Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 17 grudnia 2025 13:36
  • Data zakończenia: 17 grudnia 2025 13:49

Egzamin zdany!

Wynik: 29/40 punktów (72,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Ile wynosi skuteczność świetlna źródła światła o etykiecie przedstawionej na ilustracji?

Ilustracja do pytania
A. 206,9 lm/W
B. 81,4 lm/W
C. 14,5 lm/W
D. 1 180,0 lm/W
Skuteczność świetlna to mega ważny parametr. Mówi nam, jak dobrze żarówka zamienia energię elektryczną na światło. W tym przypadku widzimy, że strumień świetlny to 1180 lumenów, a moc to 14,5 W. Więc żeby obliczyć skuteczność świetlną, dzielimy strumień przez moc, co daje nam 81,4 lm/W. To pokazuje, że ta żarówka jest całkiem oszczędna, co świetnie wpisuje się w to, co teraz modne w branży oświetleniowej - chodzi o oszczędzanie energii! Generalnie skuteczność świetlna powyżej 80 lm/W to bardzo dobry wynik, zwłaszcza dla LEDów i świetlówek. Fajnie jest to wiedzieć, bo to pomaga nie tylko projektantom, ale też nam, zwykłym ludziom, w wyborze lepszych, bardziej ekologicznych produktów.

Pytanie 2

Aby ocenić efektywność ochrony przez automatyczne odcięcie zasilania w systemie TN instalacji elektrycznej, konieczne jest

A. przeprowadzenie pomiarów impedancji pętli zwarcia
B. wykonanie pomiaru rezystancji uziemienia
C. określenie czasu oraz prądu zadziałania wyłącznika RCD
D. zweryfikowanie ciągłości połączeń w instalacji
Sprawdzanie ciągłości połączeń w instalacji, chociaż ważne dla ogólnego bezpieczeństwa, nie jest bezpośrednio związane z oceną skuteczności wyłączenia zasilania w systemie TN. Często można mylnie sądzić, że zapewnienie ciągłości połączeń jest wystarczające do zapewnienia bezpieczeństwa użytkowników. Jednakże nawet jeśli ciągłość połączenia jest zachowana, nie gwarantuje to, że zabezpieczenia, takie jak wyłączniki różnicowoprądowe (RCD), zadziałają w odpowiednim czasie. Wyznaczanie czasu i prądu zadziałania wyłącznika RCD jest również istotne, ale nie dostarcza informacji o impedancji pętli zwarcia, która jest kluczowa do oceny, czy ochrona przed zwarciami jest wystarczająca. Mierzenie rezystancji uziemienia to kolejny ważny aspekt, ale jego wyniki nie zastąpią pomiaru impedancji pętli zwarcia, który jest bezpośrednim wskaźnikiem skuteczności działania zabezpieczeń przy wystąpieniu niebezpiecznych sytuacji. W związku z tym, pomiar impedancji pętli zwarcia powinien być priorytetem dla inżynierów i techników zajmujących się instalacjami elektrycznymi, aby zapewnić ich właściwe działanie w sytuacjach awaryjnych.

Pytanie 3

Jakie napięcie powinno być zastosowane w mierniku podczas pomiaru rezystancji izolacyjnej urządzenia elektrycznego o nominalnym napięciu 230/400 V?

A. 750 V
B. 250 V
C. 500 V
D. 1 000 V
Odpowiedź 500 V jest prawidłowa, ponieważ zgodnie z normami i zaleceniami dotyczącymi pomiarów rezystancji izolacji, napięcie testowe powinno być na poziomie 500 V dla maszyn elektrycznych o napięciu znamionowym 230/400 V. Pomiar taki ma na celu wykrycie ewentualnych uszkodzeń izolacji, które mogą prowadzić do niebezpiecznych sytuacji. W praktyce, napięcie testowe 500 V jest standardem branżowym, szczególnie w przypadku sprzętu niskonapięciowego, gdyż zapewnia wystarczającą moc do przetestowania izolacji bez ryzyka uszkodzenia elementów wrażliwych. Dodatkowo, w wielu krajach stosowane są normy IEC 60364 oraz IEC 61557, które precyzują wymagania dotyczące pomiarów izolacji, a ich przestrzeganie jest kluczowe dla zapewnienia bezpieczeństwa użytkowania maszyn. Przykładowo, w przypadku stacji transformatorowych, regularne pomiary izolacji przy użyciu napięcia 500 V pozwalają na wczesne wykrywanie problemów i zapobieganie awariom, co przekłada się na dłuższą żywotność urządzeń oraz zwiększone bezpieczeństwo operacyjne.

Pytanie 4

Który z symboli oznacza możliwość bezpośredniego montażu oprawy oświetleniowej wyłącznie na podłożu niepalnym?

Ilustracja do pytania
A. D.
B. A.
C. B.
D. C.
Symbol B. oznacza oprawę oświetleniową, która może być montowana na powierzchniach normalnie palnych, co w kontekście zadania jest mylące. Odpowiedź właściwa to symbol D., który jednoznacznie wskazuje możliwość montażu jedynie na podłożu niepalnym. Prawo budowlane oraz normy dotyczące bezpieczeństwa pożarowego jasno określają, że oprawy oświetleniowe muszą być instalowane zgodnie z klasyfikacją materiałów budowlanych, co ma na celu minimalizację ryzyka pożaru. Montaż na podłożach niepalnych gwarantuje, że w przypadku awarii lub uszkodzenia oprawy, nie dojdzie do zapłonu materiałów palnych, co może prowadzić do poważnych incydentów. W praktyce, stosowanie opraw oświetleniowych na powierzchniach palnych jest przeciwwskazane, zwłaszcza w miejscach o dużym ryzyku pożaru, takich jak magazyny czy zakłady przemysłowe. Normy PN-EN 60598-1 oraz PN-EN 60598-2-1 definiują odpowiednie wymogi dotyczące bezpieczeństwa instalacji oświetleniowych, co czyni wybór symbolu D. kluczowym dla zapewnienia bezpieczeństwa.

Pytanie 5

W celu wykrycia przerw w instalacji elektrycznej obciążonej grzejnikiem jednofazowym, której schemat przedstawiono na rysunku, dokonano pomiarów rezystancji między jej odpowiednimi zaciskami przy wyłączonych F1 i F2. Na podstawie wyników pomiarów przedstawionych w tabeli określ, który przewód w tej instalacji posiada przerwę.

Pomiar rezystancji
między zaciskami
Wartość rezystancji
w Ω
F2:2 – 10,4
F1:N2 – 2
PE – 30,4
1 – 218
1 – 3
2 – 3
F2:2 – F1:N2
F2:2 – PE
F1:N2 – PE
Ilustracja do pytania
A. Neutralny między zaciskami F1:N2 i 2
B. Neutralny między zaciskami N i F1:N1
C. Fazowy między zaciskami F2:2 i 1
D. Fazowy między zaciskami F1:2 i F2:1
Wybór odpowiedzi dotyczącej fazowego przewodu między zaciskami F1:2 i F2:1, czy innych błędnych odpowiedzi, może wynikać z nieporozumienia dotyczącego pomiarów rezystancji oraz interpretacji wyników. W przypadku pomiarów elektrycznych, każdy wynik może wskazywać na różne stany obwodu. Niezrozumienie, że nieskończona rezystancja jednoznacznie wskazuje na przerwę, prowadzi do błędnych wniosków, jakoby inne przewody były uszkodzone. Faza jest przewodem, który dostarcza prąd do urządzenia, a jego przerwa (choć także niebezpieczna) nie jest tym samym, co przerwa w przewodzie neutralnym, który zamyka obwód. Nieprawidłowa interpretacja pomiarów rezystancji w obwodach elektrycznych, jak również pominięcie znaczenia neutralnego przewodu, może prowadzić do ryzykownych sytuacji, gdzie urządzenia nie działają prawidłowo lub generują zagrożenie dla użytkowników. Dobrą praktyką jest zawsze upewnienie się, że rozumie się każdy aspekt pomiarów, w tym zasady dotyczące działania różnych części układu elektrycznego. W przypadku braku wiedzy na temat systemów elektrycznych, warto skonsultować się z doświadczonym elektrykiem lub inżynierem elektrykiem.

