Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.06 - Eksploatacja i programowanie urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 8 grudnia 2025 10:45
  • Data zakończenia: 8 grudnia 2025 11:15

Egzamin zdany!

Wynik: 34/40 punktów (85,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Początkowo operator frezarki powinien

A. wyczyścić łożyska silnika, styki przekaźników oraz styczników w systemie sterowania
B. sprawdzić kondycję techniczną łożysk silnika i w razie potrzeby je nasmarować
C. ocenić stan frezu oraz jego mocowanie
D. kilkakrotnie szybko uruchomić i wyłączyć frezarkę w celu sprawdzenia prawidłowego działania silnika
Poprawną odpowiedzią jest sprawdzenie stanu frezu i jego mocowania, ponieważ jest to kluczowy krok w zapewnieniu prawidłowego funkcjonowania frezarki. Frez jest narzędziem skrawającym, które wymagane jest do efektywnego usuwania materiału. Jego uszkodzenie lub niewłaściwe mocowanie mogą prowadzić do wadliwego przetwarzania materiału, co z kolei wpływa na jakość wykonanych detali oraz wydajność produkcji. Przykładowo, jeśli frez nie jest prawidłowo zamocowany, może dojść do jego wibracji, co prowadzi do nadmiernego zużycia narzędzia oraz ryzyka uszkodzenia maszyny. Dobrym praktyką przed rozpoczęciem pracy jest przeprowadzenie wizualnej kontroli frezu oraz zastosowanie odpowiednich narzędzi do pomiaru, takich jak suwmiarka, aby upewnić się, że jego średnica oraz długość są zgodne z wymaganiami. Dodatkowo, warto pamiętać o regularnych przeglądach stanu technicznego, co jest zgodne z normami ISO dotyczącymi zarządzania jakością w procesach produkcyjnych.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Według zasad rysowania schematów układów pneumatycznych, symbolem składającym się z litery A oraz cyfr oznacza się

A. zawory pneumatyczne
B. pompy
C. elementy sygnalizacyjne
D. siłowniki
Odpowiedź "siłowniki" jest poprawna, ponieważ zgodnie z międzynarodowymi standardami rysowania schematów układów pneumatycznych, litera A w symbolach literowo-cyfrowych odnosi się do elementów wykonawczych, jakimi są siłowniki. Siłowniki pneumatyczne przekształcają energię sprężonego powietrza w ruch mechaniczny, co jest kluczowe w automatyzacji procesów przemysłowych. Mogą występować w różnych formach, takich jak siłowniki liniowe, które poruszają się w linii prostej, oraz siłowniki obrotowe, które wykonują ruch obrotowy. W praktyce siłowniki są wykorzystywane w takich zastosowaniach jak podnoszenie, przesuwanie lub obracanie elementów w maszynach przemysłowych. Zrozumienie i umiejętność prawidłowego oznaczania tych komponentów jest niezbędna dla inżynierów i techników pracujących w dziedzinie pneumatyki, aby zapewnić efektywne projektowanie i eksploatację systemów pneumatycznych, zgodnie z normami ISO 1219 oraz PN-EN 982, które określają zasady rysowania schematów oraz oznaczeń dla takich układów.

Pytanie 12

W jakim celu stosuje się enkodery w systemach automatyki?

A. Pomiar przemieszczenia i prędkości
B. Poprawa jakości dźwięku
C. Redukcja zużycia energii
D. Zwiększanie mocy silnika
Enkodery są niezbędnym elementem w systemach automatyki, ponieważ pozwalają na precyzyjny pomiar przemieszczenia i prędkości. Te urządzenia przetwarzają ruch mechaniczny na sygnał elektryczny, co umożliwia dokładne śledzenie pozycji i ruchu elementów w maszynach. Na przykład w robotyce, enkodery są używane do precyzyjnej kontroli położenia ramion robotów, co jest kluczowe dla dokładności i powtarzalności operacji. W przemyśle maszynowym, enkodery pomagają monitorować prędkość obrotową silników, co jest istotne dla synchronizacji procesów produkcyjnych. Stosowanie enkoderów to standard w branży automatyki, ponieważ ich zdolność do dostarczania dokładnych danych w czasie rzeczywistym znacząco poprawia efektywność i bezpieczeństwo systemów przemysłowych. Enkodery mogą być inkrementalne lub absolutne, w zależności od potrzeb aplikacji, co dodatkowo zwiększa ich wszechstronność. Dzięki temu, firmy mogą implementować bardziej zaawansowane systemy sterowania, które są w stanie dynamicznie reagować na zmiany w procesie produkcyjnym, optymalizując tym samym działanie całego systemu.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Na podstawie fragmentu instrukcji określ, co należy zrobić przed zamontowaniem reduktora podczas podłączania butli z gazem ochronnym do półautomatu spawalniczego.

