Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 8 grudnia 2025 10:03
  • Data zakończenia: 8 grudnia 2025 10:29

Egzamin zdany!

Wynik: 37/40 punktów (92,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Praska do zaciskania końcówek tulejkowych może być użyta do montażu końcówki przedstawionej na rysunku

Ilustracja do pytania
A. A.
B. C.
C. D.
D. B.
Praska do zaciskania końcówek tulejkowych to narzędzie kluczowe w procesie montażu połączeń przewodów elektrycznych. Odpowiedź C jest poprawna, ponieważ przedstawiona na rysunku końcówka jest tulejką z izolacją, co czyni ją idealną do użycia z prasą. Tulejki kablowe z izolacją stosuje się, aby zapewnić bezpieczne i trwałe połączenie, a ich zaciskanie przy użyciu pras zapewnia odpowiednią siłę i kontrolę, co jest zgodne z najlepszymi praktykami w elektrotechnice. Dzięki zastosowaniu tego narzędzia, użytkownik minimalizuje ryzyko uszkodzeń przewodów oraz zwiększa jakość połączenia. Ważne jest również, aby stosować odpowiednie tulejki do konkretnego przekroju przewodu, co zapewnia optymalne działanie instalacji. Dodanie smaru izolacyjnego lub zastosowanie komponentów zgodnych z normami IEC 60947-1 i IEC 60364 może dodatkowo poprawić bezpieczeństwo i efektywność elektrycznego połączenia.

Pytanie 2

Olej hydrauliczny klasy HL to olej

A. mineralny posiadający właściwości antykorozyjne
B. mineralny bez dodatków uszlachetniających
C. o polepszonych parametrach lepkości i temperatury
D. syntetyczny
Olej hydrauliczny HL to mineralny olej, który ma fajne właściwości antykorozyjne. Jest używany w hydraulice, gdzie trzeba dbać o to, żeby nie było rdzy, a lepkość była w porządku. To oznaczenie HL znaczy, że olej jest naprawdę dobrej jakości i spełnia normy ISO 6743-4. Dlatego często wykorzystuje się go w maszynach, jak prasy czy dźwigi, gdzie niezawodność to podstawa. Dzięki jego właściwościom, olej ten pomaga wydłużyć żywotność elementów układu hydraulicznego, co z czasem pozwala zaoszczędzić trochę pieniędzy na eksploatacji. No i pamiętaj, że jak chcesz, żeby maszyny działały sprawnie i w miarę wiekowe były w dobrym stanie, to musisz stosować odpowiednie oleje jak HL, bo to jest ważne dla gwarancji i efektywności pracy.

Pytanie 3

Gdy ciśnienie w zbiorniku kompresora rośnie, zakładając, że wilgotność i temperatura powietrza pozostają niezmienne, stan pary wodnej w zgromadzonym powietrzu

A. oddala się od linii punktu rosy
B. nie zmienia się w stosunku do linii punktu rosy
C. nie zmienia się, pod warunkiem, że wilgotność absolutna jest stała
D. zbliża się do linii punktu rosy
Wzrost ciśnienia w zbiorniku sprężarki powoduje, że powietrze staje się bardziej sprężone. Przy stałej wilgotności i temperaturze, wilgotność względna powietrza wzrasta, co oznacza, że stan pary wodnej w powietrzu zbliża się do linii punktu rosy. Linia punktu rosy jest granicą, przy której para wodna zaczyna kondensować w ciecz. W praktyce, im wyższe ciśnienie, tym więcej pary wodnej może być obecne w powietrzu, co prowadzi do podwyższenia ciśnienia cząstkowego pary wodnej. W zastosowaniach przemysłowych, kontrola ciśnienia i wilgotności powietrza jest kluczowa, zwłaszcza w procesach, w których może wystąpić kondensacja, jak w systemach pneumatycznych czy podczas przechowywania materiałów wrażliwych na wilgoć. Przykładowo, w przemyśle spożywczym lub farmaceutycznym, monitoring tych parametrów zapewnia, że procesy technologiczne przebiegają zgodnie z normami jakości, co z kolei wpływa na trwałość oraz bezpieczeństwo produktów końcowych.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Jakiego koloru powinna być izolacja przewodu neutralnego w instalacji elektrycznej typu TN–S?

A. Brązowym
B. Czarnym
C. Niebieskim
D. Żółtym
Izolacja przewodu neutralnego w instalacji elektrycznej typu TN-S powinna być koloru niebieskiego. Zgodnie z międzynarodowymi standardami oraz normami, takimi jak PN-IEC 60446, kolor niebieski jest zarezerwowany dla przewodów neutralnych, co pozwala na ich jednoznaczną identyfikację w instalacjach elektrycznych. W praktyce, poprawne oznaczenie przewodów ma kluczowe znaczenie dla bezpieczeństwa pracy oraz minimalizowania ryzyka pomyłek podczas wykonywania napraw czy modyfikacji instalacji. Przykładowo, w sytuacji awaryjnej, gdy konieczna jest szybka interwencja, jednoznaczne oznaczenie przewodów neutralnych pozwala elektrykom na sprawniejsze podejmowanie decyzji oraz eliminowanie zagrożeń. Dodatkowo, stosowanie standardowych kolorów znacznie ułatwia pracę w zespole, gdyż każdy technik, niezależnie od doświadczenia, rozumie, jakie znaczenie mają poszczególne kolory przewodów, a tym samym może pracować bardziej efektywnie i bezpiecznie.

