Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 7 grudnia 2025 10:01
  • Data zakończenia: 7 grudnia 2025 10:17

Egzamin zdany!

Wynik: 23/40 punktów (57,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Aby ocenić efektywność ochrony przez automatyczne odcięcie zasilania w systemie TN instalacji elektrycznej, konieczne jest

A. określenie czasu oraz prądu zadziałania wyłącznika RCD
B. zweryfikowanie ciągłości połączeń w instalacji
C. przeprowadzenie pomiarów impedancji pętli zwarcia
D. wykonanie pomiaru rezystancji uziemienia
Pomiar impedancji pętli zwarcia jest kluczowym działaniem w ocenie skuteczności ochrony przed porażeniem elektrycznym w systemie TN. Zgodnie z normą PN-EN 61230, impedancja pętli zwarcia wpływa na czas zadziałania zabezpieczeń, co jest istotne dla bezpieczeństwa instalacji. W przypadku zwarcia, niższa impedancja oznacza, że prąd zwarciowy będzie wyższy, co z kolei przyspiesza działanie wyłączników automatycznych. Praktycznie, przeprowadzając pomiar, możemy określić, czy wartości impedancji mieszczą się w dopuszczalnych normach, co pozwala na weryfikację, czy zabezpieczenia zadziałają w wystarczająco krótkim czasie, aby zminimalizować ryzyko porażenia użytkowników. Takie pomiary są również wymagane podczas odbiorów instalacji elektrycznych, aby zapewnić zgodność z normami oraz bezpieczeństwo użytkowników.

Pytanie 2

Który z przedstawionych przyrządów jest przeznaczony do wykrywania pod obciążeniem wadliwych połączeń elektrycznych w torach wielkoprądowych?

Ilustracja do pytania
A. Przyrząd 4.
B. Przyrząd 2.
C. Przyrząd 1.
D. Przyrząd 3.
Wybór przyrządu niezgodnego z funkcją wykrywania wadliwych połączeń elektrycznych pod obciążeniem może prowadzić do poważnych konsekwencji operacyjnych. Przyrządy, które nie są zaprojektowane do pomiaru temperatury, takie jak multimetry czy oscyloskopy, nie są w stanie wykryć problemów związanych z nadmiernym nagrzewaniem, które często występują w przypadku wadliwych połączeń. Wiele osób może błędnie zakładać, że tradycyjne metody pomiarowe są wystarczające do diagnozowania problemów w torach elektrycznych. Niemniej jednak, nie uwzględniają one krytycznego aspektu, jakim jest temperatura operacyjna, która może z łatwością umknąć w standardowych pomiarach elektrycznych. Dodatkowo, niezrozumienie zasad termowizji prowadzi do zaniedbań w utrzymaniu infrastruktury, co może skutkować poważnymi awariami i dużymi kosztami napraw. Dlatego coraz ważniejsze staje się stosowanie nowoczesnych technologii, takich jak termowizja, które dostarczają nie tylko precyzyjnych danych, ale również umożliwiają przewidywanie i zapobieganie awariom jeszcze przed ich wystąpieniem.

Pytanie 3

Jaki z podanych warunków powinien być zrealizowany podczas instalacji elektrycznej prowadzonej na tynku na zewnątrz budynku mieszkalnego?

A. Zastosowanie wyłączników różnicowoprądowych o dużej czułości
B. Montaż ochronników przepięciowych w głównej rozdzielnicy
C. Zamontowanie osłon, które chronią przewody przed promieniowaniem słonecznym
D. Użycie transformatora separacyjnego do zasilania
Zamontowanie osłon zabezpieczających przewody przed działaniem promieni słonecznych jest kluczowym wymogiem przy instalacji elektrycznej w warunkach zewnętrznych. Ekspozycja na promieniowanie UV może prowadzić do degradacji materiałów izolacyjnych, co zwiększa ryzyko zwarć i awarii. Osłony chronią przewody przed niekorzystnymi warunkami atmosferycznymi, co jest szczególnie istotne w kontekście bezpieczeństwa użytkowania. Przykładem skutecznych osłon są rurki ochronne z PVC, które nie tylko izolują przewody, ale również chronią je przed mechanicznymi uszkodzeniami. Zgodnie z normą PN-IEC 60364, instalacje elektryczne muszą być projektowane w taki sposób, aby minimalizować ryzyko uszkodzeń, a stosowanie osłon to jedna z podstawowych zasad. Dodatkowo, regulacje branżowe podkreślają, że w przypadku instalacji na tynku, stosowanie takich zabezpieczeń jest nie tylko zalecane, ale wręcz wymagane, aby zapewnić długotrwałą i bezpieczną eksploatację systemu elektrycznego.

Pytanie 4

Którym z urządzeń przedstawionych na rysunkach należy zastąpić uszkodzony w instalacji elektrycznej stycznik o oznaczeniu SM 425 230 4Z?

Ilustracja do pytania
A. C.
B. D.
C. B.
D. A.
Odpowiedź B jest prawidłowa, ponieważ stycznik Relpol RIK40-40, który ma być użyty jako zamiennik, ma napięcie cewki w zakresie 230-240V, co jest zgodne z wymaganiami technicznymi dla uszkodzonego stycznika SM 425 230 4Z. Dodatkowo, RIK40-40 dysponuje czterema stykami pomocniczymi, co sprawia, że jego parametry są zgodne z wymaganiami systemu. Użycie właściwego stycznika jest kluczowe w instalacjach elektrycznych, aby zapewnić ich niezawodność i bezpieczeństwo. Styczniki są szeroko stosowane w automatyce przemysłowej oraz w systemach sterowania, gdzie precyzyjne dopasowanie parametrów styków i napięcia cewki jest niezbędne dla prawidłowego działania. W przypadku stosowania niewłaściwego stycznika, może dojść do uszkodzenia urządzenia, co prowadzi do przestojów produkcyjnych czy zagrożeń bezpieczeństwa. Dlatego ważne jest, aby przy wymianie styczników zawsze kierować się ich specyfikacjami technicznymi, które powinny być zgodne z wymaganiami dokumentacji projektowej oraz normami branżowymi, takimi jak IEC 60947.

Pytanie 5

Na podstawie wybranych informacji dobierz wyłącznik nadprądowy do zabezpieczenia obwodu silnika trójfazowego klatkowego o prądzie znamionowym In = 5,5 A?

A. In = 6 A, charakterystyka B, krotność In = 3 do 5
B. In = 16 A, charakterystyka B, krotność In = 3 do 5
C. In = 16 A, charakterystyka C, krotność In = 5 do 10
D. In = 6 A, charakterystyka C, krotność In = 5 do 10
Wybór wyłączników nadprądowych dla silników trójfazowych wymaga zrozumienia kilku kluczowych aspektów, które niestety nie zostały uwzględnione w niepoprawnych odpowiedziach. Po pierwsze, wyłącznik o prądzie znamionowym 16 A jest zdecydowanie zbyt wysoki dla silnika o prądzie znamionowym 5,5 A. Taki wybór może prowadzić do braku odpowiedniego zabezpieczenia obwodu, co skutkuje ryzykiem uszkodzenia silnika w przypadku przeciążenia lub zwarcia. Wyłącznik powinien być dostosowany do wartości prądu roboczego, aby szybko reagował na niebezpieczne warunki. Kolejnym aspektem jest charakterystyka wyłącznika. Wybór charakterystyki B jest niewłaściwy, ponieważ jest ona zaprojektowana tak, aby zadziałać przy znacznie mniejszych prądach rozruchowych, co może prowadzić do fałszywych zadziałań podczas normalnej pracy silnika. Silniki klatkowe, zwłaszcza podczas rozruchu, mogą generować wysokie prądy, a charakterystyka C jest odpowiednia do ich tolerowania. Ponadto, krotności In w przedziale 3 do 5 mogą nie uwzględniać wszystkich wymagań bezpieczeństwa i wydajności. W praktyce, niewłaściwe dobranie wyłącznika może prowadzić do częstych awarii instalacji oraz zwiększonego ryzyka uszkodzenia urządzeń. Dlatego kluczowe jest przestrzeganie norm i zasad doboru zabezpieczeń, aby zapewnić optymalne funkcjonowanie systemu elektrycznego.