Podłączenie gazu ochronnego
1. Butlę z odpowiednim gazem ochronnym należy ustawić obok półautomatu i zabezpieczyć ją przed przewróceniem się.
2. Zdjąć zabezpieczający ją kołpak i na moment odkręcić zawór butli w celu usunięcia ewentualnych zanieczyszczeń.
3. Zamontować reduktor tak, aby manometry były w pozycji pionowej.
4. Połączyć półautomat z butlą wężem.
5. Odkręcić zawór reduktora tylko przed przystąpieniem do spawania. Po zakończeniu spawania, zawór butli należy zakręcić.
A. Podłączyć wąż do półautomatu i do butli.
B. Odkręcić zawór reduktora na czas montażu, a następnie go zakręcić.
C. Ustawić poziomo butlę z gazem ochronnym.
D. Zdjąć kołpak z butli i na krótką chwilę odkręcić zawór butli.
Zdejmowanie kołpaka z butli oraz chwilowe odkręcenie zaworu butli jest kluczowym krokiem przed montażem reduktora. Kołpak działa jako zabezpieczenie, chroniące zawór przed uszkodzeniem oraz zanieczyszczeniami, które mogą wpłynąć na jakość gazu podczas użytkowania. Krótkie odkręcenie zaworu pozwala na wydostanie się niewielkiej ilości gazu, co pomaga w usunięciu zanieczyszczeń, takich jak kurz czy resztki, które mogą znajdować się w zaworze. Zgodnie z dobrymi praktykami w branży spawalniczej, takie działania zapobiegają późniejszym problemom, które mogą wystąpić w trakcie pracy, jak np. nieprawidłowe ciśnienie gazu, które wpłynie na jakość spawania. Dbanie o detale w procedurach przygotowawczych zapewnia nie tylko bezpieczeństwo, ale również efektywność pracy. Obowiązujące normy dotyczące bezpieczeństwa, takie jak PN-EN ISO 2503, podkreślają znaczenie czystości i bezpieczeństwa przy podłączaniu urządzeń gazowych, co czyni ten krok nieodzownym elementem procesu.

Pytanie 19

Jakie czynnościnie powinny być wykonywane przez osobę obsługującą prasę hydrauliczną?

A. Przeprowadzać inspekcję urządzenia
B. Modernizować urządzenie
C. Dostosowywać parametry pracy
D. Włączać urządzenie
Modernizowanie urządzenia to proces, który wymaga zaawansowanej wiedzy technicznej oraz odpowiednich kwalifikacji. Osoba obsługująca prasę hydrauliczną nie powinna angażować się w takie działania, ponieważ mogą one znacząco wpłynąć na bezpieczeństwo operacji. Jakiekolwiek zmiany w konstrukcji lub parametrach maszyny powinny być przeprowadzane przez wykwalifikowany personel techniczny, który zna specyfikę i wymagania danej maszyny. Na przykład, niewłaściwa modernizacja może prowadzić do nieprzewidzianych awarii, które mogą zagrażać zdrowiu operatorów oraz innych pracowników. W praktyce, obsługa prasy hydraulicznej powinna koncentrować się na zapewnieniu prawidłowego funkcjonowania urządzenia, monitorowaniu jego parametrów, a także przeprowadzaniu regularnych oględzin. Zgodnie z najlepszymi praktykami w branży, operatorzy powinni być regularnie szkoleni w zakresie obsługi i konserwacji tych maszyn, aby zminimalizować ryzyko awarii oraz wypadków. Właściwe podejście do obsługi pras hydraulicznych opiera się na ścisłym przestrzeganiu procedur operacyjnych oraz norm bezpieczeństwa.

Pytanie 20

Ile poziomów kwantyzacji oraz jaka jest rozdzielczość napięciowa przetwornika A/C w urządzeniu mechatronicznym o zakresie pomiarowym 0÷10 V i rozdzielczości 10 bitów?

