Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechanik
  • Kwalifikacja: MEC.08 - Wykonywanie i naprawa elementów maszyn, urządzeń i narzędzi
  • Data rozpoczęcia: 19 listopada 2025 12:38
  • Data zakończenia: 19 listopada 2025 12:45

Egzamin zdany!

Wynik: 37/40 punktów (92,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Zakład usługowo-mechaniczny dokonuje remontu czterdziestu, dwuwrzecionowych obrabiarek miesięcznie.
Na podstawie danych zamieszczonych w tabeli, oblicz czas potrzebny na montaż wszystkich wrzecion.

Nr zabieguOpis zabieguPracochłonność – wartości średnie [min]
1.Przygotowanie elementów wrzeciona8,80
2.Montaż łożyskowania20,20
3.Montaż tulei14,34
4.Montaż wrzeciona w obudowie oraz sprawdzanie bicia23,25
5.Montaż dystansów28,41
6.Montaż zabezpieczeń wrzecienie39,16
7.Sprawdzenie techniczne wrzeciona30,84
SUMA165,00
A. 220,00 godzin.
B. 62,50 godziny.
C. 368,00 godzin.
D. 110,00 godzin.
Odpowiedź 220,00 godzin jest prawidłowa, ponieważ obliczenia oparte są na rzeczywistych danych dotyczących montażu wrzecion. Przyjmuje się, że czas montażu jednego wrzeciona wynosi 11 godzin. Zatem dla czterdziestu dwuwrzecionowych obrabiarek otrzymujemy 40 obrabiarek x 2 wrzeciona na obrabiarkę x 11 godzin na wrzeciono, co daje 880 godzin całkowitego czasu montażu. Jednakże, gdy przeliczymy to na liczbę roboczogodzin, które są dostępne w miesiącu, oraz uwzględnimy standardy pracy w danej branży, wzięcie pod uwagę ilości i dostępności zasobów może prowadzić do bardziej efektywnego wykorzystania czasu. W praktyce, organizacje często próbują optymalizować procesy montażowe, aby zredukować czas przestojów i zwiększyć wydajność produkcji, co jest kluczowe w branży usługowo-mechanicznej.

Pytanie 2

Która metoda tymczasowego zabezpieczenia metali przed korozją jest skuteczna?

A. pokrywanie smarem
B. metalizacja natryskowa
C. ochrona katodowa
D. malowanie proszkowe
Pokrywanie smarem jest skuteczną metodą czasowego zabezpieczenia antykorozyjnego metali, polegającą na nałożeniu warstwy smaru, która chroni powierzchnię przed działaniem czynników atmosferycznych, takich jak wilgoć i zanieczyszczenia. Smary zawierają dodatki przeciwdziałające korozji, co sprawia, że są idealne do zastosowań w warunkach, gdzie metalowe elementy mogą być narażone na rdzewienie. Przykładem zastosowania może być smarowanie elementów maszyn i urządzeń, które są składowane na zewnątrz lub w wilgotnych warunkach. Dobre praktyki branżowe zalecają regularne inspekcje i aplikacje smaru, aby zapewnić ciągłość ochrony. W przemyśle motoryzacyjnym, pokrywanie smarem jest powszechnie stosowane w celu ochrony podzespołów przed korozją, co zwiększa ich trwałość i niezawodność. Ponadto, smary mogą być łatwo aplikowane i usuwane, co czyni tę metodę łatwą w użyciu i efektywną.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Jakie połączenia charakteryzują się dużą elastycznością deformacyjną oraz zdolnością do powrotu do pierwotnej formy?

A. Nitowanie.
B. Guma.
C. Roztłaczanie.
D. Klejenie.
Odpowiedź "gumowe" jest prawidłowa, ponieważ materiały gumowe charakteryzują się wyjątkowymi właściwościami elastycznymi, które umożliwiają im odkształcanie się pod wpływem sił zewnętrznych, a następnie powracanie do pierwotnego kształtu po ich usunięciu. Te właściwości sprawiają, że gumowe połączenia są często stosowane w aplikacjach wymagających amortyzacji, takich jak uszczelki, podeszwy obuwia czy elementy zawieszenia pojazdów, gdzie potrzebna jest zdolność do absorpcji drgań i wstrząsów. W branży budowlanej oraz motoryzacyjnej stosuje się materiały gumowe także w produkcji wibracyjnych i elastycznych połączeń, które są w stanie wytrzymać znaczne obciążenia, jednocześnie nie ulegając deformacji. Dodatkowo, normy takie jak ISO 14001 i BS 9001 podkreślają znaczenie elastyczności materiałów w projektowaniu komponentów, co sprzyja ich długowieczności oraz efektywności energetycznej.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Do budowy wanny, która ma służyć do przechowywania soku jabłkowego, należy użyć stali

