Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 13 lutego 2026 21:21
  • Data zakończenia: 13 lutego 2026 21:36

Egzamin zdany!

Wynik: 26/40 punktów (65,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Która część stanowi treść dokumentacji powykonawczej?

A. Kalkulacja kosztów na podstawie katalogu nakładów rzeczowych KNR.
B. Wstępny kosztorys ofertowy.
C. Wyniki testów sieci.
D. Analiza biznesowa potrzeb zamawiającego.
Odpowiedzi takie jak wstępny kosztorys ofertowy, analiza biznesowa potrzeb zamawiającego czy kalkulacja kosztów na podstawie katalogu nakładów rzeczowych KNR są nieodpowiednie w kontekście dokumentacji powykonawczej. Wstępny kosztorys ofertowy jest narzędziem używanym na etapie planowania projektu i dotyczy szacowania kosztów, które mogą się zmienić w toku realizacji. Jest to ważny dokument, ale nie zawiera szczegółowych informacji na temat rzeczywistych wyników czy efektywności systemu po jego wdrożeniu. Analiza biznesowa potrzeb zamawiającego ma na celu określenie wymagań i oczekiwań na początku projektu, co czyni ją ważnym elementem fazy przygotowawczej, ale nie stanowi zbioru dowodów na to, jak projekt został zrealizowany. Z kolei kalkulacja kosztów na podstawie KNR odnosi się do planowania kosztów i nie jest bezpośrednio związana z oceną funkcjonowania systemu. Typowy błąd myślowy polegający na pomyleniu etapu budowy z etapem oceny skuteczności może prowadzić do nieporozumień w zakresie dokumentacji powykonawczej, co w dłuższej perspektywie wpływa na nieefektywne zarządzanie projektami oraz ich wynikami.

Pytanie 2

Stacja robocza powinna znajdować się w tej samej podsieci co serwer o adresie IP 192.168.10.150 i masce 255.255.255.192. Który adres IP powinien być skonfigurowany w ustawieniach protokołu TCP/IP karty sieciowej stacji roboczej?

A. 192.168.10.1
B. 192.168.10.220
C. 192.168.11.130
D. 192.168.10.190
Wybór adresów IP 192.168.11.130, 192.168.10.220 oraz 192.168.10.1 jest nieprawidłowy z różnych powodów. Adres 192.168.11.130 znajduje się w innej podsieci, ponieważ druga część adresu '11' wskazuje na inną grupę adresów, co uniemożliwia komunikację z serwerem 192.168.10.150. W sieciach IPv4, komunikacja odbywa się wewnątrz tej samej podsieci, a różne numery w trzecim oktetcie (jak '10' i '11') oznaczają różne podsieci. Adres 192.168.10.220 również jest błędny, ponieważ znajduje się poza zakresem dostępnych adresów w podsieci 192.168.10.128/26 – adresy w tej podsieci wahają się od 192.168.10.129 do 192.168.10.190. Wybór adresu 192.168.10.1 z kolei może być mylony z adresem bramy sieciowej, która zwykle nie jest przydzielana stacjom roboczym, a wręcz przeciwnie – jest zarezerwowana dla urządzeń sieciowych, takich jak routery. W praktyce, osoby przydzielające adresy IP powinny również pamiętać o tworzeniu planu adresacji, który zapobiega konfliktom IP i umożliwia efektywne zarządzanie zasobami sieciowymi.

Pytanie 3

Impulsator pozwala na testowanie uszkodzonych systemów logicznych w komputerze, między innymi poprzez

A. podanie na wejście układu sygnału wysokiego
B. kalibrację mierzonych wartości elektrycznych
C. odczytanie stanu wyjściowego układu
D. analizę stanów logicznych obwodów cyfrowych
Analizując inne odpowiedzi, można zauważyć, że kalibracja mierzonych wielkości elektrycznych nie jest typowym zadaniem impulsatora. Kalibracja to proces zapewnienia, że instrumenty pomiarowe działają zgodnie z określonymi standardami, a impulsatory nie są narzędziami do tego celu. Podobnie, choć badanie stanów logicznych obwodów cyfrowych może wydawać się związane z testowaniem układów, impulsatory skupiają się na wprowadzaniu stanów, a nie na ich analizie. Istotne jest zrozumienie, że badanie stanów wymaga bardziej złożonych narzędzi, takich jak analizatory stanów logicznych. Ostatnia odpowiedź dotycząca odczytu stanu wyjściowego układu również nie jest poprawna, ponieważ impulsatory nie mają funkcji do monitorowania lub analizowania wyników wyjściowych; ich rolą jest wyłącznie wprowadzanie sygnałów na wejścia. Typowym błędem w takich analizach jest mylenie funkcji urządzeń. Kluczowe jest, aby zrozumieć różnice między różnymi narzędziami diagnostycznymi i ich specyficznymi zastosowaniami, co pozwala na efektywną diagnostykę oraz naprawę uszkodzeń w układach elektronicznych.

Pytanie 4

Serwer, który realizuje żądania w protokole komunikacyjnym HTTP, to serwer

A. WWW
B. DNS
C. DHCP
D. FTP
Serwer WWW, znany również jako serwer HTTP, jest kluczowym elementem architektury internetowej, który obsługuje żądania protokołu komunikacyjnego HTTP. Kiedy użytkownik wprowadza adres URL w przeglądarkę internetową, przeglądarka wysyła żądanie HTTP do serwera WWW, który następnie przetwarza to żądanie i zwraca odpowiednią stronę internetową. Serwery WWW są odpowiedzialne za przechowywanie treści, takich jak HTML, CSS i JavaScript, oraz za ich udostępnienie użytkownikom za pośrednictwem sieci. W praktyce serwery WWW mogą być skonfigurowane do obsługi różnych typów treści, a także do stosowania zabezpieczeń, takich jak HTTPS, co jest standardem w branży. Przykłady popularnych serwerów WWW to Apache, Nginx oraz Microsoft Internet Information Services (IIS). Stosowanie dobrych praktyk, takich jak optymalizacja wydajności serwera oraz implementacja odpowiednich polityk bezpieczeństwa, jest kluczowe dla zapewnienia stabilności i ochrony przed zagrożeniami w Internecie.

Pytanie 5

Jakie medium transmisyjne powinno być użyte do połączenia dwóch punktów dystrybucyjnych oddalonych od siebie o 600m?

A. Przewód koncentryczny
B. Skrętkę UTP
C. Światłowód
D. Skrętkę STP
Wybór innych medium transmisyjnych, takich jak skrętka STP czy UTP, bądź przewód koncentryczny, nie jest optymalny w przypadku odległości 600 metrów. Skrętka, zarówno STP (Shielded Twisted Pair), jak i UTP (Unshielded Twisted Pair), ma swoje ograniczenia jeśli chodzi o maksymalną długość transmisji. Zgodnie z normami, maksymalna długość dla kabli UTP wynosi zazwyczaj 100 metrów, co sprawia, że ich zastosowanie w przypadku wymaganej odległości 600 metrów prowadziłoby do znacznych strat sygnału oraz obniżenia jakości połączenia. Co więcej, w przypadku skrętki STP, mimo że zapewnia ochronę przed zakłóceniami elektromagnetycznymi, nadal nie osiąga wydajności i stabilności transmisji, jakie oferuje światłowód. Przewody koncentryczne, chociaż używane w telekomunikacji, są w dzisiejszych czasach coraz rzadziej wykorzystywane w zastosowaniach sieciowych, a ich zastosowanie w przesyłaniu danych na dłuższe odległości również wiąże się z problemami z tłumieniem sygnału. Wybierając skrętkę lub przewód koncentryczny, można wpaść w pułapkę myślenia, że te rozwiązania są wystarczające dla nowoczesnych aplikacji, co nie jest zgodne z aktualnymi standardami branżowymi. W praktyce, dla stabilnych i wydajnych połączeń, szczególnie w kontekście dużych odległości, wybór światłowodu jest zdecydowanie bardziej uzasadniony i zalecany.