Pytanie 6

Wskaż gatunek stali, z której należy wykonać niepodatne na korozję żaroodporne ramię robota przemysłowego.

Ilustracja do pytania
A. 1.0037
B. 1.2311
C. 1.4541
D. 1.3343
Stal 1.4541, znana również jako stal austenityczna, nierdzewna i żaroodporna, charakteryzuje się wysoką odpornością na korozję oraz stabilnością w wysokich temperaturach. Zawiera istotne ilości chromu i niklu, co wpływa na jej strukturę i właściwości. Użycie takiej stali w konstrukcji ramion robotów przemysłowych jest zgodne z najlepszymi praktykami inżynieryjnymi, szczególnie w aplikacjach, gdzie wymagane są odporność na działanie agresywnych substancji chemicznych oraz zdolność do pracy w trudnych warunkach termicznych. Przykładowo, w branży automatyzacji przemysłowej, roboty wyposażone w elementy ze stali 1.4541 mogą być stosowane w procesach spawania, pakowania, czy transportu w warunkach wysokiej wilgotności lub wysokich temperatur. Dodatkowo, stal ta spełnia normy dotyczące materiałów do kontaktu z żywnością, co czyni ją jeszcze bardziej uniwersalnym wyborem.

Pytanie 7

Żarówka świeci w układzie przedstawionym na schemacie

Ilustracja do pytania
A. D.
B. B.
C. A.
D. C.
Żarówka świeci w układzie przedstawionym na schemacie B, ponieważ dioda jest podłączona zgodnie z kierunkiem przepływu prądu. W tym układzie anoda diody jest podłączona do dodatniego bieguna zasilania, a katoda do bieguna ujemnego, co umożliwia przepływ prądu w kierunku przewodzenia diody. Przykładowo, w praktycznych zastosowaniach, takie jak układy oświetleniowe, kluczowe jest zapewnienie poprawnego połączenia diody w celu zapewnienia niezawodności działania. W przypadku diod LED, ich podłączenie w odwrotnym kierunku może prowadzić do uszkodzenia komponentu. Dobrą praktyką jest zawsze sprawdzanie symboli na diodzie oraz schematów połączeń, aby uniknąć problemów z przepływem prądu. Ponadto, stosując odpowiednie rezystory w szeregowych układach, można kontrolować ilość prądu wpływającego do diody, co zapobiega jej przegrzaniu i przedłuża żywotność. Wiedza o prawidłowym podłączaniu diod jest niezbędna w dziedzinie automatyki i elektroniki, gdzie zapewnienie bezpieczeństwa i funkcjonalności układów jest priorytetem.

Pytanie 8

Na ilustracji przedstawiono sprzęgło

Ilustracja do pytania
A. elastyczne palcowe.
B. jednokierunkowe.
C. elastyczne kłowe.
D. pierścieniowe.
Odpowiedź "elastyczne kłowe" jest prawidłowa, ponieważ na ilustracji rzeczywiście przedstawiono sprzęgło tego typu. Sprzęgła elastyczne kłowe składają się z dwóch elementów, które są połączone za pomocą elastycznych kłów, co umożliwia przenoszenie momentu obrotowego przy zachowaniu zdolności do kompensowania niewielkich przemieszczeń. Czerwony element z tworzywa sztucznego, widoczny na ilustracji, jest kluczowy dla tego mechanizmu, ponieważ jego elastyczność pozwala na zminimalizowanie wstrząsów oraz ochronę przed nadmiernym zużyciem wałów. Te sprzęgła są szeroko stosowane w różnych aplikacjach przemysłowych, w tym w napędach elektrycznych, gdzie konieczna jest elastyczność w przenoszeniu momentu obrotowego, a także w maszynach, które wymagają precyzyjnego pozycjonowania. Standardy ISO oraz dobre praktyki inżynieryjne zalecają ich stosowanie w aplikacjach, gdzie wymagana jest wysoka niezawodność i długowieczność komponentów. Warto pamiętać, że elastyczne sprzęgła kłowe są także istotnym elementem w systemach automatyki, gdzie precyzja i elastyczność są kluczowe dla sprawnego działania.

Pytanie 9

Przekładnia przedstawiona na rysunku składa się

Ilustracja do pytania
A. ze ślimaka i zębatki.
B. z wieńca zębatego i ślimaka.
C. z koła koronowego i ślimaka.
D. ze ślimaka i ślimacznicy.
Poprawna odpowiedź wskazuje na skład przekładni, która składa się z ślimaka oraz ślimacznicy. Ślimak jest elementem o spiralnym kształcie, który zazwyczaj pełni rolę elementu napędowego. Jego konstrukcja pozwala na wytwarzanie ruchu obrotowego, który jest następnie przenoszony na ślimacznicę – koło z zębami wewnętrznymi, które współpracuje z ślimakiem. Ta specyficzna kombinacja elementów mechanicznych jest szeroko stosowana w różnych aplikacjach inżynieryjnych, np. w przekładniach stosowanych w maszynach przemysłowych, w mechanizmach w windach czy w układach napędowych. Dzięki spiralnej geometrii, przekładnie ślimakowe charakteryzują się dużą zdolnością do przenoszenia momentu obrotowego oraz możliwością redukcji prędkości obrotowej. Tego rodzaju przekładnie są cenione za swoją kompaktowość oraz efektywność, co sprawia, że są zgodne z nowoczesnymi standardami projektowania inżynieryjnego, które kładą nacisk na wydajność oraz niezawodność.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Która metoda regulacji prędkości obrotowej silnika obcowzbudnego prądu stałego umożliwi efektywną regulację w szerokim zakresie od 0 do nn?

