Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 17 listopada 2025 05:06
  • Data zakończenia: 17 listopada 2025 05:15

Egzamin niezdany

Wynik: 7/40 punktów (17,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Aby zabezpieczyć silnik o parametrach znamionowych podanych poniżej, należy dobrać wyłącznik silnikowy według oznaczenia producenta

Silnik 3~ Typ MAS063-2BA90-Z
0,25 kW 0,69 A Izol. F
IP 54 2755 obr/min cosφ 0,81
400 V (Y) 50 Hz

A. MMS-32S – 1,6A
B. PKZM01 – 0,63
C. MMS-32S – 4A
D. PKZM01 – 1
Wybór wyłącznika silnikowego PKZM01 – 1 jest poprawny, ponieważ jego znamionowy prąd 1 A jest zgodny z wymaganiami silnika o mocy 0,25 kW i prądzie znamionowym 0,69 A. Wyłączniki silnikowe powinny być dobierane na podstawie prądu znamionowego silnika, co w tym przypadku oznacza, że wymagany prąd roboczy wyłącznika powinien być nieco wyższy niż prąd znamionowy silnika, aby zapewnić odpowiednią ochronę. PKZM01 – 1, przy prądzie 1 A, zapewnia odpowiedni margines bezpieczeństwa, co jest zgodne z dobrymi praktykami w branży. Dodatkowo, wyłączniki serii PKZ są wyposażone w funkcję zabezpieczenia przeciążeniowego i zwarciowego, co czyni je odpowiednim wyborem do ochrony silników. W przypadku awarii, wyłącznik ten zadziała szybko, chroniąc zarówno silnik, jak i podłączone instalacje. Wykorzystując wyłączniki zgodne z normami IEC 60947-4-1, można być pewnym ich niezawodności i efektywności działania.

Pytanie 2

W jakim układzie sieciowym wyłączniki różnicowoprądowe nie mogą być używane jako elementy ochrony przed porażeniem w przypadku awarii?

A. TN-S
B. TT
C. TN-C
D. IT
Odpowiedź TN-C jest poprawna, ponieważ w tym układzie sieciowym nie można stosować wyłączników różnicowoprądowych (WRP) jako elementów ochrony przeciwporażeniowej. W systemie TN-C, gdzie neutralny przewód (N) oraz ochronny przewód (PE) są połączone w jeden przewód (PEN), istnieje ryzyko, że WRP nie zadziała w przypadku uszkodzenia. Dzieje się tak, ponieważ wszelkie prądy upływowe mogą być zrównoważone przez prąd neutralny i nie będą rejestrowane przez wyłącznik. Przykładowo, w instalacjach przemysłowych lub budowlanych z układem TN-C, zastosowanie WRP może prowadzić do sytuacji, w których osoba dotykająca części metalowe staje się narażona na porażenie prądem, ponieważ WRP nie wykryje niewielkich różnic prądowych. Dobrymi praktykami w systemach TN-C są stosowanie dodatkowych środków ochrony, takich jak zabezpieczenia przez izolację oraz odpowiednie uziemienie, które mogą zminimalizować ryzyko porażenia. Zgodnie z normą PN-IEC 60364, zaleca się użycie układów TN-S lub TT, gdzie separacja przewodów PE i N pozwala na skuteczne działanie WRP.

Pytanie 3

W trakcie naprawy części instalacji elektrycznej zasilającej silnik indukcyjny, uszkodzone przewody aluminiowe zamieniono na przewody H07V-R o przekroju żyły 50 mm2. Jaki powinien być minimalny przekrój przewodu PE, aby warunek samoczynnego wyłączenia zasilania został spełniony?