Pytanie 6

Która z poniższych czynności nie jest częścią badań wyłączników różnicowoprądowych w układzie trójfazowym?

A. Weryfikacja działania przycisku testowego
B. Weryfikacja poprawności podłączenia do sieci
C. Sprawdzenie kolejności faz sieci zasilającej
D. Pomiar czasu oraz prądu różnicowego, przy którym wyłącznik zadziała
Wybór odpowiedzi "Sprawdzenie kolejności faz sieci zasilającej" jest prawidłowy, ponieważ ta czynność nie jest częścią badań trójfazowych wyłączników różnicowoprądowych. Trójfazowe wyłączniki różnicowoprądowe są urządzeniami zabezpieczającymi, które mają na celu ochronę ludzi przed porażeniem prądem elektrycznym oraz zapobieganie pożarom spowodowanym zwarciami. W ramach standardowych badań tych wyłączników koncentrujemy się na ich działaniu w odpowiedzi na upływności prądów do ziemi oraz testowaniu ich funkcji detekcji. Przykładowo, badania obejmują sprawdzenie zadziałania przycisku testującego, co pozwala zweryfikować, czy wyłącznik działa poprawnie w warunkach awaryjnych. Ponadto, pomiar czasu i różnicowego prądu zadziałania wyłącznika jest kluczowy dla oceny jego efektywności. Zgodnie z normą PN-EN 61008-1, zachowanie wyłączników różnicowoprądowych w odpowiedzi na różne poziomy prądów upływowych jest istotne w kontekście ich działania, dlatego czynności te są niezbędne w procesie testowym. Kolejność faz w sieci zasilającej nie wpływa na działanie wyłącznika różnicowoprądowego, dlatego nie jest brana pod uwagę w tych badaniach.

Pytanie 7

Z którym zaciskiem będzie połączony zacisk 23 stycznika K2, jeżeli układ elektryczny zostanie zmontowany zgodnie z przedstawionym schematem montażowym?

Ilustracja do pytania
A. Z zaciskiem 21 przycisku S1
B. Z zaciskiem 2 listwy zaciskowej X1
C. Z zaciskiem 1 listwy zaciskowej X1
D. Z zaciskiem X1 lampki kontrolnej H1
Poprawna odpowiedź to połączenie zacisku 23 stycznika K2 z zaciskiem 2 listwy zaciskowej X1. Analizując schemat montażowy, możemy dostrzec, że linia łącząca te dwa elementy jest wyraźnie zaznaczona, co jednoznacznie wskazuje na to połączenie. W kontekście praktycznym, takie połączenie jest kluczowe dla prawidłowego działania układów sterujących. Zachowanie zgodności z schematem montażowym jest istotne, aby zapewnić bezpieczeństwo i niezawodność instalacji. W branży elektrycznej przestrzeganie schematów oraz standardów, takich jak normy IEC czy PN-EN, jest fundamentem dobrych praktyk. Na przykład, błędne połączenie mogłoby prowadzić do uszkodzenia urządzeń lub stanowić zagrożenie dla użytkowników. Dlatego ważne jest, aby zawsze dokonywać dokładnych analiz i weryfikacji schematów przed przystąpieniem do montażu, co nie tylko zwiększa efektywność, ale także minimalizuje ryzyko awarii.

Pytanie 8

Jakiego rodzaju gniazda wtykowego należy użyć do zamontowania w puszce podtynkowej w łazience z instalacją typu TNS?

A. Jednego bez styku ochronnego
B. Jednego ze stykiem ochronnym
C. Podwójnego z stykiem ochronnym
D. Podwójnego bryzgoszczelnego ze stykiem ochronnym
Podwójne bryzgoszczelne gniazdo wtykowe ze stykiem ochronnym jest idealnym rozwiązaniem do instalacji w łazience, gdzie wilgotność i ryzyko kontaktu z wodą są znacznie wyższe niż w innych pomieszczeniach. Normy dotyczące instalacji elektrycznych, takie jak PN-IEC 60364, sugerują stosowanie gniazd bryzgoszczelnych w strefach, gdzie istnieje zwiększone ryzyko porażenia prądem. Gniazda te charakteryzują się odpowiednią klasą ochrony (IP44 lub wyższą), co zapewnia ich szczelność na wodę rozpryskową. Styk ochronny jest również kluczowy, gdyż zapewnia dodatkowe bezpieczeństwo, chroniąc użytkowników przed porażeniem prądem w przypadku uszkodzenia urządzeń elektrycznych. W praktyce, gniazda te są szeroko stosowane w pomieszczeniach takich jak łazienki i kuchnie, gdzie wymagania dotyczące bezpieczeństwa elektrycznego są zaostrzone. Zastosowanie gniazd bryzgoszczelnych jest zgodne z najlepszymi praktykami, które zapewniają ochronę zarówno użytkowników, jak i urządzeń elektrycznych.

Pytanie 9

Jakie napięcie należy stosować podczas określania rezystancji izolacji w obwodach SELV lub PELV?

A. 250 V
B. 1000 V
C. 750 V
D. 500 V
Odpowiedź 250 V jest prawidłowa, ponieważ w obwodach SELV (Safety Extra Low Voltage) i PELV (Protected Extra Low Voltage) stosuje się ograniczone napięcia, które nie mogą przekraczać wartości 250 V przy pomiarze rezystancji izolacji. Te standardy są zgodne z międzynarodowymi zasadami bezpieczeństwa, takimi jak normy IEC 60364. W praktyce, pomiar rezystancji izolacji w obwodach SELV i PELV przy napięciu 250 V pozwala na zapewnienie bezpieczeństwa użytkowników i minimalizowanie ryzyka porażenia prądem. Przykładem zastosowania tego typu pomiarów jest inspekcja instalacji elektrycznych w obiektach użyteczności publicznej, gdzie kluczowe jest utrzymanie wysokiego poziomu ochrony. Dodatkowo, w obwodach SELV i PELV, które są zazwyczaj używane w aplikacjach niskonapięciowych, zaleca się regularne kontrole rezystancji izolacji, aby wykryć ewentualne uszkodzenia oraz degradację izolacji, co jest niezbędne dla zapewnienia długoterminowej niezawodności i bezpieczeństwa systemów elektrycznych.

Pytanie 10

Przed dokonaniem pomiaru rezystancji izolacji w instalacji elektrycznej najpierw należy odciąć napięcie zasilające, a potem

A. zamontować do opraw źródła światła, włączyć odbiorniki jednofazowe do gniazd wtyczkowych, włączyć silniki trójfazowe
B. zamontować do opraw źródła światła, wyłączyć odbiorniki jednofazowe z gniazd wtyczkowych, włączyć silniki trójfazowe
C. usunąć z opraw źródła światła, włączyć odbiorniki jednofazowe do gniazd wtyczkowych, odłączyć silniki trójfazowe
D. usunąć z opraw źródła światła, wyłączyć odbiorniki jednofazowe z gniazd wtyczkowych, odłączyć silniki trójfazowe
Dobra robota z odpowiedzią! To, co napisałeś, dobrze pokazuje, jakie kroki warto podjąć przed pomiarem rezystancji izolacji w instalacji elektrycznej. Najpierw trzeba wymontować źródła światła z opraw – to naprawdę ważne, żeby nie ryzykować porażeniem prądem w trakcie pomiarów. Poza tym, wyłączenie jednofazowych odbiorników i silników trójfazowych jest konieczne, żeby nie zakłócały one wyników i nie zostały uszkodzone przez niewłaściwe napięcie. Te zasady są zgodne z przepisami, jak PN-EN 50110-1, które mówią, że trzeba wyłączyć zasilanie przed przeprowadzeniem testów izolacji. To, że stosujesz te procedury, nie tylko zwiększa bezpieczeństwo, ale też sprawia, że pomiary są dokładniejsze. A to jest bardzo istotne, żeby dobrze ocenić stan izolacji i upewnić się, że instalacja jest w dobrym stanie.