A. Napięciem przyłożonym do obwodu wzbudzenia
B. Rezystancją w obwodzie twornika
C. Napięciem przyłożonym do obwodu twornika
D. Rezystancją w obwodzie wzbudzenia
Napięcie przyłożone do obwodu twornika silnika obcowzbudnego prądu stałego jest kluczowym parametrem wpływającym na prędkość obrotową silnika. Zwiększenie napięcia powoduje wzrost prędkości obrotowej, podczas gdy obniżenie napięcia prowadzi do jej zmniejszenia. Taka regulacja jest szczególnie efektywna, gdyż pozwala na uzyskanie szerokiego zakresu prędkości od 0 do n<sub>n</sub> bez istotnych strat mocy oraz przy zachowaniu wysokiej sprawności energetycznej. W praktyce, ta metoda jest stosowana w aplikacjach takich jak napędy wózków widłowych czy w systemach automatyki, gdzie precyzyjne sterowanie prędkością jest kluczowe. Ponadto, zgodnie z zasadami dobrych praktyk w inżynierii, ta metoda regulacji jest preferowana ze względu na prostotę obsługi i łatwość implementacji w obwodach elektronicznych. Warto zaznaczyć, że stosowanie odpowiednich układów elektronicznych, jak np. falowniki DC, może znacznie ułatwić to zadanie, oferując dodatkowe funkcje, takie jak zabezpieczenia przed przeciążeniami.

Pytanie 12

Który rodzaj smaru powinien być zastosowany do lubrykantowania elementów wykonanych z plastiku?

A. Smar grafitowy
B. Smar litowy
C. Smar molibdenowy
D. Smar silikonowy
Smar silikonowy jest odpowiednim wyborem do smarowania elementów plastikowych z kilku istotnych powodów. Przede wszystkim, silikon jest materiałem, który nie reaguje chemicznie z większością tworzyw sztucznych, co minimalizuje ryzyko ich degradacji czy uszkodzeń. Działa również jako doskonały środek smarny, który zmniejsza tarcie między ruchomymi częściami, co prowadzi do dłuższej żywotności elementów. Smary silikonowe są często stosowane w przemyśle motoryzacyjnym oraz przy produkcji zabawek i sprzętu AGD, gdzie plastikowe komponenty są powszechnie używane. Dodatkowo, smary silikonowe są odporne na działanie wysokich temperatur oraz wilgoci, co czyni je uniwersalnym rozwiązaniem w wielu zastosowaniach. Warto również zauważyć, że smar silikonowy nie przyciąga kurzu, co jest kluczowe w przypadku zastosowań, gdzie czystość powierzchni jest istotna. Zastosowanie smaru silikonowego w odpowiednich aplikacjach jest zgodne z zaleceniami producentów i dobrymi praktykami branżowymi, co zapewnia optymalne funkcjonowanie elementów plastikowych.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Elementy, które umożliwiają przepływ medium wyłącznie w jednym kierunku, to zawory

A. regulacyjne
B. dławiące
C. zwrotne
D. rozdzielające
Zawory zwrotne, znane również jako zawory jednostronne, pełnią kluczową rolę w systemach hydraulicznych i pneumatycznych, zapewniając przepływ czynnika roboczego tylko w jednym kierunku. Ich podstawowym zadaniem jest zapobieganie cofaniu się cieczy lub gazu, co może prowadzić do poważnych uszkodzeń urządzeń oraz obiegów. W praktyce, zawory zwrotne są często stosowane w instalacjach wodociągowych, systemach odwadniających, a także w układach pneumatycznych, gdzie ich skuteczność jest niezbędna dla prawidłowego funkcjonowania całego systemu. Standardy branżowe, takie jak ISO 9001, podkreślają znaczenie stosowania odpowiednich komponentów, w tym zaworów zwrotnych, aby zapewnić niezawodność i bezpieczeństwo działania instalacji. Warto również zaznaczyć, że w przypadku ich zastosowania w budownictwie, zawory zwrotne chronią przed powstawaniem podciśnienia, co może prowadzić do niepożądanych skutków, takich jak uszkodzenia instalacji lub zmniejszenie efektywności energetycznej urządzeń. Z tego względu, znajomość i umiejętność doboru zaworów zwrotnych w odpowiednich aplikacjach jest niezwykle istotna dla inżynierów i techników.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

W systemie mechatronicznym interfejs komunikacyjny ma na celu łączenie

A. programatora ze sterownikiem
B. silnika z pompą hydrauliczną
C. grupy siłowników z modułem rozszerzającym
D. programatora z siłownikiem
Interfejs komunikacyjny w systemie mechatronicznym pełni kluczową rolę w umożliwieniu wymiany informacji pomiędzy różnymi komponentami systemu. W przypadku poprawnej odpowiedzi, czyli połączenia sterownika z programatorem, mamy do czynienia z fundamentalnym aspektem integracji i automatyzacji. Sterownik, jako serce systemu mechatronicznego, interpretuje dane z czujników i generuje sygnały sterujące do różnych elementów wykonawczych, takich jak siłowniki czy pompy. Programator natomiast dostarcza odpowiednie algorytmy i logikę działania, co pozwala na precyzyjne sterowanie procesami. Przykładem zastosowania może być system automatyzacji w zakładzie produkcyjnym, gdzie sterownik komunikuje się z programatorem, aby precyzyjnie kontrolować cykl pracy maszyn. Tego typu komunikacja opiera się na standardach, takich jak CAN, Modbus czy Profibus, które zapewniają niezawodność i skalowalność systemów mechatronicznych. Przy odpowiedniej konfiguracji interfejsu komunikacyjnego możliwe jest również zdalne monitorowanie i diagnostyka, co podnosi efektywność operacyjną.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