A. 20 mm2
B. 35 mm2
C. 50 mm2
D. 25 mm2
Odpowiedź 25 mm2 jest poprawna, ponieważ zgodnie z normami PN-IEC 60364-5-54, minimalny przekrój przewodu ochronnego (PE) powinien być co najmniej równy 1,5 mm2 dla instalacji o maksymalnym prądzie znamionowym do 32 A. W przypadku instalacji z przewodami zasilającymi o znacznych przekrojach, takich jak 50 mm2 w przypadku przewodów H07V-R, wymagana jest zasada, że przekrój przewodu PE powinien wynosić co najmniej 50% przekroju przewodu fazowego w przypadku aluminium lub 25% w przypadku miedzi. Tutaj mamy do czynienia z przewodami aluminiowymi, więc obliczając 50% z 50 mm2, otrzymujemy 25 mm2. Taki przekrój zapewnia odpowiednią zdolność przewodu PE do przewodzenia prądu w przypadku awarii, co jest kluczowe dla ochrony ludzi oraz urządzeń. Przykładem zastosowania tej zasady może być instalacja elektryczna w przemyśle, gdzie wymagania bezpieczeństwa są szczególnie restrykcyjne.

Pytanie 4

Jakie uszkodzenie lub defekt można wykryć podczas przeglądu instalacji elektrycznej w budynku mieszkalnym?

A. Brak ciągłości połączeń
B. Przekroczenie dopuszczalnego czasu zadziałania wyłącznika ochronnego
C. Pogorszenie się stanu izolacji
D. Pogorszenie się stanu mechanicznego złącz i połączeń
Podczas analizy defektów instalacji elektrycznej w budynku mieszkalnym, niektóre odpowiedzi mogą wydawać się na pierwszy rzut oka poprawne, ale w rzeczywistości nie odnoszą się bezpośrednio do kwestii, które można zlokalizować podczas oględzin. Na przykład, pogorszenie stanu izolacji, choć istotne z perspektywy bezpieczeństwa, może być trudne do zidentyfikowania jedynie na podstawie wizualnych oględzin. Izolacja może wykazywać uszkodzenia, które nie są widoczne gołym okiem, co wymagałoby zastosowania specjalistycznych narzędzi pomiarowych, takich jak mierniki rezystancji izolacji. Przekroczenie dopuszczalnego czasu zadziałania wyłącznika ochronnego również nie jest czymś, co można w prosty sposób zlokalizować podczas standardowych oględzin. Wymaga to analizy działania urządzenia pod obciążeniem i oceny czasów reakcji wyłącznika, co przekracza zakres podstawowych oględzin. Brak ciągłości połączeń jest inną kwestią, która wymaga pomiarów technicznych, takich jak testy ciągłości, co również nie jest częścią typowych oględzin. W rzeczywistości, te aspekty wymagają bardziej zaawansowanych metod diagnostycznych, co może prowadzić do mylnych wniosków o ich wykrywalności podczas prostych inspekcji. Dlatego ważne jest, aby zrozumieć, że nie wszystkie problemy instalacji elektrycznej mogą być zidentyfikowane bez odpowiednich narzędzi i metod badawczych, co podkreśla znaczenie zastosowania specjalistycznych norm i procedur w praktyce inżynieryjnej.

Pytanie 5

Przed przystąpieniem do prac konserwacyjnych w elektrycznym urządzeniu trwale podłączonym do zasilania, po odcięciu napięcia, jak należy postępować w odpowiedniej kolejności?