A. ocynkowanej
B. narzędziowej
C. konstrukcyjnej
D. chromowo-niklowej
Wybór stali chromowo-niklowej do konstrukcji wanny do magazynowania soku z jabłek jest uzasadniony jej wyjątkowymi właściwościami. Stal chromowo-niklowa, znana również jako stal nierdzewna, charakteryzuje się wysoką odpornością na korozję, co jest kluczowe w kontekście przechowywania substancji takich jak sok jabłkowy, który ma tendencję do kwaszenia. Przykładem zastosowania stali nierdzewnej w przemyśle spożywczym jest produkcja zbiorników do fermentacji, w których zachowanie czystości i stabilności materiału jest niezbędne dla zachowania jakości produktu. Dodatkowo, stal chromowo-niklowa nie tylko spełnia normy sanitarno-epidemiologiczne, ale także jest łatwa do czyszczenia, co przyspiesza proces konserwacji i utrzymania sprzętu. W branży stosuje się różne klasy stali nierdzewnej, w tym austenityczną (np. 304, 316), która jest szczególnie ceniona za swoje właściwości antykorozyjne. Takie podejście jest zgodne z najlepszymi praktykami w zakresie bezpieczeństwa żywności oraz ochrony zdrowia, co czyni stal chromowo-niklową idealnym wyborem do produkcji wyposażenia przetwórstwa owocowego.

Pytanie 8

Z jakiego materiału nie produkuje się sprężyn?

A. Stali stopowej
B. Tworzywa sztucznego
C. Stali narzędziowej
D. Żeliwa szarego
Żeliwo szare nie jest materiałem odpowiednim do produkcji sprężyn ze względu na swoje właściwości mechaniczne. Charakteryzuje się ono kruchością oraz niską wytrzymałością na rozciąganie, co czyni je nieodpowiednim do zastosowań wymagających elastyczności i wysokiej odporności na cykliczne obciążenia. Sprężyny wymagają materiałów, które mogą efektywnie magazynować energię oraz deformować się pod wpływem obciążenia, a następnie wracać do pierwotnego kształtu bez uszkodzeń. W przemyśle metalowym powszechnie wykorzystuje się do produkcji sprężyn stal stopową oraz stal narzędziową, które oferują odpowiednie parametry wytrzymałościowe oraz sprężystość. Przykładowo, stal stopowa, zawierająca dodatki takie jak chrom czy nikiel, zwiększa odporność na korozję, co jest istotne w przypadku komponentów narażonych na działanie niekorzystnych warunków atmosferycznych. Dodatkowo, sprężyny wykonane z tworzyw sztucznych, chociaż mniej powszechne, mogą być stosowane w zastosowaniach, gdzie wymagana jest lekkość oraz odporność na chemikalia, co potwierdzają standardy ISO dotyczące materiałów kompozytowych.

Pytanie 9

Tworzenie narostu prowadzi do

A. ulepszenia odprowadzania ciepła z ostrzy skrawających
B. powstawania odchyłek kształtu i wymiarów powierzchni obrabianych
C. zmniejszenia tolerancji kształtu i wymiarów obrabianych części
D. wzrostu twardości obrabianego materiału
Powstawanie narostu na narzędziach skrawających jest zjawiskiem, które prowadzi do powstawania odchyłek kształtu i wymiarów powierzchni obrabianych. Narost, czyli nagromadzenie materiału na ostrzu narzędzia, wpływa na jego geometrę oraz kąt natarcia, co w rezultacie zmienia parametry obróbcze. W praktyce, narost może powodować, że proces skrawania staje się mniej stabilny, co prowadzi do niejednorodności w wymiarach obrabianych części. Na przykład, w obróbce stali, narost może być szczególnie problematyczny, ponieważ zmienia właściwości skrawania i może prowadzić do zwiększonego zużycia narzędzi. Zgodnie z najlepszymi praktykami, należy regularnie kontrolować stan narzędzi i stosować odpowiednie techniki, takie jak chłodzenie czy smarowanie, aby zminimalizować powstawanie narostów i zapewnić optymalną jakość obrabianych elementów. Dbałość o stan narzędzi jest kluczowa dla utrzymania tolerancji wymiarowych i kształtowych, co jest zgodne z normami ISO 2768 dotyczącymi tolerancji ogólnych dla wymiarów i kształtów.

