Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.05 - Eksploatacja urządzeń elektronicznych
  • Data rozpoczęcia: 9 grudnia 2025 08:49
  • Data zakończenia: 9 grudnia 2025 08:49

Egzamin niezdany

Wynik: 1/40 punktów (2,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Urządzenie, które pozwala na odbiór sygnałów o różnych częstotliwościach z dwóch lub więcej anten odbiorczych, tak aby te sygnały były przesyłane do odbiornika za pomocą jednego kabla, to

A. dzielnik sygnału
B. mieszacz
C. zwrotnica antenowa
D. głowica odbiorcza

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zwrotnica antenowa to kluczowe urządzenie w systemach odbioru sygnałów telekomunikacyjnych, które pozwala na efektywne zarządzanie sygnałami z różnych źródeł. Dzięki zwrotnicy możliwe jest jednoczesne odbieranie sygnałów o różnych częstotliwościach z dwóch lub więcej anten, co znacznie zwiększa elastyczność i wydajność systemów komunikacyjnych. Przykładem zastosowania zwrotnicy antenowej jest instalacja w systemach telewizyjnych, gdzie wiele anten odbierających sygnały z różnych nadajników jest podłączonych do jednego odbiornika. W praktyce, zwrotnica kieruje odpowiednie sygnały do odbiornika w sposób, który minimalizuje straty i zakłócenia. Dodatkowo, zwrotnice antenowe są zgodne z normami branżowymi, co zapewnia ich niezawodność i efektywność w trudnych warunkach odbioru. Zastosowanie zwrotnic w telekomunikacji jest istotne, ponieważ pozwala na optymalizację pasma częstotliwościowego oraz zapewnia lepszą jakość odbieranego sygnału, co jest kluczowe w kontekście nowoczesnych technologii, takich jak DVB-T czy DVB-S.

Pytanie 4

Rozpoczynając wymianę przekaźnika w obwodzie sterującym, pierwszym krokiem powinno być

A. zdjąć przekaźnik z szyny TH-35
B. wyłączyć napięcie w obwodzie sterowania
C. odłączyć przewody podłączone do styków przekaźnika
D. odłączyć przewody podłączone do cewki przekaźnika

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłączenie napięcia w obwodzie sterowania przed przystąpieniem do wymiany przekaźnika jest kluczowym krokiem w zapewnieniu bezpieczeństwa pracy z urządzeniami elektrycznymi. Wszelkie prace w obrębie instalacji elektrycznych powinny być zgodne z zasadami BHP, które nakazują zawsze zaczynać od odłączenia zasilania. Przykładowo, wyłączając napięcie, minimalizujemy ryzyko porażenia prądem, które może wystąpić, gdy nieświadomie dotkniemy przewodów pod napięciem. Zgodnie z normą PN-EN 50110-1, każdy operator powinien być świadomy niebezpieczeństw związanych z pracą przy urządzeniach elektrycznych i stosować odpowiednie procedury. Dodatkowo, wyłączenie zasilania pozwala na spokojne i dokładne przeprowadzenie wymiany przekaźnika, co jest kluczowe dla prawidłowego funkcjonowania całego systemu. Nieprzestrzeganie tej zasady może prowadzić do poważnych uszkodzeń urządzeń oraz zagrażać zdrowiu osób pracujących w pobliżu.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Urządzenie, które pozwala na przesył sygnału telewizyjnego z kilku anten poprzez jeden kabel, to

A. symetryzator
B. rozgałęźnik
C. zwrotnica
D. konwerter

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zwolnica to urządzenie, które odgrywa kluczową rolę w systemach telewizyjnych, umożliwiając przesyłanie sygnału z wielu anten przez jedno łącze. Dzięki swojej konstrukcji, zwrotnica separuje sygnały z różnych źródeł, takich jak różne anteny, i kieruje je do jednego przewodu, co jest szczególnie przydatne w instalacjach, gdzie dostęp do wielu źródeł sygnału jest ograniczony. To rozwiązanie jest powszechne w budynkach wielorodzinnych oraz w rejonach z różnorodnym pokryciem sygnałem telewizyjnym. Przykładami zastosowania zwrotnic są instalacje w domach, gdzie użytkownicy chcą odbierać sygnał z kilku anten, np. naziemnych oraz satelitarnych, bez konieczności układania wielu przewodów. Standardy branżowe, takie jak DVB-T, nakładają wymagania dotyczące efektywności sygnału, a wykorzystanie zwrotnic pozwala na ich spełnienie, eliminując straty sygnału i zakłócenia. Ponadto, zwrotnice są projektowane z myślą o minimalizacji strat sygnałowych i zapewnieniu wysokiej jakości obrazu oraz dźwięku.