Pytanie 11

Który sposób połączenia zacisków gniazda wtyczkowego jednofazowegow instalacji mieszkaniowejpracującej w sieci TN-S jest prawidłowy?

Ilustracja do pytania
A. A.
B. D.
C. C.
D. B.
Wybór jakiejkolwiek innej odpowiedzi niż A jest nieprawidłowy, ponieważ przedstawia błędne podejście do podłączenia przewodów w gniazdach wtyczkowych w systemie TN-S. Kluczową kwestią jest zrozumienie, że w systemie tym układ przewodów ma istotne znaczenie dla bezpieczeństwa. W przypadku podłączenia przewodu neutralnego N do styku ochronnego, co jest błędnie przedstawione w niektórych odpowiedziach, powstaje ryzyko zagrożenia dla użytkowników, wynikające z potencjalnych zwarć. Zamiana miejscami przewodów L i N może prowadzić do nieprawidłowego działania urządzeń, co w konsekwencji może skutkować ich uszkodzeniem lub zwiększeniem ryzyka porażenia prądem. W praktyce, błędne podłączenie przewodów może również uniemożliwić prawidłowe działanie zabezpieczeń elektrycznych, co dodatkowo zwiększa ryzyko wystąpienia niebezpiecznych sytuacji. Warto zwrócić uwagę na to, że przestrzeganie norm i zasad bezpieczeństwa odgrywa kluczową rolę w projektowaniu i eksploatacji instalacji elektrycznych, dlatego każde odstępstwo od tych reguł powinno być traktowane z najwyższą powagą.

Pytanie 12

Posługując się tabelą dobierz wyłącznik nadmiarowo-prądowy o największym prądzie znamionowym, który może zabezpieczać obwód jednofazowy, wykonany przewodami o przekroju 1,5 mm2, ułożonymi w sposób B2.

Tabela: Obciążalność długotrwała I, [A] przewodów miedzianych o izolacji polwinitowej przy obliczeniowej temperaturze 25oC
UłożenieA1A2B1B2CE
Liczba jednocześnie obciążonych żył232323232323
Przekrój mm2Dopuszczalna obciążalność długotrwała, A
1,515,514,515,51418,516,517,5162118,52319,5
2,5211918,519,52522242129253227
4282527243430322928344236
A. C6
B. B20
C. B16
D. B6
Wybór nieprawidłowego wyłącznika nadmiarowo-prądowego może prowadzić do poważnych konsekwencji dla bezpieczeństwa instalacji elektrycznej. W przypadku odpowiedzi C6, sugerującej wyłącznik o prądzie znamionowym 6 A, jest to zdecydowanie zbyt mała wartość, biorąc pod uwagę, że obciążalność długotrwała przewodu o przekroju 1,5 mm² w ułożeniu B2 wynosi 16,5 A. Taki wybór może prowadzić do częstych wyłączeń, co staje się uciążliwe dla użytkowników i może być oznaką nieprawidłowego doboru zabezpieczeń. Z kolei wyłącznik B20, mający prąd znamionowy 20 A, przekracza dopuszczalną obciążalność przewodów, co naraża je na ryzyko przegrzania i uszkodzenia. Zastosowanie takiego wyłącznika w obwodzie może w dłuższym okresie prowadzić do poważnych zagrożeń, w tym pożaru. Warto także zauważyć, że wyłącznik B6 również nie jest odpowiedni, gdyż jego nominalny prąd jest zbyt niski, co skutkuje brakiem właściwej ochrony w przypadku obciążeń typowych dla instalacji domowej. Wybór odpowiedniego wyłącznika wymaga zrozumienia obciążenia obwodu oraz zastosowania właściwych norm, takich jak PN-IEC 60898-1, które jasno określają, jak dobierać wyłączniki w zależności od przewodów oraz ich zastosowania. Niezrozumienie tych zasad może prowadzić do poważnych błędów w instalacji, wpływających na bezpieczeństwo użytkowników.

Pytanie 13

Na podstawie charakterystyki przedstawionej na rysunku określ przedział czasu, w którym może, lecz nie musi nastąpić zadziałanie wyzwalacza termobimetalowego wyłącznika S301 B10 1P 6 kA, przy przepływie przez niego prądu o wartości 25 A.

Ilustracja do pytania
A. 0,06 s ÷ 0,017 s
B. 10 s ÷ 60 s
C. 60 s ÷ 10 000 s
D. 0 s ÷ 0,06 s
Poprawna odpowiedź to 10 s ÷ 60 s, co wynika z charakterystyki wyzwalacza termobimetalowego wyłącznika S301 B10 1P 6 kA. Przy prądzie 25 A, który jest 2,5-krotnością prądu znamionowego wynoszącego 10 A, czas zadziałania wyzwalacza wynosi od 10 do 60 sekund. Tego typu wyłączniki są kluczowe w systemach zasilania, ponieważ chronią obwody przed przegrzaniem i potencjalnym uszkodzeniem spowodowanym nadmiernym prądem. W praktyce oznacza to, że wyzwalacz będzie działał w określonym czasie, co jest istotne dla zapewnienia bezpieczeństwa instalacji elektrycznej. Warto również zauważyć, że zgodność z normą IEC 60947-2, która reguluje wymagania dla wyłączników, potwierdza, że czas zadziałania w tym przedziale jest optymalny dla zachowania równowagi między bezpieczeństwem a funkcjonalnością. Dobrze zaprojektowane systemy powinny uwzględniać te parametry, aby skutecznie chronić przed skutkami przeciążeń.

Pytanie 14

Który z urządzeń umożliwia bezpośredni pomiar cos 9?

A. Omomierz
B. Fazomierz
C. Waromierz
D. Watomierz
Fazomierz to przyrząd, który służy do pomiaru kątów fazowych prądu i napięcia w obwodach elektrycznych. W kontekście pomiaru cosinus kąta (cos φ), fazomierz jest nieocenionym narzędziem, ponieważ pozwala na bezpośrednie określenie tego parametru, który jest kluczowy w ocenie charakterystyki obciążenia elektrycznego. W praktyce, pomiar cos φ ma istotne znaczenie w zarządzaniu energią oraz w poprawie efektywności energetycznej systemów elektrycznych. Umożliwia on monitorowanie współczynnika mocy, co jest istotne dla zapobiegania stratom energii oraz redukcji kosztów operacyjnych. Właściwe zarządzanie współczynnikiem mocy jest także zgodne z normami jakości energii, takimi jak PN-EN 50160, które definiują wymagania dotyczące jakości energii w sieciach elektroenergetycznych. Przykładem zastosowania fazomierza może być analiza obciążeń w zakładach przemysłowych, gdzie poprawne dopasowanie obciążeń do parametrów zasilania przekłada się na niższe koszty i większą trwałość urządzeń.

Pytanie 15

Do którego rodzaju ochrony przeciwporażeniowej zaliczane są środki ochrony opisane w tabeli?