Pytanie 10

Jakie materiały można ze sobą łączyć przy użyciu spawania TIG?

A. Metal-drewno
B. Metal-szkło
C. Metal-metal
D. Metal-tworzywo sztuczne
Spawanie TIG, czyli spawanie gazem obojętnym przy pomocy nietopliwej elektrody wolframowej, to naprawdę fajna technika. Przy łączeniu stali ze stalą sprawdza się super, bo ich właściwości są do siebie podobne. Stal jest dość przewodząca i łatwa w spawaniu, więc efekty są zazwyczaj bardzo dobre. Można uzyskać spoinę, która wygląda naprawdę estetycznie i jest solidna. W przemyśle, jak motoryzacja czy budownictwo, gdzie precyzja i wygląd są kluczowe, spawanie TIG jest często wykorzystywane. Żeby uzyskać najlepsze rezultaty, ważne jest, żeby dobrze ustawić parametry spawania, na przykład prąd czy szybkość posuwu. A co najważniejsze, ta technika pozwala też łączyć różne gatunki stali, co jest pomocne przy naprawach czy modernizacjach konstrukcji.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Jeśli po zakończeniu pracy w bruzdach narzędzi pozostaną opiłki, to trzeba je usunąć?

A. palnikiem gazowym
B. środkiem do mycia naczyń
C. ciepłą wodą
D. szczotką drucianą
Usunięcie opiłków z bruzd pilników za pomocą szczotki drucianej jest najlepszym rozwiązaniem, ponieważ ta metoda zapewnia skuteczne usunięcie zanieczyszczeń bez uszkadzania samego narzędzia. Szczotki druciane są projektowane z myślą o czyszczeniu metalowych powierzchni, co czyni je idealnym narzędziem do tego celu. Umożliwiają one dotarcie do wąskich przestrzeni, gdzie opiłki mogą się gromadzić, co jest kluczowe dla utrzymania efektywności narzędzia. Regularne czyszczenie pilników przy użyciu szczotki drucianej jest zgodne z zasadami konserwacji narzędzi, co przekłada się na ich dłuższą żywotność oraz lepsze wyniki pracy. Dobrą praktyką jest również przeprowadzanie takiego czyszczenia po każdym użyciu narzędzia, co zapobiega gromadzeniu się zanieczyszczeń oraz ich wpływowi na jakość obróbki. Dodatkowo, warto pamiętać, że użycie szczotki drucianej wymaga ostrożności, aby uniknąć uszkodzenia samej powierzchni pilnika, dlatego należy stosować odpowiednią siłę podczas czyszczenia.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Nie można zweryfikować współosiowości osi wałów przekładni po zmontowaniu za pomocą

A. suwmiarki uniwersalnej
B. czujnika zegarowego
C. czujnika laserowego
D. przyrządów pomiarowych
Odpowiedź 'suwmiarka uniwersalna' jest fajnie wybrana, ale, no niestety, to nie do końca to. Ta suwmiarka nie ma takiej precyzji, żeby dobrze ocenić, jak osiowo są ustawione wały po montażu. Owszem, suwmiarki są super do mierzenia różnych wymiarów, ale jak chodzi o pomiary osiowe, to jednak nie dają rady. W praktyce do takich rzeczy lepiej użyć czujników zegarowych, bo one pokazują nawet najmniejsze odchylenia. To pomaga naprawić ewentualne błędy przy składaniu. Można też pomyśleć o czujnikach laserowych, które są mega dokładne i używają światła do pomiarów. Dlatego w inżynierii, jak robisz takie pomiary, warto mieć pod ręką specjalistyczne narzędzia, bo to naprawdę pomaga uzyskać dobre wyniki.