Pytanie 6

Zastosowanie programu firewall ma na celu ochronę

A. procesora przed przeciążeniem przez system
B. sieci LAN oraz systemów przed atakami intruzów
C. systemu przed szkodliwymi aplikacjami
D. dysku przed przepełnieniem
Odpowiedź dotycząca zastosowania programu firewall w celu zabezpieczenia sieci LAN oraz systemów przed intruzami jest prawidłowa, ponieważ firewall działa jako bariera ochronna między siecią a potencjalnymi zagrożeniami z zewnątrz. Systemy te monitorują i kontrolują ruch sieciowy, filtrując pakiety danych na podstawie zdefiniowanych reguł bezpieczeństwa. Przykład zastosowania firewalla to ochrona sieci firmowej przed atakami z Internetu, które mogą prowadzić do nieautoryzowanego dostępu do wrażliwych danych. Standardy takie jak ISO/IEC 27001 wskazują na znaczenie zabezpieczeń sieciowych, a praktyki takie jak segmentacja sieci mogą być wspierane przez odpowiednio skonfigurowane firewalle. Oprócz blokowania niepożądanego ruchu, firewalle mogą również monitorować działania użytkowników i generować logi, które są niezbędne do analizy incydentów bezpieczeństwa. Zastosowanie firewalla w środowiskach chmurowych oraz w modelach Zero Trust staje się coraz bardziej powszechne, co podkreśla ich kluczową rolę w nowoczesnych systemach bezpieczeństwa IT.

Pytanie 7

Elementem, który umożliwia wymianę informacji pomiędzy procesorem a magistralą PCI-E, jest

A. cache procesora
B. pamięć RAM
C. układ Super I/O
D. chipset
Wybór odpowiedzi, która nie odnosi się do chipsetu, prowadzi do zrozumienia, że inne elementy systemu nie pełnią roli pośrednika w komunikacji między procesorem a magistralą PCI-E. Pamięć RAM, chociaż jest kluczowym komponentem w architekturze komputerowej, nie służy do wymiany danych między procesorem a magistralą. Jej funkcją jest przechowywanie danych i instrukcji, które procesor wykorzystuje podczas wykonywania zadań. Z kolei cache procesora jest pamięcią podręczną, która przyspiesza dostęp do często używanych danych, lecz również nie pełni funkcji interfejsu komunikacyjnego. Również układ Super I/O, który zajmuje się komunikacją z starszymi urządzeniami peryferyjnymi, nie ma bezpośredniego wpływu na transfer danych między procesorem a PCI-E. Typowym błędem w myśleniu jest utożsamianie tych elementów z rolą komunikacyjną, co prowadzi do nieporozumień w zrozumieniu architektury komputerowej. Warto znać podstawowe funkcje każdego z komponentów, aby lepiej rozumieć ich interakcje i znaczenie w całości systemu, co jest kluczowe w projektach związanych z budową i optymalizacją komputerów oraz ich komponentów.

Pytanie 8

Jakie urządzenia wyznaczają granice domeny rozgłoszeniowej?

A. przełączniki
B. rutery
C. huby
D. wzmacniacze sygnału
Koncentratory, mosty i regeneratory to różne urządzenia w sieciach, ale nie ogarniają one granicy domeny rozgłoszeniowej. Koncentratory działają na warstwie fizycznej modelu OSI i mają za zadanie rozsyłać sygnały do wielu urządzeń. Przez to przesyłają też pakiety rozgłoszeniowe do wszystkich podłączonych, więc nie segregują ruchu, tylko rozprzestrzeniają komunikację na całą lokalną sieć. Mosty, które pracują na warstwie drugiej, mogą filtrować lokalny ruch, ale też nie zatrzymują rozgłoszenia, więc granice domeny nie są przez nie ustalane. Regeneratory z kolei wzmacniają sygnał w sieci, żeby można było go dalej przesyłać, ale nie analizują pakietów ani nie decydują o ich przesyłaniu, więc nie mają wpływu na domeny rozgłoszeniowe. Często myli się je z ruterami, które są zaprojektowane do segmentacji ruchu. W rzeczywistości funkcje tych urządzeń prowadzą do szerszego rozgłosu, co może obniżyć efektywność sieci. Rozumienie, czym się różnią te urządzenia od ruterów jest kluczowe, jeśli chcesz dobrze projektować i wdrażać rozwiązania sieciowe.

Pytanie 9

Na podstawie jakiego adresu przełącznik podejmuje decyzję o przesyłaniu ramek?

A. Adresu docelowego IP
B. Adresu docelowego MAC
C. Adresu źródłowego IP
D. Adresu źródłowego MAC
Słuchaj, jest parę niejasności, gdy mówimy o adresach w kontekście działania przełącznika. Adres źródłowy i docelowy IP dotyczą warstwy 3 w modelu OSI, czyli warstwy sieciowej, a nie warstwy 2, gdzie działają przełączniki. Przełącznik nie korzysta z adresów IP przy przesyłaniu ramek, tylko zwraca uwagę na adresy MAC. Jak ktoś zaczyna mieszać IP w tej kwestii, to może dojść do błędnych wniosków – przełącznik wcale nie wie, jakie IP są związane z danym MAC. I jeszcze jedna rzecz – mylenie adresu źródłowego MAC z docelowym to też pułapka. Adres źródłowy MAC pokazuje, skąd ramka pochodzi, ale to adres docelowy decyduje, dokąd ta ramka ma iść. Takie zamieszanie w hierarchii adresowania w modelu OSI może prowadzić do kłopotów z konfiguracją sieci, co sprawia, że przesyłanie danych nie działa jak powinno i mogą się pojawić problemy z bezpieczeństwem. Dobrze jest zapamiętać te różnice między adresami w różnych warstwach modelu OSI i ich rolami w sieci.

Pytanie 10

Możliwość bezprzewodowego połączenia komputera z siecią Internet za pomocą tzw. hotspotu będzie dostępna po zainstalowaniu w nim karty sieciowej posiadającej

A. złącze USB
B. interfejs RS-232C
C. gniazdo RJ-45
D. moduł WiFi
Odpowiedź z modułem WiFi jest poprawna, ponieważ umożliwia bezprzewodowy dostęp do sieci Internet. Moduły WiFi są standardowym rozwiązaniem w nowoczesnych komputerach i urządzeniach mobilnych, pozwalającym na łączenie się z lokalnymi sieciami oraz dostęp do Internetu poprzez hotspoty. W praktyce użytkownicy mogą korzystać z takich hotspotów, jak publiczne sieci WiFi w kawiarniach, hotelach czy na lotniskach. Moduły te działają w standardach IEEE 802.11, które obejmują różne wersje, takie jak 802.11n, 802.11ac czy 802.11ax, co wpływa na prędkość oraz zasięg połączenia. Warto również zauważyć, że dobre praktyki w zakresie zabezpieczeń, takie jak korzystanie z WPA3, są kluczowe dla ochrony danych podczas łączenia się z nieznanymi sieciami. W kontekście rozwoju technologii, umiejętność łączenia się z siecią bezprzewodową stała się niezbędną kompetencją w codziennym życiu oraz pracy.