1.Urządzenia ochronne różnicowoprądowe o znamionowym prądzie różnicowym nieprzekraczającym 30 mA.
2.Dodatkowe połączenia wyrównawcze ochronne.
A. Ochrony podstawowej.
B. Ochrony przy uszkodzeniu (dodatkowej).
C. Ochrony uzupełniającej.
D. Ochrony przez zastosowanie bardzo niskiego napięcia.
No, musisz przyznać, że rozróżnienie różnych rodzajów ochrony przeciwporażeniowej to ważna sprawa, jeśli chcesz mieć pewność, że wszystko działa jak należy. Kiedy mówisz o ochronie podstawowej, ochronie przy uszkodzeniu czy bardzo niskim napięciu, to czasami można się pogubić, bo myślisz, że wystarczy tylko jedna z tych metod. Ochrona podstawowa to jakby pierwsza linia obrony, ale nie zawsze wystarczy. Gdy jest zagrożenie, trzeba pomyśleć o dodatkowej ochronie. Ochrona przy uszkodzeniu, jak bezpieczniki i wyłączniki nadprądowe, też nie zawsze da sobie radę w trudnych sytuacjach. Z tego, co widziałem, ludzie czasem mylą różne typy zabezpieczeń i to może prowadzić do poważnych problemów, bo nie rozumieją, że te dodatkowe środki są naprawdę konieczne. Zrozumienie tego łączenia podstawowej i uzupełniającej ochrony jest kluczowe dla budowy bezpiecznych instalacji. Dobrze też sięgnąć do norm, żeby wiedzieć, jak to wszystko ma działać.

Pytanie 16

Do którego typu źródeł światła zalicza się lampę przedstawioną na rysunku?

Ilustracja do pytania
A. Żarowych.
B. Elektroluminescencyjnych.
C. Indukcyjnych.
D. Rtęciowych.
Lampa przedstawiona na rysunku to lampa LED, która należy do grupy źródeł światła elektroluminescencyjnych. Emituje ona światło dzięki procesowi elektroluminescencji, gdzie prąd elektryczny przepływa przez półprzewodnikowe diody, powodując emisję fotonów. W przeciwieństwie do lamp żarowych, które generują światło poprzez podgrzewanie włókna, lampy LED są znacznie bardziej energooszczędne i mają dłuższą żywotność. Zastosowanie diod LED w oświetleniu wnętrz, ulic, a także w elektronice użytkowej, przyczynia się do zmniejszenia zużycia energii i emisji dwutlenku węgla. Zgodnie z normami, lampy LED są preferowane w nowoczesnych rozwiązaniach oświetleniowych ze względu na ich wysoką efektywność energetyczną i niski poziom ciepła generowanego podczas pracy. Dobre praktyki w zakresie oświetlenia wskazują na coraz szersze wykorzystanie technologii LED w różnych sektorach, od komercyjnych po domowe, co czyni je kluczowym elementem zrównoważonego rozwoju w branży oświetleniowej.

Pytanie 17

Na którym rysunku przedstawiono poprawny sposób podłączenia dwóch wyłączników RCD zgodnie ze schematem?

Ilustracja do pytania
A. D.
B. B.
C. A.
D. C.
Odpowiedź C jest poprawna, gdyż ilustruje prawidłowy sposób podłączenia dwóch wyłączników RCD, co jest kluczowe dla zapewnienia bezpieczeństwa w instalacjach elektrycznych. Rozdzielenie obwodów dla pokoju i łazienki oraz zastosowanie osobnych wyłączników RCD dla każdego z nich gwarantuje, że w przypadku wystąpienia awarii w jednym z obwodów, drugi obwód pozostanie funkcjonalny. To podejście jest zgodne z zaleceniami normy PN-IEC 61008, która podkreśla znaczenie stosowania wyłączników różnicowoprądowych w miejscach o zwiększonym ryzyku, takich jak łazienki. Dodatkowo, stosowanie RCD w oddzielnych obwodach minimalizuje ryzyko porażenia prądem, co jest niezwykle istotne w kontekście ochrony użytkowników. W praktyce, odpowiedni dobór wyłączników RCD oraz ich lokalizacja w instalacji poprawia nie tylko bezpieczeństwo, ale także komfort użytkowania. Przykładowo, w przypadku awarii w obwodzie łazienkowym, użytkownicy pokoju nie będą narażeni na problemy związane z brakiem zasilania, co może być szczególnie istotne w codziennym użytkowaniu.

Pytanie 18

Do którego z rodzajów trzonków źródeł światła przeznaczona jest oprawka przedstawiona na ilustracji?

Ilustracja do pytania
A. E27
B. GU10
C. G9
D. MR11
Oprawka E27, którą widzisz na obrazku, to jedna z tych, które najczęściej spotyka się w domach i różnych lokalach. Ten duży gwint E27 sprawia, że montaż żarówek jest prosty jak dwa razy dwa. A jakbyś pomyślał o różnych rodzajach żarówek, to znajdziesz tu sporo opcji, jak energooszczędne czy LED – każdy sobie coś dobrego wybierze. Te oprawki są chętnie używane w lampach sufitowych, kinkietach i takich wolnostojących lampach, które dodają trochę charakteru. Ich popularność wynika z tego, że są wszędzie dostępne i pasują do różnych projektów oświetleniowych. Jak wymieniasz źródło światła, E27 to świetny wybór, bo wpasujesz to właściwie wszędzie, dzięki standardowym wymiarom.

Pytanie 19

Którego z wymienionych urządzeń pomiarowych powinno się użyć do przeprowadzenia pomiarów rezystancji izolacji w domowej instalacji elektrycznej?

A. Megaomomierza induktorowego
B. Omomierza szeregowego
C. Amperomierza cęgowego
D. Mostka prądu zmiennego
Jak wybierzesz złe urządzenie do mierzenia rezystancji izolacji, to może to prowadzić do błędnych wyników i braku zidentyfikowania problemów. Na przykład mostek prądu przemiennego, mimo że jest używany do pomiarów impedancji, nie nadaje się do oceny izolacji, bo nie daje wystarczającego napięcia, żeby pokazać ewentualne uszkodzenia. Użycie go w takich pomiarach może prowadzić do fałszywych pozytywnych wyników, co z kolei jest niebezpieczne dla ludzi. Amperomierz cęgowy też jest do pomiaru prądu, a nie rezystancji, więc to kompletnie się nie sprawdzi w tym kontekście. W tym przypadku omomierz szeregowy również odpada, bo bada rezystancję przy niskim napięciu, co nie pozwala dobrze ocenić jakości izolacji. Korzystanie z takich urządzeń może sprawić, że nie dostrzegasz ryzyka związanego z niewłaściwą izolacją, a to może prowadzić do poważnych zagrożeń dla zdrowia i życia. Dlatego lepiej używać odpowiednich narzędzi, jak megaomomierz induktorowy, żeby zapewnić bezpieczeństwo i trzymać się norm w branży.

Pytanie 20

Który aparat obwodu głównego będzie włączony zgodnie z przedstawionym schematem między wyłącznik różnicowoprądowy a stycznik?

Ilustracja do pytania
A. Wyłącznik silnikowy.
B. Rozłącznik bezpiecznikowy.
C. Przekaźnik przeciążeniowy.
D. Ochronnik przeciwprzepięciowy.
Wyłącznik silnikowy to naprawdę ważne urządzenie, które chroni silniki elektryczne przed różnymi problemami, jak przeciążenie czy zwarcie. Jak patrzysz na ten schemat, to zauważ, że symbol Q1 pokazuje, gdzie on jest, pomiędzy wyłącznikiem różnicowoprądowym a stycznikiem. Ten wyłącznik nie tylko włącza i wyłącza silnik, ale też pilnuje, ile prądu przez niego płynie. Jeśli prąd przekroczy ustaloną wartość, to automatycznie go odcina, co naprawdę chroni silnik oraz inne elementy. W elektryce mamy różne normy, jak na przykład IEC 60947-4-1, które mówią, jakie muszą być te wyłączniki. Wiadomo, że są one super przydatne w wielu branżach, od automatyki po systemy grzewcze, co pokazuje, jak ważne są dla bezpieczeństwa operacyjnego.

Pytanie 21

W jakim z podanych układów sieciowych pojawia się przewód PEN?