Pytanie 8

Jeżeli wartość rezystancji potencjometru suwakowego pomiędzy zaciskiem krańcowym a zaciskiem ślizgacza zmienia się proporcjonalnie do położenia ślizgacza, to charakterystyka takiego potencjometru stanowi funkcję

A. wykładniczą
B. logarytmiczną
C. liniową
D. hiperboliczną

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Potencjometr suwakowy działa na zasadzie zmiany rezystancji w zależności od położenia ślizgacza. Kiedy mówimy, że wartość rezystancji zmienia się wprost proporcjonalnie do położenia ślizgacza, oznacza to, że zmiana wartości rezystancji jest liniowa w odniesieniu do ruchu ślizgacza. Przykładowo, w przypadku potencjometru suwakowego o całkowitej rezystancji 10 kΩ, jeśli ślizgacz znajduje się w połowie drogi, wartość rezystancji między skrajnym zaciskiem a ślizgaczem wyniesie 5 kΩ. Taki charakterystyka jest niezwykle przydatna w aplikacjach audio, gdzie potencjometry linowe są wykorzystywane do regulacji głośności. W standardach branżowych, takich jak IEC, zaleca się użycie potencjometrów liniowych w sytuacjach, gdzie oczekuje się precyzyjnej i proporcjonalnej regulacji. Zrozumienie tej zasady pozwala na lepsze projektowanie obwodów elektronicznych oraz zrozumienie dynamiki działania różnych komponentów. Praca z potencjometrami liniowymi daje inżynierom szeroki wachlarz możliwości dostosowywania i optymalizacji systemów elektronicznych.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Wtórnik emiterowy to wzmacniacz z tranzystorem w układzie

A. wspólnego emitera
B. wspólnego kolektora
C. wspólnego źródła
D. wspólnej bazy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wtórnik emiterowy, który często nazywamy wzmacniaczem w konfiguracji wspólnego kolektora, to jeden z fundamentalnych typów wzmacniaczy tranzystorowych. Co jest w nim fajne? To, że sygnał wyjściowy bierzemy z kolektora, a nie z emitera. Dzięki temu ten wzmacniacz świetnie nadaje się do sytuacji, gdzie potrzebujemy zwiększyć prąd, ale nie chcemy za bardzo podnosić napięcia sygnału. W praktyce często spotyka się go w interfejsach sygnałowych, gdzie łączy się różne elementy obwodu. Przydatne jest to, że ma niski opór wyjściowy i dużą impedancję wejściową, więc zazwyczaj wykorzystuje się go jako bufor między różnymi etapami układów elektronicznych. W dziedzinie audio ten typ wzmacniacza pozwala świetnie wzmocnić sygnał bez wpływania na jego jakość. Z mojego doświadczenia, stosowanie wtórnika emiterowego pomaga też w eliminacji zakłóceń i zniekształceń, co jest mega istotne w aplikacjach, gdzie precyzja ma znaczenie.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

W specyfikacji katalogowej rezystora SMD podano wartość rezystancji wynoszącą 100 Ω oraz moc 0,25 W. Jakie jest maksymalne natężenie prądu, które może przepływać przez ten rezystor?