Pytanie 6

Przedstawiony na rysunku przełącznik funkcji przyrządu do pomiaru parametrów instalacji elektrycznych ustawiono na pomiar

Ilustracja do pytania
A. ciągłości przewodów.
B. rezystancji uziemienia.
C. rezystancji izolacji.
D. impedancji pętli zwarcia.
Prawidłowa odpowiedź to rezystancja uziemienia, co zostało wskazane przez ustawienie przełącznika na pozycję "RE". Pomiar rezystancji uziemienia jest kluczowy dla zapewnienia bezpieczeństwa instalacji elektrycznych. Uziemienie chroni użytkowników przed skutkami przepięć oraz zapewnia stabilność układu elektrycznego. W praktyce, pomiar rezystancji uziemienia pozwala na ocenę skuteczności systemu uziemiającego, co jest szczególnie istotne w obiektach przemysłowych, gdzie bezpieczeństwo jest kluczowe. Niskie wartości rezystancji uziemienia, zalecane w normach takich jak PN-IEC 60364-5-54, powinny wynosić poniżej 10 ohmów. Regularne pomiary są niezbędne do weryfikacji, czy system uziemiający spełnia te normy, a ich stosowanie w praktyce zapobiega zagrożeniom związanym z przepięciami i może ochronić przed pożarami czy porażeniem prądem.

Pytanie 7

Na podstawie rysunku określ wymiar, który opisuje wysokość zawieszenia opraw oświetleniowych w sali lekcyjnej.

Ilustracja do pytania
A. Wymiar c
B. Wymiar a
C. Wymiar b
D. Wymiar d
Wymiar b jest kluczowy przy określaniu wysokości zawieszenia opraw oświetleniowych w sali lekcyjnej, ponieważ odnosi się do pionowego pomiaru od sufitu do oprawy. W kontekście planowania przestrzeni edukacyjnych, takie wysokości powinny być zgodne z normami bezpieczeństwa oraz ergonomii, aby zapewnić komfort i efektywność nauczania. Wysokość zawieszenia opraw oświetleniowych wpływa na równomierne oświetlenie całej przestrzeni, co jest istotne dla jakości procesu nauczania. Zgodnie z zaleceniami normy PN-EN 12464-1, w klasach szkolnych poziom oświetlenia powinien wynosić minimum 300 luksów na powierzchni roboczej, co można osiągnąć tylko poprzez odpowiednie rozmieszczenie i zawieszenie źródeł światła. Prawidłowe zaplanowanie wysokości opraw oświetleniowych pozwala także na minimalizację olśnień oraz cieni, co jest istotne dla uczniów, szczególnie podczas korzystania z materiałów wizualnych. Przykładowo, w przestrzeniach, gdzie uczniowie pracują przy biurkach, oprawy powinny być umieszczone na wysokości nieprzekraczającej 2,8 metra, by zapewnić optymalne warunki do nauki.

Pytanie 8

W instalacjach TN-S wyłączniki różnicowoprądowe są używane jako ochrona przed

A. porażeniem
B. zwarciem
C. przeciążeniem
D. przepięciem
Wybór niewłaściwej odpowiedzi może prowadzić do nieporozumień na temat funkcji wyłączników różnicowoprądowych. Zwarcie, czyli nagłe połączenie dwóch przewodów o różnym potencjale, prowadzi do zwiększonego przepływu prądu, co zazwyczaj jest zabezpieczane przez wyłączniki automatyczne (np. wyłączniki nadprądowe), a nie przez RCD, które nie reagują na wzrost natężenia prądu, lecz na różnice w prądzie między przewodami. Przepięcia, które mogą być wynikiem nagłych skoków napięcia, również nie są głównym celem RCD. Przeciążenie, z kolei, to sytuacja, gdy obciążenie przekracza nominalną wartość zabezpieczeń, co ponownie wymaga reakcji wyłączników nadprądowych. Kluczowym błędem jest zrozumienie, że RCD nie zabezpiecza przed skutkami zwarcia, przeciążenia ani przepięcia, lecz tylko przed porażeniem elektrycznym wynikającym z upływu prądu. Dobrą praktyką jest stosowanie RCD jako dodatkowego zabezpieczenia w instalacjach elektrycznych, ale nie należy mylić ich funkcji z innymi rodzajami zabezpieczeń, co może prowadzić do niewłaściwego stosowania urządzeń i potencjalnych zagrożeń dla użytkowników.

Pytanie 9

Układ przedstawiony na rysunku służy do pomiaru

Ilustracja do pytania
A. obciążenia układu.
B. prądu zadziałania wyłącznika różnicowoprądowego.
C. napięcia zadziałania wyłącznika różnicowoprądowego.
D. rezystancji przewodów.
Układ przedstawiony na rysunku rzeczywiście służy do pomiaru prądu zadziałania wyłącznika różnicowoprądowego (RCD). W tym układzie amperomierz jest podłączony szeregowo z rezystorem Rp, a obciążenie zostało odłączone. Taki sposób podłączenia pozwala na dokładne zbadanie prądu, przy którym wyłącznik różnicowoprądowy zareaguje, odłączając obwód. Prąd zadziałania RCD jest kluczowy dla zapewnienia bezpieczeństwa w instalacjach elektrycznych, ponieważ jego zadaniem jest wykrywanie różnicy prądów między przewodem fazowym a neutralnym, co może wskazywać na obecność prądu upływowego. W praktyce, odpowiedni dobór wartości prądu zadziałania jest określony w normach, takich jak PN-EN 61008-1, które regulują działanie wyłączników różnicowoprądowych. Przykładem zastosowania jest montaż RCD w obwodach zasilających urządzenia o zwiększonym ryzyku porażenia prądem, takich jak urządzenia elektryczne w łazienkach czy na zewnątrz budynków. RCD przyczynia się do minimalizacji ryzyka porażenia prądem, a także pożarów spowodowanych zwarciem prowadzącym do przegrzania. Dlatego testowanie prądu zadziałania jest kluczowym elementem konserwacji i przeglądów instalacji elektrycznych.

Pytanie 10

Która z opraw oświetleniowych najlepiej nadaje się do oświetlenia bezpośredniego?

Ilustracja do pytania
A. A.
B. D.
C. C.
D. B.
Odpowiedź B jest prawidłowa, ponieważ oprawa ta jest zaprojektowana do oświetlenia bezpośredniego, skupiając światło w dół, co jest kluczowe w kontekście miejsc pracy, takich jak biura czy przestrzenie do czytania. Downlighty, jak ten opisany w odpowiedzi B, charakteryzują się wysoką efektywnością i są często stosowane w nowoczesnych aranżacjach wnętrz. Oprócz ich funkcjonalności, istotne jest również, że zastosowanie oświetlenia bezpośredniego sprzyja koncentracji i minimalizuje zmęczenie wzroku. W praktyce, dla osiągnięcia optymalnego efektu, zaleca się umieszczanie takich opraw w odległości od 1,5 do 2 metrów od miejsca, które mają oświetlać. Normy, takie jak EN 12464-1, wskazują na odpowiednie poziomy oświetlenia w różnych typach pomieszczeń, co czyni wybór odpowiednich opraw niezwykle istotnym. Warto również pamiętać, że dobór odpowiednich żarówek, takich jak LED-y o wysokim wskaźniku oddawania barw (CRI), może znacznie poprawić jakość oświetlenia.

Pytanie 11

Które urządzenie stosowane w instalacjach elektrycznych przedstawiono na rysunku?

