny
B. Napina sprężynę mechanizmu
C. Rozpoznaje zwarcia
D. Identyfikuje przeciążenia
Wybór odpowiedzi dotyczącej gaszenia łuku elektrycznego jest mylny, ponieważ proces ten nie jest bezpośrednio związany z funkcją wyzwalacza elektromagnetycznego. Wyłączniki nadprądowe, przy wykrywaniu zwarcia, mogą generować łuk elektryczny, który jest następnie gaszony przez specjalne mechanizmy w urządzeniach, takich jak komory gaszenia łuku. W związku z tym, gaszenie łuku to proces, który zachodzi po detekcji zwarcia, a nie jest funkcją wyzwalacza. Ponadto, odpowiedź odnosząca się do wykrywania przeciążeń jest również nieprawidłowa, ponieważ wyzwalacz elektromagnetyczny skupia się głównie na detekcji zwarć, a przeciążenia są zwykle rozpoznawane przez funkcję wyzwalacza termicznego, który działa na zasadzie wydłużania się elementu bimetalowego pod wpływem ciepła generowanego przez przepływający prąd. Naciąganie sprężyny napędu, chociaż istotne w niektórych mechanizmach wyłączników, nie ma żadnego związku z funkcjami wyzwalacza elektromagnetycznego. W praktyce, mylenie funkcji tych komponentów prowadzi do nieporozumień w zakresie projektowania systemów zabezpieczeń elektrycznych, co może skutkować niewłaściwym doborem urządzeń oraz potencjalnym zagrożeniem dla użytkowników i sprzętu.

Pytanie 29

Jaki stopień ochrony powinno mieć urządzenie, które jest odporne na działanie wody zalewającej obudowę z każdej strony?

A. IPX5
B. IPX2
C. IPX3
D. IPX4
Stopień ochrony IPX5 oznacza, że urządzenie jest odporne na strumienie wody z dowolnego kierunku, co czyni je odpowiednim do użytku w warunkach, gdzie może być narażone na wody strugą. W praktyce, urządzenia o tym stopniu ochrony mogą być stosowane w różnych zastosowaniach, na przykład w oświetleniu zewnętrznym, sprzęcie audio w plenerze, czy urządzeniach wykorzystywanych w środowiskach przemysłowych, gdzie mogą być narażone na zachlapanie wodą. Zrozumienie klas ochrony IP jest kluczowe dla zapewnienia trwałości i niezawodności urządzeń, a także dla zachowania bezpieczeństwa użytkowników. Standardy, takie jak IEC 60529, definiują te klasyfikacje, pomagając producentom i użytkownikom w doborze sprzętu odpowiedniego do specyficznych warunków eksploatacji. Dlatego znajomość stopni ochrony IP, w tym IPX5, jest istotna dla inżynierów, projektantów i techników, którzy pracują nad rozwiązaniami odpornymi na czynniki zewnętrzne.

Pytanie 30

Na podstawie przedstawionego schematu ideowego, określ jaki błąd popełniono przy montażu instalacji elektrycznej podtynkowej ułożonej w rurach.

Ilustracja do pytania
A. Zastosowano niewłaściwy typ łącznika instalacyjnego.
B. W rury wciągnięto niewłaściwą liczbę przewodów.
C. Błędnie połączono przewody instalacji do zacisków żyrandola.
D. W instalacji nieprawidłowo połączono przewód ochronny.
Błędne odpowiedzi, takie jak niewłaściwe połączenie przewodów instalacji do zacisków żyrandola czy niesprawidłowe połączenie przewodu ochronnego, wynikają z niepełnego zrozumienia zasady działania instalacji elektrycznych. W przypadku pierwszego błędu, pomylenie przewodów może prowadzić do poważnych zagrożeń, takich jak zwarcie czy uszkodzenie sprzętu, co negatywnie wpływa na bezpieczeństwo użytkowników. Z kolei niepoprawne połączenie przewodu ochronnego wprowadza ryzyko porażenia prądem, co jest sprzeczne z fundamentalnymi zasadami bezpieczeństwa, określonymi w normach takich jak PN-IEC 60364. Drugą nieprawidłową koncepcją jest zrozumienie liczby przewodów w instalacji. W przypadku stosowania zbyt wielu przewodów w rurze, może dojść do ich przegrzewania i uszkodzenia izolacji, co stwarza ryzyko pożaru. W praktyce, projektanci instalacji muszą przestrzegać odpowiednich standardów dotyczących liczby przewodów, które mogą być prowadzone w danej rurze, aby zachować optymalne warunki pracy i bezpieczeństwo. Zrozumienie tych zasad jest kluczowe dla prawidłowego montażu i eksploatacji systemów elektrycznych, co powinno być priorytetem dla każdego specjalisty w branży.