A. 50 mA
B. 250 mA
C. 4 mA
D. 200 mA

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 50 mA jest prawidłowa, ponieważ zgodnie z prawem Ohma oraz wzorem na moc, możemy obliczyć maksymalne natężenie prądu dla danego rezystora. Moc (P) rezystora wyrażana jest wzorem P = I²R, gdzie I to natężenie prądu, a R to rezystancja. Podstawiając wartości: 0,25 W = I² * 100 Ω, przekształcamy wzór do postaci I² = 0,25 W / 100 Ω, co daje I² = 0,0025 A². Zatem I = √0,0025 A² = 0,05 A, co odpowiada 50 mA. Jest to zgodne z praktykami inżynieryjnymi, które zalecają obliczanie maksymalnych prądów dla komponentów, aby uniknąć ich uszkodzenia. W praktyce, taki rezystor o wartości 100 Ω i mocy 0,25 W jest często stosowany w układach filtrów, dzielnikach napięcia czy w obwodach sygnałowych, gdzie utrzymanie właściwego natężenia prądu jest kluczowe dla stabilności działania całego systemu.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Poszczególnym paskom w kodzie kreskowym rezystora, którego wartość rezystancji zapisano jako R22, odpowiadają kolory

KolorCyfra/mnożnikTolerancja
brak-20%
srebrny-210%
złoty-15%
czarny0-
brązowy11%
czerwony22%
pomarańczowy3-
żółty4-
zielony50,5%
niebieski60,25%
fioletowy70,1%
szary8-
biały9-
Ilustracja do pytania
A. 1 - srebrny, 2 - srebrny, 3 - czerwony, 4 - złoty.
B. 1 - czerwony, 2 - czerwony, 3 - srebrny, 4 - złoty.
C. 1 - srebrny, 2 - czerwony, 3 - czerwony, 4 - złoty.
D. 1 - czerwony, 2 - srebrny, 3 - srebrny, 4 - złoty.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź, która wskazuje na kolory pasków jako 1 - czerwony, 2 - czerwony, 3 - srebrny, 4 - złoty, jest poprawna, ponieważ odzwierciedla ona zasady kodowania kolorów stosowanych w rezystorach. Wartość 'R22' wskazuje na rezystor o wartości 22 omów, co przekłada się na pierwszą cyfrę równą 2, a zatem kolor czerwony jest odpowiedni dla obu pierwszych pasków. Trzeci pasek oznacza mnożnik, a srebrny odpowiada mnożnikowi 1, co w tym przypadku oznacza, że nie ma dodatkowej potęgi, co jest zgodne z wartością 22. Złoty pasek na końcu oznacza tolerancję rezystora, która w standardach branżowych wynosi 5%. Zrozumienie tego systemu jest kluczowe nie tylko dla poprawnego identyfikowania wartości rezystorów, ale także dla zapewnienia właściwego działania obwodów elektronicznych, w których są wykorzystywane. W praktyce, umiejętność szybkiego odczytywania kodów kolorów pozwala inżynierom i technikom na skuteczne projektowanie i diagnozowanie układów, co przekłada się na oszczędności czasu oraz zwiększenie efektywności pracy.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Aby ocenić efektywność energetyczną przetwornicy DC/DC, należy użyć

A. amperomierza
B. dwóch watomierzy
C. dwóch woltomierzy
D. omomierza

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar sprawności energetycznej przetwornicy DC/DC wymaga zastosowania dwóch watomierzy, ponieważ efektywność tych urządzeń oblicza się na podstawie mocy wejściowej i wyjściowej. W praktyce, jeden z watomierzy jest używany do pomiaru mocy na wejściu, a drugi do pomiaru mocy na wyjściu. Sprawność obliczamy stosując wzór: sprawność = (moc wyjściowa / moc wejściowa) * 100%. Użycie watomierzy pozwala na jednoczesny pomiar napięcia i prądu, co jest kluczowe dla dokładnych obliczeń. W branży energetycznej i elektronicznej, zastosowanie takich urządzeń jest zgodne z wytycznymi IEC 62053, które definiują zasady pomiarów energii elektrycznej. Dzięki temu możemy jednoznacznie określić, jak efektywnie przetwornica przekształca energię, co ma wpływ na jej zastosowanie w różnych aplikacjach, takich jak zasilacze, systemy fotowoltaiczne czy elektryczne pojazdy.

Pytanie 25

Na rysunku pokazano zależność tłumienia od częstotliwości A=f(f) pewnego filtru. Jaka jest wartość częstotliwości granicznej filtru o tej charakterystyce?