Ilustracja do pytania
A. Wyłącznik przepięciowy.
B. Wyłącznik nadmiarowoprądowy.
C. Rozłącznik bezpiecznikowy.
D. Odłącznik bezpiecznikowy.
Wybór niewłaściwej odpowiedzi może wynikać z mylenia różnych typów urządzeń zabezpieczających. Na przykład, odłącznik bezpiecznikowy, często mylony z rozłącznikiem, ma na celu odłączenie zasilania, ale nie zabezpiecza obwodu przed przepięciami czy przeciążeniami w ten sam sposób. Natomiast wyłącznik przepięciowy, który również może wydawać się atrakcyjną opcją, służy głównie do ochrony przed szkodliwymi skokami napięcia, które mogą uszkodzić podłączone urządzenia, a nie jest to jego funkcja w rozłączniku bezpiecznikowym. Wyłącznik nadmiarowoprądowy, z drugiej strony, może chronić przed przeciążeniem, jednak nie ma zdolności do odłączania obwodu w kontekście zapewnienia bezpieczeństwa operatora w sytuacji awaryjnej. Takie nieporozumienia mogą prowadzić do nieprawidłowego doboru urządzeń zabezpieczających, co w konsekwencji zwiększa ryzyko uszkodzeń instalacji oraz naraża użytkowników na niebezpieczeństwo. Kluczowym błędem jest zatem brak znajomości różnic w działaniach i zastosowaniach tych urządzeń, co powinno być uwzględnione podczas projektowania lub modernizacji instalacji elektrycznych. Właściwy dobór zabezpieczeń jest istotny dla zapewnienia bezpieczeństwa i efektywności działania całego systemu elektrycznego.

Pytanie 12

Fragment dokumentacji technicznej określonej jako schemat zasadniczy (ideowy) znajduje się na rysunku

Ilustracja do pytania
A. C.
B. A.
C. B.
D. D.
Wybór innych odpowiedzi na to pytanie może wynikać z nieporozumień dotyczących różnicy między różnymi typami schematów elektrycznych. Odpowiedzi, które nie są zgodne z rysunkiem C, mogą sugerować, że użytkownik myli schemat zasadniczy z innymi formami dokumentacji, takimi jak schematy montażowe czy schematy połączeniowe. Schemat montażowy koncentruje się na fizycznej lokalizacji komponentów i ich rozmieszczeniu, natomiast schemat połączeniowy pokazuje konkretne połączenia kabli między elementami, co nie jest celem schematu zasadniczego. Niepoprawne odpowiedzi mogą również wskazywać na błędne zrozumienie koncepcji uproszczenia, które jest kluczowe w schematach ideowych. Użytkownicy mogą mieć tendencję do przeładowania schematu zbyt dużą ilością detali, co prowadzi do utraty jego funkcji jako narzędzia do szybkiego zrozumienia systemu. Ważne jest, aby pamiętać, że celem schematu zasadniczego jest przedstawienie jedynie niezbędnych informacji, które są kluczowe dla funkcjonowania układu. Dobre praktyki w dokumentacji technicznej zalecają, aby schematy były tworzone zgodnie z normami, co pozwala na ich lepsze zrozumienie i zastosowanie w różnych kontekstach inżynieryjnych. W przypadku schematu zasadniczego, odniesienie do norm IEC 61082 powinno być punktem wyjścia dla każdego, kto zajmuje się tworzeniem dokumentacji technicznej.

Pytanie 13

Które z przedstawionych narzędzi jest przeznaczone do demontażu przewietrznika z wału silnika elektrycznego?

Ilustracja do pytania
A. Narzędzie 2.
B. Narzędzie 3.
C. Narzędzie 1.
D. Narzędzie 4.
Narzędzie 2, czyli ściągacz, jest kluczowym narzędziem wykorzystywanym w procesie demontażu przewietrznika z wału silnika elektrycznego. Jego konstrukcja umożliwia równomierne rozłożenie siły, co jest niezwykle istotne, aby uniknąć uszkodzenia elementów. W praktyce, ściągacz stosuje się w sytuacjach, gdy przewietrznik mocno przylega do wału, co może zdarzyć się w wyniku długotrwałego użytkowania silnika. Właściwe użycie ściągacza polega na umieszczeniu go tak, aby mocno, ale delikatnie, chwytał za brzegi demontowanego elementu. Zgodnie z najlepszymi praktykami branżowymi, przed przystąpieniem do demontażu należy zawsze upewnić się, że silnik jest odłączony od źródła zasilania. Użycie ściągacza w ten sposób minimalizuje ryzyko uszkodzenia zarówno przewietrznika, jak i wału silnika. Pozostałe narzędzia, takie jak narzędzie 1, 3 i 4, nie są dostosowane do tej specyficznej pracy, co może prowadzić do nieefektywnego demontażu i potencjalnych uszkodzeń.

Pytanie 14

Którym symbolem graficznym należy oznaczyć łącznik świecznikowy na schemacie ideowym instalacji elektrycznej?

Ilustracja do pytania
A. D.
B. B.
C. C.
D. A.
Wybór symbolu D. jako oznaczenia łącznika świecznikowego jest prawidłowy, ponieważ ten symbol odpowiada branżowym standardom reprezentującym urządzenia do sterowania oświetleniem. Łącznik świecznikowy, znany również jako łącznik grupowy, umożliwia kontrolowanie kilku obwodów oświetleniowych jednocześnie, co jest szczególnie przydatne w dużych pomieszczeniach, takich jak sale konferencyjne lub przestrzenie otwarte. W takich zastosowaniach zastosowanie łącznika grupowego pozwala na efektywne zarządzanie oświetleniem, a także oszczędność energii. Zgodnie z normą PN-IEC 60617 dotyczącą symboli graficznych w elektrotechnice, symbol D. jest uznawany za standardowy sposób przedstawiania tego typu urządzenia. W praktyce, poprawne użycie symboli graficznych na schematach ideowych jest kluczowe dla zrozumienia i prawidłowego wykonania instalacji elektrycznych, co pozwala na bezpieczne i efektywne korzystanie z oświetlenia w różnych środowiskach.

Pytanie 15

Na podstawie zamieszczonych w tabeli wyników pomiarów dotyczących przewodu przedstawionego na ilustracji określ, które z jego żył są ze sobą zwarte.

Ilustracja do pytania
A. L1 i L3
B. N i PE
C. N i L3
D. L1 i PE
Odpowiedź N i PE jest poprawna, ponieważ analizując wyniki pomiarów rezystancji, stwierdzamy, że rezystancja wynosi 0 Ω, co jednoznacznie wskazuje na zwarcie między tymi przewodami. W standardach elektrycznych, takich jak PN-IEC 60364, ważne jest, aby prawidłowo identyfikować różne żyły, zwłaszcza w kontekście ochrony przed porażeniem elektrycznym. W przypadku przewodu neutralnego (N) i przewodu ochronnego (PE) ich zwarcie może wskazywać na nieprawidłowości w instalacji, które mogą prowadzić do niebezpiecznych sytuacji. Wiedza na temat pomiarów rezystancji jest kluczowa w utrzymaniu bezpieczeństwa systemów elektrycznych, a także w diagnostyce awarii. W praktyce, przed przystąpieniem do pracy przy instalacjach elektrycznych, zaleca się przeprowadzanie dokładnych pomiarów, aby upewnić się, że nie występuje żadne zwarcie, co jest zgodne z najlepszymi praktykami w branży, takimi jak regularne kontrole i inspekcje instalacji.

Pytanie 16

Która zależność musi być spełniona podczas wymiany uszkodzonych przewodów instalacji elektrycznej i ewentualnej zmiany ich zabezpieczeń nadprądowych?