W instalacjach niskonapięciowych (systemach TN) jako elementy zabezpieczające mogą być wykorzystywane

A. wyłączniki różnicowoprądowe
B. izolatory długiej osi
C. wyłączniki montażowe
D. dławiki blokujące
Wybór innych urządzeń ochronnych, takich jak wyłączniki natynkowe, dławiki zaporowe czy izolatory długopniowe, nie jest odpowiedni w kontekście ochrony przed porażeniem prądem w układach niskiego napięcia. Wyłączniki natynkowe to elementy, które głównie służą do włączania i wyłączania obwodów, ale nie oferują ochrony przed upływem prądu, co czyni je nieodpowiednimi do ochrony ludzi. Dławiki zaporowe z kolei są stosowane w celu ograniczania zakłóceń elektromagnetycznych, a ich funkcja nie ma nic wspólnego z bezpieczeństwem użytkowników w przypadku awarii instalacji elektrycznej. Izolatory długopniowe są istotnymi elementami w systemach przesyłowych, jednak ich rola polega na zapewnieniu izolacji elektrycznej w sieciach wysokiego napięcia, a nie na ochronie przed prądem różnicowym w instalacjach niskonapięciowych. W praktyce, wybór niewłaściwych urządzeń ochronnych może prowadzić do poważnych zagrożeń dla zdrowia i życia użytkowników. Zastosowanie wyłączników różnicowoprądowych jest kluczowe dla zapewnienia bezpieczeństwa, a ignorowanie tej zasady może skutkować nie tylko zagrożeniem dla osób korzystających z energii elektrycznej, ale również naruszeniem obowiązujących norm i przepisów. Właściwe podejście do ochrony przed porażeniem prądem w instalacjach elektrycznych powinno opierać się na znajomości zasad działania i zastosowań odpowiednich urządzeń ochronnych, zgodnych z aktualnymi standardami branżowymi.

Pytanie 19

Na rysunku przedstawiono pneumatyczne elementy

Ilustracja do pytania
A. wykonawcze.
B. wytwarzające.
C. sterujące.
D. wejściowe.
Właściwa odpowiedź to "wykonawcze". Pneumatyczne elementy wykonawcze, takie jak siłowniki, pełnią kluczową rolę w systemach automatyki i przemysłu. Ich zadaniem jest przekształcanie energii sprężonego powietrza na energię mechaniczną, co umożliwia wykonanie różnych rodzajów pracy, takich jak ruch liniowy, obrotowy czy podnoszenie ciężarów. Siłowniki pneumatyczne są szeroko stosowane w wielu aplikacjach, od prostych mechanizmów w maszynach po zaawansowane systemy automatyki przemysłowej. Przy projektowaniu układów pneumatycznych istotne jest przestrzeganie norm, takich jak ISO 1219, które definiują symbole i oznaczenia dla elementów pneumatycznych. Dobrze zaprojektowany system pneumatyczny zapewnia nie tylko efektywność operacyjną, ale również bezpieczeństwo, co jest niezbędne w aplikacjach przemysłowych. Właściwe zrozumienie oraz umiejętność identyfikacji elementów wykonawczych to kluczowe umiejętności w dziedzinie automatyki, które mają wpływ na wydajność i niezawodność całego systemu.

Pytanie 20

Wskaż na podstawie tabeli wymiary wpustu pryzmatycznego, który można osadzić na wale o średnicy 12 mm.

Wałek – d mmWpust
ponaddob x h mm
682 x 2
8103 x 3
10124 x 4
12175 x 5
17226 x 6
22308 x 7
A. 5 x 5 mm
B. 3 x 3 mm
C. 6 x 6 mm
D. 4 x 4 mm
Najczęściej popełnianym błędem przy wyborze wymiarów wpustu pryzmatycznego jest nieprawidłowe dopasowanie jego rozmiaru do średnicy wału. Wiele osób może pomyśleć, że wymiary 3 x 3 mm, 5 x 5 mm lub 6 x 6 mm będą odpowiednie dla wału o średnicy 12 mm, co jest błędne. Takie rozumowanie wynika często z niepełnego zrozumienia podstawowych zasad projektowania połączeń mechanicznych. W rzeczywistości, każdy wpust jest projektowany według określonych norm, które określają, jakie wymiary powinny być stosowane dla różnych średnic wałów. Zastosowanie zbyt małych wymiarów, takich jak 3 x 3 mm, prowadzi do niewystarczającego przenoszenia momentu obrotowego, co może skutkować ich uszkodzeniem oraz niestabilnością całego mechanizmu. Podobnie, zbyt duże wymiary, takie jak 5 x 5 mm lub 6 x 6 mm, mogą uniemożliwić odpowiednie osadzenie wpustu na wale, co również prowadzi do luzów i potencjalnych uszkodzeń. Kluczowym aspektem jest zrozumienie, że dobór wymiarów wpustu nie jest tylko kwestią estetyki, ale jest to fundamentalna zasada konstrukcji mechanicznych, która ma bezpośredni wpływ na efektywność i bezpieczeństwo urządzeń. Dlatego tak ważne jest, aby stosować się do tabel i specyfikacji producentów, aby dokonać właściwego wyboru wymiarów wpustu pryzmatycznego.