A. należy zabezpieczyć obwód przed przypadkowym załączeniem, uziemić oraz zewrzeć wszystkie fazy, a następnie sprawdzić, czy nie ma napięcia
B. należy sprawdzić, czy nie ma napięcia, uziemić oraz zewrzeć wszystkie fazy, a następnie zabezpieczyć obwód przed przypadkowym załączeniem
C. należy sprawdzić, czy nie ma napięcia, zabezpieczyć obwód przed przypadkowym załączeniem, uziemić oraz zewrzeć wszystkie fazy
D. należy zabezpieczyć obwód przed przypadkowym załączeniem, sprawdzić, czy nie ma napięcia, uziemić oraz zewrzeć wszystkie fazy
Odpowiedź jest prawidłowa, ponieważ kolejność wykonywania czynności przed rozpoczęciem prac konserwacyjnych w urządzeniu elektrycznym ma kluczowe znaczenie dla bezpieczeństwa. Najpierw zabezpieczamy obwód przed przypadkowym załączeniem, co oznacza, że wyłączamy wszelkie źródła zasilania i stosujemy odpowiednie blokady. Następnie sprawdzamy brak napięcia, co można zrobić za pomocą odpowiednich narzędzi, takich jak wskaźniki napięcia lub multimetru. Uziemienie i zwarcie wszystkich faz to kolejne kroki, które mają na celu minimalizację ryzyka porażenia prądem oraz wyładowań elektrycznych. Zgodnie z normą PN-EN 50110-1, te działania stanowią integralną część procedur pracy w instalacjach elektrycznych. Przykładowo, w zakładach przemysłowych, gdzie pracuje się z dużymi maszynami, takie procedury są stosowane, aby zapewnić bezpieczeństwo pracowników i uniknąć poważnych wypadków. Dodatkowo, przestrzeganie tych zasad pomaga w zachowaniu zgodności z wymogami BHP oraz normami branżowymi.

Pytanie 6

W systemach z stycznikami kategorii użytkowania DC-6 mogą być wykorzystywane

A. świetlówki
B. lampy sodowe
C. żarówki
D. lampy rtęciowe
Wybór żarówek jako odpowiedzi na to pytanie jest uzasadniony ze względu na ich zastosowanie w układach ze stycznikami o kategorii użytkowania DC-6. Kategoria ta jest przeznaczona do pracy z obwodami prądu stałego, które są w stanie obsłużyć normalne obciążenia, w tym żarówki. Żarówki charakteryzują się dość prostą charakterystyką obciążeniową, co sprawia, że są odpowiednie do zastosowań w instalacjach elektrycznych, gdzie mogą być włączane i wyłączane za pomocą styczników. Przykładem praktycznego zastosowania mogą być oświetlenie w halach produkcyjnych, gdzie styczniki sterują włączaniem i wyłączaniem grup żarówek w zależności od potrzeb. Warto również zauważyć, że żarówki, w przeciwieństwie do innych typów lamp, takich jak świetlówki, wymagają prostszych układów sterujących, co czyni je bardziej elastycznymi w zastosowaniach przemysłowych. Dla zachowania zgodności z normami bezpieczeństwa i efektywności energetycznej, ważne jest, aby dobierać odpowiednie styczniki oraz obwody zabezpieczające, co również wpływa na niezawodność całego układu oświetleniowego.

Pytanie 7

Kontrolę instalacji elektrycznej, znajdującej się w pomieszczeniach o wysokiej wilgotności (75÷100%), w zakresie efektywności ochrony przed porażeniem elektrycznym należy przeprowadzać co najmniej raz na

A. 1 rok
B. 2 lata
C. 4 lata
D. 3 lata
Instalacje elektryczne w pomieszczeniach wilgotnych, takich jak łazienki czy piwnice, wymagają szczególnej uwagi w kontekście ochrony przeciwporażeniowej. Wilgotność powietrza w takich miejscach może prowadzić do zwiększonego ryzyka porażenia prądem, dlatego też zgodnie z obowiązującymi normami i zaleceniami, takie instalacje powinny być poddawane kontroli co najmniej raz w roku. Regularne przeglądy pozwalają na wczesne wykrywanie potencjalnych usterek, takich jak uszkodzenia izolacji, niewłaściwe zabezpieczenia czy korozja elementów instalacji. Przykładem może być kontrola stanu gniazdek elektrycznych, które w miejscach o wysokiej wilgotności narażone są na działanie wody, co może prowadzić do zwarć. Warto również zwrócić uwagę na zastosowanie odpowiednich zabezpieczeń, takich jak różnicowoprądowe wyłączniki zabezpieczające (RCD), które mogą istotnie zwiększyć poziom bezpieczeństwa. Przestrzeganie tych zasad jest zgodne z normami, takimi jak PN-IEC 60364, które określają wymagania dotyczące instalacji elektrycznych w miejscach narażonych na wilgoć.