Pytanie 16

Stal szybkotnąca jest stosowana do produkcji

A. noży tokarskich
B. rur ciągnionych
C. blach trapezowych
D. profili zamkniętych
Stal szybkotnąca, znana również jako stal HSS (High-Speed Steel), jest materiałem charakteryzującym się wyjątkowymi właściwościami, dzięki którym jest idealnym wyborem do produkcji narzędzi skrawających, w tym noży tokarskich. Stal szybkotnąca zawiera dodatki takie jak wolfram, molibden i kobalt, które poprawiają jej twardość i odporność na wysokie temperatury, co jest kluczowe w procesach obróbczych, gdzie występuje znaczne tarcie i ciepło. Przykładowo, noże tokarskie wykonane z HSS mogą pracować z dużymi prędkościami obrotowymi, co zwiększa efektywność obróbki i redukuje czas produkcji. W praktyce, narzędzia te są powszechnie stosowane w przemyśle, szczególnie w obróbce metali, gdzie wymagane są precyzyjne cięcia i długotrwała trwałość. Dobre praktyki w branży sugerują regularne sprawdzanie stanu narzędzi skrawających, a także dostosowywanie parametrów obróbczych do specyfikacji materiału, co w przypadku stali HSS przyczynia się do uzyskania optymalnych wyników.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

W trakcie spawania gazowego używana jest mieszanina

A. acetylenu i tlenu
B. acetylenu i helu
C. azotu i tlenu
D. argonu i acetylenu
Podczas spawania gazowego wykorzystuje się mieszaninę acetylenu i tlenu, co wynika z unikalnych właściwości chemicznych tej kombinacji. Acetylen, jako gaz palny, charakteryzuje się najwyższą temperaturą płomienia spośród wszystkich gazów spawalniczych, osiągając temperatury do 3200°C w atmosferze tlenu. Taki wysoki stopień ciepłoty jest kluczowy w procesach spawania, gdyż pozwala na skuteczne łączenie metali o różnych właściwościach. W praktyce, spawanie gazowe acetylenu i tlenu jest szeroko stosowane w branży metalowej, w tym w spawaniu stali węglowej, stali nierdzewnej czy miedzi. Zastosowanie tej mieszanki jest zgodne z normami bezpieczeństwa i najlepszymi praktykami w spawalnictwie, co sprawia, że jest to metoda zarówno efektywna, jak i bezpieczna, gdyż odpowiednie techniki i sprzęt mogą zminimalizować ryzyko pożaru oraz eksplozji. Warto również zauważyć, że spawanie gazowe z wykorzystaniem acetylenu i tlenu często towarzyszy innym technikom, takim jak cięcie gazowe, co dodatkowo podkreśla jego wszechstronność w przemyśle.

Pytanie 19

Do czego służy średnicówka mikrometryczna?

A. Pomiar średnic zewnętrznych
B. Pomiar kątów między powierzchniami
C. Pomiar głębokości otworów
D. Pomiar długości całkowitej przedmiotów
Średnicówka mikrometryczna to narzędzie pomiarowe, które jest powszechnie stosowane w przemyśle do dokładnego mierzenia średnic zewnętrznych elementów. Jej konstrukcja opiera się na mechanizmie mikrometrycznym, co pozwala na uzyskanie bardzo precyzyjnych wyników pomiarów, często z dokładnością do setnych części milimetra. W praktyce przemysłowej, szczególnie w obróbce skrawaniem, dokładność pomiaru jest kluczowa, ponieważ nawet niewielkie odchylenia mogą wpływać na jakość montowanych części. Średnicówki mikrometryczne są używane do kontrolowania jakości wykonanych elementów, takich jak wałki, tuleje czy inne cylindryczne części, zapewniając zgodność z wymaganiami technicznymi. Dzięki możliwości szybkiego i precyzyjnego pomiaru, narzędzie to znajduje zastosowanie w wielu branżach, od motoryzacji po produkcję maszyn, gdzie precyzja i jakość są priorytetem. Dobre praktyki branżowe zalecają regularną kalibrację średnicówek, aby utrzymać ich dokładność na najwyższym poziomie.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Terminologia TIG, MIG oraz MMA odnosi się do rodzajów połączeń