Pytanie 21

Który z poniższych czujników jest elementem serwomechanizmu sterującego ruchem ramienia robota?

A. Przepływomierz powietrza
B. Enkoder
C. Mostek tensometryczny
D. Pirometr
Enkoder jest elementem pomiarowym, który odgrywa kluczową rolę w systemach serwomechanizmów, szczególnie w aplikacjach związanych z robotyką. Jego główną funkcją jest precyzyjne określanie pozycji oraz prędkości obrotowej silnika, co jest niezbędne do dokładnego sterowania ruchem ramion robota. Enkodery mogą być optyczne, magnetyczne lub mechaniczne, każdy rodzaj ma swoje zastosowania w zależności od wymagań projektu. W praktyce, enkoder zastosowany w ramieniu robota pozwala na precyzyjne pozycjonowanie, co jest szczególnie istotne w zadaniach wymagających wysokiej dokładności, takich jak montaż komponentów elektronicznych czy operacje chirurgiczne. W kontekście standardów branżowych, stosowanie enkoderów w robotach przemysłowych jest zgodne z normami ISO 10218, które określają wymagania dotyczące bezpieczeństwa robotów. To sprawia, że enkodery są nie tylko niezawodne, ale także kluczowe dla zapewnienia jakości i bezpieczeństwa w automatyzacji procesów przemysłowych.

Pytanie 22

Jaki rodzaj klucza należy zastosować do przykręcenia pokazanej na rysunku śruby?

Ilustracja do pytania
A. Nasadowy.
B. Imbusowy.
C. Płaski.
D. Torx.
Odpowiedź imbusowy jest prawidłowa, ponieważ śruba na zdjęciu wyposażona jest w sześciokątny otwór, charakterystyczny dla kluczy imbusowych. Klucze te, znane także jako klucze sześciokątne, są powszechnie stosowane w różnych dziedzinach, od mechaniki po meblarstwo. Dzięki swojej konstrukcji, klucze imbusowe umożliwiają łatwe i skuteczne przykręcanie oraz odkręcanie śrub nawet w trudno dostępnych miejscach. W praktyce, klucze te są niezwykle przydatne w montażu mebli, naprawie rowerów czy w budowie strukturalnej, gdzie potrzebna jest wysoka dokładność. Warto również zauważyć, że stosowanie kluczy imbusowych zgodnych z odpowiednimi normami (np. ISO 2936) zapewnia długowieczność zarówno narzędzia, jak i śrub, co przekłada się na efektywność pracy oraz bezpieczeństwo użytkowania. Pamiętaj, aby zawsze dobierać odpowiedni rozmiar klucza imbusowego do śruby, aby uniknąć uszkodzeń. Używanie nieodpowiedniego klucza może prowadzić do uszkodzenia otworu w głowie śruby, co może skutkować problemami przy jej późniejszym odkręcaniu.

Pytanie 23

Moc wyjściowa zasilacza przedstawionego na ilustracji wynosi

Ilustracja do pytania
A. 12 W
B. 24 W
C. 120 W
D. 240 W
Moc wyjściowa zasilacza wynosząca 120 W została obliczona na podstawie danych znajdujących się na etykiecie, która wskazuje, że zasilacz dostarcza 12V DC przy maksymalnym prądzie 10A. Zgodnie z prawem Ohma i wzorem na moc elektryczną (P = V * I), gdzie P to moc (w watach), V to napięcie (w woltach), a I to natężenie prądu (w amperach), obliczamy moc jako 12V * 10A = 120W. Jest to kluczowa umiejętność w inżynierii elektrycznej, gdyż znajomość mocy zasilaczy jest niezbędna do zapewnienia odpowiedniego zasilania dla urządzeń elektronicznych. Na przykład, przy projektowaniu systemów zasilania dla komponentów komputerowych, ważne jest, aby zasilacz dostarczał wystarczającą moc, by uniknąć problemów z wydajnością i stabilnością systemu. Dobrą praktyką jest również uwzględnienie marginesu bezpieczeństwa, co jest istotne w kontekście długoterminowej niezawodności urządzenia. Z tego powodu, znajomość mocy wyjściowej zasilacza oraz umiejętność jej obliczania są niezbędne w pracy każdego inżyniera.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Na rysunku przedstawiono

Ilustracja do pytania
A. przekaźnik półprzewodnikowy.
B. zasilacz impulsowy.
C. regulator temperatury.
D. sterownik PLC.
Ten zasilacz impulsowy, co go widzisz na zdjęciu, to naprawdę ważny element w różnych systemach elektronicznych. Widać, że ma oznaczenia napięcia wejściowego i wyjściowego, co jasno pokazuje, do czego służy – do konwersji napięcia. Takie zasilacze są stosowane w naprawdę wielu miejscach, jak na przykład w zasilaniu elektroniki, w systemach komunikacyjnych czy nawet w automatyce przemysłowej. Ich wydajność jest całkiem niezła, a do tego są małe, przez co zyskują przewagę nad tradycyjnymi zasilaczami liniowymi. Z doświadczenia mogę powiedzieć, że zasilacze impulsowe są efektywne, co znaczy, że mniej energii się marnuje i mniej ciepła produkują. W związku z tym, że teraz wszyscy chcą oszczędzać energię, zasilacze impulsowe stały się standardem w nowoczesnych rozwiązaniach elektronicznych. Fajnie też, że spełniają normy IEC i UL, co daje pewność, że są bezpieczne i niezawodne, co jest ważne w różnych branżach.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Na rysunku przedstawiono symbol graficzny siłownika pneumatycznego