Iz – prąd obciążalności długotrwałej przewodu
Ib – prąd znamionowy zabezpieczenia przeciążeniowego
IB – prąd wynikający z przewidywanej mocy przesyłanej przewodem
A. IB ≤ IZ ≤ IN
B. IN ≤ IB ≤ IZ
C. IB ≤ IN ≤ IZ
D. IZ ≤ IN ≤ IB
Wybór odpowiedzi, która nie spełnia relacji IB ≤ IN ≤ IZ, prowadzi do nieprawidłowego rozumienia zasad projektowania instalacji elektrycznych. Niektóre z niepoprawnych odpowiedzi sugerują, że prąd obciążenia może być większy od prądu znamionowego zabezpieczenia, co jest fundamentalnym błędem. Taki błąd może prowadzić do sytuacji, w której zabezpieczenie nie zadziała w odpowiednim momencie, co z kolei skutkuje przegrzaniem przewodów i ich uszkodzeniem. Istotne jest, aby pamiętać, że prąd znamionowy zabezpieczenia powinien być zawsze dostosowany do przewidywanego obciążenia; w przeciwnym razie może dojść do ryzyka awarii. Ponadto, nieodpowiednie przypisanie wartości prądu obciążenia w stosunku do obciążalności przewodów prowadzi do nieefektywnego działania całej instalacji. Zgodnie z normami, przed przystąpieniem do wymiany przewodów lub zmiany zabezpieczeń, należy dokładnie obliczyć zarówno IB, jak i IZ oraz zrozumieć, jak te wartości wpływają na dobór IN. Ignorowanie tych zasad może prowadzić do kosztownych błędów w instalacji elektrycznej, które mogą zagrażać bezpieczeństwu użytkowników i mienia.

Pytanie 17

W jakiej z podanych sytuacji poślizg silnika indukcyjnego przyjmie wartość ujemną?

A. Silnik będzie pracował w stanie jałowym
B. Silnik będzie zasilany prądem przeciwnym
C. Podczas dostarczania energii silnikowy wirnik pozostanie w bezruchu
D. Wirnik silnika osiągnie prędkość wyższą niż prędkość synchroniczna
W sytuacjach, gdy silnik zasilany jest przeciwprądem, wirnik nie może osiągnąć ujemnego poślizgu, ponieważ prąd zasilający działa w przeciwną stronę, co może prowadzić do uszkodzenia silnika. Silnik nie pracuje wtedy w sposób efektywny, a jego działanie może być szkodliwe dla całego układu. Podobnie, pozostawienie silnika na biegu jałowym również nie prowadzi do ujemnego poślizgu, ponieważ wirnik nie obraca się w stosunku do pola magnetycznego, co oznacza, że poślizg jest równy zeru. Z kolei, gdy wirnik jest nieruchomy podczas zasilania, silnik działa w warunkach maksymalnego poślizgu, co jest całkowicie odmienne od ujemnego poślizgu. Zrozumienie tych podstawowych zasad działania silników indukcyjnych jest kluczowe, aby uniknąć typowych błędów myślowych związanych z interpretacją i zastosowaniem teorii silników elektrycznych. W przemyśle i praktyce inżynieryjnej ważne jest, aby znajomość charakterystyk silników indukcyjnych była stosowana w odpowiednich kontekstach, aby zapewnić ich efektywność i bezpieczeństwo operacyjne.

Pytanie 18

W oprawie oświetleniowej należy wymienić uszkodzony kondensator o danych 9 µF/230 VAC/50 Hz. Dobierz dwa kondensatory spośród dostępnych i określ sposób ich połączenia w celu wymiany uszkodzonego.

Dostępne kondensatory:
10 μF/100 VAC/50 Hz
18 μF/100 VAC/50 Hz
2,0 μF/230 VAC/50 Hz
4,0 μF/230 VAC/50 Hz
4,5 μF/230 VAC/50 Hz
A. 18 µF i połączyć szeregowo.
B. 4,5 µF i połączyć szeregowo.
C. 18 µF i połączyć równolegle.
D. 4,5 µF i połączyć równolegle.
Twoja odpowiedź jest poprawna, ponieważ połączenie równoległe dwóch kondensatorów o pojemności 4,5 µF tworzy łączną pojemność równą 9 µF, co jest dokładnie wymagane do zastąpienia uszkodzonego kondensatora. W praktyce, w przypadku układów elektrycznych, zachowanie odpowiedniej pojemności jest kluczowe dla stabilności działania urządzenia. Połączenie równoległe jest również zgodne z dobrymi praktykami projektowania układów elektronicznych, gdyż pozwala na zwiększenie pojemności, podczas gdy napięcie pracy kondensatorów musi być zgodne z wymaganiami sieci, w tym przypadku 230 VAC. Wybierając kondensatory, zwróć uwagę na ich maksymalne napięcie pracy oraz pojemność. Takie podejście zapewnia nie tylko bezpieczeństwo, ale także długotrwałe i niezawodne działanie zasilanych układów. Upewnij się, że nowo zastosowane kondensatory są odpowiednio zabezpieczone przed przeciążeniem, co może znacząco wpłynąć na ich żywotność.

Pytanie 19

Na której ilustracji przedstawiono symbol graficzny przewodu ochronnego?

Ilustracja do pytania
A. Na ilustracji 1.
B. Na ilustracji 4.
C. Na ilustracji 3.
D. Na ilustracji 2.
Ilustracja 2 przedstawia symbol graficzny przewodu ochronnego zgodny z normami i przepisami dotyczącymi oznaczeń w instalacjach elektrycznych. Przewód ochronny, zwany również przewodem uziemiającym, ma kluczowe znaczenie w zapewnieniu bezpieczeństwa instalacji oraz ochrony przed porażeniem elektrycznym. Oznaczenie to składa się z linii prostej oraz przylegającej do niej linii ukośnej, co jednoznacznie wskazuje na funkcję ochronną tego przewodu. Zgodnie z normą PN-EN 60446, symbole powinny być tak zaprojektowane, aby były łatwe do rozpoznania i zrozumienia dla wszystkich osób zajmujących się instalacjami elektrycznymi. Użycie poprawnego oznaczenia przewodu ochronnego jest kluczowe, aby upewnić się, że instalacje są realizowane zgodnie z najlepszymi praktykami, co w konsekwencji minimalizuje ryzyko wystąpienia awarii oraz wypadków. W praktyce, właściwe oznaczenie przewodów ochronnych można spotkać na placach budowy, w dokumentacji technicznej oraz w instrukcjach obsługi urządzeń elektrycznych, co potwierdza ich znaczenie w codziennej pracy specjalistów branży elektrycznej.

Pytanie 20

Jaka maksymalna wartość impedancji pętli zwarcia może wystąpić w trójfazowym układzie elektrycznym o napięciu znamionowym 230/400 V, aby ochrona przeciwporażeniowa była skuteczna w przypadku uszkodzenia izolacji, wiedząc, że zasilanie tego układu ma przerwać instalacyjny wyłącznik nadprądowy B10?

A. 8,0 Ω
B. 4,6 Ω
C. 2,3 Ω
D. 7,7 Ω
Wartość impedancji pętli zwarcia wynosząca 4,6 Ω jest odpowiednia dla trójfazowego obwodu elektrycznego o napięciu 230/400 V, aby zapewnić skuteczną ochronę przeciwporażeniową. Przy takiej impedancji, w przypadku zwarcia, prąd zwarciowy osiągnie wartość wystarczającą do działania wyłącznika nadprądowego typu B10, który ma prąd znamionowy 10 A. Wartość impedancji pętli zwarcia oblicza się na podstawie napięcia zasilania oraz wymaganej wartości prądu, przy której następuje wyłączenie obwodu. W praktyce oznacza to, że w przypadku uszkodzenia izolacji, wyłącznik nadprądowy zadziała w odpowiednim czasie, minimalizując ryzyko porażenia prądem elektrycznym. Zgodnie z normami PN-IEC 60364-4-41 oraz PN-EN 60947-2, odpowiednia wartość impedancji pętli zwarcia jest kluczowa dla zabezpieczenia użytkowników przed skutkami awarii. Wartości te są również zgodne z wytycznymi dotyczącymi instalacji elektrycznych w budynkach, które zalecają, aby impedancja nie przekraczała 5 Ω dla ochrony przeciwporażeniowej. Dlatego 4,6 Ω to wartość, która spełnia te wymogi, a jej stosowanie w praktyce jest powszechną praktyką w branży elektrycznej.