A. nitowanych
B. klejonych
C. zgrzewanych
D. spawanych
Oznaczenia TIG, MIG oraz MMA odnoszą się do różnych metod spawania, które są kluczowe w procesach łączenia materiałów metalowych. TIG (Tungsten Inert Gas) to proces, w którym elektroda wolframowa nie topnieje i stosuje się gaz osłonowy, co pozwala na uzyskanie wysokiej jakości spoiny. MIG (Metal Inert Gas) z kolei wykorzystuje topniejącą elektrodę oraz gaz osłonowy, co czyni go szybkim i efektywnym procesem, szczególnie w przypadku większych grubości materiałów. MMA (Manual Metal Arc) to tradycyjna metoda spawania elektrodą otuloną, która jest łatwiejsza w użyciu i często stosowana w warunkach budowlanych lub w terenie. Wszystkie te metody są szeroko stosowane w różnych branżach, takich jak przemysł motoryzacyjny, stoczniowy, budowlany i wiele innych. Każda z tych technik ma swoje unikalne zastosowania, w zależności od wymagań dotyczących jakości, wytrzymałości i estetyki spoiny. W praktyce, znajomość tych technologii pozwala inżynierom i technikom na dobór odpowiedniej metody w zależności od specyfikacji projektu.

Pytanie 22

Rozwiercanie stosuje się w celu

A. poprawy precyzji wymiarowej otworów po procesie wiercenia
B. zmniejszenia precyzji wymiarowej otworów nawiercanych
C. zwiększenia szorstkości powierzchni otworów wierconych
D. umożliwienia wykorzystania docieraków płaskich w otworach
Rozwiercanie to zaawansowany proces obróbczy, który ma na celu poprawę dokładności wymiarowej otworów po wcześniejszym wierceniu. Technika ta polega na używaniu narzędzi o odpowiedniej geometrii, które umożliwiają precyzyjne usunięcie materiału, co przekłada się na osiągnięcie wymaganych tolerancji wymiarowych. W praktyce, rozwiercanie jest często stosowane w produkcji komponentów, gdzie kluczowe są dokładne wymiary, na przykład w branży motoryzacyjnej, lotniczej czy w przemyśle maszynowym. Dzięki rozwiercaniu, otwory mogą być doprowadzone do bardzo wąskich tolerancji, co jest niezbędne w aplikacjach wymagających dużej precyzji, takich jak montaż elementów z dużą dokładnością. Dodatkowo, proces ten wpływa pozytywnie na jakość powierzchni otworów, co zwiększa ich trwałość i funkcjonalność. Stosując rozwiercanie, inżynierowie mogą zapewnić, że komponenty będą działać zgodnie z wymaganiami norm ISO oraz innych standardów branżowych, co w dłuższej perspektywie prowadzi do zmniejszenia kosztów produkcji i poprawy efektywności operacyjnej.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Aby właściwie ustawić urządzenie na stanowisku pracy, konieczne jest użycie

A. poziomnicy maszynowej
B. macek zewnętrznych
C. średnicówki dwupunktowej
D. mikrometru wewnętrznego
Poziomnica maszynowa to narzędzie niezbędne do prawidłowego ustawienia maszyn na stanowisku roboczym. Jej głównym zadaniem jest pomiar poziomu, co jest kluczowe dla zapewnienia stabilności i precyzji pracy maszyn. Wiele maszyn wymaga idealnego poziomowania, aby zminimalizować zużycie elementów oraz poprawić dokładność wykonywanych operacji. Użycie poziomnicy maszynowej pozwala na szybkie i dokładne ustalenie, czy maszyna jest ustawiona w sposób zapewniający jej prawidłowe działanie. Przykładowo, przy ustawianiu tokarek, frezarek czy wiertarek, niewłaściwe poziomowanie może prowadzić do poważnych błędów w obróbce, a także do przyspieszonego zużycia narzędzi. Poziomnice maszynowe są standardem w branży, ponieważ ich zastosowanie przyczynia się do podniesienia efektywności produkcji oraz jakości końcowego wyrobu. Dzięki ich pomiarom można także uniknąć niebezpieczeństw związanych z przechyłami maszyn, co jest kluczowe z punktu widzenia bezpieczeństwa użytkowników.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Po zamontowaniu nie ma możliwości weryfikacji współosiowości osi wałów przekładni przy użyciu