Ilustracja do pytania
A. 1 kHz
B. 10 Hz
C. 10 kHz
D. 100 Hz

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Częstotliwość graniczna filtru to kluczowy parametr w analizie systemów filtracyjnych, definiowany jako wartość częstotliwości, przy której sygnał jest tłumiony o 3 dB w stosunku do poziomu maksymalnego przepuszczanego przez filtr. W kontekście zaprezentowanego wykresu, tłumienie zaczyna znacząco wzrastać po osiągnięciu częstotliwości 1 kHz. Taki punkt jest niezwykle istotny w projektowaniu filtrów, ponieważ pozwala na określenie zakresu częstotliwości, w którym filtr skutecznie działa. W praktyce, odpowiednia znajomość częstotliwości granicznych jest nieoceniona w takich dziedzinach jak telekomunikacja, audio, czy inżynieria sygnałowa, gdzie jakość sygnału jest kluczowa. Na przykład, w systemach audio, odpowiedni dobór częstotliwości granicznej pozwala na efektywne odfiltrowanie niepożądanych zakłóceń, co przekłada się na lepszą jakość dźwięku. Dobrą praktyką jest również wykonanie analizy impedancji w pobliżu częstotliwości granicznej, aby zapewnić optymalne dopasowanie i minimalizację strat sygnału. Zrozumienie tego konceptu jest fundamentalne dla inżynierów zajmujących się projektowaniem i optymalizacją systemów filtracyjnych.

Pytanie 26

Na rysunku przedstawiono schemat ideowy

Ilustracja do pytania
A. zasilacza.
B. modulatora.
C. generatora.
D. wzmacniacza mocy.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Na przedstawionym schemacie ideowym znajduje się klasyczny przykład generatora, który składa się z elementów takich jak cewki, kondensatory, rezystory oraz tranzystor. Kluczowym aspektem działania generatora jest tworzenie obwodu rezonansowego, który umożliwia generowanie sygnału elektrycznego o określonej częstotliwości. W tym układzie cewki i kondensatory współpracują ze sobą, co pozwala na oscylacje, a zastosowanie tranzystora zapewnia wzmocnienie sygnału. Generator jest szeroko stosowany w wielu dziedzinach, takich jak telekomunikacja, gdzie dostarcza sygnały do modulatorów, oraz w systemach zasilania, gdzie stabilizuje napięcie. Zrozumienie działania generatorów jest kluczowe dla projektowania i analizy układów elektronicznych, a także dla zapewnienia zgodności z normami branżowymi, takimi jak IEC 61000, dotyczącymi kompatybilności elektromagnetycznej.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Jakie urządzenie łączy komputer z lokalną siecią komputerową?

A. wyposażenie bramowe
B. firewall
C. most
D. karta sieciowa

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Karta sieciowa to taki kluczowy element, który łączy komputer z lokalną siecią, jakby to był most między różnymi urządzeniami. Jej główne zadanie to umożliwienie komunikacji, co jak wiadomo, odbywa się poprzez zamianę danych na sygnały elektryczne i przesyłanie ich przez różne media, jak kable Ethernet czy fale radiowe w sieciach bezprzewodowych. Karty sieciowe występują w różnych wersjach, na przykład jako karty rozszerzeń do montażu w gniazdach PCI albo jako wbudowane urządzenia w laptopach. Każda z nich ma swój unikalny adres MAC, który jest, mówiąc kolokwialnie, takim identyfikatorem w sieci. Standardy, jak IEEE 802.3 dla Ethernet czy IEEE 802.11 dla Wi-Fi, mówią, jak te karty powinny działać, żeby wszystko ze sobą współpracowało. Dzięki nim użytkownicy mogą korzystać z różnych zasobów sieciowych, jak serwery, drukarki czy internet, co jest niezbędne, szczególnie w biurach i domach.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

Którą właściwość posiada wzmacniacz tranzystorowy przedstawiony na rysunku?

Ilustracja do pytania
A. Średnia rezystancja wejściowa tego wzmacniacza wynosi około 100 k?
B. Sygnał wyjściowy jest odwrócony o 180° w stosunku do sygnału wejściowego.
C. Wzmocnienie napięciowe tego układu wynosi około 10 V/V
D. Średnia rezystancja wyjściowa tego wzmacniacza wynosi około 10 k?