Pytanie 31

Jakie zabezpieczenie przed porażeniem prądem w przypadku pośredniego dotyku zostało wdrożone, gdy pojedynczy odbiornik jest zasilany za pośrednictwem transformatora o przekładni 230 V/230 V, który jest skonstruowany w taki sposób, że nie można doprowadzić do zwarcia między jego uzwojeniami?

A. Podwójna lub wzmocniona izolacja
B. Izolowanie miejsca pracy
C. Izolacja odbiornika
D. Ochronne obniżenie napięcia
Izolowanie stanowiska jest koncepcją, która w teorii ma na celu zabezpieczenie osób pracujących w pobliżu urządzeń elektrycznych. Jednak nie zapewnia ona pełnej ochrony przed dotykiem pośrednim. Działa głównie w sytuacjach, gdy istnieje bezpośredni kontakt z elementami, które mogą stwarzać zagrożenie, ale nie eliminuje ryzyka, jakie może wynikać z nieprawidłowego działania transformatora. Z kolei podwójna lub wzmocniona izolacja to rozwiązanie, które stosuje się w przypadku urządzeń, gdzie istnieje ryzyko porażenia prądem ze względu na łatwy dostęp do elementów pod napięciem. Mimo że takie podejście jest skuteczne w wielu zastosowaniach, w omawianym przypadku, gdy transformator jest odpowiednio skonstruowany, izolacja nie ma kluczowego znaczenia. Ochronne obniżenie napięcia to osobna strategia, która polega na zredukowaniu napięcia do poziomu, który nie stanowi zagrożenia. Jednakże również nie jest adekwatne w kontekście analizy transformatora z jedną przekładnią, ponieważ nie eliminuje ryzyka, a jedynie je minimalizuje. Głównym błędem w rozumowaniu mogą być założenia, że każda z tych metod jest wystarczająca w każdej sytuacji, co prowadzi do nieprawidłowych decyzji w zakresie ochrony przed porażeniem elektrycznym.

Pytanie 32

Aparat pokazany na zdjęciu chroni instalację elektryczną mieszkania przed

Ilustracja do pytania
A. przeciążeniem.
B. zwarciem.
C. upływem prądu.
D. przepięciem.
Odpowiedzi, które wskazują na przepięcie, przeciążenie czy zwarcie, zawierają istotne nieporozumienia dotyczące funkcji wyłącznika różnicowoprądowego. Przepięcia to nagłe wzrosty napięcia, które mogą wystąpić na skutek wyładowań atmosferycznych lub awarii sieci energetycznej. Choć mogą one prowadzić do uszkodzenia urządzeń elektrycznych, wyłącznik RCD nie jest zaprojektowany do ich detekcji czy ochrony przed nimi. Z kolei przeciążenie dotyczy sytuacji, w której przez obwód płynie zbyt duży prąd, co prowadzi do przegrzewania się przewodów i potencjalnych pożarów. W takich przypadkach stosuje się zabezpieczenia nadprądowe, a nie wyłączniki różnicowoprądowe. Zwarcia natomiast to sytuacje, w których przewody fazowe stykają się ze sobą lub z przewodem neutralnym, co powoduje znaczny wzrost prądu. Ochrona przed zwarciem realizowana jest poprzez zastosowanie odpowiednich zabezpieczeń, takich jak bezpieczniki czy wyłączniki nadprądowe. Wyłącznik różnicowoprądowy chroni wyłącznie przed skutkami upływu prądu do ziemi i nie ma zdolności do monitorowania przepięć, przeciążeń ani zwarć, co jest kluczowe dla zrozumienia jego roli w instalacji elektrycznej. W związku z tym, nieprawidłowe zrozumienie funkcji RCD może prowadzić do błędnych decyzji związanych z bezpieczeństwem instalacji elektrycznej.

Pytanie 33

W wyniku uszkodzenia mechanicznego obudowa gniazda wtyczkowego w łazience uległa zniszczeniu. Co w takiej sytuacji powinno się zrobić?