A. 256 poziomów kwantyzacji i rozdzielczość napięciowa 39,06 mV
B. 512 poziomów kwantyzacji i rozdzielczość napięciowa 19,53 mV
C. 2048 poziomów kwantyzacji i rozdzielczość napięciowa 4,88 mV
D. 1024 poziomy kwantyzacji i rozdzielczość napięciowa 9,76 mV
Przetwornik A/C o rozdzielczości 10 bitów jest w stanie wygenerować maksymalnie 1024 poziomy kwantyzacji. W przypadku skali pomiarowej 0÷10 V, napięcie to musi być podzielone na 1024 poziomy. Aby obliczyć rozdzielczość napięciową, można skorzystać ze wzoru: Rozdzielczość = Zakres napięcia / Liczba poziomów kwantyzacji. W tym przypadku: 10 V / 1024 = 0,00976 V, co odpowiada 9,76 mV. Takie parametry są kluczowe w aplikacjach mechatronicznych, gdzie precyzyjne pomiary napięcia są niezbędne, na przykład w systemach automatyki czy robotyce. Dzięki odpowiedniej rozdzielczości można dokładniej monitorować i regulować procesy, co jest zgodne z najlepszymi praktykami branżowymi w zakresie projektowania systemów pomiarowych i kontrolnych. Wzrost liczby poziomów kwantyzacji pozwala na uzyskanie dokładniejszych i bardziej stabilnych pomiarów, co jest istotne dla efektywności działania nowoczesnych urządzeń mechatronicznych.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Jaki sterownik powinien być wykorzystany do zarządzania 5 pompami napełniającymi 5 zbiorników, gdy włączanie i wyłączanie poszczególnych pomp opiera się na sygnałach z czujników binarnych, które wykrywają niski oraz wysoki poziom cieczy, a także system uruchamiany jest ręcznie przyciskiem zwiernym i wyłączany przyciskiem rozwiernym?

A. Posiadający co najmniej 8 wejść i 4 wyjścia analogowe
B. Posiadający co najmniej 16 wejść i 8 wyjść analogowych
C. Posiadający co najmniej 8 wejść i 4 wyjścia cyfrowe
D. Posiadający co najmniej 16 wejść i 8 wyjść cyfrowych
Prawidłowa odpowiedź to ta o 16 wejściach i 8 wyjściach cyfrowych. Sterownik z taką liczbą portów może bez problemu obsługiwać 5 pomp i 5 czujników, które sygnalizują niski oraz wysoki poziom cieczy. W automatyce przemysłowej, zgodnie z normą IEC 61131, ważne jest, aby mieć wystarczającą liczbę wejść i wyjść, żeby móc dobrze monitorować i sterować urządzeniami. Dzięki tym 16 wejściom można podłączyć wszystkie potrzebne czujniki i przyciski, co jest niezbędne do ręcznej obsługi np. pomp. Wyjścia cyfrowe są tutaj istotne, bo pozwalają na kontrolowanie urządzeń wykonawczych, jak pompy. Moim zdaniem to kluczowe, bo w sytuacji awaryjnej szybkie wyłączenie pompy może zapobiec przelaniu i związanym z tym szkodom. Warto też dodać, że cyfrowe sygnały zwiększają niezawodność systemu i ułatwiają integrację z innymi elementami automatyki.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

Oprogramowanie komputerowe, które monitoruje procesy w systemach i posiada kluczowe funkcje takie jak gromadzenie, wizualizacja oraz archiwizacja danych, a także alarmowanie i kontrolowanie przebiegu procesu, to oprogramowanie

A. CAD
B. SCADA
C. CAM
D. CNC
Oprogramowanie SCADA (Supervisory Control and Data Acquisition) jest kluczowym narzędziem w nowoczesnych systemach automatyki przemysłowej. Jego główną funkcją jest nadzorowanie i zarządzanie procesami przemysłowymi poprzez zbieranie, wizualizację i archiwizację danych w czasie rzeczywistym. SCADA umożliwia operatorom monitorowanie różnych parametrów procesów, takich jak temperatura, ciśnienie czy poziom substancji, co pozwala na szybkie podejmowanie decyzji oraz reagowanie na potencjalne awarie. Przykłady zastosowania SCADA obejmują przemysł energetyczny, wodociągi, zakłady chemiczne oraz produkcję. Dzięki integracji z systemami alarmowymi, SCADA informuje o nieprawidłowościach i niebezpieczeństwach, umożliwiając automatyczne lub manualne korekty w czasie rzeczywistym. Warto również zwrócić uwagę, że zgodność z międzynarodowymi standardami, takimi jak ISA-95, zapewnia interoperacyjność i skuteczność systemów SCADA w złożonych środowiskach przemysłowych.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Jaki jest główny cel stosowania symulatorów w edukacji mechatronicznej?