Pytanie 8

Jakie urządzenie, przy wykorzystaniu przekaźnika termicznego i stycznika, oferuje kompleksową ochronę przed zwarciem oraz przeciążeniem dla silnika trójfazowego o parametrach:
Pn = 5,5 kW, Un = 400/690 V?

A. Bezpiecznik typu aR
B. Wyłącznik nadprądowy typu Z
C. Bezpiecznik typu aM
D. Wyłącznik nadprądowy typu B
Bezpiecznik typu aM jest optymalnym rozwiązaniem do zabezpieczenia silników trójfazowych, takich jak ten o mocy Pn = 5,5 kW i napięciu Un = 400/690 V. Bezpieczniki typu aM są zaprojektowane do ochrony przed przeciążeniami i zwarciami, a ich charakterystyka prądowa pozwala na tolerowanie krótkotrwałych prądów rozruchowych, które są typowe dla silników. Dzięki temu, w momencie uruchomienia silnika, gdy prąd może wzrosnąć kilkakrotnie w krótkim czasie, bezpiecznik aM nie zadziała, co zapobiega niepotrzebnemu wyłączeniu urządzenia. W praktyce, zastosowanie bezpiecznika typu aM przy odpowiednim doborze prądowym w stosunku do znamionowego prądu silnika, zapewnia nie tylko bezpieczeństwo operacyjne, ale również minimalizuje przerwy w pracy maszyny. Ponadto, zgodnie z normą IEC 60947-4-1, zastosowanie takiego zabezpieczenia jest rekomendowane w instalacjach przemysłowych, gdzie wymagana jest wysoka niezawodność systemu. Dobrze dobrane zabezpieczenia, takie jak bezpieczniki aM, są kluczowe dla utrzymania ciągłości produkcji oraz ochrony przed szkodami materialnymi i osobowymi.

Pytanie 9

Jaki jest maksymalny dopuszczalny czas wyłączenia zasilania w celu zapewnienia ochrony przed porażeniem elektrycznym w przypadku uszkodzenia w systemie sieciowym TN-S, kiedy napięcie fazowe przekracza 400 V, a obwody odbiorcze mają prąd znamionowy do 32 A?

A. 0,5 s
B. 0,2 s
C. 0,8 s
D. 0,1 s
Czas wyłączenia zasilania w instalacjach elektrycznych jest kluczowym elementem ochrony przed porażeniem prądem. W przypadku odpowiedzi, które wskazują na czasy wyłączenia dłuższe niż 0,1 s, istnieje fundamentalne nieporozumienie dotyczące norm ochrony przeciwporażeniowej. Czas 0,5 s czy 0,2 s, choć mogą wydawać się wystarczające, nie spełniają wymogów stawianych przez normy, takie jak PN-EN 60364-4-41, które jasno określają, że najkrótszy czas wyłączenia zasilania powinien wynosić 0,1 s dla obwodów o prądzie znamionowym do 32 A w układzie TN-S. W wydłużonych czasach wyłączenia zwiększa się ryzyko dla zdrowia użytkowników, ponieważ dłuższa ekspozycja na prąd może prowadzić do poważnych obrażeń. Typowe błędy myślowe prowadzące do takich wniosków obejmują ignorowanie specyfiki norm oraz nieprawidłowe rozumienie zasad działania zabezpieczeń elektrycznych. Często myli się również czasy wyłączenia dla różnych rodzajów instalacji, co prowadzi do stosowania niewłaściwych wartości czasowych, które mogą być nieadekwatne do zapewnienia bezpieczeństwa. Wiedza o ochronie przed porażeniem prądem oraz znajomość aktualnych norm są kluczowe dla projektowania i eksploatacji instalacji elektrycznych, aby zminimalizować ryzyko wypadków i zapewnić bezpieczeństwo użytkowników.

Pytanie 10

Jaką wartość powinno mieć napięcie testowe podczas pomiaru rezystancji izolacyjnej uzwojenia wtórnego transformatora ochronnego?