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź dotyczy średniej rezystancji wejściowej wzmacniacza tranzystorowego w konfiguracji wspólnego emitera, która wynosi około 100 kΩ. Wartość ta wynika z równoległego połączenia rezystorów R1 i R2 oraz rezystancji wejściowej tranzystora. Obliczenia pokazują, że rezystancja Rwe≈(R1*R2)/(R1+R2) daje wynik bliski 100 kΩ, co jest zgodne z typowymi wartościami dla wzmacniaczy tego typu. W praktyce, rozumienie rezystancji wejściowej jest kluczowe, ponieważ wpływa na sposób, w jaki wzmacniacz reaguje na sygnały wejściowe. Wysoka rezystancja wejściowa zmniejsza obciążenie źródła sygnału, co jest istotne przy projektowaniu układów elektronicznych. Przykładowo, w aplikacjach audio czy pomiarowych, gdzie sygnały pochodzą z czujników o wyższej rezystancji, wzmacniacze o dużej rezystancji wejściowej są preferowane, aby uniknąć zniekształceń sygnału.

Pytanie 32

Podczas pomiaru napięcia UCE spoczynkowego punktu pracy tranzystora m.cz. woltomierzem analogowym CE o podziałce 100 działek ustawionym na zakresie 0,3 V wskazówka wskazuje 80 działek. Ile wynosi wartość mierzonego napięcia?

Ilustracja do pytania
A. 180 mV
B. 120 mV
C. 240 mV
D. 60 mV

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wartość mierzonego napięcia UCE spoczynkowego punktu pracy tranzystora m.cz. została poprawnie obliczona jako 240 mV. Woltomierz analogowy z podziałką 100 działek i zakresem 0,3 V oznacza, że każda działka odpowiada wartości 3 mV (0,3 V podzielone przez 100 działek). Wskazanie 80 działek należy pomnożyć przez wartość jednej działki: 80 x 3 mV = 240 mV. Zrozumienie zasad działania woltomierzy analogowych jest kluczowe w praktyce inżynierskiej, ponieważ pozwala na dokładne pomiary w różnych obwodach elektrycznych. Umiejętność prawidłowego odczytu i interpretacji wyników pomiarów przyczynia się do efektywności projektowania oraz diagnostyki układów elektronicznych. W standardowej praktyce, zawsze warto zwracać uwagę na zakresy pomiarowe oraz na właściwe kalibracje urządzeń, aby zapewnić dokładność pomiarów, co ma kluczowe znaczenie w zastosowaniach przemysłowych i laboratoryjnych.

Pytanie 33

Jaką wartość ma impedancja wejściowa gniazda antenowego w odbiorniku telewizyjnym?

A. 50 Ω
B. 150 Ω
C. 75 Ω
D. 300 Ω

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 75 Ω jest poprawna, ponieważ gniazdo antenowe odbiornika telewizyjnego standardowo projektowane jest z impedancją 75 Ω. Taki wybór impedancji wynika z optymalizacji transmisji sygnałów telewizyjnych, które są przesyłane w większości systemów kablowych oraz satelitarnych. W przypadku zastosowania impedancji 75 Ω, mamy do czynienia z minimalizacją strat sygnałowych oraz refleksji, co jest kluczowe dla zachowania jakości odbioru. W praktyce, urządzenia, takie jak dekodery czy telewizory, powinny być podłączane do anten o tej samej impedancji, aby zapewnić maksymalną efektywność. Ponadto, w branży telekomunikacyjnej powszechnie stosowane są standardy, takie jak IEC 60169-2, które definiują parametry techniczne gniazd oraz przewodów antenowych. Zastosowanie impedancji 75 Ω przyczynia się także do lepszego dopasowania z systemami przesyłowymi, co jest istotne w kontekście nowoczesnej telewizji wysokiej rozdzielczości i transmisji cyfrowej.