Pytanie 11

Jaki typ macierzy dyskowych zapewnia tak zwany mirroring dysków?

A. RAID-0
B. RAID-3
C. RAID-1
D. RAID-5
RAID-0 to technologia, która dzieli dane na kilka dysków, co zwiększa wydajność, ale nie oferuje żadnej redundancji. W przypadku awarii jednego z dysków, wszystkie dane są tracone. W praktyce RAID-0 jest często stosowany w systemach, gdzie priorytetem jest szybkość zapisu i odczytu danych, na przykład w gamingowych komputerach stacjonarnych. RAID-3 wykorzystuje dysk parzystości do ochrony danych, ale nie jest on powszechnie używany, ponieważ nie zapewnia wysokiej wydajności przy operacjach zapisu. RAID-5 łączy zarówno rozdzielanie danych, jak i parzystość, co daje większą niezawodność niż RAID-0, ale nadal nie odpowiada na fundamentalne założenia mirroringu, ponieważ nie tworzy pełnej kopii danych na wszystkich dyskach. Typowym błędem jest mylenie przypadków, w których zależy nam na wydajności, a nie na bezpieczeństwie danych. Kluczowe jest zrozumienie, że RAID-1 jest jedynym rozwiązaniem w odpowiedzi na pytanie o mirroring, natomiast inne poziomy RAID są projektowane z różnymi celami, które nie obejmują czystej redundantności danych.

Pytanie 12

Który z interfejsów można uznać za interfejs równoległy?

A. PS/2
B. LPT
C. RS232
D. USB
Interfejs LPT, znany również jako port równoległy, jest interfejsem, który przesyła dane równocześnie wieloma liniami. W przeciwieństwie do interfejsów szeregowych, gdzie dane są przesyłane pojedynczo, LPT korzysta z równoległej transmisji, co pozwala na szybsze przesyłanie informacji. LPT był powszechnie używany w drukarkach, skanerach oraz wielu innych urządzeniach peryferyjnych, umożliwiając jednoczesne przesyłanie informacji na ośmiu liniach. Z tego powodu był istotnym elementem w architekturze komputerowej lat 80-tych i 90-tych. Pomimo spadku popularności w wyniku rozwoju technologii USB, interfejs LPT nadal znajduje zastosowanie w wielu urządzeniach przemysłowych oraz w kontekście retrokomputerów. Zrozumienie działania LPT i różnicy w przesyłaniu danych w porównaniu do interfejsów szeregowych, takich jak RS232, jest kluczowe dla inżynierów oraz techników zajmujących się projektowaniem systemów elektronicznych i peryferyjnych.

Pytanie 13

Użytkownicy w sieciach bezprzewodowych mogą być uwierzytelniani zdalnie przy pomocy usługi

A. NNTP
B. HTTPS
C. IMAP
D. RADIUS
No to widzę, że wybrałeś odpowiedzi jak IMAP, HTTPS i NNTP, ale muszę przyznać, że są one nieco mylące w kontekście zdalnego uwierzytelniania w sieciach bezprzewodowych. IMAP to protokół do zarządzania e-mailami, więc nie ma tu mowy o uwierzytelnianiu w sieci. Użycie go w tym przypadku to trochę nietrafione posunięcie, bo nie ma żadnych mechanizmów, które by pomogły w autoryzacji dostępu do sieci. HTTPS z kolei to protokół, który dba o bezpieczne przesyłanie danych w internecie, ale znów nie jest to coś, co służy do uwierzytelniania w sieci lokalnej. Może się wydawać, że jest to jakiś sposób na ochronę, ale w tym kontekście po prostu nie pasuje. NNTP natomiast to protokół do wymiany wiadomości w grupach dyskusyjnych, i to też nie ma nic wspólnego z procesem uwierzytelniania w sieciach. Tutaj błędnie myślisz, myląc funkcje tych protokołów, które tak naprawdę mają różne zadania. Zrozumienie, jak te protokoły działają i do czego służą, jest kluczowe, szczególnie w kontekście bezpieczeństwa sieci.

Pytanie 14

Jak nazywa się system, który pozwala na konwersję nazwy komputera na adres IP w danej sieci?

A. NetBEUI
B. ARP
C. ICMP
D. DNS
DNS, czyli ten system nazw domenowych, jest naprawdę ważnym komponentem w sieciach komputerowych. Dzięki niemu możemy zamieniać skomplikowane adresy IP na proste, łatwe do zapamiętania nazwy, co na pewno ułatwia nam życie w sieci. Pomyśl o tym tak: kiedy wpisujesz w przeglądarkę adres www.przyklad.pl, to tak naprawdę DNS robi całą robotę, przetwarzając tę nazwę i wyszukując odpowiedni adres IP. To sprawia, że łączność z serwerem hostingowym staje się prosta jak drut. Co więcej, DNS nie tylko pomaga w codziennym surfowaniu po internecie, ale również w zarządzaniu lokalnymi sieciami. Administratorzy mogą tworzyć specjalne rekordy DNS dla różnych urządzeń, co znacznie ułatwia ich identyfikację i zarządzanie. Warto też wiedzieć, że DNS działa zgodnie z różnymi standardami, jak na przykład RFC 1035 i RFC 2136, które opisują, jak ten cały system powinien funkcjonować.

Pytanie 15

Komenda uname -s w systemie Linux służy do identyfikacji

A. ilości dostępnej pamięci
B. stanu aktualnych interfejsów sieciowych
C. wolnego miejsca na dyskach twardych
D. nazwa jądra systemu operacyjnego
Polecenie 'uname -s' w systemie Linux jest używane do wyświetlania nazwy jądra systemu operacyjnego. Jest to istotna informacja, ponieważ nazwa jądra pozwala zidentyfikować, z jakim systemem operacyjnym mamy do czynienia, co jest szczególnie przydatne w kontekście zarządzania systemem i rozwiązywania problemów. Przykładowo, w przypadku otrzymania zgłoszenia dotyczącego błędu w aplikacji, znajomość jądra może pomóc w określeniu, czy problem jest specyficzny dla danej wersji systemu. W praktyce, administratorzy systemu często wykorzystują polecenie 'uname' w skryptach automatyzujących, aby określić, na jakim systemie operacyjnym działają, co pozwala na dynamiczne dostosowanie działań w zależności od środowiska. Warto zwrócić uwagę, że 'uname' może być używane z innymi opcjami, takimi jak '-a', aby uzyskać bardziej szczegółowe informacje o systemie, w tym wersję jądra, datę kompilacji i architekturę. Z tego względu, zrozumienie funkcji polecenia 'uname' jest kluczowe dla administratorów systemów oraz programistów zajmujących się rozwijaniem oprogramowania dla systemów operacyjnych.

Pytanie 16

Która z zaprezentowanych na rysunkach topologii odpowiada topologii siatki?