A. przyrządów pomiarowych
B. suwmiarki uniwersalnej
C. czujnika zegarowego
D. czujnika laserowego
Suwmiarka uniwersalna, mimo że jest narzędziem pomiarowym o wszechstronnych zastosowaniach, nie jest odpowiednia do sprawdzania współosiowości wałów w przekładniach po montażu. W przypadku pomiarów współosiowości istotne jest, aby stosować narzędzia, które pozwalają na precyzyjne sprawdzenie odległości i równoleżności osi, a także eliminację błędów pomiarowych. Czujniki zegarowe oraz czujniki laserowe są bardziej odpowiednie, ponieważ pozwalają na wykrycie nawet drobnych odchyleń od idealnej osi. W praktyce, czujnik zegarowy umieszczony na jednym z wałów może wskazywać na zmiany promienia, co bezpośrednio odnosi się do współosiowości. W branży inżynieryjnej, zgodnie z normami ISO 1101, dokładność pomiarów jest kluczowa dla zapewnienia sprawności i trwałości mechanizmów. Użycie odpowiednich narzędzi pomiarowych, takich jak czujniki zegarowe i laserowe, pozwala na dokładne diagnozowanie ewentualnych problemów związanych z współosiowością, co może przyczynić się do wydłużenia żywotności urządzeń.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Regeneracja elementów maszyn, która polega na pokryciu ich powierzchni metalową warstwą w procesie elektrolitycznym, to

A. elektroliza metali
B. pokrywanie galwaniczne
C. malowanie proszkowe
D. metalizacja natryskowa
Malowanie proszkowe, metalizacja natryskowa oraz elektroliza metali to różne technologie, które nie są odpowiednie do regeneracji części maszyn poprzez pokrywanie ich powierzchni metalem. Malowanie proszkowe to proces, w którym proszek farby jest naładowany elektrostatycznie i aplikowany na powierzchnię, tworząc powłokę ochronną; jednak ta technika nie dotyczy metalowego osadzania, lecz jedynie pokrywania powierzchni farbą, co nie przynosi korzyści związanych z regeneracją mechaniczną. Metalizacja natryskowa to proces, który polega na wytapianiu metalu i rozpylaniu go na powierzchnię, co również nie jest techniką elektrolityczną, a raczej termiczną. Choć ta metoda może być stosowana do ochrony przed korozją, nie ma takich samych właściwości jak pokrywanie galwaniczne. Elektroliza metali to proces chemiczny wykorzystywany do wydobycia metali z ich rud, co nie ma związku z regeneracją części maszyn. Kluczowym błędem w myśleniu jest mylenie metod pokrywania i ich zastosowań, co prowadzi do wyboru niewłaściwej technologii dla konkretnego celu. Aby skutecznie regenerować części maszyn, należy stosować odpowiednie techniki, które zapewniają trwałość, odporność na zużycie oraz poprawiają właściwości mechaniczne, co jest charakterystyczne dla pokrywania galwanicznego.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Do czego służy proces elektrodrążenia?

A. Pokrywanie powierzchni farbą
B. Aplikacja powłok antykorozyjnych
C. Obróbka materiałów trudnoskrawalnych
D. Łączenie elementów metalowych
Proces elektrodrążenia jest zaawansowaną technologią obróbki materiałów, która polega na usuwaniu materiału za pomocą wyładowań elektrycznych. Jest szczególnie przydatna w przypadku materiałów trudnoskrawalnych, takich jak stopy tytanu, węgliki spiekane czy stal hartowana, które są wyjątkowo odporne na tradycyjne metody obróbki mechanicznej. Proces ten umożliwia precyzyjne kształtowanie i wykańczanie elementów, które są trudne do obróbki innymi metodami. Elektrodrążenie jest szeroko stosowane w przemyśle narzędziowym do wykonania form wtryskowych, matryc, a także w przemyśle lotniczym i motoryzacyjnym. Dzięki możliwości uzyskania skomplikowanych kształtów oraz wysokiej dokładności wymiarowej, elektrodrążenie staje się niezastąpionym procesem w produkcji komponentów o wysokiej jakości. Technologia ta wykorzystuje właściwości erozyjne wyładowań elektrycznych, co pozwala na obróbkę bez bezpośredniego kontaktu narzędzia z materiałem, eliminując przy tym naprężenia mechaniczne. Jest to zgodne ze standardami przemysłowymi, które wymagają wysokiej precyzji oraz dbałości o jakość powierzchni obrabianych elementów.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Jakiego surowca używa się do stworzenia modelu odlewniczego w technice wytapianego modelu?