Pytanie 34

W systemach zabezpieczeń obwodowych wykorzystuje się

A. bariery podczerwieni
B. czujniki dymu i ciepła
C. czujniki gazów usypiających
D. czujniki zalania

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Bariery podczerwieni stanowią jeden z kluczowych elementów nowoczesnych systemów ochrony obwodowej. Działają na zasadzie detekcji ruchu poprzez analizowanie zmian w promieniowaniu podczerwonym, które emitują obiekty w ich zasięgu. Dzięki tej technologii możliwe jest szybkie wykrycie nieautoryzowanego dostępu do chronionego obszaru. Bariery podczerwieni są często stosowane w użytku zewnętrznym, gdzie mogą monitorować duże obszary, takie jak ogrody, parkingi czy tereny przemysłowe. Zgodnie z normami EN 50131, detektory te powinny być odpowiednio umieszczone, aby minimalizować ryzyko fałszywych alarmów, co jest kluczowe dla efektywności systemu. W praktyce, bariery podczerwieni są wykorzystywane w połączeniu z innymi systemami zabezpieczeń, takimi jak kamery monitoringu czy alarmy, co zwiększa ich skuteczność. Odpowiednie ich zainstalowanie oraz konfiguracja są zgodne z najlepszymi praktykami w branży ochrony, co zapewnia wysoki poziom bezpieczeństwa.

Pytanie 35

W trakcie serwisowania instalacji antenowej zauważono błąd popełniony przez instalatora. Zamiast właściwego przewodu o impedancji falowej 75 Ω, podłączono przewód o impedancji falowej 300 Ω. W efekcie tego błędu sygnał, który docierał do odbiornika,

A. był wzmocniony
B. był stłumiony
C. nie uległ zmianie
D. był równy 0

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź, że sygnał był stłumiony, jest prawidłowa, ponieważ różnica w impedancji falowej pomiędzy przewodem o impedancji 75 Ω a przewodem o impedancji 300 Ω powoduje poważne straty sygnału. W przypadku, gdy impedancja źródła i obciążenia nie jest zgodna, część sygnału jest odbijana na złączu, co prowadzi do zmniejszenia jego amplitudy. Praktycznie oznacza to, że efektywność transmisji sygnału jest znacznie obniżona. W przypadku instalacji antenowych, stosowanie przewodów o właściwej impedancji jest kluczowe dla zapewnienia optymalnej jakości odbioru sygnału. Zgodnie z normami branżowymi, takie jak IEC 61169, zachowanie odpowiednich wartości impedancji jest kluczowe dla minimalizacji strat transmisyjnych. Zastosowanie przewodów o nieodpowiedniej impedancji, jak w tym przypadku, często skutkuje stłumieniem sygnału, co może prowadzić do problemów z jakością odbioru, takich jak zniekształcenia czy zrywanie sygnału. Dlatego w praktyce zawsze należy upewnić się, że używane komponenty w instalacjach są zgodne z wymaganiami technicznymi.

Pytanie 36

W trakcie przeglądu okresowego systemu telewizji kablowej jakość sygnału u poszczególnych abonentów ocenia się, dokonując pomiaru

A. współczynnika szumów w kanale zwrotnym poszczególnych abonentów
B. współczynnika szumów w sygnale przekazywanym przez stację czołową do abonentów
C. poziomu sygnału przesyłanego przez stację czołową do abonentów
D. poziomu sygnału wizyjnego w gniazdach abonenckich poszczególnych użytkowników

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór współczynnika szumów w kanale zwrotnym poszczególnych abonentów jako metody monitorowania jakości sygnału telewizyjnego jest właściwy, ponieważ szum w kanale zwrotnym może znacząco wpływać na jakość odbieranego sygnału. W praktyce, kanał zwrotny to ścieżka, którą sygnał jest przesyłany od abonenta do stacji czołowej, a jego jakość jest kluczowa dla stabilności i niezawodności całego systemu telewizji kablowej. Współczynnik szumów określa, w jakim stopniu sygnał jest zakłócany przez niepożądane sygnały, a jego analiza umożliwia identyfikację problemów mogących prowadzić do degradacji jakości obrazu i dźwięku. Wykorzystując te informacje, technicy mogą podejmować odpowiednie kroki, takie jak regulacja poziomu sygnału, poprawa izolacji kabli czy aktualizacja urządzeń, aby zapewnić optymalne warunki dla abonentów. Poznanie standardów branżowych, takich jak ITU-T J.83, które definiują parametry transmisji w telewizji kablowej, również może pomóc w lepszym zrozumieniu, jak ważny jest monitoring tych wskaźników.

Pytanie 37

Jakie narzędzie należy zastosować do przykręcenia kabli w czujniku dymu i ciepła?