A. TN-C
B. TN-S
C. TT
D. IT
Odpowiedź TN-C jest poprawna, ponieważ w tym układzie sieciowym przewód PEN (przewód ochronny-neutralny) pełni podwójną funkcję, łącząc funkcję uziemiającą z funkcją neutralną. Oznacza to, że jeden przewód jest odpowiedzialny zarówno za ochronę przed porażeniem elektrycznym, jak i za przewodzenie prądu neutralnego. Układ TN-C jest często stosowany w nowoczesnych instalacjach elektrycznych w budynkach mieszkalnych oraz przemysłowych, gdzie zapewnia wysoki poziom bezpieczeństwa oraz efektywności energetycznej. Zgodnie z normami PN-IEC 60364, stosowanie przewodu PEN w układzie TN-C umożliwia uproszczenie instalacji poprzez redukcję liczby przewodów oraz zmniejszenie ryzyka błędów podłączeniowych. Przykładem zastosowania układu TN-C mogą być instalacje w dużych budynkach biurowych, gdzie przewód PEN efektywnie łączy punkt neutralny transformatora z systemem uziemiającym budynku, co zwiększa bezpieczeństwo i stabilność zasilania elektrycznego.

Pytanie 22

Poślizg silnika indukcyjnego osiągnie wartość 1, gdy

A. wirnik silnika będzie w bezruchu.
B. wirnik silnika zostanie dogoniony.
C. silnik zostanie zasilony prądem przeciwnym.
D. silnik znajdzie się w stanie jałowym.
Zrozumienie zasad działania silników indukcyjnych jest kluczowe dla efektywnej ich eksploatacji, dlatego warto przyjrzeć się błędnym koncepcjom, które mogą prowadzić do mylnych wniosków. W przypadku, gdy wirnik silnika zostaje dopędzony, oznacza to, że jego prędkość zbliża się do prędkości synchronizacyjnej, co prowadzi do zmniejszenia poślizgu, a nie do uzyskania wartości równej 1. Takie zjawisko występuje w silnikach, które są zasilane zmiennym prądem i wymagają odpowiedniego momentu obrotowego, aby zrównoważyć obciążenie. Z kolei pozostawienie silnika na biegu jałowym skutkuje poślizgiem mniejszym niż 1, ponieważ wirnik wciąż kręci się, choć bez obciążenia. Zasilanie silnika przeciwprądem to sytuacja, w której występuje odwrócenie kierunku prądu w uzwojeniach, co skutkuje przeciwnym działaniem momentu obrotowego, ale nie powoduje poślizgu równego 1 w klasycznym sensie. Typowym błędem myślowym jest zrozumienie poślizgu jako czegoś, co można kontrolować niezależnie od fizycznych parametrów pracy silnika. W rzeczywistości poślizg jest wskaźnikiem funkcjonowania silnika i jest ściśle powiązany z jego obciążeniem oraz dynamiką pracy. Wiedza na temat poślizgu jest zatem fundamentalna dla inżynierów i techników zajmujących się automatyką i energetyką.

Pytanie 23

Którym symbolem graficznym oznacza się instalację prowadzoną na drabinkach kablowych?

Ilustracja do pytania
A. B.
B. C.
C. A.
D. D.
Symbol B, który wskazujesz jako poprawny, jest zgodny z powszechnie akceptowanymi oznaczeniami w dokumentacji elektrycznej. Oznaczenie to jest używane do wskazywania instalacji prowadzonych na drabinkach kablowych, co jest niezwykle istotne w kontekście organizacji i zarządzania systemami kablowymi. Drabinki kablowe są kluczowym elementem w infrastrukturze elektroenergetycznej, ponieważ umożliwiają bezpieczne i uporządkowane prowadzenie kabli, co z kolei wpływa na efektywność oraz bezpieczeństwo instalacji. W praktyce, poprawne oznaczenie instalacji pozwala na łatwiejsze lokalizowanie i utrzymanie systemu, co jest zgodne z zasadami projektowania zgodnymi z normami IEC i PN-EN. Dodatkowo, stosowanie właściwych symboli w dokumentacji technicznej wspiera procesy inspekcyjne oraz ułatwia zrozumienie schematów przez różne zespoły pracowników. Warto także zaznaczyć, że niepoprawne oznaczenia mogą prowadzić do poważnych błędów w instalacji, co podkreśla znaczenie precyzyjnego stosowania symboliki w projektowaniu systemów elektrycznych.

Pytanie 24

Pomiar impedancji pętli zwarciowych wykonuje się w przypadku

A. aktywnie działającej sieci, co nie uwzględnia impedancji transformatorów zasilających
B. aktywnie działającej sieci, co uwzględnia impedancje transformatorów zasilających
C. wyłączonej sieci, co nie uwzględnia impedancji transformatorów zasilających
D. wyłączonej sieci, co uwzględnia impedancje transformatorów zasilających
Pomiar impedancji pętli zwarciowej przy załączonej sieci jest kluczowy dla oceny bezpieczeństwa systemów elektroenergetycznych. W takiej konfiguracji, wszystkie elementy systemu, w tym transformatory, przewody oraz urządzenia zabezpieczające, działają w rzeczywistych warunkach operacyjnych. Uwzględnienie impedancji transformatorów zasilających jest istotne, ponieważ ich właściwości mogą znacząco wpływać na wartość impedancji pętli zwarciowej. W praktyce, taka analiza pozwala na poprawne zaprojektowanie zabezpieczeń przeciwprądowych, co jest kluczowe dla szybkiej reakcji systemu na awarie. Dobre praktyki, takie jak stosowanie norm IEC 60909, podkreślają znaczenie pomiaru impedancji w warunkach załączonych, co prowadzi do bardziej rzetelnych wyników i lepszej ochrony instalacji. Ostatecznie, znajomość rzeczywistych warunków pracy systemu przekłada się na większe bezpieczeństwo oraz niezawodność instalacji elektrycznych.

Pytanie 25

Aby zrealizować instalację zasilającą dla urządzeń, które potrzebują do działania napięcia AC 230V, w rurkach podtynkowych w pomieszczeniu, gdzie temperatura osiąga 100 °C, należy zastosować przewody oznaczone symbolem

A. DYc 150
B. DY 100
C. DYc 750
D. DY 700
Przewody oznaczone symbolem DYc 750 są przeznaczone do pracy w warunkach wysokotemperaturowych, co czyni je odpowiednim wyborem do instalacji zasilającej w pomieszczeniach, gdzie temperatura może osiągnąć 100°C. Symbol "DY" wskazuje na przewody elastyczne, a litera "c" oznacza, że przewody te są odporne na działanie wysokich temperatur. W praktyce, przewody DYc 750 często stosuje się w instalacjach przemysłowych oraz w aplikacjach, gdzie istnieje ryzyko wystąpienia ekstremalnych warunków temperaturowych. Stosowanie odpowiednich przewodów jest kluczowe dla zapewnienia bezpieczeństwa oraz długoterminowej wydajności systemu zasilania. Przewody te są zgodne z normami PN-EN 50525, które określają wymagania dla przewodów elektrycznych, i powinny być używane w miejscach, gdzie są narażone na wysokie temperatury, aby zminimalizować ryzyko uszkodzeń oraz pożaru.

Pytanie 26

Jakiej klasy ogranicznik przepięć powinno się montować w instalacjach mieszkalnych?