A. Wosk.
B. Kleje.
C. Tkanina.
D. Aluminium.
Wosk jest materiałem powszechnie stosowanym w metodzie odlewania z wytapianym modelem, znanej również jako metoda wypalania wosku. Proces ten polega na wykonaniu modelu z wosku, który następnie zostaje pokryty warstwą materiału formierskiego, najczęściej z gipsu lub specjalnych piasków odlewniczych. Po utwardzeniu formy, wosk zostaje podgrzany i wytopiony, co pozostawia pustą przestrzeń, w której wlewa się metal w stanie ciekłym. Ta metoda charakteryzuje się dużą precyzją i jakością detali, co jest kluczowe w takich branżach jak jubilerstwo czy produkcja części do maszyn. Wosk pozwala na łatwe uzyskanie skomplikowanych kształtów i wzorów, których nie sposób byłoby wykonać przy użyciu innych materiałów. Zgodnie z normami branżowymi, stosowanie wosku w procesach odlewniczych zwiększa efektywność produkcji oraz jakość finalnych wyrobów. Na przykład, w jubilerstwie, wosk jest używany do tworzenia modelu biżuterii, co pozwala na precyzyjne odwzorowanie detali.

Pytanie 37

Jakie narzędzie jest używane do pomiaru średnicy otworu w korpusie maszyny?

A. sprawdzian tłoczkowy
B. liniał sinusowy
C. sprawdzian szczękowy
D. wałek pomiarowy
Sprawdzian tłoczkowy jest narzędziem pomiarowym, które służy do precyzyjnego pomiaru średnicy otworów. Jego konstrukcja pozwala na dokładne dopasowanie do wymiarów otworu, co czyni go idealnym instrumentem w procesach kontrolnych w przemyśle. Sprawdzian ten zazwyczaj składa się z cylindrycznego elementu, który może być wykonany z materiałów odpornych na zużycie, co zapewnia długowieczność i stabilność wymiarową. W praktyce, korzysta się z niego, aby upewnić się, że otwór spełnia określone tolerancje wymiarowe, co jest kluczowe dla prawidłowego funkcjonowania komponentów maszyn. W branży inżynieryjnej i produkcyjnej stosowanie sprawdzianów tłoczkowych jest zgodne z normami jakości ISO, które podkreślają potrzebę precyzyjnego pomiaru i kontroli wymiarów w procesie produkcyjnym. Tego rodzaju narzędzia są niezbędne w zapewnieniu, że elementy maszyn będą ze sobą prawidłowo współdziałać, co jest kluczowe dla utrzymania wysokiej jakości produkcji oraz minimalizacji odpadów.

Pytanie 38

Jakie narzędzie służy do wykonywania zgrubnych pomiarów gorących detali podczas ręcznego kucia?

A. macek
B. taśmy pomiarowej
C. suwmiarki
D. przymiaru kreskowego
Macek jest narzędziem, które doskonale sprawdza się w pomiarze gorących elementów podczas kucia ręcznego. Główną zaletą macek jest ich zdolność do pomiaru temperatury materiałów metalowych, które mogą być zbyt gorące dla innych narzędzi pomiarowych, takich jak suwmiarki czy taśmy miernicze, które mogą ulec uszkodzeniu. Macek, zwykle wykonany z materiałów odpornych na wysokie temperatury, pozwala na szybkie i niezawodne określenie wymiarów w warunkach, gdzie inne metody byłyby niepraktyczne. Przykładem zastosowania jest pomiar długości elementów metalowych w trakcie procesu kucia, co jest kluczowe dla zapewnienia precyzyjnych wymiarów gotowego wyrobu. Standardy branżowe, takie jak ISO 9001, podkreślają znaczenie dokładności pomiarów w procesach produkcyjnych, co czyni macek niezastąpionym narzędziem w warsztatach rzemieślniczych oraz w dużych zakładach przemysłowych. Dzięki swoim właściwościom, macki są preferowanym wyborem dla specjalistów zajmujących się obróbką cieplną metali, co potwierdza ich istotność w procesie kucia.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.