Ilustracja do pytania
A. Rys. C
B. Rys. D
C. Rys. B
D. Rys. A
Topologia siatki, przedstawiona na rysunku A jest strukturą sieciową, gdzie każdy węzeł jest bezpośrednio połączony z każdym innym. Tego typu topologia zapewnia najwyższy poziom redundancji i niezawodności, ponieważ awaria jednego połączenia nie wpływa na komunikację pomiędzy innymi węzłami. Przykładowo w systemach krytycznych takich jak centra danych czy sieci wojskowe, topologia siatki jest wykorzystywana do zapewnienia ciągłości działania. Standardy branżowe takie jak IEEE 802.1AX dotyczące agregacji łączy wspierają tego typu konfiguracje, umożliwiając równoważenie obciążenia i zwiększenie przepustowości. Dobre praktyki w projektowaniu takiej sieci obejmują uwzględnienie wysokich kosztów implementacji i złożoności zarządzania, jednakże zyski w postaci minimalnego opóźnienia transmisji i optymalnej niezawodności często przeważają nad wadami. Topologia siatki jest także idealna dla sieci o wysokiej dostępności wymagających dynamicznego routingu i pełnej skalowalności, umożliwiając szybkie rekonfiguracje sieci bez przestojów w działaniu systemu.

Pytanie 17

Narzędzie, które chroni przed nieautoryzowanym dostępem do sieci lokalnej, to

A. analityk sieci
B. analizator pakietów
C. oprogramowanie antywirusowe
D. zapora sieciowa
Zapora sieciowa, znana również jako firewall, jest kluczowym narzędziem zabezpieczającym sieć przed nieautoryzowanym dostępem. Działa na zasadzie monitorowania i kontrolowania ruchu sieciowego, zarówno przychodzącego, jak i wychodzącego, na podstawie ustalonych reguł bezpieczeństwa. W praktyce, zapory sieciowe mogą być konfigurowane, aby zezwalać lub blokować określone protokoły, porty oraz adresy IP. Użycie zapory sieciowej jest zgodne z najlepszymi praktykami w zakresie bezpieczeństwa sieci, takimi jak model zaufania zero (Zero Trust), który zakłada, że każda próba dostępu powinna być traktowana jako potencjalnie niebezpieczna, niezależnie od lokalizacji. Zapory sieciowe są szczególnie ważne w środowiskach korporacyjnych, gdzie ochrona danych i zasobów jest priorytetem. Przykładem zastosowania zapory sieciowej może być blokowanie dostępu do nieautoryzowanych serwisów internetowych czy ochrona przed atakami DDoS. Standardy takie jak ISO/IEC 27001 oraz NIST SP 800-53 podkreślają znaczenie stosowania zapór sieciowych w ramowych zasadach zarządzania bezpieczeństwem informacji.

Pytanie 18

Narzędzie chroniące przed nieautoryzowanym dostępem do lokalnej sieci, to

A. analizator pakietów
B. oprogramowanie antywirusowe
C. zapora sieciowa
D. analizator sieciowy
Zapora sieciowa, znana również jako firewall, to kluczowe narzędzie zabezpieczające, które kontroluje ruch sieciowy między zewnętrznym światem a lokalną siecią. Działa poprzez definiowanie reguł, które decydują, które pakiety danych mają być zablokowane, a które przepuszczone. Zapory sieciowe mogą być sprzętowe lub programowe, a ich zastosowanie jest szerokie, od ochrony małych sieci domowych po zabezpieczenie dużych infrastruktur korporacyjnych. Na przykład, w przypadku organizacji, zapora sieciowa może chronić wrażliwe dane przed nieautoryzowanym dostępem, blokując połączenia z nieznanych adresów IP lub ograniczając dostęp do określonych portów. Dobrze skonfigurowana zapora jest zgodna ze standardami branżowymi, takimi jak ISO/IEC 27001, które podkreślają znaczenie zarządzania bezpieczeństwem informacji. Współczesne zapory często wykorzystują technologie takie jak inspekcja głębokich pakietów (DPI) oraz analitykę behawioralną, co zwiększa ich efektywność w wykrywaniu i zapobieganiu zagrożeniom.

Pytanie 19

Jakie pole znajduje się w nagłówku protokołu UDP?

A. Numer sekwencyjny
B. Wskaźnik pilności
C. Suma kontrolna
D. Numer potwierdzenia
Suma kontrolna w protokole UDP jest kluczowym elementem, który zapewnia integralność danych przesyłanych w sieci. Jest to 16-bitowe pole, które pozwala na wykrycie błędów w danych, co jest szczególnie ważne w kontekście komunikacji sieciowej, gdzie utrata lub uszkodzenie pakietów mogą prowadzić do poważnych problemów. UDP, jako protokół bezpołączeniowy, nie implementuje mechanizmów gwarantujących dostarczenie pakietów, dlatego suma kontrolna odgrywa istotną rolę w zapewnieniu, że odebrane dane są zgodne z wysłanymi. Przykładem zastosowania sumy kontrolnej może być przesyłanie strumieni audio lub wideo, gdzie każde uszkodzenie danych może skutkować zakłóceniem lub utratą jakości. Wartością dodaną jest to, że suma kontrolna jest obliczana zarówno przez nadawcę, jak i odbiorcę, co zwiększa bezpieczeństwo i niezawodność przesyłu. Dzięki tym mechanizmom UDP jest szeroko stosowane w aplikacjach wymagających niskich opóźnień, takich jak gry online czy transmisje w czasie rzeczywistym.

Pytanie 20

Rozkaz procesora, przetwarzający informację i zamieniający ją na wynik, należy do grupy rozkazów

A. sterujących.
B. przesłań.
C. arytmetyczno-logicznych.
D. bezwarunkowych i warunkowych.
Prawidłowo – chodzi o rozkazy arytmetyczno‑logiczne. To właśnie ta grupa instrukcji procesora faktycznie „przetwarza informację” i zamienia dane wejściowe na konkretny wynik. W architekturze procesora takie rozkazy określa się jako ALU‑operations (od Arithmetic Logic Unit), bo są wykonywane przez jednostkę arytmetyczno‑logiczną. Do tej grupy należą m.in. dodawanie, odejmowanie, mnożenie, dzielenie, operacje na bitach (AND, OR, XOR, NOT), przesunięcia bitowe, porównania. To one zmieniają zawartość rejestrów na podstawie dostarczonych operandów. W praktyce programistycznej, nawet jeśli piszemy w językach wysokiego poziomu, każdy algorytm na końcu i tak rozkłada się na takie właśnie podstawowe instrukcje ALU. Gdy kompilator generuje kod maszynowy, intensywne obliczenia numeryczne, kryptografia, kompresja danych czy operacje na grafice opierają się głównie na rozkazach arytmetyczno‑logicznych. Z mojego doświadczenia warto pamiętać, że te instrukcje nie tylko liczą, ale też ustawiają tzw. flagi procesora (zero, przeniesienie, znak itp.), które potem są wykorzystywane przez rozkazy skoków warunkowych. Czyli najpierw ALU coś policzy, ustawi odpowiednie bity w rejestrze flag, a dopiero później sterowanie programu może się zmienić w zależności od wyniku. W standardowych podziałach ISA (Instruction Set Architecture) producenci procesorów zawsze wydzielają osobno instrukcje arytmetyczno‑logiczne, właśnie jako tę grupę, która realnie przetwarza dane, a nie tylko je przesuwa albo steruje przepływem programu.