A. Klasy A
B. Klasy D
C. Klasy C
D. Klasy B
Odpowiedzi wskazujące na klasy B, D oraz A jako odpowiednie dla rozdzielnic mieszkalnych są niepoprawne głównie z powodu różnic w charakterystyce i zastosowaniach tych ograniczników. Klasa B, według normy IEC 61643-11, jest zaprojektowana do ochrony przed bardzo wysokimi przepięciami, które mogą występować w sieciach zasilających, co czyni je bardziej odpowiednimi do zastosowań w instalacjach przemysłowych, gdzie ryzyko wystąpienia takich zdarzeń jest znacznie wyższe. Ograniczniki klasy A z kolei są przeznaczone do ochrony przed bardzo niskimi, ale szybko zmieniającymi się przepięciami, co również nie odpowiada typowym wymaganiom dla mieszkań. Klasa D, zdefiniowana jako ogranicznik przeznaczony do instalacji w obiektach specjalistycznych, takich jak centra danych, również nie jest zalecana do użytku domowego. Sugerowanie tych klas ograniczników dla zastosowań w rozdzielnicach mieszkaniowych może prowadzić do niewłaściwej ochrony i potencjalnych uszkodzeń sprzętu, co jest wynikiem niepełnego zrozumienia standardów ochrony przeciwprzepięciowej oraz różnorodności warunków, w jakich te urządzenia są używane. Kluczowe jest, aby przy wyborze odpowiedniego ogranicznika kierować się wymaganiami specyfikacji technicznych oraz dobrą praktyką inżynieryjną, co pomoże uniknąć kosztownych błędów i zapewni skuteczną ochronę instalacji elektrycznych.

Pytanie 27

Na podstawie wyników pomiarów rezystancji w przewodzie elektrycznym przedstawionym na ilustracji można stwierdzić, że żyły

Pomiar pomiędzy końcami żyłRezystancja w Ω
L1.1 – L1.20
L2.1 – L2.20
L3.1 – L3.2
N.1 – N.20
PE.1 – PE.20
L1.1 – L2.1
L1.1 – L3.1
L1.1 – N.1
L1.1 – PE.1
N.1 – PE.10
N.1 – L2.1
N.1 – L3.1
Ilustracja do pytania
A. L1 i L2 są zwarte.
B. L1 i L2 są przerwane.
C. N i L3 są zwarte oraz PE jest przerwana.
D. N i PE są zwarte oraz L3 jest przerwana.
Analizując inne odpowiedzi, można zauważyć, że stwierdzenie, iż żyły N i L3 są zwarte, bazuje na błędnym rozumieniu pomiarów rezystancji. W przypadku, gdy L3 byłaby rzeczywiście zwarte, rezystancja między N a L3 musiałaby wynosić 0 Ω. Kolejne podejście, które sugeruje, że L1 i L2 są przerwane, pomija kluczową informację, że ich rezystancja również wynosi 0 Ω, co oznacza, że są sprawne. Warto zwrócić uwagę na to, że mylenie pojęć związanych z pomiarami rezystancji prowadzi do fałszywych wniosków. Rezystancja nieskończona, jak w przypadku L3, nie może być interpretowana jako stan zwarty. Ostatecznie, błędne odpowiedzi pokazują, że zrozumienie, jak powinny działać różne żyły w instalacji elektrycznej, jest niezbędne dla prawidłowego diagnozowania problemów. Kluczowym aspektem jest znajomość funkcji żył neutralnych, ochronnych oraz fazowych w instalacji, co jest fundamentem dla zapewnienia bezpieczeństwa oraz efektywności systemów elektrycznych.

Pytanie 28

Na którym rysunku przedstawiono przewód kabelkowy do układania w tynku?

Ilustracja do pytania
A. C.
B. B.
C. A.
D. D.
Odpowiedź A jest prawidłowa, ponieważ przedstawia przewód kabelkowy przeznaczony do układania w tynku. Tego typu przewód charakteryzuje się płaską konstrukcją oraz izolacją z PVC, co zapewnia odpowiednią ochronę przed wilgocią i uszkodzeniami mechanicznymi. W praktyce, przewody te są wykorzystywane w instalacjach elektrycznych w ścianach, gdzie ich umiejscowienie w tynku jest standardową praktyką, zapewniającą estetykę i bezpieczeństwo. Przewód z trzema żyłami, jak ten przedstawiony na rysunku A, zazwyczaj obejmuje fazę, zero oraz żyłę ochronną, co jest zgodne z normami PN-IEC 60364, które regulują zasady instalacji elektrycznych. Znajomość tych norm jest kluczowa dla profesjonalistów w dziedzinie elektryki, ponieważ gwarantuje, że instalacje będą funkcjonalne i spełnią wymagania bezpieczeństwa. Dobre praktyki branżowe zalecają również, aby przewody były układane w sposób, który minimalizuje narażenie na uszkodzenia, co czyni przewody kabelkowe idealnym rozwiązaniem do tego zastosowania.

Pytanie 29

Określ w kolejności od lewej strony nazwy narzędzi przedstawionych na rysunku.

Ilustracja do pytania
A. Szczypce do zaciskania końcówek, szczypce uniwersalne, wskaźnik napięcia, obcinaczki czołowe, szczypce do ściągania izolacji, wkrętak izolowany płaski.
B. Obcinaczki boczne, przyrząd do ściągania izolacji, szczypce do zaciskania końcówek, szczypce uniwersalne, wkrętak izolowany, wskaźnik napięcia.
C. Szczypce uniwersalne, przyrząd do ściągania izolacji, obcinaczki boczne, szczypce do zaciskania końcówek, wkrętak izolowany, wskaźnik napięcia.
D. Obcinaczki czołowe, przyrząd do ściągania izolacji, szczypce uniwersalne, wskaźnik napięcia, szczypce do zaciskania końcówek, wkrętak izolowany płaski.
Obcinaczki boczne to pierwsze narzędzie na zdjęciu. Mają ostrza skierowane ku sobie, co fajnie ułatwia precyzyjne cięcie drutów i kabli. W branży elektrycznej i podczas domowych napraw to naprawdę przydatne narzędzie. Potem mamy przyrząd do ściągania izolacji, który jest bardzo ważny, kiedy przygotowujemy przewody do połączeń elektrycznych. Dzięki niemu można łatwo usunąć izolację, nie uszkadzając rdzenia przewodu, co jest kluczowe. Dalej są szczypce do zaciskania końcówek, które są super przydatne, bo mocują końcówki kablowe na stałe. To bardzo ważne, żeby połączenia były niezawodne. Słyszałeś o szczypcach uniwersalnych? Te zajmują czwarte miejsce. Są mega wszechstronne i można ich używać do różnych zadań – od cięcia po chwytanie rzeczy. I nie zapomnijmy o wkrętaku izolowanym, bo to ważne narzędzie do pracy przy elektryce. Jest odporny na przebicie prądu. Na końcu mamy wskaźnik napięcia, który jest kluczowy dla bezpieczeństwa. Pozwala sprawdzić, czy jest napięcie, zanim zaczniemy jakąkolwiek robotę.

Pytanie 30

Zgodnie z polskim prawem budowlanym, instalacje elektryczne oraz piorunochronne w obiektach mieszkalnych powinny być poddawane okresowym badaniom

A. raz na rok
B. co najmniej raz na 10 lat
C. raz na pół roku
D. co najmniej raz na 5 lat
Instalacja elektryczna oraz piorunochronna w budynkach mieszkalnych jest kluczowym elementem zapewniającym bezpieczeństwo użytkowników oraz ochronę mienia. Zgodnie z obowiązującymi przepisami prawa budowlanego, takie instalacje powinny być poddawane okresowym badaniom co najmniej raz na 5 lat. Taki harmonogram przeglądów ma na celu wczesne wykrywanie potencjalnych usterek, które mogą prowadzić do poważnych zagrożeń, takich jak pożary czy porażenia prądowe. Regularne kontrole pozwalają na ocenę stanu technicznego instalacji, w tym ich zgodności z aktualnymi normami oraz skutecznością w ochronie przed skutkami wyładowań atmosferycznych. Przykładem praktycznego zastosowania tej wiedzy może być sytuacja, w której w wyniku regularnych przeglądów wykryto zużycie izolacji, co mogłoby prowadzić do niebezpiecznych warunków. W przypadku instalacji piorunochronnych, ich skuteczność w odprowadzaniu prądów piorunowych również wymaga regularnych ocen, aby zapewnić maksymalną ochronę budynku. Warto zaznaczyć, że zgodność z normami PN-IEC 62305 oraz PN-EN 61439 jest kluczowa dla bezpieczeństwa obiektów.