Pytanie 21

Aparat pokazany na zdjęciu chroni instalację elektryczną mieszkania przed

Ilustracja do pytania
A. przeciążeniem.
B. przepięciem.
C. zwarciem.
D. upływem prądu.
Odpowiedzi, które wskazują na przepięcie, przeciążenie czy zwarcie, zawierają istotne nieporozumienia dotyczące funkcji wyłącznika różnicowoprądowego. Przepięcia to nagłe wzrosty napięcia, które mogą wystąpić na skutek wyładowań atmosferycznych lub awarii sieci energetycznej. Choć mogą one prowadzić do uszkodzenia urządzeń elektrycznych, wyłącznik RCD nie jest zaprojektowany do ich detekcji czy ochrony przed nimi. Z kolei przeciążenie dotyczy sytuacji, w której przez obwód płynie zbyt duży prąd, co prowadzi do przegrzewania się przewodów i potencjalnych pożarów. W takich przypadkach stosuje się zabezpieczenia nadprądowe, a nie wyłączniki różnicowoprądowe. Zwarcia natomiast to sytuacje, w których przewody fazowe stykają się ze sobą lub z przewodem neutralnym, co powoduje znaczny wzrost prądu. Ochrona przed zwarciem realizowana jest poprzez zastosowanie odpowiednich zabezpieczeń, takich jak bezpieczniki czy wyłączniki nadprądowe. Wyłącznik różnicowoprądowy chroni wyłącznie przed skutkami upływu prądu do ziemi i nie ma zdolności do monitorowania przepięć, przeciążeń ani zwarć, co jest kluczowe dla zrozumienia jego roli w instalacji elektrycznej. W związku z tym, nieprawidłowe zrozumienie funkcji RCD może prowadzić do błędnych decyzji związanych z bezpieczeństwem instalacji elektrycznej.

Pytanie 22

Jaką wartość mocy wskazuje watomierz pokazany na rysunku?

Ilustracja do pytania
A. 500 W
B. 1000 W
C. 100 W
D. 50 W
W przypadku błędnego wyboru wartości mocy, należy zwrócić uwagę na kilka kluczowych zagadnień związanych z interpretacją wyników pomiarów. Odpowiedzi 50 W, 100 W, 1000 W oraz 500 W mogą wydawać się atrakcyjne, jednak nie uwzględniają one rzeczywistych parametrów pomiarowych wykorzystywanych w watomierzu. Na przykład, wybór 50 W może wynikać z nieporozumienia dotyczącego wskazania watomierza, które być może nie uwzględnia poprawnych wartości prądu oraz napięcia. Dodatkowo, odpowiedzi 100 W oraz 1000 W również nie są zgodne z zasadami obliczania mocy. Warto pamiętać, że moc elektryczna jest definiowana jako iloczyn napięcia i prądu, a ich niewłaściwe zrozumienie może prowadzić do znacznych błędów w ocenie wydajności urządzeń elektrycznych. Typowe myślenie, które prowadzi do takich błędów, opiera się na pomijaniu kluczowych parametrów technicznych, takich jak rzeczywiste wartości prądu i napięcia zainstalowanego urządzenia. W praktyce, ignorowanie tych zasad skutkuje nieprawidłowymi wynikami i może stanowić zagrożenie dla bezpieczeństwa użytkowania instalacji elektrycznych. Ważne jest, aby każdy, kto zajmuje się pomiarami elektrycznymi, rozumiał, w jaki sposób odczyty są generowane i jakie parametry wpływają na ostateczne wyniki pomiarów.

Pytanie 23

Jaką rolę pełni uzwojenie pomocnicze w silniku prądu stałego?

A. Wytwarza pole magnetyczne wzbudzenia
B. Generuje napięcie remanentu
C. Obniża rezystancję obwodu twornika
D. Eliminuje niekorzystne zjawiska oddziaływania wirnika
Wybór tej odpowiedzi, która mówi, że uzwojenie pomocnicze wytwarza napięcie remanentu, jest błędny. Napięcie remanentu to coś, co zostaje w rdzeniu silnika po wyłączeniu zasilania, związane z pamięcią magnetyczną materiałów ferromagnetycznych. Uzwojenie pomocnicze nie ma z tym za wiele wspólnego. Kolejny błąd to stwierdzenie, że uzwojenie pomocnicze zmniejsza rezystancję obwodu twornika. To nie tak działa, bo rezystancja zależy od materiałów i ich kształtu, a uzwojenie pomocnicze bardziej wpływa na pole magnetyczne i stabilność działania. No i ostatni błąd – mówi się, że uzwojenie pomocnicze wytwarza pole magnetyczne wzbudzenia, co jest mylące. To pole jest generowane przez uzwojenie wzbudzenia, nie pomocnicze. Uzwojenie pomocnicze ma na celu poprawę stabilności i eliminację efektów ubocznych, a nie tworzenie podstawowego pola magnetycznego. Te nieporozumienia mogą wynikać z niewłaściwego zrozumienia funkcji różnych elementów silnika oraz ich interakcji, co jest kluczowe, żeby silniki działały tak, jak powinny.

Pytanie 24

Do czego służy złączka przedstawiona na ilustracji?

Ilustracja do pytania
A. Do wykonywania połączeń bez zdejmowania izolacji.
B. Do zaciskania końcówek tulejkowych na przewodach.
C. Do zdejmowania izolacji z przewodów dwużyłowych.
D. Do łączenia przewodów dowolnego typu.
Odpowiedź 'Do łączenia przewodów dowolnego typu' jest jak najbardziej trafna, bo złączka WAGO właśnie do tego służy. Łączy przewody elektryczne – zarówno te jednożyłowe, jak i wielożyłowe. Takie złączki są teraz mega popularne w nowoczesnych instalacjach, bo są łatwe w użyciu i naprawdę niezawodne. Dzięki nim można szybko i bezpiecznie połączyć przewody, bez potrzeby lutowania czy innych skomplikowanych metod, co na pewno przyspiesza całą robotę. Co więcej, złączki WAGO spełniają normy IEC 60998 i IEC 60529, więc można mieć pewność, że są solidne i bezpieczne. Używanie ich w pracy to też sposób na oszczędność czasu i minimalizację błędów, bo nie trzeba ręcznie łączyć przewodów. W praktyce świetnie się sprawdzają w instalacjach oświetleniowych, automatyce budynkowej czy w rozdzielnicach elektrycznych, gdzie ważna jest jakość połączeń. No i ich konstrukcja pozwala na wielokrotne użycie, co czyni je fajnym rozwiązaniem na dłuższą metę.

Pytanie 25

Rysunek przedstawia pomiar

Ilustracja do pytania
A. rezystywności gruntu metodą pośrednią.
B. rezystywności gruntu metodą bezpośrednią.
C. rezystancji uziemień metodą kompensacyjną.
D. rezystancji uziemień metodą techniczną.
Odpowiedź 'rezystancji uziemień metodą techniczną' jest prawidłowa, ponieważ rysunek ilustruje schemat pomiaru rezystancji uziemienia w oparciu o metodę techniczną, która jest powszechnie stosowana w inżynierii elektrycznej. Metoda ta, znana także jako metoda Wennera, polega na umieszczeniu dwóch elektrod pomocniczych w równych odległościach od elektrody centralnej. Takie rozmieszczenie elektrod pozwala na dokładne pomiary napięcia i prądu, co umożliwia precyzyjne obliczenie rezystancji uziemienia. W praktyce, pomiar rezystancji uziemienia jest kluczowy dla zapewnienia skutecznej ochrony przed przepięciami oraz dla poprawnego działania systemów odgromowych. Warto również zauważyć, że zgodnie z normami, takimi jak PN-EN 50522, ważne jest, aby pomiary rezystancji uziemienia były wykonywane regularnie i w odpowiednich warunkach, aby zapewnić bezpieczeństwo instalacji elektrycznych.