Pytanie 21

Jakie polecenie w systemie Windows należy użyć, aby ustalić liczbę ruterów pośrednich znajdujących się pomiędzy hostem źródłowym a celem?

A. tracert
B. routeprint
C. arp
D. ipconfig
Polecenie 'tracert' to naprawdę fajne narzędzie w systemie Windows. Dzięki niemu możesz sprawdzić, jak pakiety danych wędrują od jednego komputera do drugiego w sieci. Używając tego polecenia, dostajesz wgląd w wszystkie ruterów, przez które przechodzą twoje dane. To bardzo pomocne, gdy masz problemy z łącznością. Na przykład, jeśli zauważasz opóźnienia, 'tracert' pomoże ci zobaczyć, na którym etapie coś się psuje. Możesz więc szybko ustalić, czy problem leży w twojej lokalnej sieci, w jakimś ruterze, czy może na serwerze, z którym się łączysz. Działa to na zasadzie ICMP, czyli Internet Control Message Protocol. Wysyła pakiety echo request i potem czeka na odpowiedzi, co pozwala sprawdzić, jak długo pakiety lecą do każdego ruteru. Warto regularnie korzystać z 'tracert', bo pomaga to w optymalizacji sieci i wykrywaniu ewentualnych zagrożeń. Dla administratorów i osób zajmujących się IT to naprawdę kluczowe narzędzie.

Pytanie 22

Jakie urządzenie NIE powinno być serwisowane podczas korzystania z urządzeń antystatycznych?

A. Dysk twardy
B. Zasilacz
C. Modem
D. Pamięć
Zasilacz jest urządzeniem, które powinno być naprawiane tylko wtedy, gdy jest całkowicie odłączone od zasilania. W trakcie pracy z urządzeniami antystatycznymi istotne jest, aby unikać wszelkich potencjalnych źródeł uszkodzeń. Zasilacze są źródłem wysokiego napięcia oraz mogą w sobie przechowywać ładunki elektryczne, które mogą być niebezpieczne podczas jakiejkolwiek interakcji. W przypadku naprawy zasilacza w czasie jego działania, istnieje ryzyko zwarcia oraz uszkodzenia podzespołów. W branży serwisowej standardy BHP oraz procedury dotyczące pracy z urządzeniami elektrycznymi wymagają, by każdy zasilacz był odpowiednio odłączony i uziemiony przed przystąpieniem do jakiejkolwiek naprawy. Przykładem dobrej praktyki jest zastosowanie narzędzi antystatycznych, takich jak maty czy paski, które pomagają w eliminacji ładunków statycznych, ale nie zabezpieczają przed ryzykiem związanym z napięciem zasilania.

Pytanie 23

Aby w systemie Windows ustawić właściwości wszystkich zainstalowanych urządzeń lub wyświetlić ich listę, należy użyć narzędzia

A. dnsmgmt.msc
B. dhcpmgmt.msc
C. diskmgmt.msc
D. devmgmt.msc
devmgmt.msc to w praktyce narzędzie, bez którego się nie obejdziesz podczas pracy z systemem Windows, zwłaszcza jeśli masz cokolwiek wspólnego z administracją lub serwisowaniem komputerów. Ten snap-in pozwala na wyświetlanie oraz zarządzanie wszystkimi urządzeniami zainstalowanymi w systemie – mowa tu o kartach sieciowych, procesorach, dyskach, kartach graficznych, ale także różnych interfejsach wejścia/wyjścia, czyli wszystkim, co siedzi w środku lub jest podłączone na zewnątrz komputera. Z mojego doświadczenia często korzysta się z devmgmt.msc, gdy trzeba zaktualizować sterowniki, wyłączyć lub odinstalować urządzenie, czy po prostu sprawdzić, dlaczego coś nie działa po podłączeniu np. nowej myszki czy drukarki. Standardy branżowe, jak chociażby zalecenia Microsoftu w dokumentacji technicznej, wręcz wskazują na Menedżer Urządzeń (którego uruchamia właśnie devmgmt.msc) jako najwygodniejsze narzędzie do podstawowej diagnostyki sprzętu. Co istotne, uruchomienie tego narzędzia przez wpisanie devmgmt.msc (np. w oknie Uruchom – Win+R) to szybka ścieżka, niezależnie od wersji Windowsa, bo ten snap-in jest obecny od lat. Moim zdaniem każdy szanujący się technik powinien znać tę komendę na pamięć, bo pozwala zaoszczędzić naprawdę sporo czasu. Warto też pamiętać, że nie znajdziesz tu konfiguracji sieci, dysków czy usług domenowych – to narzędzie stricte do sprzętu, i właśnie o to chodziło w pytaniu.

Pytanie 24

Jakim kolorem oznaczona jest izolacja żyły pierwszego pinu wtyku RJ45 w układzie połączeń T568A?

A. Biało-pomarańczowym
B. Biało-zielonym
C. Biało-brązowym
D. Biało-niebieskim
Izolacja żyły skrętki w pierwszym pinie wtyku RJ45 w sekwencji połączeń T568A jest oznaczona kolorem biało-zielonym. T568A to jeden z dwóch standardów okablowania, które są powszechnie stosowane w sieciach Ethernet, a jego odpowiednia aplikacja jest kluczowa dla prawidłowego działania systemów komunikacyjnych. W standardzie T568A pierwsza para, która jest używana do transmisji danych, to para zielona, co czyni biało-zielony kolor oznaczający żyłę skrętki pierwszym kolorem w tym schemacie. Szereg pinów w wtyku RJ45 jest ustalony, co oznacza, że zgodność z tym standardem jest istotna zarówno w instalacjach nowych, jak i w przypadku modernizacji istniejących systemów. Użycie właściwego standardu zapewnia nie tylko efektywność połączeń, lecz także minimalizuje zakłócenia i błędy transmisji, które mogą wystąpić przy nieprawidłowym podłączeniu. Przykładem zastosowania tego standardu mogą być instalacje w biurach, gdzie wiele urządzeń jest podłączonych do sieci lokalnej. Zastosowanie T568A w takich sytuacjach jest szeroko zalecane przez organizacje takie jak IEEE oraz EIA/TIA, co potwierdza jego znaczenie w branży telekomunikacyjnej.

Pytanie 25

Jakie materiały są używane w kolorowej drukarce laserowej?

A. przetwornik CMOS
B. kartridż z tonerem
C. pamięć wydruku
D. podajnik papieru
Odpowiedzi takie jak przetwornik CMOS czy podajnik papieru naprawdę nie są materiałami eksploatacyjnymi w kontekście drukarek laserowych. Przetwornik CMOS to układ elektroniczny, który zamienia światło na sygnał elektryczny, więc używamy go w kamerach, ale nie przy drukowaniu. Podajnik papieru to część, która przynosi papier do drukarki, ale to nie to, co nam potrzebne przy jakości wydruku, bo on sam w sobie się nie zużywa. To tylko element konstrukcyjny, który sprawia, że papier jest prawidłowo załadowany. Pamięć wydruku z kolei dotyczy wewnętrznej pamięci drukarki, gdzie trzymane są dane do wydruku, ale to też nie jest materiał eksploatacyjny. Te różnice w rozumieniu, co robią różne części drukarki, mogą prowadzić do błędnych wniosków. Fajnie byłoby zrozumieć, jak działają materiały eksploatacyjne, bo to pomoże lepiej zarządzać kosztami i jakością wydruków. Wybieranie odpowiednich rzeczy, jak kartridż z tonerem, jest naprawdę kluczowe dla efektywności drukarki.