A. 1 000 V
B. 250 V
C. 2 000 V
D. 500 V
Wybór wartości napięcia probierczego spośród 1000 V, 500 V oraz 2000 V może być wynikiem niepełnego zrozumienia specyfiki pomiarów rezystancji izolacji uzwojeń wtórnych transformatorów bezpieczeństwa. Przy pomiarze rezystancji izolacji kluczowe jest zrozumienie, że transformator bezpieczeństwa jest przeznaczony do pracy w niskonapięciowych systemach elektrycznych, co wymaga zastosowania odpowiednich wartości napięcia probierczego. Napięcia na poziomie 1000 V i 2000 V są zbyt wysokie i mogą prowadzić do uszkodzenia izolacji oraz wrażliwych komponentów elektrycznych, co w konsekwencji zagraża bezpieczeństwu użytkowników. Napięcie 500 V, choć niższe od 1000 V, nadal jest zbyt wysokie dla niektórych zastosowań, szczególnie w kontekście transformatorów bezpieczeństwa, gdzie obowiązują normy ograniczające stosowane napięcia probiercze. Wybierając niewłaściwe napięcie, można również pominąć kluczowe testy, które powinny być przeprowadzane zgodnie z najlepszymi praktykami branżowymi. Dlatego istotne jest, aby podczas określania wartości napięcia probierczego kierować się zaleceniami takich norm jak IEC 61557, które wyraźnie wskazują na 250 V jako optymalną wartość dla takich pomiarów. Niezrozumienie tej kwestii może prowadzić do nieodpowiednich wniosków oraz potencjalnych zagrożeń, co podkreśla wagę znajomości i przestrzegania obowiązujących standardów w branży.

Pytanie 11

Przedstawione w tabeli wyniki pomiarów rezystancji uzwojeń i izolacji silnika trójfazowego wskazują na

Pomiar między zaciskami silnikaRezystancja
U1 – U232 Ω
V1 – V232 Ω
W1 – W232 Ω
U1 – V10
V1 – W15 MΩ
U1 – W15 MΩ
U1 – PE0
V1 – PE0
W1 – PE5 MΩ
A. uszkodzoną izolację w uzwojeniach U1 – U2 oraz V1 – V2
B. zwarcie międzyzwojowe w uzwojeniu W1 – W2
C. zwarcie między uzwojeniami U1 – U2 oraz W1 – W2
D. przerwę w uzwojeniu U1 – U2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź wskazująca na uszkodzoną izolację w uzwojeniach U1 – U2 oraz V1 – V2 jest prawidłowa ze względu na wyniki pomiarów rezystancji, które zostały przedstawione w tabeli. Wartości wynoszące 0 Ω dla izolacji są alarmującym sygnałem, wskazującym na bezpośrednie połączenie z masą, co oznacza, że nie ma odpowiedniej bariery izolacyjnej. Zgodnie z normą IEC 60034, rezystancja izolacji powinna wynosić przynajmniej kilkaset megaomów, aby zapewnić bezpieczną i niezawodną pracę silnika. Praktyka przemysłowa zaleca, aby regularnie monitorować stan izolacji silników poprzez pomiary rezystancji, co pozwala na wczesne wykrywanie potencjalnych problemów. W przypadku stwierdzenia uszkodzonej izolacji, należy podjąć natychmiastowe działania, takie jak odłączenie silnika od zasilania i dokładna inspekcja uzwojeń, aby zapobiec poważniejszym uszkodzeniom oraz zminimalizować ryzyko pożaru. Usunięcie tego typu defektów jest kluczowe dla zapewnienia bezpieczeństwa na stanowisku pracy oraz długoterminowej efektywności urządzenia.

Pytanie 12

Jakie urządzenie gaśnicze powinno być użyte do gaszenia pożaru w rozdzielnicy elektrycznej, której nie można odłączyć od zasilania?