Pytanie 31

Które aparaty oznaczono na schemacie cyframi 1 i 2?

Ilustracja do pytania
A. 1 – wyłącznik różnicowoprądowy; 2 – odłącznik instalacyjny.
B. 1 – wyłącznik nadprądowy; 2 – odłącznik instalacyjny.
C. 1 – wyłącznik różnicowoprądowy; 2 – wyłącznik nadprądowy.
D. 1 – wyłącznik nadprądowy; 2 – wyłącznik nadprądowy.
Wybrana odpowiedź jest poprawna, ponieważ aparaty oznaczone na schemacie cyframi 1 i 2 to wyłącznik różnicowoprądowy oraz wyłącznik nadprądowy. Wyłącznik różnicowoprądowy, oznaczony cyfrą 1, jest systemem zabezpieczającym przed porażeniem prądem elektrycznym poprzez odłączenie obwodu w przypadku wykrycia różnicy prądów między przewodami fazowymi a neutralnymi. Jego charakterystyczne cechy to przycisk testowy oraz oznaczenia N i PE, które wskazują na jego połączenia z przewodami neutralnym i ochronnym. Wyłącznik nadprądowy, oznaczony cyfrą 2, służy do ochrony obwodów przed przeciążeniem oraz zwarciami, automatycznie odłączając zasilanie w takich sytuacjach. W praktyce, stosowanie tych urządzeń jest kluczowe dla zapewnienia bezpieczeństwa instalacji elektrycznych w budynkach mieszkalnych i przemysłowych. Zgodnie z normą PN-EN 61008, wyłączniki różnicowoprądowe powinny być stosowane w miejscach szczególnie narażonych na porażenie prądem, co czyni je niezbędnym elementem w każdej nowoczesnej instalacji.

Pytanie 32

Który sposób połączenia przewodów jest zgodny z przedstawionym na rysunku schematem ideowym instalacji elektrycznej pracującej w sieci TN-S?

Ilustracja do pytania
A. B.
B. D.
C. C.
D. A.
Niepoprawne odpowiedzi bazują na nieprawidłowym zrozumieniu zasad działania systemu TN-S. W instalacjach tego typu kluczowe jest, aby przewód ochronny PE był całkowicie oddzielony od przewodu neutralnego N. W przypadku odpowiedzi, które nie spełniają tego warunku, ryzyko porażenia prądem znacząco wzrasta, a to może prowadzić do poważnych wypadków. Często występującym błędem jest mylenie funkcji przewodu neutralnego z funkcją przewodu ochronnego. Przewód neutralny ma za zadanie zamykanie obwodu elektrycznego, natomiast przewód uziemiający jest dedykowany ochronie przed awariami elektrycznymi. W systemie TN-S, nieodpowiednie połączenie tych przewodów prowadzi do sytuacji, w której prąd awaryjny może swobodnie krążyć przez obwody, co stwarza zagrożenie dla osób i urządzeń. W praktyce błędne połączenie przewodów może prowadzić do zwarcia lub uszkodzenia sprzętu elektrycznego oraz stwarzać zagrożenie pożaru. Warto pamiętać, że normy i przepisy regulujące instalacje elektryczne mają na celu właśnie eliminację takich nieprawidłowości, a ich przestrzeganie to nie tylko wymóg prawny, ale również dbałość o bezpieczeństwo ludzi i mienia. Dlatego tak istotne jest, aby zrozumieć różnice pomiędzy poszczególnymi rodzajami przewodów i stosować je zgodnie z określonymi normami.

Pytanie 33

Którego z urządzeń elektrycznych dotyczy etykieta przedstawiona na ilustracji?

Ilustracja do pytania
A. Aparatu zmierzchowego.
B. Automatu schodowego.
C. Źródła światła.
D. Czujnika ruchu.
Odpowiedź "Źródła światła" jest poprawna, ponieważ etykieta na ilustracji dostarcza kluczowych informacji charakterystycznych dla różnych typów źródeł światła, takich jak żarówki LED czy tradycyjne żarówki. Warto zwrócić uwagę na podaną moc, która wynosi 14.5W, co jest typowe dla nowoczesnych źródeł światła. Lumeny, które wynoszą 1180, określają ilość światła emitowanego przez źródło, co jest istotnym parametrem w branży oświetleniowej. Typ gwintu E27 jest powszechnie stosowany w żarówkach domowych, co jeszcze bardziej potwierdza, że mamy do czynienia z źródłem światła. Ponadto temperatura barwowa wynosząca 3000K wskazuje na ciepłe światło, które jest często preferowane w zastosowaniach domowych i komercyjnych. Wiedza na temat klasyfikacji źródeł światła jest kluczowa dla specjalistów zajmujących się projektowaniem oświetlenia, gdyż pozwala na dobór odpowiednich produktów do konkretnych zastosowań zgodnie z obowiązującymi normami i standardami branżowymi.

Pytanie 34

Jakie rury instalacyjne powinny być używane do kładzenia przewodów na łatwopalnym podłożu?

A. Tylko metalowe
B. Z PVC lub gumowe
C. Tylko z PVC
D. Metalowe lub gumowe
Kiedy stosujemy metalowe rury do układania przewodów na podłożu palnym, to tak naprawdę działamy zgodnie z normami bezpieczeństwa, które mówią, że musimy chronić instalacje elektryczne przed ryzykiem pożaru. Metalowe rury, na przykład stalowe, są odporne na wysokie temperatury i są niepalne, co czyni je super opcją w miejscach, gdzie mogą mieć kontakt z materiałami palnymi. Dodatkowo te rury lepiej chronią przewody przed mechanicznymi uszkodzeniami, co jest bardzo ważne, gdy instalacje eksploatowane są w trudnych warunkach. Wiele budynków przemysłowych i publicznych korzysta z metalowych rur, bo to nie tylko podnosi bezpieczeństwo, ale także spełnia różne przepisy budowlane i normy, jak PN-IEC 60364 dla instalacji elektrycznych. Co więcej, w razie awarii metalowe rury mogą być łatwiejsze do naprawy niż te z plastiku.

Pytanie 35

Na ilustracji przedstawiono schemat do pomiaru rezystancji

Ilustracja do pytania
A. pętli zwarciowej.
B. izolacji pomiędzy zaciskami uzwojeń a korpusem silnika.
C. uzwojenia fazowego.
D. izolacji pomiędzy zaciskami uzwojeń silnika.
Poprawna odpowiedź odnosi się do pomiaru rezystancji izolacji pomiędzy zaciskami uzwojeń silnika, co jest kluczowym elementem zapewnienia bezpieczeństwa i funkcjonalności urządzeń elektrycznych. Schemat przedstawia połączenie miernika, co wskazuje na jego użycie do oceny stanu izolacji. W praktyce, regularne pomiary izolacji są niezbędne w procesach konserwacyjnych oraz w diagnostyce awarii silników elektrycznych. Zgodnie z normą IEC 60364, należy dążyć do utrzymania odpowiednich wartości rezystancji izolacji, które powinny być znacznie wyższe niż 1 MΩ, aby zapewnić bezpieczeństwo użytkowania oraz minimalizować ryzyko porażenia prądem. W przypadku stwierdzenia niskiej rezystancji, co może wskazywać na uszkodzenie izolacji, konieczne jest natychmiastowe podjęcie działań naprawczych, aby zapobiec dalszym problemom. Dobre praktyki inżynieryjne zalecają również dokumentowanie wyników pomiarów, co może być pomocne w opracowywaniu programów konserwacyjnych oraz w audytach bezpieczeństwa.

Pytanie 36

Podczas wymiany uszkodzonego gniazda wtykowego w instalacji ukrytej prowadzonej w rurkach karbowanych zauważono, że na skutek poluzowania zacisku izolacja jednego z przewodów na kilku centymetrach straciła elastyczność oraz zmieniła kolor. Jak należy zrealizować naprawę uszkodzenia?