Pytanie 26

W filmie przedstawiono konfigurację ustawień maszyny wirtualnej. Wykonywana czynność jest związana z

A. wybraniem pliku z obrazem dysku.
B. ustawieniem rozmiaru pamięci wirtualnej karty graficznej.
C. konfigurowaniem adresu karty sieciowej.
D. dodaniem drugiego dysku twardego.
Poprawnie – w tej sytuacji chodzi właśnie o wybranie pliku z obrazem dysku (ISO, VDI, VHD, VMDK itp.), który maszyna wirtualna będzie traktować jak fizyczny nośnik. W typowych programach do wirtualizacji, takich jak VirtualBox, VMware czy Hyper‑V, w ustawieniach maszyny wirtualnej przechodzimy do sekcji dotyczącej pamięci masowej lub napędów optycznych i tam wskazujemy plik obrazu. Ten plik może pełnić rolę wirtualnego dysku twardego (system zainstalowany na stałe) albo wirtualnej płyty instalacyjnej, z której dopiero instalujemy system operacyjny. W praktyce wygląda to tak, że zamiast wkładać płytę DVD do napędu, podłączasz plik ISO z obrazu instalacyjnego Windowsa czy Linuxa i ustawiasz w BIOS/UEFI maszyny wirtualnej bootowanie z tego obrazu. To jest podstawowa i zalecana metoda instalowania systemów w VM – szybka, powtarzalna, zgodna z dobrymi praktykami. Dodatkowo, korzystanie z plików obrazów dysków pozwala łatwo przenosić całe środowiska między komputerami, robić szablony maszyn (tzw. template’y) oraz wykonywać kopie zapasowe przez zwykłe kopiowanie plików. Moim zdaniem to jedna z najważniejszych umiejętności przy pracy z wirtualizacją: umieć dobrać właściwy typ obrazu (instalacyjny, systemowy, LiveCD, recovery), poprawnie go podpiąć do właściwego kontrolera (IDE, SATA, SCSI, NVMe – zależnie od hypervisora) i pamiętać o odpięciu obrazu po zakończonej instalacji, żeby maszyna nie startowała ciągle z „płyty”.

Pytanie 27

Skrót MAN odnosi się do rodzaju sieci

A. kampusowej
B. miejskiej
C. rozległej
D. lokalnej
Skrót MAN (Metropolitan Area Network) odnosi się do sieci miejskiej, która łączy różne lokalizacje w obrębie miasta lub aglomeracji. Celem takiej sieci jest umożliwienie szybkiej komunikacji i wymiany danych pomiędzy różnymi instytucjami, biurami czy uczelniami w danej okolicy. MAN jest większa niż lokalna sieć komputerowa (LAN), ale mniejsza niż sieć rozległa (WAN). Typowe zastosowania MAN obejmują sieci dla uczelni wyższych, które łączą różne budynki w kampusie, ale także sieci miejskie, które mogą integrować usługi publiczne, takie jak władze lokalne czy publiczne biblioteki. W kontekście standardów, takie sieci często korzystają z technologii Ethernet oraz protokołów takich jak MPLS, co zapewnia efektywne zarządzanie ruchem danych. Zastosowanie MAN jest istotne dla zapewnienia wysokiej przepustowości i niskich opóźnień w komunikacji danych w obrębie miejskich aglomeracji.

Pytanie 28

W jakim typie skanera wykorzystuje się fotopowielacze?

A. Bębnowym
B. Płaskim
C. Kodów kreskowych
D. Ręcznym
Wybór skanera płaskiego, ręcznego lub kodów kreskowych wskazuje na pewne nieporozumienie w zakresie zasad działania tych urządzeń. Skanery płaskie, chociaż szeroko stosowane w biurach i domach, wykorzystują inne technologie, takie jak przetworniki CCD, a nie fotopowielacze. Ich działanie polega na skanowaniu dokumentów umieszczonych na szkle, co powoduje, że nie są one w stanie osiągnąć tak wysokiej jakości skanów jak skanery bębnowe, zwłaszcza w kontekście detali kolorystycznych czy teksturalnych. Skanery ręczne, z kolei, zazwyczaj są stosowane do skanowania mniejszych dokumentów, ale ich jakość skanowania oraz efektywność są ograniczone w porównaniu do skanera bębnowego. Gdy mówimy o skanowaniu kodów kreskowych, również nie mamy do czynienia z fotopowielaczami - te urządzenia stosują lasery lub technologie obrazowania do odczytu kodów, co jest zupełnie innym procesem. Zrozumienie różnic między tymi różnymi typami skanerów i ich zastosowaniami jest kluczowe, aby uniknąć nieporozumień i nieprawidłowych wniosków. Warto zwrócić uwagę, że wybór odpowiedniego skanera powinien być oparty na specyficznych wymaganiach skanowania i rodzaju dokumentów, co często prowadzi do błędów w ocenie ich funkcjonalności.

Pytanie 29

Atak DDoS (ang. Disributed Denial of Service) na serwer doprowadzi do

A. zbierania danych o atakowanej sieci
B. przeciążenia aplikacji serwującej określone dane
C. zmiany pakietów przesyłanych przez sieć
D. przechwytywania pakietów sieciowych
Atak DDoS (Distributed Denial of Service) jest formą cyberataków, której celem jest zablokowanie dostępu do serwera lub usługi poprzez przeciążenie ich nadmierną ilością ruchu sieciowego. W przypadku wybrania odpowiedzi 'przeciążenie aplikacji serwującej określone dane', wskazujemy na istotę działania ataku DDoS, który korzysta z rozproszonych źródeł, jak botnety, aby wysyłać dużą ilość żądań do serwera w krótkim czasie. Praktycznie, może to prowadzić do spadku wydajności serwera, a w skrajnych przypadkach do jego całkowitego unieruchomienia. W branży IT stosuje się różne metody obrony przed takimi atakami, jak load balancing, które pomagają rozłożyć obciążenie na wiele serwerów, oraz systemy wykrywania i zapobiegania atakom (IDS/IPS), które monitorują ruch i mogą blokować podejrzane źródła. Znajomość mechanizmów DDoS i technik obrony przed nimi jest kluczowa dla administratorów sieci oraz specjalistów ds. bezpieczeństwa.

Pytanie 30

Sprzęt, który umożliwia konfigurację sieci VLAN, to

A. regenerator (repeater)
B. firewall
C. most przezroczysty (transparent bridge)
D. switch
Switch, czyli przełącznik sieciowy, jest kluczowym urządzeniem w architekturze sieci VLAN (Virtual Local Area Network). Pozwala on na tworzenie wielu logicznych sieci w ramach jednej fizycznej infrastruktury, co jest szczególnie przydatne w dużych organizacjach. Dzięki VLAN można segmentować ruch sieciowy, co zwiększa bezpieczeństwo i efektywność zarządzania siecią. Przykładem może być sytuacja, w której dział finansowy i dział IT w tej samej firmie funkcjonują w odrębnych VLAN-ach, co ogranicza dostęp do poufnych danych. Standardy takie jak IEEE 802.1Q definiują, w jaki sposób przełączniki mogą tagować ramki Ethernet, aby rozróżniać różne VLAN-y. Dobrą praktyką jest stosowanie VLAN-ów do izolowania ruchu, co nie tylko poprawia bezpieczeństwo, ale także zwiększa wydajność sieci poprzez ograniczenie rozprzestrzeniania się broadcastów. Warto również zwrócić uwagę na możliwość zarządzania VLAN-ami przez protokoły takie jak VTP (VLAN Trunking Protocol), co upraszcza administrację siecią w skomplikowanych środowiskach.