A. uszczelnić pęknięcia za pomocą kleju do tworzywa
B. wymienić gniazdo na nowe
C. zakleić gniazdo taśmą izolacyjną
D. zdemontować gniazdo i zaślepić puszkę
Uszczelnianie pęknięć klejem do tworzywa czy sklejanie gniazda taśmą izolacyjną to podejścia, które mogą wydawać się tymczasowymi rozwiązaniami, lecz w rzeczywistości wprowadzają poważne ryzyko. Klejenie uszkodzonych elementów nie zapewnia odpowiedniej izolacji elektrycznej ani wytrzymałości mechanicznej, co może prowadzić do dalszych uszkodzeń i zagrażać bezpieczeństwu użytkowników. W kontekście instalacji elektrycznych, każda naprawa powinna być przeprowadzana z zachowaniem norm bezpieczeństwa, a nie prowizorycznymi metodami. Taśma izolacyjna, chociaż użyteczna w wielu sytuacjach, nie jest przeznaczona do naprawy uszkodzeń strukturalnych gniazda, a jej zastosowanie w tym przypadku może prowadzić do przegrzania przewodów, co zwiększa ryzyko pożaru. Kluczowe jest zrozumienie, że gniazda powinny być wolne od wszelkich uszkodzeń, szczególnie w środowisku o podwyższonej wilgotności, jakim jest łazienka. Wymontowanie gniazda i zaślepienie puszki również nie jest trwałym rozwiązaniem, a jedynie eliminacją problemu, co może prowadzić do sytuacji, w której w przyszłości użytkownik po prostu nie będzie miał dostępu do energii elektrycznej w danym miejscu. W przypadku uszkodzenia, najlepiej jest skonsultować się z profesjonalnym elektrykiem, który oceni sytuację i zainstaluje nowe gniazdo zgodnie z obowiązującymi normami, zapewniając tym samym bezpieczeństwo i funkcjonalność instalacji.

Pytanie 34

W którym układzie sieciowym występuje przewód oznaczany przedstawionym symbolem graficznym?

Ilustracja do pytania
A. TN-C
B. TT
C. TN-S
D. IT
Odpowiedź TN-C jest prawidłowa, ponieważ przedstawiony symbol graficzny oznacza przewód PEN, który pełni zarówno funkcję przewodu ochronnego, jak i neutralnego. W układzie TN-C przewód PEN jest używany do ochrony przed porażeniem elektrycznym oraz zapewnia powrotną drogę prądu w przypadku awarii. Taki układ jest szczególnie popularny w instalacjach przemysłowych oraz w budynkach mieszkalnych, gdzie wymagane jest zwiększenie poziomu bezpieczeństwa. Dobre praktyki branżowe wskazują, że zastosowanie przewodu PEN w układzie TN-C zapewnia optymalne warunki pracy urządzeń oraz minimalizuje ryzyko uszkodzeń. Warto również dodać, że stosowanie układu TN-C jest zgodne z normami PN-IEC 60364, które określają zasady projektowania instalacji elektrycznych w budynkach. Dlatego zrozumienie roli przewodu PEN w tym układzie jest kluczowe dla każdego specjalisty zajmującego się elektryką.

Pytanie 35

Jaką wartość bezwzględną ma błąd pomiaru natężenia prądu, jeżeli multimetr pokazał wynik 35,00 mA, a producent określił dokładność urządzenia dla używanego zakresu pomiarowego jako ±(1 % +2) cyfry?

A. ±0,35 mA
B. ±0,37 mA
C. ±2,35 mA
D. ±0,02 mA
W przypadku obliczania błędu pomiarowego, niektóre osoby mogą błędnie interpretować podaną dokładność miernika. Zwykle błąd pomiarowy składa się z dwóch komponentów: błędu procentowego oraz wartości stałej. W opisywanym przypadku, dokładność miernika wynosi ±(1 % +2), co oznacza, że należy to wyraźnie zrozumieć, jako wpływ zarówno względny, jak i bezwzględny na dokładność pomiaru. Wybór wartości ±0,35 mA jako błędu pomiarowego może sugerować, że osoba skupia się wyłącznie na składniku procentowym, ignorując istotny dodatek 2 mA. Takie podejście prowadzi do zaniżenia rzeczywistego błędu, co może skutkować niepoprawnymi wnioskami w analizach eksperymentalnych. Inna niepoprawna odpowiedź, która sugeruje ±2,35 mA, wynika z nieprawidłowego zrozumienia granic błędu pomiarowego; wartość ta jest zbyt wysoka w odniesieniu do rzeczywistych pomiarów, ponieważ przy podanych wartościach, jak 35 mA, błąd powinien być znacznie mniejszy. Osoby myślące, że błąd pomiarowy może być tak duży, mogą nie zrozumieć zasadniczej różnicy pomiędzy błędem całkowitym a rzeczywistym błędem odczytu. W kontekście praktycznym, takie błędne interpretacje mogą prowadzić do efektywnych strat w projektach inżynieryjnych, gdzie dokładność pomiarów jest kluczowa dla bezpieczeństwa i efektywności urządzeń. Warto zaznaczyć, że każdy pomiar powinien być analizowany zarówno pod kątem błędów systematycznych, jak i losowych, co jeszcze bardziej podkreśla znaczenie dokładności w kontekście zastosowań przemysłowych.