Ilustracja do pytania
A. ciągnącego jednostronnego działania.
B. pochającego jednostronnego działania.
C. udarowego.
D. mieszkowego.
Poprawna odpowiedź to siłownik pneumatyczny jednostronnego działania, co jest zgodne z przedstawionym symbolem graficznym. Siłowniki jednostronnego działania są wykorzystywane w aplikacjach, gdzie potrzebna jest siła w jednym kierunku, a powrót do pozycji wyjściowej jest realizowany za pomocą sprężyny. Przykładem zastosowania takich siłowników są systemy automatyki przemysłowej, gdzie często stosuje się je do podnoszenia lub przesuwania elementów. Ich konstrukcja pozwala na efektywną pracę, zmniejszając jednocześnie zużycie energii. W branży pneumatycznej standardy, takie jak ISO 6431, definiują konkretne wymiary i parametry dla takich siłowników, co zapewnia ich wymienność oraz ułatwia projektowanie systemów. Dlatego zrozumienie symboli graficznych siłowników jest kluczowe dla inżynierów pracujących nad projektami związanymi z automatyką i pneumatyka, co podkreśla znaczenie właściwego odczytywania schematów.

Pytanie 29

Śrubę mikrometryczną do pomiaru głębokości otworów przedstawia rysunek

Ilustracja do pytania
A. B.
B. A.
C. C.
D. D.
Śruba mikrometryczna do pomiaru głębokości otworów jest precyzyjnym narzędziem pomiarowym, które znajduje szerokie zastosowanie w inżynierii oraz w różnych dziedzinach produkcji, gdzie dokładność pomiaru jest kluczowa. W przypadku odpowiedzi B, prawidłowo zidentyfikowane zostały kluczowe cechy tego narzędzia: płaska podstawa, która stabilnie opiera się na krawędzi otworu, oraz pręt z końcówką pomiarową, który umożliwia dokładne wsunięcie w głąb otworu. Takie rozwiązanie zapewnia precyzyjne odczyty, co jest istotne w praktyce inżynierskiej, zwłaszcza w kontekście tolerancji i pasowania elementów. Warto również zauważyć, że standardy ISO dotyczące narzędzi pomiarowych zalecają regularne kalibracje takich urządzeń, aby zapewnić ich dokładność. Dzięki precyzyjnej konstrukcji, mikrometryczne śruby do pomiaru głębokości są nieocenione w procesach kontroli jakości, gdzie wymagane są szczegółowe pomiary głębokości otworów w materiałach. Dobre praktyki wskazują na konieczność przeszkolenia operatorów w zakresie użycia tych narzędzi, co zwiększa efektywność i dokładność pomiarów.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

Jaką powierzchnię czynną ma tłok siłownika generującego siłę 1 600 N przy ciśnieniu 1 MPa oraz sprawności wynoszącej 0,8?

A. 2 000 mm2
B. 3 000 mm2
C. 1 000 mm2
D. 1 500 mm2
Aby obliczyć powierzchnię czynną tłoka siłownika, należy skorzystać z równania związku między siłą, ciśnieniem i powierzchnią: F = P × A, gdzie F to siła, P to ciśnienie, a A to powierzchnia. W tym przypadku mamy siłę czynną równą 1600 N oraz ciśnienie wynoszące 1 MPa, co odpowiada 1 000 000 Pa. Przekształcamy równanie, aby znaleźć powierzchnię: A = F / P. Po podstawieniu wartości: A = 1600 N / 1 000 000 Pa = 0,0016 m², co po przeliczeniu na milimetry kwadratowe (1 m² = 1 000 000 mm²) daje 1600 mm². Jednak uwzględniając współczynnik sprawności równy 0,8, końcowy wynik wynosi: A = 1600 mm² / 0,8 = 2000 mm². Taka wiedza jest niezbędna w kontekście projektowania i analizy układów hydraulicznych, gdzie dokładność obliczeń ma kluczowe znaczenie dla bezpieczeństwa i efektywności działania systemów. W praktyce, dobrą praktyką jest również przeprowadzenie walidacji wyników przez pomiar rzeczywistych wartości w aplikacjach inżynieryjnych, co pomaga w optymalizacji projektów.

Pytanie 32

Jedną z kluczowych funkcji oscyloskopu dwukanałowego jest dokonywanie pomiaru

A. natężenia pola elektrycznego
B. pojemności elektrycznej kondensatorów
C. przesunięcia fazowego napięciowych przebiegów sinusoidalnych
D. indukcyjności własnej cewki
Odpowiedź dotycząca pomiaru przesunięcia fazowego napięciowych przebiegów sinusoidalnych jest prawidłowa, ponieważ oscyloskop dwukanałowy jest narzędziem niezwykle przydatnym w analizie sygnałów elektrycznych. W kontekście pomiarów, przesunięcie fazowe jest kluczowym parametrem, który może mieć istotny wpływ na działanie układów elektronicznych, zwłaszcza w aplikacjach audio, telekomunikacyjnych oraz w systemach zasilania. Przykładowo, w układach synchronizacji sygnałów, dokładne ustawienie fazy jest niezbędne do optymalnej wydajności. Oscyloskop umożliwia pomiar różnicy fazy pomiędzy dwoma sygnałami, co może być kluczowe w ocenie stabilności systemów oraz w diagnostyce usterek. Ponadto, zgodnie z najlepszymi praktykami w inżynierii elektronicznej, pomiar fazy powinien być częścią rutynowych testów układów, aby zapewnić ich prawidłowe funkcjonowanie i minimalizować zakłócenia.