A. Hydronetkę.
B. Tłumicę.
C. Gaśnicę proszkową.
D. Gaśnicę cieczy.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Gaśnice proszkowe są skutecznym narzędziem do gaszenia pożarów klasy C, które obejmują gazy palne oraz pożary elektryczne. W przypadku pożaru rozdzielnicy elektrycznej, której nie można wyłączyć spod napięcia, stosowanie gaśnicy proszkowej jest zalecane ze względu na jej właściwości. Proszek gaśniczy, najczęściej bazujący na wodorofosforanie amonu, skutecznie tłumi płomienie, nie przewodząc prądu, co czyni go bezpiecznym w kontakcie z urządzeniami pod napięciem. Przykładowo, w sytuacji awaryjnej, gdy nie można zredukować napięcia elektrycznego, użycie gaśnicy proszkowej pozwala na szybkie i efektywne działanie, minimalizując ryzyko porażenia prądem. W praktyce, standardy bezpieczeństwa, takie jak normy NFPA i EN 3, jasno wskazują, że gaśnice proszkowe powinny być używane w takich sytuacjach, co czyni je najlepszym wyborem w kontekście ochrony przeciwpożarowej w obiektach z instalacjami elektrycznymi.

Pytanie 13

Do nawinięcia stojana w trójfazowym silniku indukcyjnym o mocy 7,5 kW nie stosuje się

A. pierścienia zwierającego
B. izolacji żłobkowej
C. lakieru izolacyjnego
D. drutu nawojowego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pierścień zwierający nie jest stosowany w przezwojeniu stojana trójfazowego silnika indukcyjnego o mocy 7,5 kW, ponieważ jego konstrukcja opiera się na rdzeniu stalowym, w którym uzwojenia są umieszczone w żłobkach. Pierścienie zwierające są używane głównie w silnikach z wirnikami klatkowym, gdzie zapewniają zamknięcie obwodu wirnika. W przypadku silników indukcyjnych z uzwojeniem stojana, kluczowe komponenty to drut nawojowy, izolacja żłobkowa oraz lakier izolacyjny. Drut nawojowy, wykonany z miedzi, jest niezbędny do utworzenia uzwojeń, które generują pole magnetyczne. Izolacja żłobkowa oraz lakier izolacyjny chronią drut przed zwarciem oraz uszkodzeniami mechanicznymi, a także zapewniają odpowiednią wydajność cieplną. Dobrze przeprowadzone przezwojenie zwiększa efektywność silnika, co jest istotne w kontekście obciążenia i żywotności maszyny.

Pytanie 14

Na podstawie podanych w tabeli wyników pomiarów rezystancji izolacji silnika asynchronicznego trójfazowego o danych UN = 230/400 V i PN = 3 kW można stwierdzić, że

RPE-U1RPE-V1RPE-W1RU1-V1RV1-W1RW1-U1
6,2 MΩ5,4 MΩ3,9 MΩ6,9 MΩ4,4 MΩ4,8 MΩ
A. wystąpiło zwarcie między uzwojeniami V i W.
B. w uzwojeniu V występuje przerwa.
C. w uzwojeniu U występuje zwarcie do obudowy.
D. pogorszyła się izolacja uzwojenia W.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prawidłowa odpowiedź wskazuje na to, że pogorszenie izolacji uzwojenia W jest dostrzegalne w analizowanych wynikach pomiarów. Rezystancja izolacji między uzwojeniami powinna być zbliżona, co jest zgodne z normami bezpieczeństwa i jakości, takimi jak IEC 60364. W przypadku, gdy rezystancja izolacji uzwojenia W jest znacznie niższa niż dla uzwojeń U i V, świadczy to o osłabieniu izolacji, co może prowadzić do niebezpiecznych warunków pracy silnika. W praktyce, niezidentyfikowane problemy związane z izolacją mogą prowadzić do zwarć, przegrzewania się i w końcu awarii silnika, co wiąże się z kosztownymi naprawami oraz przestojami w pracy maszyn. Regularne pomiary rezystancji izolacji są kluczowe dla zapewnienia niezawodności urządzeń elektrycznych, a odpowiednia dokumentacja wyników pozwala na monitorowanie stanu technicznego uzwojeń. W przypadku wykrycia niskiej rezystancji, należy natychmiast podjąć kroki w celu oceny i naprawy uszkodzeń izolacji, co jest zgodne z dobrą praktyką w konserwacji urządzeń elektrycznych.