Pytanie 31

Gdy chce się, aby jedynie wybrane urządzenia mogły uzyskiwać dostęp do sieci WiFi, należy w punkcie dostępowym

A. zmienić typ szyfrowania z WEP na WPA
B. zmienić częstotliwość radiową
C. skonfigurować filtrowanie adresów MAC
D. zmienić kod dostępu
Skonfigurowanie filtrowania adresów MAC w punkcie dostępowym to dobra rzecz, bo pozwala nam na ograniczenie dostępu do WiFi tylko dla tych urządzeń, które chcemy mieć pod kontrolą. Każde urządzenie ma swój unikalny adres MAC, dzięki czemu można je łatwo zidentyfikować w sieci. Jak dodasz adresy MAC do listy dozwolonych, to administrator sieci może zablokować inne urządzenia, które nie są na tej liście. Na przykład, jeśli w biurze chcemy, żeby tylko nasi pracownicy z określonymi laptopami korzystali z WiFi, wystarczy, że ich adresy MAC wprowadzimy do systemu. To naprawdę zwiększa bezpieczeństwo naszej sieci! Warto też pamiętać, że filtrowanie adresów MAC to nie wszystko. To jakby jeden z wielu elementów w układance. Takie coś jak WPA2 i mocne hasła są również super ważne. Dzisiaj zaleca się stosowanie różnych warstw zabezpieczeń, a filtrowanie MAC jest jednym z nich.

Pytanie 32

Tester strukturalnego okablowania umożliwia weryfikację

A. liczby komputerów w sieci
B. ilości przełączników w sieci
C. mapy połączeń
D. obciążenia ruchu w sieci
Podane odpowiedzi o liczbie przełączników, komputerów i obciążeniu ruchu sieciowego są nie na miejscu, bo nie dotyczą roli testera okablowania strukturalnego. On nie monitoruje elementów sieci, jak przełączniki czy komputery. Ilość przełączników to statystyka, którą zajmują się bardziej zarządcy sieci, a nie tester. Liczba komputerów też nie ma nic wspólnego z fizycznym okablowaniem, a obciążenie to już zupełnie inna historia, którą badają inne narzędzia, nie testery. Tester skupia się na tym, co fizyczne, a nie na tym, jak to wszystko działa logicznie. Dlatego tak ważne jest, żeby zrozumieć, że dobrze zrobione okablowanie to podstawa działania całej sieci, a ignorowanie tych kwestii może prowadzić do problemów z komunikacją.

Pytanie 33

Który z protokołów umożliwia bezpieczne połączenie klienta z zachowaniem anonimowości z witryną internetową banku?

A. HTTP (Hypertext Transfer Protocol)
B. SFTP (SSH File Transfer Protocol)
C. FTPS (File Transfer Protocol Secure)
D. HTTPS (Hypertext Transfer Protocol Secure)
HTTPS (Hypertext Transfer Protocol Secure) jest protokołem stosowanym do bezpiecznej komunikacji w Internecie, który wykorzystuje szyfrowanie za pomocą TLS (Transport Layer Security). Dzięki temu, kiedy użytkownik łączy się z witryną bankową, jego dane, takie jak hasła i informacje finansowe, są chronione przed przechwyceniem przez osoby trzecie. HTTPS zapewnia integralność danych, co oznacza, że przesyłane informacje nie mogą być zmieniane w trakcie transferu. Przykładowo, podczas logowania do banku, wszystkie dane są zaszyfrowane, co minimalizuje ryzyko ataków typu „man-in-the-middle”. Standardy branżowe, takie jak PCI DSS (Payment Card Industry Data Security Standard), wymagają stosowania HTTPS w wszelkich transakcjach finansowych online. Implementacja HTTPS jest obecnie uważana za najlepszą praktykę w budowaniu zaufania wśród użytkowników, zwiększając tym samym bezpieczeństwo serwisów internetowych. Warto również zauważyć, że wiele przeglądarek internetowych sygnalizuje użytkownikom, gdy strona nie używa HTTPS, co może wpłynąć na decyzje odwiedzających.

Pytanie 34

Na przedstawionym obrazku zaznaczone są strzałkami funkcje przycisków umieszczonych na obudowie projektora multimedialnego. Dzięki tym przyciskom można

Ilustracja do pytania
A. modyfikować poziom jasności obrazu.
B. regulować zniekształcony obraz.
C. przystosować odwzorowanie przestrzeni kolorów.
D. zmieniać źródła sygnału.
Projektory multimedialne wyposażone są w przyciski pozwalające na regulację geometrii obrazu co jest kluczowe do uzyskania odpowiedniej jakości wyświetlania w różnych warunkach. Jednym z najczęstszych problemów jest zniekształcenie obrazu wynikające z projekcji pod kątem co jest korygowane za pomocą funkcji korekcji trapezowej. Korekcja trapezowa pozwala na dostosowanie kształtu obrazu aby był prostokątny nawet gdy projektor nie jest ustawiony idealnie na wprost ekranu. To rozwiązanie umożliwia elastyczność w ustawieniu projektora w salach o ograniczonej przestrzeni czy niestandardowych układach co jest często spotykane w środowiskach biznesowych i edukacyjnych. Dobre praktyki branżowe zalecają korzystanie z tej funkcji w celu zapewnienia optymalnej czytelności prezentacji oraz komfortu oglądania dla odbiorców. Przyciski regulacji tej funkcji są zwykle intuicyjnie oznaczone na obudowie projektora co ułatwia szybkie i precyzyjne dostosowanie ustawień bez potrzeby użycia dodatkowego sprzętu czy oprogramowania. Dzięki temu użytkownicy mogą szybko dostosować wyświetlany obraz do wymagań specyficznej lokalizacji i układu pomieszczenia co jest nieocenione w dynamicznych środowiskach pracy i prezentacji.

Pytanie 35

Jak nazywa się protokół odpowiedzialny za wysyłkę wiadomości e-mail?

A. Post Office Protocol
B. File Transfer Protocol
C. Simple Mail Transfer Protocol
D. Internet Message Access Protocol
Simple Mail Transfer Protocol (SMTP) jest standardowym protokołem używanym do wysyłania wiadomości e-mail przez Internet. SMTP działa na zasadzie klient-serwer, gdzie klient wysyła wiadomość do serwera pocztowego, a serwer następnie dostarcza ją do odpowiedniej skrzynki odbiorczej odbiorcy. Kluczowym elementem SMTP jest to, że został zaprojektowany z myślą o prostocie i niezawodności, co czyni go podstawowym protokołem dla komunikacji e-mailowej. Protokół ten wykorzystuje port 25, a w przypadku szyfrowanej komunikacji często port 587. SMTP jest również często stosowany w scenariuszach związanych z automatycznym wysyłaniem wiadomości, takich jak powiadomienia systemowe czy marketing e-mailowy, co pokazuje jego wszechstronność w praktyce. Ważnym aspektem jest również możliwość integracji SMTP z innymi protokołami, np. POP3 lub IMAP, które są używane do odbierania e-maili. Dobre praktyki w zakresie korzystania z SMTP obejmują stosowanie uwierzytelniania, aby zapobiec nieautoryzowanemu dostępowi oraz szyfrowanie komunikacji, co zwiększa bezpieczeństwo przesyłanych danych.