Pytanie 33

Który z elementów tyrystora ma funkcję sterowania?

A. Bramka
B. Anoda
C. Źródło
D. Katoda
Bramka tyrystora, znana również jako terminal bramkowy, odgrywa kluczową rolę w jego działaniu, pełniąc funkcję sterującą. W momencie dostarczenia sygnału sterującego na bramkę, dochodzi do zainicjowania przewodzenia prądu pomiędzy anodą a katodą. Tyrystory są szeroko stosowane w aplikacjach wymagających precyzyjnego zarządzania dużymi prądami i napięciami, takich jak prostowniki, regulatory mocy oraz układy przełączające. Dzięki możliwości sterowania prądem za pomocą niskiego napięcia na bramce, tyrystory pozwalają na zdalne zarządzanie obciążeniem bez konieczności stosowania skomplikowanych układów mechanicznych. W praktyce, tyrystory z bramką są kluczowe w systemach automatyki przemysłowej, gdzie stabilna i efektywna kontrola mocy jest niezbędna do zapewnienia prawidłowego funkcjonowania maszyn.

Pytanie 34

Za pomocą multimetru cyfrowego zmierzono spadek napięcia na podwójnym złączu półprzewodnikowym Si. Odczyt multimetru wynosi około

A. 0,3 V
B. 0,6 V
C. 0 V
D. 1,4 V
W przypadku pomiaru spadku napięcia na podwójnym złączu półprzewodnikowym wykonanym z krzemu, wartość około 1,4 V jest typowa dla złącza p-n w stanie przewodzenia. Złącze to zachowuje się jak dioda, która wymaga określonego spadku napięcia, aby rozpocząć przewodzenie prądu. Dla diod krzemowych, wartość ta jest zazwyczaj w przedziale od 0,6 V do 0,7 V dla pierwszego złącza, a dla drugiego złącza, zwłaszcza w przypadku podwójnego złącza, wartość ta podwaja się, co daje około 1,4 V. To zjawisko jest wykorzystywane w praktycznych zastosowaniach elektroniki, takich jak prostowniki i układy regulacji napięcia. Przy pomiarze multimetrem cyfrowym ważne jest, aby upewnić się, że miernik jest ustawiony na odpowiedni zakres pomiarowy, co pozwoli na dokładne odczyty. W przypadku pomiarów diodowych, zaleca się również zwrócenie uwagi na polaryzację diody, aby uniknąć błędnych wyników. Przykładowo, w zastosowaniach takich jak zasilacze impulsowe, umiejętność prawidłowego pomiaru spadku napięcia na połączeniach półprzewodnikowych jest kluczowym elementem diagnostyki i naprawy.

Pytanie 35

Toczenie powierzchni czołowej przedstawia rysunek

Ilustracja do pytania
A. D.
B. B.
C. C.
D. A.
Toczenie powierzchni czołowej jest kluczowym procesem w obróbce skrawaniem, gdzie narzędzie toczenia przesuwa się w kierunku prostopadłym do osi obrotu obrabianego przedmiotu. W przypadku rysunku C, możemy zauważyć, że narzędzie jest poprawnie ustawione, co umożliwia efektywne skrawanie i uzyskiwanie pożądanej powierzchni. W praktyce toczenie powierzchni czołowej stosuje się w produkcji elementów, które wymagają precyzyjnego wykończenia, takich jak wały czy tuleje. Proces ten pozwala na uzyskanie dokładnych wymiarów oraz wysokiej jakości powierzchni, co jest zgodne z najlepszymi praktykami branżowymi. Dodatkowo, toczenie powierzchni czołowej można optymalizować poprzez odpowiedni dobór parametrów technologicznych, takich jak prędkość skrawania czy posuw, co wpływa na żywotność narzędzi i jakość obróbki. W związku z tym, poprawne zrozumienie ustawienia narzędzia toczenia oraz zasad działania tego procesu jest kluczowe dla każdego inżyniera czy technika w branży mechanicznej.

Pytanie 36

Aby sprawdzić stan bezpieczników, znaleźć niedokręcone złącza oraz zidentyfikować przegrzane elementy instalacji bez konieczności wyłączania zasilania, należy wykorzystać

A. miernik RLC
B. miernik uniwersalny
C. kamerę termowizyjną
D. miernik parametrów instalacji
Kamera termowizyjna jest specjalistycznym narzędziem, które pozwala na bezdotykowe monitorowanie temperatury obiektów w instalacjach elektrycznych. Dzięki wykrywaniu różnic temperatur, możliwe jest szybkie zlokalizowanie przegrzanych elementów, takich jak zwarcia, przeciążenia czy niedokręcone złącza, co może prowadzić do potencjalnych awarii. W praktyce, technicy często używają kamer termograficznych do regularnych przeglądów instalacji, co umożliwia wczesne wykrywanie problemów zanim dojdzie do uszkodzenia sprzętu czy pożaru. W branży energetycznej oraz budowlanej, zgodnie z normą NFPA 70E, regularne inspekcje termograficzne są kluczowe dla zapewnienia bezpieczeństwa i efektywności systemów elektrycznych. Zastosowanie kamery termograficznej jest zatem zgodne z najlepszymi praktykami konserwacyjnymi, a także przyczynia się do zmniejszenia kosztów eksploatacyjnych poprzez minimalizację ryzyka awarii.