Pytanie 15

Która z wymienionych czynności nie jest częścią oceny stanu technicznego podczas przeglądu układu napędowego z wykorzystaniem przekształtnika energoelektronicznego?

A. Sprawdzenie natężenia oświetlenia na stanowisku obsługi układu napędowego
B. Ocena czystości filtrów powietrza chłodzącego
C. Kontrola połączeń stykowych
D. Weryfikacja jakości zabezpieczeń nadprądowych oraz zmiennozwarciowych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Sprawdzanie natężenia oświetlenia na stanowisku obsługi układu napędowego to nie to samo, co przegląd stanu technicznego tego układu. Jak dla mnie, w takim przeglądzie powinniśmy skupić się na kluczowych aspektach, które wpływają na to, czy układ działa wydajnie i bezpiecznie. Na przykład, trzeba by sprawdzić zabezpieczenia nadprądowe i zmiennozwarciowe, bo one chronią urządzenia przed uszkodzeniem, gdy coś idzie nie tak, jak powinno. I nie zapominajmy o połączeniach stykowych, które odpowiadają za przekazywanie sygnałów elektrycznych. Filtry powietrza chłodzącego też mają ogromne znaczenie, bo odpowiednia temperatura pracy układu wpływa na jego długowieczność. Zadbanie o te wszystkie aspekty to klucz do efektywności operacyjnej oraz bezpieczeństwa użycia systemów z przekształtnikami. Przeglądy zgodne z normami, jak IEC 60204, mogą pomóc w uniknięciu awarii i sprawić, że układy napędowe będą działały jak należy.

Pytanie 16

Jak wpłynie na ilość wydzielanego ciepła w czasie, w grzejniku elektrycznym, gdy spiralę grzejną zmniejszy się o połowę, a napięcie pozostanie takie samo?

A. Zmniejszy się czterokrotnie
B. Zwiększy się dwukrotnie
C. Zmniejszy się dwukrotnie
D. Zwiększy się czterokrotnie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź, że ilość wydzielonego ciepła w jednostce czasu zwiększy się dwukrotnie, jest prawidłowa, ponieważ zmiana długości spirali grzejnej grzejnika elektrycznego wpływa na opór elektryczny. Zgodnie z prawem Ohma, opór R przewodnika jest proporcjonalny do jego długości l, co można zapisać jako R = ρ * (l/A), gdzie ρ to oporność właściwa, a A to pole przekroju poprzecznego. Skrócenie spirali grzejnej o połowę prowadzi do zmniejszenia oporu R. Przy stałym napięciu zasilania (U), moc P wydobywana z grzejnika może być określona wzorem P = U²/R. Zmniejszenie oporu o połowę spowoduje, że moc wzrośnie dwukrotnie, ponieważ w mianowniku wzoru P mamy wartość oporu, która uległa redukcji. W praktyce oznacza to, że grzejnik będzie efektywniej przekazywał ciepło do otoczenia, co jest istotne w kontekście optymalizacji systemów grzewczych, szczególnie w zastosowaniach przemysłowych i budowlanych, gdzie zarządzanie energią ma kluczowe znaczenie.

Pytanie 17

Regularne kontrole eksploatacyjne instalacji elektrycznej w budynku jednorodzinnym powinny być realizowane co najmniej raz na