Pytanie 36

Który z przedstawionych rdzeni stosowany jest do produkcji transformatora toroidalnego?

Ilustracja do pytania
A. B.
B. A.
C. D.
D. C.
Wybór innej odpowiedzi, jak A, B lub D, może wynikać z braku zrozumienia kluczowych cech rdzeni stosowanych w transformatorach toroidalnych. Rdzenie oznaczone innymi literami nie mają kształtu pierścienia, co jest fundamentalną cechą rdzeni toroidalnych. Na przykład, rdzenie prostokątne lub cylindryczne, które mogą być sugerowane przez inne odpowiedzi, są często stosowane w standardowych transformatorach, ale charakteryzują się wyższymi stratami energetycznymi z powodu tzw. efektu bocznego strumienia, który prowadzi do rozpraszania energii. To zjawisko jest niezwykle istotne w kontekście projektowania efektywnych systemów zasilania. Wybór niewłaściwego rdzenia może również wpłynąć na gabaryty urządzenia, co w przypadku zastosowań wymagających kompaktowych rozmiarów, jak w elektronice użytkowej, ma kluczowe znaczenie. Warto zwrócić uwagę na typowe błędy myślowe, takie jak zbyt ogólne podejście do klasyfikacji rdzeni, co może prowadzić do niepoprawnych wniosków. Aby poprawnie zrozumieć, dlaczego rdzeń toroidalny jest najlepszym wyborem, ważne jest, aby zwrócić uwagę na jego zastosowanie w kontekście specyfikacji technicznych oraz efektywności energetycznej, co jest kluczowe w nowoczesnym projektowaniu urządzeń elektronicznych.

Pytanie 37

Która zależność musi być spełniona podczas wymiany uszkodzonych przewodów instalacji elektrycznej i ewentualnej zmiany ich zabezpieczeń nadprądowych?

Iz – prąd obciążalności długotrwałej przewodu
IN – prąd znamionowy zabezpieczenia przeciążeniowego
IB – prąd wynikający z przewidywanej mocy przesyłanej przewodem
A. IB ≤ IN ≤ IZ
B. IB ≤ IZ ≤ IN
C. IZ ≤ IN ≤ IB
D. IN ≤ IB ≤ IZ
Odpowiedź IB ≤ IN ≤ IZ jest prawidłowa, ponieważ odzwierciedla fundamentalne zasady projektowania instalacji elektrycznych. Prąd znamionowy obciążenia (IB) powinien być zawsze mniejszy lub równy prądowi znamionowemu zabezpieczenia przeciążeniowego (IN), aby zabezpieczenie mogło poprawnie zadziałać w przypadku nadmiernego obciążenia. Z kolei IN musi być mniejsze lub równe prądowi obciążalności długotrwałej przewodu (IZ), co zapewnia, że przewód nie ulegnie przegrzaniu ani uszkodzeniu w trakcie normalnej pracy. Takie podejście zgodne jest z normami, takimi jak PN-IEC 60364, które podkreślają znaczenie odpowiedniego doboru zabezpieczeń i przewodów. Przykładowo, w przypadku instalacji oświetleniowej, jeśli przewody mają maksymalną obciążalność 10 A (IZ), a przewidywane obciążenie to 8 A (IB), to zabezpieczenie powinno mieć wartość 10 A (IN). Taki dobór zabezpieczenia pozwala na ochronę zarówno przewodów, jak i urządzeń podłączonych do instalacji.

Pytanie 38

W jakim celu należy użyć przyrządu przedstawionego na rysunku?