Pytanie 36

Główny sposób zabezpieczania danych w sieciach komputerowych przed dostępem nieautoryzowanym to

A. autoryzacja dostępu do zasobów serwera
B. tworzenie kopii zapasowych danych
C. używanie macierzy dyskowych
D. tworzenie sum kontrolnych plików
Autoryzacja dostępu do zasobów serwera jest kluczowym mechanizmem ochrony danych w sieciach komputerowych, ponieważ zabezpiecza przed nieuprawnionym dostępem użytkowników do informacji i zasobów systemowych. Proces ten opiera się na identyfikacji użytkownika oraz przydzieleniu mu odpowiednich uprawnień, co umożliwia kontrolowanie, kto ma prawo do wykonania konkretnych operacji, takich jak odczyt, zapis czy modyfikacja danych. Przykładem zastosowania autoryzacji może być system zarządzania bazą danych, w którym administrator przypisuje różne poziomy dostępności na podstawie ról użytkowników. W praktyce wdrażanie autoryzacji może obejmować wykorzystanie takich protokołów jak LDAP (Lightweight Directory Access Protocol) lub Active Directory, które umożliwiają centralne zarządzanie użytkownikami oraz ich uprawnieniami. Dobre praktyki w tej dziedzinie zalecają stosowanie wielopoziomowej autoryzacji, aby zwiększyć bezpieczeństwo, na przykład poprzez łączenie haseł z tokenami lub biometrią.

Pytanie 37

Jeżeli rozmiar jednostki alokacji wynosi 1024 bajty, to ile klastrów zajmą pliki umieszczone w tabeli na dysku?

NazwaWielkość
Ala.exe50 B
Dom.bat1024 B
Wirus.exe2 kB
Domes.exr350 B
A. 4 klastry
B. 5 klastrów
C. 3 klastry
D. 6 klastrów
W przypadku alokacji przestrzeni dyskowej w systemach plików każdy plik zajmuje co najmniej jeden klaster niezależnie od rzeczywistej wielkości pliku. Gdy przeliczamy ilość klastrów potrzebnych do przechowywania zestawu plików musimy znać wielkości plików i jednostki alokacji. Jednym z typowych błędów jest nieuwzględnienie faktu że nawet najmniejszy plik zajmuje cały klaster co prowadzi do błędnych oszacowań. Ważne jest zrozumienie że przykładowo plik o wielkości 1 bajta zajmie cały klaster dlatego myślenie że zajmie mniej niż jeden klaster jest błędne. Drugi częsty błąd to pomijanie konwersji jednostek np. mylenie bajtów z kilobajtami co wprowadza w błąd w ocenie potrzebnej przestrzeni dyskowej. Pominięcie faktu że plik o wielkości 2048 B wymaga dwóch klastrów a nie jednego jest właśnie takim błędem myślowym wynikającym z nieprawidłowej analizy jednostek alokacji. Należy także pamiętać że zrozumienie działania klastrów jest istotne dla efektywnego zarządzania przestrzenią dyskową co jest krytyczne w kontekście wydajności systemów plików i długoterminowej strategii przechowywania danych. Precyzyjna wiedza o tym jak pliki są zapisywane i jak systemy plików alokują przestrzeń jest kluczowa w codziennych zadaniach związanych z administrowaniem systemami komputerowymi i planowaniem infrastruktury IT. Dlatego ważne jest by dokładnie analizować jak wielkość plików przekłada się na wykorzystanie przestrzeni w jednostkach alokacji aby uniknąć typowych błędów w praktyce zawodowej.

Pytanie 38

Zainstalowanie serwera WWW w środowisku Windows Server zapewnia rola

A. serwer sieci Web
B. usługi pulpitu zdalnego
C. usługi plików
D. serwer aplikacji
Wydaje mi się, że wybrana przez Ciebie odpowiedź nie do końca trafia w temat roli serwera sieci Web. Na przykład, usługi plików służą do przechowywania danych, ale nijak nie łączą się z serwowaniem stron internetowych. To trochę mylne, bo serwer plików to coś zupełnie innego, niż serwer WWW. Podobnie, serwer aplikacji to nie to samo, co hosting strony, bo ma inne zadanie. Usługi pulpitu zdalnego też nie mają nic wspólnego z tym, o co pytano, bo dotyczą dostępu do systemu, a nie do stron www. Te nieporozumienia mogą wyjść z braku zrozumienia, co każdy z tych serwerów naprawdę robi. Kluczowe jest, żeby wiedzieć, że każdy element ma swoje zadanie i nie można ich zamieniać bez myślenia, bo to może prowadzić do kłopotów z wydajnością czy bezpieczeństwem.

Pytanie 39

Jakie porty powinny zostać zablokowane w firewallu, aby nie pozwolić na łączenie się z serwerem FTP?

A. 25 i 143
B. 22 i 23
C. 80 i 443
D. 20 i 21
Odpowiedzi 20 i 21 są rzeczywiście poprawne. Te porty to standardy używane przez FTP, kiedy przesyłasz pliki. Port 21 działa jako port kontrolny, a port 20 jest tym, który zajmuje się przesyłaniem danych. Jak więc zablokujesz te porty w zaporze, to już nie połączysz się z serwerem FTP. To ma sens, zwłaszcza w kontekście zabezpieczeń - jeśli twoja organizacja nie potrzebuje FTP do codziennych działań, to zablokowanie tych portów to świetny krok do zmniejszenia ryzyka ataków. Dodatkowo, fajnie by było, gdyby zamiast FTP, korzystano z SFTP lub FTPS, bo oferują lepsze szyfrowanie i bezpieczeństwo. Moim zdaniem, zawsze warto inwestować w lepsze rozwiązania zabezpieczające.

Pytanie 40

Aby komputery mogły udostępniać swoje zasoby w sieci, muszą mieć przypisane różne

A. adresy IP.
B. grupy robocze.
C. serwery DNS.
D. maski podsieci.
Adres IP (Internet Protocol Address) jest unikalnym identyfikatorem przypisywanym każdemu urządzeniu podłączonemu do sieci komputerowej. Aby komputery mogły komunikować się w Internecie, każdy z nich musi mieć przypisany unikalny adres IP. W przeciwnym razie, gdy dwa urządzenia mają ten sam adres IP, dochodzi do konfliktu adresów, co uniemożliwia prawidłowe przesyłanie danych. W praktyce, na przykład w sieciach domowych, router przypisuje adresy IP urządzeniom za pomocą DHCP (Dynamic Host Configuration Protocol), co zapewnia unikalność adresów. Dobre praktyki w zarządzaniu sieciami zalecają użycie rezerwacji DHCP dla urządzeń, które muszą mieć stały adres IP, co zapobiega konfliktom. Zrozumienie roli adresów IP jest kluczowe dla administrowania sieciami i zapewnienia ich prawidłowego działania, co jest istotne szczególnie w kontekście coraz bardziej złożonych systemów informatycznych i Internetu Rzeczy (IoT).