Pytanie 26

Na rysunku przedstawiono schemat

Ilustracja do pytania
A. łącznika zmierzchowego.
B. wyłącznika schodowego.
C. wyłącznika różnicowoprądowego.
D. programowalnego przełącznika czasowego.
Wybrana odpowiedź jest prawidłowa, ponieważ schemat przedstawiony na rysunku to typowy wyłącznik różnicowoprądowy (RCD). RCD to urządzenie, które ma na celu ochronę ludzi przed porażeniem prądem elektrycznym oraz zapobieganie pożarom spowodowanym upływem prądu. Kluczowymi elementami, które potwierdzają tę identyfikację, są przewody oznaczone jako L (fazowy) i N (neutralny), które są niezbędne do prawidłowego działania wyłącznika. Dodatkowo, przycisk testowy, oznaczony jako „T”, umożliwia użytkownikowi regularne sprawdzanie funkcjonalności RCD, co jest zgodne z dobrymi praktykami w zakresie bezpieczeństwa elektrycznego. W momencie, gdy różnica prądów między przewodami L a N przekracza określoną wartość, wyłącznik automatycznie odłącza zasilanie, co zapobiega potencjalnym zagrożeniom. Znajomość działania i zastosowania wyłączników różnicowoprądowych jest kluczowa w projektowaniu i eksploatacji instalacji elektrycznych, szczególnie w miejscach o dużym ryzyku, jak łazienki czy kuchnie, gdzie kontakt z wodą zwiększa ryzyko porażenia prądem.

Pytanie 27

Która z poniższych działań ocenia efektywność ochrony podstawowej przed porażeniem prądem elektrycznym?

A. Weryfikacja stanu izolacji podłóg
B. Pomiar impedancji w pętli zwarciowej
C. Pomiar rezystancji izolacji przewodów
D. Sprawdzanie wyłącznika różnicowoprądowego
Zrozumienie różnych metod oceny ochrony przed porażeniem prądem elektrycznym jest kluczowe dla zapewnienia bezpieczeństwa użytkowników instalacji elektrycznych. Badanie wyłącznika różnicowoprądowego polega na ocenie jego zdolności do wykrywania i odłączania prądu w przypadku wystąpienia różnicy między prądem wpływającym a wypływającym. Choć jest to istotne dla funkcjonowania ochrony, nie mierzy bezpośrednio skuteczności izolacji przewodów. Pomiar impedancji pętli zwarciowej koncentruje się na ocenieniu, jak szybko prąd zwarciowy może przepłynąć przez instalację w razie awarii, co z kolei dotyczy głównie ochrony przed zwarciami, a nie izolacji. Badanie stanu izolacji podłóg, mimo że ważne, odnosi się do aspektów związanych z bezpieczeństwem użytkowników, ale nie odnosi się do oceny izolacji przewodów elektrycznych bezpośrednio. Z tych powodów, odpowiedzi te nie mogą być uznane za prawidłowe w kontekście pytania, które dotyczy skuteczności ochrony przed porażeniem prądem elektrycznym w instalacjach elektrycznych. Dobrze zrozumiane zasady dotyczące tych metod mogą pomóc w uniknięciu niebezpiecznych sytuacji związanych z elektrycznością. Kluczowe jest, aby technicy i inżynierowie elektrycy stosowali właściwe metody pomiarowe, zgodne z aktualnymi standardami, by zapewnić kompleksowe bezpieczeństwo w każdej instalacji.

Pytanie 28

Który z wymienionych symboli literowych odnosi się do przewodu samonośnego?

A. OMY
B. AsXSn
C. GsLGs
D. YKY
Przewody samonośne są specyficznym typem przewodów używanych w instalacjach elektrycznych, a ich oznaczenie jest ściśle regulowane przez normy branżowe. YKY, OMY oraz GsLGs to oznaczenia, które nie odnoszą się do przewodów samonośnych. YKY to przewód z izolacją PVC, stosowany głównie do instalacji wewnętrznych oraz zewnętrznych, ale nie jest przystosowany do montażu samonośnego. OMY to przewód stosowany w zastosowaniach niskonapięciowych, również nie przewidziany do samonośnych instalacji. GsLGs to przewód przeznaczony do użytku w obszarach o dużej wilgotności, jednak jego konstrukcja nie spełnia wymogów dla przewodów samonośnych. Typowe błędy myślowe w tej kwestii polegają na myleniu różnych typów przewodów i nieznajomości ich zastosowań. Właściwe rozpoznanie przewodów samonośnych jest kluczowe dla zapewnienia bezpieczeństwa elektrycznego oraz efektywności energetycznej, dlatego ważne jest, aby stosować się do standardów i dobrych praktyk branżowych.

Pytanie 29

W lokalu, który jest zasilany napięciem 400 V (3/N/PE 50Hz), zainstalowano następujące urządzenia:
1. przepływowy podgrzewacz wody (12 kW) - obwód trójfazowy
2. zmywarka do naczyń (3,5 kW) - obwód jednofazowy
3. kuchenka elektryczna (9,5 kW) - obwód trójfazowy
4. pralka automatyczna (4,5 kW) - obwód jednofazowy

Odbiorniki jednofazowe i trójfazowe są zasilane z dwóch różnych obwodów. W celu zabezpieczenia wykorzystano wyłączniki instalacyjne. Jakie wartości prądu znamionowego powinny być zastosowane dla zabezpieczeń obwodu jedno- i trójfazowego?

A. 25 A, 25 A
B. 40 A, 40 A
C. 25 A, 40 A
D. 40 A, 25 A
Odpowiedź 40 A, 40 A jest prawidłowa, ponieważ wymaga ona zastosowania zabezpieczeń dla obwodów zasilających odbiorniki w zależności od ich mocy. W przypadku obwodu trójfazowego, przepływowy podgrzewacz wody o mocy 12 kW można obliczyć używając wzoru na moc trójfazową: P = √3 * U * I, gdzie U to napięcie międzyfazowe (400 V). Przekształcając wzór, otrzymujemy I = P / (√3 * U), co dla 12 kW prowadzi do wartości prądu wynoszącej około 17,32 A. Dodając margines bezpieczeństwa oraz biorąc pod uwagę normy instalacyjne, które przewidują zastosowanie wyłączników o wartości nominalnej nieprzekraczającej 40 A, uzyskujemy właściwą wartość zabezpieczenia. Dla obwodu jednofazowego zmywarki o mocy 3,5 kW stosując wzór P = U * I, obliczamy prąd jako I = P / U, co w tym przypadku daje nam wartość około 15 A. Wybierając zabezpieczenie 40 A, również dla obwodu jednofazowego, zapewniamy zgodność z normami oraz odpowiedni zapas mocy na wypadek nagłych wzrostów poboru energii. Takie podejście jest zgodne z zasadami projektowania instalacji elektrycznych, które zakładają stosowanie zabezpieczeń z marginesem bezpieczeństwa, co ma na celu ochronę zarówno urządzeń, jak i samej instalacji.

Pytanie 30

Na podstawie zamieszczonych wyników pomiarów rezystancji w przewodzie elektrycznym przedstawionym na ilustracji można stwierdzić, że żyły

Ilustracja do pytania
A. L1 i L2 są zwarte.
B. N i L3 są zwarte oraz PE jest przerwana.
C. L1 i L2 są przerwane.
D. N i PE są zwarte oraz L3 jest przerwana.
Poprawna odpowiedź wskazuje, że żyły N i PE są zwarte oraz L3 jest przerwana. Wyniki pomiarów rezystancji potwierdzają, że między żyłami N i PE nie ma oporu, co oznacza, że są one ze sobą połączone. Przykładowo, w instalacjach elektrycznych, żyła neutralna (N) oraz żyła ochronna (PE) powinny być połączone w punkcie zerowym, co jest zgodne z normami bezpieczeństwa. W przypadku, gdy rezystancja między L3.1 a L3.2 wynosi ∞, mamy do czynienia z przerwaniem w tej żyle, co może prowadzić do niebezpiecznych sytuacji, takich jak wzrost napięcia na żyłach fazowych. Istotne jest, aby przy każdorazowej kontroli instalacji elektrycznych stosować takie pomiary, aby zidentyfikować wszelkie nieprawidłowości. Praktyki te są zgodne z normami PN-IEC 60364, które określają wymagania dotyczące bezpieczeństwa instalacji elektrycznych. Zrozumienie tych zależności jest kluczowe dla zapewnienia bezpieczeństwa oraz długotrwałej eksploatacji instalacji elektrycznych.

Pytanie 31

Który układ sieciowy przedstawiono na schemacie?