A. Założyć gumowy wężyk na uszkodzoną izolację przewodu
B. Pomalować uszkodzoną izolację przewodu
C. Wymienić wszystkie przewody na nowe o większym przekroju
D. Wymienić uszkodzony przewód na nowy o takim samym przekroju
Wymiana uszkodzonego przewodu na nowy o takim samym przekroju jest kluczowym działaniem w zapewnieniu bezpieczeństwa i funkcjonalności instalacji elektrycznej. Uszkodzenie izolacji przewodu, które prowadzi do utraty elastyczności i zmiany koloru, wskazuje na problem, który może prowadzić do porażenia prądem lub zwarcia. Zgodnie z normami IEC oraz Polskimi Normami (PN), przewody elektryczne powinny być zawsze w dobrym stanie technicznym. W praktyce, wymiana uszkodzonego przewodu na nowy o takim samym przekroju zapewnia, że instalacja elektryczna będzie w pełni sprawna i zgodna z wymaganiami dotyczącymi obciążalności prądowej oraz ochrony przed przeciążeniem. Przykładem może być wymiana przewodu w domowej instalacji, gdzie zgodność z przekrojem przewodu zabezpiecza przed zjawiskiem przegrzewania się instalacji oraz potencjalnym uszkodzeniem urządzeń elektrycznych. Stanowisko to jest zgodne z dobrą praktyką inżynieryjną i zapewnia trwałość oraz bezpieczeństwo eksploatacji systemów elektrycznych.

Pytanie 37

Na której ilustracji przedstawiono symbol graficzny przewodu neutralnego?

Ilustracja do pytania
A. Na ilustracji 1.
B. Na ilustracji 3.
C. Na ilustracji 4.
D. Na ilustracji 2.
Symbol graficzny przewodu neutralnego, oznaczony jako linia z kropką na końcu, jest kluczowym elementem w instalacjach elektrycznych. Na ilustracji 1 widzimy ten symbol, co potwierdza jego zgodność z międzynarodowymi standardami, takimi jak IEC 60446, które regulują oznaczanie przewodów i kolorów w systemach elektroenergetycznych. Przewód neutralny odgrywa ważną rolę w systemie elektrycznym, odpowiedzialny za zamknięcie obwodu i zapewnienie równowagi w instalacji. W praktyce, poprawne zidentyfikowanie przewodu neutralnego jest niezwykle istotne, aby uniknąć błędów w podłączaniu urządzeń oraz zapewnić bezpieczeństwo użytkowników. Wiedza o tym, jak rozpoznać symbol przewodu neutralnego, wspiera właściwe wykonywanie instalacji elektrycznych i konserwacji, co jest zgodne z najlepszymi praktykami branżowymi. Dodatkowo, zrozumienie ról poszczególnych przewodów w obwodzie elektrycznym, takich jak przewód fazowy oraz przewód ochronny, przyczynia się do tworzenia bezpiecznych i efektywnych instalacji.

Pytanie 38

Jaką wartość mocy wskazuje watomierz pokazany na rysunku?

Ilustracja do pytania
A. 50 W
B. 100 W
C. 1000 W
D. 500 W
Poprawna odpowiedź to 500 W. Watomierz, który analizujemy, wskazuje wartość mocy w oparciu o dane pomiarowe, które musimy prawidłowo zinterpretować. Wartość mocy obliczamy, mnożąc napięcie przez prąd, co jest zgodne z zasadą Ohma i podstawowymi zasadami elektrotechniki. W tym przypadku, jeśli zakres napięcia wynosi 500 V, a prąd to 5 A, obliczenia wyglądają następująco: moc (P) = napięcie (U) x prąd (I). Zatem P = 500 V x 5 A = 2500 W. Jednakże, watomierz może przedstawiać wartość mocą do mocy rzeczywistej, co wprowadza pewne niejasności. Ważne jest, aby podczas korzystania z takich urządzeń zwracać uwagę na zakresy pomiarowe oraz jednostki, które mogą wpływać na odczyty. W praktyce, znajomość tych zasad jest kluczowa w pracy z instalacjami elektrycznymi, gdzie błędne odczyty mogą prowadzić do nieprawidłowej oceny wydajności systemu. Dlatego zawsze warto upewnić się, że przyrząd jest poprawnie skonfigurowany i że rozumiemy, jakie wartości są przedstawiane.

Pytanie 39

Jakie uszkodzenie mogło wystąpić w instalacji elektrycznej, dla której wyniki pomiarów rezystancji izolacji przedstawiono w tabeli?

Rezystancja izolacji, MΩ
Zmierzona międzyWymagana
L1–L2L2–L3L1–L3L1–PENL2–PENL3–PEN
2,101,051,101,401,300,991,00
A. Zwarcie międzyfazowe.
B. Jednofazowe zwarcie doziemne.
C. Zawilgocenie izolacji jednej z faz.
D. Przeciążenie jednej z faz.
Przeciążenie jednej z faz, mimo że jest to problem, który może wystąpić w instalacjach elektrycznych, nie jest odpowiedzią w tym przypadku. Przeciążenie związane jest z nadmiernym przepływem prądu przez przewody, co prowadzi do ich nagrzewania się. W tej sytuacji jednak, wyniki pomiarów rezystancji izolacji wykazują, że wszystkie fazy mają wartości powyżej 1 MΩ, co wyklucza obecność przeciążenia. Przeciążenie fazy charakteryzuje się innymi objawami, takimi jak wzrost temperatury przewodów czy wyłączanie się zabezpieczeń, co nie jest zgodne z danymi z tabeli. Z kolei zwarcie międzyfazowe również nie znajduje potwierdzenia w wynikach pomiarów, ponieważ wymagałoby niskich rezystancji międzyfazowych, co w tym przypadku nie ma miejsca. Warto pamiętać, że zwarcie międzyfazowe najczęściej prowadzi do natychmiastowego wyłączenia zabezpieczeń, a nieprawidłowe wartości rezystancji nie są jedynym objawem tego zjawiska. Jednofazowe zwarcie doziemne, mimo że może wpływać na rezystancję L3 do PEN, nie byłoby jedynym czynnikiem mającym wpływ na pozostałe fazy, które w tym przypadku wykazywały poprawne wartości. Kluczowe jest, aby podczas analizy wyników pomiarów izolacji brać pod uwagę wszystkie aspekty, a nie jedynie pojedyncze parametry, co pozwala na trafną diagnozę stanu instalacji elektrycznej.

Pytanie 40

Złącze wtykowe przedstawione na rysunku przeznaczone jest do zastosowań w obszarach zagrożonych

Ilustracja do pytania
A. wyziewami żrącymi.
B. wybuchem pyłu.
C. nadmierną wilgotnością.
D. wzrostem temperatury.
Złącze wtykowe z oznaczeniem "Ex" jest przeznaczone do pracy w obszarach, gdzie istnieje ryzyko wystąpienia atmosfer wybuchowych, w tym wybuchu pyłu. Zgodnie z normami IECEx oraz ATEX, sprzęt oznaczony jako Ex musi spełniać rygorystyczne wymagania dotyczące bezpieczeństwa, aby zminimalizować ryzyko zapłonu. W obszarach przemysłowych, takich jak przemysł farmaceutyczny, chemiczny czy energetyczny, złącza te są niezbędne do zapewnienia bezpiecznej pracy. Przykłady zastosowań to instalacje elektryczne w silosach, gdzie mogą zbierać się drobne cząstki materiałów sypkich, co stwarza zagrożenie wybuchem. Wybór odpowiednich komponentów z certyfikacją Ex jest kluczowy dla ochrony pracowników i mienia, dlatego znajomość oznaczeń oraz standardów jest niezbędna w branży przemysłowej.