Ilustracja do pytania
A. Punktowego przenoszenia wysokości.
B. Pomiaru natężenia oświetlenia.
C. Wykrywania przewodów pod tynkiem.
D. Pomiaru prędkości obrotowej wałów.
Udzielenie odpowiedzi dotyczącej pomiaru prędkości obrotowej wałów, natężenia oświetlenia czy punktowego przenoszenia wysokości pokazuje nieporozumienie w zakresie zastosowania detektorów. Prędkość obrotowa wałów to parametr, który można mierzyć za pomocą tachometrów, a nie detektorów przewodów, które nie są przystosowane do tak specyficznych zadań. Z kolei pomiar natężenia oświetlenia wymaga użycia luksomierzy, które służą do oceny jasności w danym pomieszczeniu, a nie do lokalizacji obiektów w ścianach. Punktowe przenoszenie wysokości odnosi się do metod geodezyjnych, które również nie mają związku z funkcjonalnością detektorów przewodów. Użycie niewłaściwego przyrządu do konkretnego zadania może prowadzić do błędnych pomiarów oraz potencjalnych uszkodzeń sprzętu. W praktyce, wybór odpowiednich narzędzi do danego zadania jest kluczowy. Ignorowanie właściwych zastosowań detektorów i wybieranie ich z pomieszaniem terminologii może skutkować nie tylko nieefektywnością, ale także narażeniem na niebezpieczeństwo, co jest szczególnie istotne w kontekście prac budowlanych i remontowych. Dlatego znajomość przeznaczenia urządzeń oraz ich specyfikacji technicznych jest fundamentalna w każdym profesjonalnym środowisku.

Pytanie 39

Izolację przewodu YDY 5x6 450/700 V należy kontrolować induktorem przy napięciu

A. 250 V
B. 1000 V
C. 2500 V
D. 500 V
Stosowanie napięcia 500 V, 250 V czy 2500 V do pomiaru rezystancji izolacji przewodu YDY 5x6 450/700 V jest nieprawidłowe z kilku powodów. Napięcie 500 V jest zbyt niskie, aby skutecznie ocenić stan izolacji, szczególnie w przypadku przewodów o niższej klasie napięcia, które mogą wykazywać defekty poddawane jedynie wyższym napięciom. Zastosowanie zbyt niskiego napięcia może prowadzić do fałszywie pozytywnych wyników, co skutkuje błędną oceną stanu izolacji i potencjalnym zagrożeniem bezpieczeństwa. Z kolei 250 V jest jeszcze niższe i również nie dostarcza wystarczającej energii do wykrycia ewentualnych uszkodzeń izolacji. Przeciwnie, napięcie 2500 V jest zbyt wysokie dla tego typu przewodów i może doprowadzić do uszkodzenia izolacji, co w konsekwencji może spowodować poważne awarie systemu elektrycznego. Z tego powodu kluczowe jest stosowanie napięć, które są zgodne z normami i zaleceniami branżowymi, aby zapewnić zarówno dokładność pomiarów, jak i bezpieczeństwo instalacji. Warto w tym kontekście przypomnieć, że zgodnie z normą PN-EN 60364-4-6, pomiar rezystancji izolacji powinien być przeprowadzany przy napięciu 1000 V dla instalacji o napięciu do 1000 V, co podkreśla znaczenie stosowania odpowiednich wartości napięcia w praktyce inżynieryjnej.

Pytanie 40

Który z wymienionych elementów nie ma wpływu na konieczną częstotliwość przeprowadzania przeglądów okresowych instalacji elektrycznej?

A. Funkcja budynku
B. Warunki atmosferyczne, którym podlega instalacja
C. Liczba odbiorników zasilanych z instalacji
D. Typ instalacji
Warunki zewnętrzne, przeznaczenie budynku oraz rodzaj instalacji mają istotny wpływ na częstotliwość sprawdzeń okresowych instalacji elektrycznej. Użytkownicy często mylą te aspekty z liczbą zainstalowanych odbiorników, co jest błędnym podejściem. Warunki zewnętrzne, takie jak wilgotność, temperatura czy zanieczyszczenia, mogą znacznie wpłynąć na stan techniczny instalacji. Na przykład, w obiektach narażonych na wysoką wilgotność, takich jak baseny czy obiekty przemysłowe, instalacje elektryczne powinny być poddawane bardziej skrupulatnym inspekcjom. Przeznaczenie budynku także odgrywa kluczową rolę; budynki użyteczności publicznej muszą spełniać wyższe standardy bezpieczeństwa, co wiąże się z koniecznością częstszych przeglądów. Rodzaj instalacji również wpływa na wymagania dotyczące częstotliwości badań. Na przykład, instalacje wykonane w trudnych warunkach, takie jak w przemyśle chemicznym, wymagają regularnych sprawdzeń z uwagi na ryzyko uszkodzenia. Powszechne jest myślenie, że im więcej odbiorników, tym większe ryzyko, co w rzeczywistości nie jest głównym czynnikiem determinującym potrzebę przeglądów. Kluczowe jest zrozumienie, że bezpieczeństwo elektryczne powinno opierać się na analizie ryzyka, a nie tylko na liczbie odbiorników w instalacji.