A. wkrętak
B. przecinak
C. szczypce boczne
D. klucz nasadowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór wkrętaka jako narzędzia do przykręcania przewodów w czujce dymu i ciepła jest słuszny, ponieważ wkrętak jest specjalistycznym narzędziem, które zostało zaprojektowane do pracy z wkrętami i śrubami. W przypadku instalacji czujników dymu i ciepła, które są kluczowe dla bezpieczeństwa pożarowego, odpowiednie mocowanie przewodów jest niezbędne. Wkrętak pozwala na precyzyjne i pewne dokręcenie elementów, co eliminuje ryzyko luźnych połączeń, które mogłyby prowadzić do awarii urządzenia. Użycie wkrętaka zgodnie z zaleceniami producenta oraz normami branżowymi, takimi jak normy IEC 60335 dotyczące urządzeń elektrycznych, jest praktyką, która zapewnia bezpieczeństwo i niezawodność działania systemów alarmowych. Ponadto, wkrętaki są dostępne w różnych rozmiarach i typach (np. płaskie, krzyżakowe), co pozwala na ich zastosowanie w wielu różnych konfiguracjach instalacyjnych, co czyni je uniwersalnym narzędziem dla techników i instalatorów.

Pytanie 38

Komputerowa jednostka centralna przestaje działać przy dużym obciążeniu procesora. Jakie może być tego przyczyną?

A. Uszkodzona karta graficzna
B. Przegrzewanie procesora
C. Brak wolnego miejsca na dysku twardym
D. Niedobór pamięci

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przegrzewanie się procesora jest jedną z najczęstszych przyczyn, dla których jednostka centralna komputera może zatrzymać się w trakcie dużego obciążenia. Procesory, podczas intensywnej pracy, generują znaczne ilości ciepła. Gdy temperatura procesora przekracza dopuszczalne wartości, system operacyjny podejmuje działania, aby zapobiec uszkodzeniu podzespołów. W takim przypadku procesor automatycznie obniża swoją wydajność lub całkowicie przestaje działać, co jest znane jako 'throttling' lub 'thermal shutdown'. Dlatego bardzo ważne jest, aby zapewnić odpowiednie chłodzenie procesora, na przykład poprzez stosowanie wysokiej jakości coolerów, wentylatorów oraz past termoprzewodzących. Dobrą praktyką jest także regularne czyszczenie wnętrza komputera z kurzu, który może blokować przepływ powietrza. Zastosowanie monitorowania temperatury za pomocą specjalistycznego oprogramowania, takiego jak HWMonitor czy Core Temp, pozwala na bieżąco śledzić temperatury i podejmować odpowiednie działania przed wystąpieniem problemów z przegrzewaniem.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Na podstawie przedstawionych pomiarów stanów logicznych można stwierdzić, że uszkodzeniu uległa bramka oznaczona cyfrą

Ilustracja do pytania
A. 1
B. 2
C. 3
D. 4

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Bramka oznaczona cyfrą 3 jest uszkodzona, ponieważ jej wyjście nie zgadza się z oczekiwanym stanem logicznym dla bramki NOT. Bramka NOT powinna zwracać stan przeciwny do stanu wejścia, co oznacza, że jeśli na wejściu jest '1', na wyjściu powinno być '0', a jeśli na wejściu jest '0', na wyjściu powinno być '1'. W przypadku widocznych pomiarów stanu logicznego, jeśli zidentyfikowano, że wyjście bramki 3 nie spełnia tej reguły, można stwierdzić, że bramka ta jest uszkodzona. W praktyce, podczas diagnozy układów cyfrowych, korzysta się z narzędzi takich jak analizatory stanów logicznych, które pozwalają na dokładną obserwację stanów na wejściach i wyjściach bramek. Standardy branżowe, takie jak IEEE 914, podkreślają znaczenie poprawnego działania bramek logicznych w aplikacjach elektronicznych, gdyż ich uszkodzenie może prowadzić do błędnych wyników w obliczeniach cyfrowych. W przypadku układów złożonych, takich jak procesory czy systemy wbudowane, identyfikacja uszkodzeń jest kluczowa dla zapewnienia niezawodności systemu.