Pytanie 37

Spośród wymienionych zjawisk fizycznych, w urządzeniach przekształcających liniowe przemieszczenie na sygnał elektryczny, najczęściej stosowane jest zjawisko

A. magnotorezystancji (Gaussa)
B. piezoelektryczne
C. zwane efektem Dopplera
D. magnetooptyczne (Faradaya)
Zjawisko magnotorezystancji (Gaussa) jest szeroko stosowane w czujnikach przekształcających przemieszczenie liniowe na sygnał elektryczny ze względu na swoją wysoką czułość i precyzję. Magnotorezystancja polega na zmianie oporu elektrycznego materiału w wyniku działania pola magnetycznego. W praktyce, czujniki te mogą być wykorzystane w różnych aplikacjach, takich jak automatyka przemysłowa, robotyka oraz systemy pomiarowe. W standardach branżowych, takich jak IEC 61131, podkreśla się znaczenie precyzyjnych pomiarów w systemach automatyzacji, co czyni rozwiązania bazujące na magnotorezystancji preferowanym wyborem. Przykładem może być zastosowanie w czujnikach położenia w silnikach elektrycznych, gdzie dokładne informacje o przemieszczeniu są kluczowe dla efektywności i bezpieczeństwa operacji. Ponadto, magnotorezystancyjne czujniki są odporne na zakłócenia elektromagnetyczne, co zwiększa ich niezawodność w trudnych warunkach przemysłowych. Z tego względu, ich wykorzystanie w nowoczesnych systemach pomiarowych stanowi standard w wielu branżach.

Pytanie 38

W aplikacjach sterujących, wykonywanych przy użyciu sterownika PLC, do zapisywania sygnałów impulsowych oraz ich konwersji na sygnały trwałe (włączanie z samopodtrzymaniem) wykorzystuje się moduły

A. przerzutników
B. zegarów czasowych
C. filtrów komparatorowych
D. rejestrów licznikowych
Funkcje czasowe, komparatory i liczniki są ważnymi elementami w automatyce, ale nie pełnią one funkcji związanych z zapamiętywaniem i przetwarzaniem sygnałów impulsowych w sposób, w jaki robią to przerzutniki. Funkcje czasowe, takie jak timery, są wykorzystywane do wprowadzenia opóźnień w działaniu systemów, ale nie mogą same w sobie utrzymywać stanu bez ciągłego sygnału wejściowego. Z kolei komparatory służą do porównywania wartości napięcia lub sygnałów, co jest istotne w kontekście regulacji, ale nie odnoszą się do przechowywania stanów. Liczniki, z drugiej strony, mają zastosowanie głównie do zliczania impulsów, co jest przydatne w zastosowaniach takich jak monitorowanie liczby cykli produkcyjnych, ale również nie mogą same w sobie przechowywać stanu w długim okresie. Typowym błędem myślowym jest mylenie funkcji liczników i przerzutników, ponieważ oba te elementy operują na sygnałach, ale różnią się zasadniczo w sposobie ich działania oraz zastosowania. Zrozumienie tych różnic jest kluczowe dla projektowania efektywnych systemów automatyki i sterowania. Właściwy dobór elementów w zależności od wymagań aplikacji jest niezbędny do osiągnięcia niezawodności i efektywności systemów sterujących.

Pytanie 39

Podczas prac związanych z montażem mechatronicznych elementów konstrukcyjnych na znacznej wysokości, co należy założyć?

A. buty ochronne
B. okulary ochronne
C. kask ochronny
D. maskę przeciwpyłową
Kask ochronny jest kluczowym elementem wyposażenia ochronnego podczas prac na wysokości, zwłaszcza przy montażu mechatronicznych elementów konstrukcyjnych. Jego głównym zadaniem jest ochrona głowy przed urazami w przypadku upadku przedmiotów, co jest szczególnie istotne w środowiskach przemysłowych. Standardy takie jak PN-EN 397:2012 podkreślają konieczność stosowania kasków, które spełniają określone normy bezpieczeństwa. Przykładowo, w sytuacjach, gdzie mogą wystąpić spadające narzędzia lub materiały, kask może zapobiec poważnym obrażeniom lub nawet urazom śmiertelnym. Warto również zwrócić uwagę na dodatkowe funkcje kasków, takie jak możliwość montażu osłon twarzy czy słuchawek komunikacyjnych, co zwiększa komfort i bezpieczeństwo pracy. W kontekście mechatroniki, gdzie elementy są często ciężkie i wymagają precyzyjnego montażu, odpowiednia ochrona głowy staje się niezbędna.

Pytanie 40

Na którym rysunku przedstawiono triak?

Ilustracja do pytania
A. C.
B. D.
C. B.
D. A.
Triak, będący elementem półprzewodnikowym, odgrywa kluczową rolę w aplikacjach związanych z kontrolą mocy w obwodach prądu przemiennego. W odpowiedzi B widoczny jest triak, który można łatwo zidentyfikować dzięki jego unikalnym oznaczeniom oraz kształtowi. Triaki są powszechnie stosowane w regulatorach oświetlenia, silnikach elektrycznych oraz w systemach grzewczych, gdzie konieczne jest precyzyjne sterowanie mocą. W praktyce triak działa jako przełącznik, który może włączać i wyłączać przepływ prądu w cyklu AC, co pozwala na skuteczną kontrolę energii bez strat mocy. Dodatkowo, triaki są projektowane zgodnie z normami IEC, co zapewnia ich wysoką jakość i niezawodność. Znajomość triaków oraz ich zastosowań jest niezbędna dla inżynierów i techników, którzy pracują w dziedzinie elektroniki i automatyki.