A. Ograniczenie liczby studentów w laboratorium
B. Zwiększenie doświadczenia praktycznego bez ryzyka uszkodzenia sprzętu
C. Zwiększenie kosztów nauki
D. Zwiększenie złożoności nauczania
Symulatory w edukacji mechatronicznej odgrywają kluczową rolę, pozwalając uczniom zdobywać praktyczne doświadczenie bez ryzyka uszkodzenia kosztownego sprzętu. W praktyce mechatroniki często operujemy złożonymi systemami, gdzie błąd może prowadzić do znacznych strat materialnych. Dzięki symulatorom studenci mogą eksperymentować i popełniać błędy w kontrolowanym środowisku, co sprzyja procesowi uczenia się. Przykładowo, symulacje mogą obejmować programowanie sterowników PLC, gdzie każda pomyłka może zostać natychmiast poprawiona bez wpływu na rzeczywisty proces produkcyjny. Jest to również zgodne z najlepszymi praktykami branżowymi, gdzie symulacje wykorzystywane są na szeroką skalę do testowania nowych rozwiązań przed ich implementacją w rzeczywistych warunkach. Z mojego doświadczenia wynika, że symulacje pozwalają na lepsze zrozumienie teorii poprzez praktykę, co jest nieocenione w złożonych dziedzinach, takich jak mechatronika. Dzięki nim studenci mogą również ćwiczyć reakcje na nietypowe sytuacje, co jest trudne do zrealizowania w rzeczywistych warunkach laboratoryjnych.

Pytanie 37

Do precyzyjnego pomiaru natężenia prądu elektrycznego w układach mechatronicznych zaleca się wykorzystanie amperomierza o

A. jak najmniejszej rezystancji wewnętrznej
B. rezystancji wewnętrznej równej rezystancji odbiornika
C. jak największej rezystancji wewnętrznej
D. dowolnej wartości rezystancji wewnętrznej, ponieważ nie wpływa ona na uzyskany wynik
Użycie amperomierza z jak najmniejszą rezystancją wewnętrzną jest kluczowe dla uzyskania dokładnych pomiarów natężenia prądu elektrycznego w układach mechatronicznych. Amperomierz, będąc elementem pomiarowym, powinien mieć minimalny wpływ na obwód, w którym jest włączony. Im mniejsza rezystancja wewnętrzna, tym mniej energii z obwodu odbierze amperomierz, co przekłada się na dokładniejsze odczyty. W praktyce, jeśli użyjemy amperomierza o dużej rezystancji, może to prowadzić do znacznego spadku natężenia prądu w obwodzie, co skutkuje błędnym pomiarem. Przykładem zastosowania wysokiej jakości amperomierzy o niskiej rezystancji wewnętrznej są aplikacje w elektronice, w których precyzyjne pomiary prądu są niezbędne do właściwego funkcjonowania urządzeń. Standardy branżowe, takie jak IEC 61010, podkreślają znaczenie używania urządzeń pomiarowych, które minimalizują wpływ na badany obwód.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

W jakim trybie powinny być przedstawiane na schematach układów sterowania zestyki elementów stycznych?

A. Wzbudzonym
B. Przewodzenia
C. Niewzbudzonym
D. Nieprzewodzenia
Odpowiedź "Niewzbudzonym" jest prawidłowa, ponieważ na schematach układów sterowania stany zestyki elementów stykowych powinny być przedstawiane w stanie niewzbudzonym. Taki stan oznacza, że elementy układu nie są aktywowane przez żadne sygnały zewnętrzne, co jest kluczowe dla analizy i projektowania układów automatyki. Dzięki przedstawieniu zestyki w stanie niewzbudzonym, inżynierowie mogą łatwiej ocenić, jak układ będzie działał w warunkach początkowych przed jego uruchomieniem. Ta praktyka jest zgodna z normami branżowymi, które promują jasność i jednoznaczność w dokumentacji technicznej. W przypadku projektowania systemów automatyki przemysłowej, przedstawianie stanu niewzbudzonego umożliwia lepsze zrozumienie działania systemu i pozwala na skuteczniejsze identyfikowanie potencjalnych problemów na etapie projektowania. W praktyce, stosowanie takiej konwencji przyczynia się do zwiększenia efektywności pracy zespołów inżynieryjnych oraz minimalizuje ryzyko błędów w realizacji projektów.