Ilustracja do pytania
A. TT
B. TN-C
C. TN-S
D. IT
Wybór odpowiedzi innej niż TT wskazuje na szereg nieporozumień dotyczących układów sieciowych. Układ TN-C, na przykład, charakteryzuje się połączeniem przewodu neutralnego z przewodem ochronnym, co w przypadku awarii może prowadzić do niebezpiecznych sytuacji, zagrażających użytkownikom budynku. W kontekście norm, takie połączenie jest sprzeczne z zasadami, które nakładają obowiązek utrzymania niezależnych ścieżek uziemienia dla przewodu neutralnego i ochronnego. Z kolei układ IT, który także został błędnie wybrany, polega na braku połączenia z ziemią w systemie zasilania, co powoduje, że nawet w przypadku uszkodzenia izolacji, nie ma bezpośredniego uziemienia, co generuje zagrożenie. Układ TT, w przeciwieństwie do tych dwóch, zapewnia dodatkowe bezpieczeństwo poprzez niezależne uziemienia. Odpowiedzi wskazujące na TN-S również są mylne, ponieważ w tym układzie występuje oddzielne uziemienie dla przewodów neutralnych i ochronnych, co nie jest zgodne z przedstawionym schematem. Tego typu nieprawidłowe odpowiedzi często wynikają z mylenia podstawowych zasad dotyczących uziemienia oraz bezpieczeństwa instalacji elektrycznych. Niezrozumienie kluczowych różnic pomiędzy tymi układami może prowadzić do podjęcia niewłaściwych decyzji w projektowaniu i eksploatacji instalacji elektrycznych, co z kolei może zagrażać bezpieczeństwu użytkowników.

Pytanie 32

Który typ przewodu przedstawiono na ilustracji?

Ilustracja do pytania
A. YALY
B. YAKY
C. YLY
D. YKY
Odpowiedzi YLY, YAKY oraz YALY są niepoprawne, ponieważ każdy z tych typów przewodów ma inne właściwości i zastosowania. Przewód YLY, na przykład, charakteryzuje się izolacją z poliwęglanu, co czyni go mniej odpornym na wysoką temperaturę i nieodpowiednim do zastosowań w trudnych warunkach. Z kolei YAKY, będący przewodem aluminiowym, jest stosowany tam, gdzie niezbędne jest zredukowanie kosztów związanych z materiałem, ale nie jest zalecany w sytuacjach, gdzie wymagane są wysokie parametry przewodzenia energii elektrycznej. Przewód YALY ma podobne ograniczenia i nie nadaje się do instalacji, które muszą spełniać normy dotyczące odporności na czynniki zewnętrzne. Wybór niewłaściwego przewodu może prowadzić do awarii systemu, zagrożeń związanych z bezpieczeństwem a także nieefektywności energetycznej. Osoby zajmujące się projektowaniem systemów elektrycznych muszą być świadome różnic pomiędzy różnymi typami przewodów, aby uniknąć typowych błędów myślowych, takich jak założenie, że wszystkie przewody są uniwersalne. Wiedza ta jest kluczowa dla zapewnienia bezpieczeństwa i efektywności energetycznej w instalacjach elektrycznych.

Pytanie 33

Który typ silnika elektrycznego najczęściej stosuje się w urządzeniach gospodarstwa domowego?

A. Silnik krokowy
B. Silnik synchroniczny trójfazowy
C. Silnik liniowy
D. Silnik indukcyjny jednofazowy
Silniki indukcyjne jednofazowe są najczęściej stosowane w urządzeniach gospodarstwa domowego ze względu na ich prostotę konstrukcji, niezawodność oraz stosunkowo niskie koszty produkcji. Jednofazowe silniki indukcyjne działają w oparciu o zasadę indukcji elektromagnetycznej, gdzie prąd zmienny przepływający przez uzwojenie stojana wytwarza pole magnetyczne, które indukuje prąd w wirniku. To z kolei generuje siłę napędową, która wprawia wirnik w ruch obrotowy. Tego typu silniki są powszechnie stosowane w urządzeniach takich jak pralki, lodówki, wentylatory czy miksery. Ich zaletą jest brak szczotek komutatora, co eliminuje problem iskrzenia i konieczność częstej konserwacji. Dzięki swojej prostocie, silniki te charakteryzują się długą żywotnością i są odporne na przeciążenia. Ponadto są stosunkowo ciche i energooszczędne, co czyni je idealnym wyborem do zastosowań domowych. Standardy przemysłowe i dobre praktyki również preferują użycie jednofazowych silników indukcyjnych w kontekście urządzeń gospodarstwa domowego, podkreślając ich efektywność i trwałość.

Pytanie 34

W przypadku instalacji elektrycznej o parametrach U0 = 230 V i Ia= 100 A, Zs = 3,1 Ω (ZsIa < U0), działającej w systemie TN-C, dodatkowa ochrona przed porażeniem prądem elektrycznym nie jest efektywna, ponieważ

A. rezystancja uziemienia jest zbyt niska
B. impedancja pętli zwarcia jest zbyt wysoka
C. rezystancja izolacji miejsca pracy jest zbyt duża
D. impedancja sieci zasilającej jest zbyt niska
Impedancja pętli zwarcia jest kluczowym parametrem w systemach elektrycznych, szczególnie w układach TN-C. W przypadku, gdy impedancja pętli zwarcia jest zbyt duża, może to prowadzić do niewystarczającego prądu zwarciowego, co z kolei wpływa na czas zadziałania zabezpieczeń. W układach TN-C przy wartościach U<sub>0</sub> = 230 V oraz I<sub>a</sub> = 100 A, impedancja pętli zwarcia powinna być na tyle niska, aby zapewnić skuteczne wyłączenie w przypadku zwarcia. W praktyce, jeśli impedancja pętli zwarcia przekracza określone wartości, na przykład zgodnie z normą PN-EN 60364, czas reakcji wyłączników automatycznych może być zbyt długi, co stwarza potencjalne zagrożenie dla bezpieczeństwa użytkowników. Dlatego właściwe pomiary impedancji pętli zwarcia są niezbędne w każdym projekcie instalacji elektrycznej, aby upewnić się, że system będzie dostatecznie chronił przed porażeniem prądem elektrycznym. W przypadku wykrycia zbyt dużej impedancji, zaleca się poprawę uziemienia oraz optymalizację konfiguracji instalacji, aby zwiększyć skuteczność zabezpieczeń.

Pytanie 35

Jaki najniższy przekrój może mieć przewód ochronny w instalacji oświetleniowej, gdy jest umieszczony w tej samej osłonie co przewody robocze?

A. 2,5 mm2
B. 10 mm2
C. 1,5 mm2
D. 4 mm2
Minimalny przekrój przewodu ochronnego w obwodzie oświetleniowym, ułożonym we wspólnej osłonie z przewodami roboczymi, wynosi 1,5 mm2. Zgodnie z Polskimi Normami, takimi jak PN-IEC 60364, przewody ochronne muszą być odpowiednio wymiarowane, aby zapewnić skuteczną ochronę przed porażeniem elektrycznym. Przewód ochronny, często oznaczany jako PE (Protective Earth), ma za zadanie odprowadzenie prądu zwarciowego do ziemi w przypadku uszkodzenia izolacji innych przewodów. W praktyce oznacza to, że zastosowanie przewodu o odpowiednim przekroju jest kluczowe dla bezpieczeństwa instalacji. W przypadku oświetlenia, które często jest wykorzystywane w różnych warunkach, zachowanie tych norm jest szczególnie istotne. Warto również zwrócić uwagę, że w przypadku dłuższych odcinków przewodów lub większych obciążeń zaleca się użycie przewodów o większym przekroju, co zwiększa ich zdolność do przewodzenia prądu bez ryzyka przegrzania. Właściwe dobranie przekroju przewodu ochronnego to kluczowy element projektowania bezpiecznej instalacji elektrycznej.

Pytanie 36

Jaka jest maksymalna wartość napięcia dotykowego bezpiecznego dla człowieka przy normalnych warunkach eksploatacji?

A. 50 V
B. 100 V
C. 230 V
D. 12 V
Wartość 230 V jest typowym napięciem używanym w domowych instalacjach elektrycznych, ale nie jest to wartość bezpieczna dla dotyku. To napięcie jest wystarczająco wysokie, aby spowodować poważne obrażenia lub nawet śmierć w przypadku kontaktu fizycznego. Z tego powodu instalacje muszą być odpowiednio zabezpieczone, a użytkownicy świadomi zagrożeń. 100 V to wartość, która również przekracza bezpieczny poziom napięcia dotykowego. Choć niższa niż 230 V, nadal pozostaje niebezpieczna i wymaga podobnych środków ostrożności. Przy takim napięciu może dojść do poważnych obrażeń w przypadku jego kontaktu z ciałem ludzkim. 12 V jest napięciem często używanym w niskonapięciowych systemach zasilania, jak np. w elektronice użytkowej czy oświetleniu LED. Jest to wartość uznawana za bezpieczną do dotyku, ale nie spełnia definicji napięcia dotykowego bezpiecznego, które wynosi 50 V, właśnie z uwagi na jego zastosowanie do określenia pewnych standardów ochrony. Bezpieczeństwo w kontekście elektryki nie ogranicza się jedynie do samego napięcia, ale także do warunków, w jakich jest stosowane, co podkreśla wagę przestrzegania norm i standardów branżowych w celu minimalizacji ryzyka.

Pytanie 37

Stosując kryterium obciążalności prądowej, dobierz na podstawie tabeli minimalny przekrój przewodu do zasilenia grzejnika elektrycznego o danych: PN = 4,6 kW, UN = 230 V.

S, mm21,01,52,54,06,0
Idd, A1519243242
A. 1,5 mm2
B. 2,5 mm2
C. 4,0 mm2
D. 6,0 mm2
Dobra robota z wybraniem przekroju przewodu 2,5 mm²! Z tego co pamiętam, taki przekrój jest ok, gdy chodzi o obciążalność prądową. Kiedy obliczamy prąd dla grzejnika elektrycznego 4,6 kW przy 230 V, to wychodzi nam około 20 A. Jak spojrzysz na tabelę obciążalności przewodów, to zobaczysz, że 2,5 mm² spokojnie wytrzyma do 24 A, co oznacza, że jest to bezpieczny wybór. Moim zdaniem, dobrze dobrany przekrój przewodu to klucz do efektywnej pracy urządzenia i bezpieczeństwa naszych instalacji. Taki przekrój jest także często używany w instalacjach oświetleniowych czy przy zasilaniu urządzeń o podobnych parametrach. Zawsze warto mieć na uwadze tabele obciążalności i normy, jak PN-IEC 60364 – to pomoże uniknąć problemów w przyszłości.

Pytanie 38

Na rysunkach przedstawiono kolejno typy końcówek źródeł światła

Ilustracja do pytania
A. E 14, AR 111, GU 10, MR 16
B. E 14, AR 111, MR 16, GU 10
C. E 14, MR 16, GU 10, AR 111
D. E 14, GU 10, AR 111, MR 16
Poprawna odpowiedź to "E 14, GU 10, AR 111, MR 16". Typy końcówek źródeł światła, które zostały przedstawione na zdjęciu, są kluczowe w zrozumieniu różnych zastosowań oświetleniowych. Końcówka E 14, znana jako mały gwint, jest powszechnie stosowana w lampach domowych, szczególnie w żarówkach LED i energooszczędnych, co czyni ją wszechstronnym rozwiązaniem do użytku przydomowego. Końcówka GU 10, z dwoma pinami i blokadą, jest używana w reflektorach sufitowych i halogenowych, co pozwala na łatwą wymianę żarówek, a jednocześnie zapewnia stabilne mocowanie. Końcówka AR 111, z reflektorem, jest często stosowana w oświetleniu profesjonalnym, na przykład w galeriach sztuki czy sklepach, gdzie istotna jest jakość i kierunek światła. Końcówka MR 16 to popularny wybór w systemach oświetleniowych niskonapięciowych, szczególnie w przypadku oświetlenia punktowego. Znajomość tych typów końcówek jest niezbędna dla każdego, kto zajmuje się projektowaniem i montażem systemów oświetleniowych, a także dla osób wybierających odpowiednie źródła światła do różnych aplikacji.

Pytanie 39

Na schematach instalacji elektrycznych symbolem przedstawionym na ilustracji oznacza się przewód prowadzony

Ilustracja do pytania
A. pod tynkiem.
B. w korytku instalacyjnym.
C. w tynku.
D. nad sufitem podwieszanym.
Wybór odpowiedzi dotyczącej przewodów prowadzonych nad sufitem podwieszanym, pod tynkiem lub w korytku instalacyjnym jest mylny i wynika z kilku nieporozumień związanych z oznaczeniami instalacji elektrycznych. Przewody prowadzone nad sufitem podwieszanym są zazwyczaj oznaczane innymi symbolami, które wskazują na ich lokalizację oraz sposób układania. W przypadku instalacji pod tynkiem, przewody również wymagają szczególnych oznaczeń, gdyż ich położenie jest często związane z różnorodnymi wytycznymi dotyczącymi ochrony przed uszkodzeniami. Korytka instalacyjne, w których przewody są prowadzone, również mają swoje własne symbole, które różnią się od tych stosowanych dla przewodów ukrytych w tynku. Niezrozumienie tych różnic może prowadzić do błędnych interpretacji schematów, co w konsekwencji może skutkować nieprawidłowym wykonaniem instalacji. Przykładem błędu myślowego jest założenie, że dowolne oznaczenie przewodu może odnosić się do jakiejkolwiek metody prowadzenia, co jest dalekie od rzeczywistości. Właściwa znajomość symboliki elektrycznej jest kluczowa dla poprawnego projektowania i wykonania instalacji, a każde nieporozumienie w tej kwestii może mieć poważne konsekwencje dla bezpieczeństwa użytkowników oraz funkcjonalności instalacji.

Pytanie 40

Jakie narzędzia powinny być użyte do montażu urządzeń oraz realizacji połączeń elektrycznych w rozdzielnicy w budynku mieszkalnym?

A. Szczypce do cięcia przewodów, przyrząd do ściągania powłoki, przyrząd do ściągania izolacji, zestaw wkrętaków
B. Szczypce płaskie, nóż monterski, przymiar taśmowy, przyrząd do ściągania izolacji, wkrętarka
C. Szczypce płaskie, młotek, przyrząd do ściągania powłoki, przyrząd do ściągania izolacji
D. Szczypce do zaciskania końcówek, przyrząd do ściągania powłoki, nóż monterski, zestaw wkrętaków
Nie wszystkie wymienione zestawy narzędzi są odpowiednie do montażu aparatury elektrycznej i wykonywania połączeń w rozdzielnicy. Wśród dostępnych opcji brakuje kluczowych narzędzi, które zapewniają prawidłowe i bezpieczne połączenia elektryczne. Na przykład, szczypce płaskie oraz młotek, chociaż mogą się wydawać użyteczne, nie są kluczowe w kontekście precyzyjnego montażu instalacji elektrycznej. Użycie młotka do montażu może prowadzić do uszkodzenia delikatnych komponentów, co jest niepożądane w przypadku rozdzielnic, gdzie precyzja jest kluczowa. Ponadto, przymiar taśmowy, mimo że użyteczny przy pomiarach, nie jest narzędziem niezbędnym do samego montażu i połączeń elektrycznych. Wiele osób może myśleć, że nóż monterski wystarczy do usunięcia izolacji, co jest błędne; niewłaściwe użycie noża może prowadzić do uszkodzenia przewodów. Również wkrętarka, choć użyteczna w niektórych sytuacjach, nie jest podstawowym narzędziem do pracy z przewodami, a korzystanie z niej może nie gwarantować właściwego dokręcenia połączeń. Kluczową kwestią jest zrozumienie, że do pracy w rozdzielnicy potrzebne są specjalistyczne narzędzia, które zapewniają nie tylko efektywność, ale także bezpieczeństwo, co jest niezbędne do prawidłowego działania całej instalacji elektrycznej.