A. kwartał
B. rok
C. 5 lat
D. 3 lata

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Okresowe badania eksploatacyjne instalacji elektrycznej w domach jednorodzinnych są kluczowym elementem zapewnienia bezpieczeństwa oraz niezawodności funkcjonowania tych systemów. Zgodnie z przepisami prawa budowlanego oraz normami PN-IEC 60364, zaleca się, aby takie badania były przeprowadzane nie rzadziej niż co pięć lat. Taki okres jest uzasadniony, ponieważ w ciągu tego czasu mogą wystąpić różne czynniki wpływające na stan techniczny instalacji, takie jak naturalne zużycie materiałów, zmiany w obciążeniu elektrycznym czy też zmiany w przepisach dotyczących bezpieczeństwa. Regularne kontrole pozwalają wykryć potencjalne usterki, co z kolei może zapobiec poważnym awariom oraz zagrożeniom pożarowym. Przykładowo, nieprawidłowo wykonana instalacja lub zużyty osprzęt mogą prowadzić do zwarć, które mogą zagrażać życiu mieszkańców. Dlatego zaleca się, aby każde badanie obejmowało przegląd stanu izolacji przewodów, oceny zabezpieczeń oraz identyfikację wszelkich nieprawidłowości. Dobrą praktyką jest również dokumentowanie wyników badań oraz wdrażanie niezbędnych działań naprawczych, co w przyszłości może posłużyć jako cenny materiał dowodowy w przypadku ewentualnych sporów.

Pytanie 18

Zespół elektryków ma wykonać na polecenie pisemne prace konserwacyjne przy urządzeniu elektrycznym.
Jak powinien postąpić kierujący zespołem w przypadku stwierdzenia niedostatecznego oświetlenia w miejscu pracy?

Wykonać zleconą pracęPowiadomić przełożonego
o niedostatecznym oświetleniu
A.TAKNIE
B.TAKTAK
C.NIETAK
D.NIENIE
A. C.
B. B.
C. A.
D. D.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór odpowiedzi C jest zgodny z zasadami BHP, które nakładają na kierownika zespołu obowiązek zapewnienia bezpiecznych warunków pracy. Niedostateczne oświetlenie stwarza ryzyko wypadków, co może prowadzić do poważnych konsekwencji zarówno dla pracowników, jak i dla pracodawcy. W sytuacji, gdy oświetlenie nie spełnia norm, kierujący zespołem powinien niezwłocznie zaprzestać wszelkich prac i poinformować przełożonego. Zgodnie z normą PN-EN 12464-1, miejsca pracy powinny być odpowiednio oświetlone, aby zminimalizować ryzyko błędów i wypadków. Przykładowo, w przypadku prac konserwacyjnych na wysokości, odpowiednie oświetlenie jest kluczowe dla bezpiecznej nawigacji i wykonywania zadań. Oprócz tego, zgodnie z wytycznymi BHP, pracownicy powinni być szkoleni w zakresie identyfikacji zagrożeń związanych z oświetleniem i wiedzieć, jak reagować w takich sytuacjach. Dlatego odpowiedź C nie tylko wskazuje na właściwe postępowanie, ale także na dbałość o bezpieczeństwo i zdrowie zespołu.

Pytanie 19

Przy badaniu uszkodzonego silnika trójfazowego połączonego w gwiazdę zmierzono rezystancje uzwojeń i rezystancje izolacji. Zamieszczone w tabeli wyniki pomiarów pozwalają stwierdzić, że możliwe jest

Wielkość mierzonaWartość, Ω
Rezystancja uzwojeń między zaciskami silnika:
U1 – V110,0
V1 – W1
W1 – U1
Rezystancja izolacji między zaciskami a obudową silnika:Wartość, MΩ
U1 – PE15,5
V1 – PE15,5
W1 – PE0
Ilustracja do pytania
A. przerwanie uzwojenia Ul - U2
B. odkręcenie się i dotknięcie obudowy przez przewód spod zacisku V1
C. odkręcenie się i dotknięcie obudowy przez przewód spod zacisku Wl
D. przerwanie uzwojenia V1 - V2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź dotycząca odkręcenia się i dotknięcia obudowy przez przewód spod zacisku W1 jest poprawna, ponieważ wyniki pomiarów rezystancji wykazują, że rezystancja izolacji między tym zaciskiem a obudową (PE) wynosi 0 MΩ. Oznacza to, że istnieje bezpośrednie połączenie między przewodem W1 a obudową, co prowadzi do zwarcia oraz ryzyka wystąpienia uszkodzenia sprzętu. W przypadku silników trójfazowych, ważne jest zachowanie odpowiednich wartości rezystancji izolacji, aby zapewnić prawidłowe działanie oraz bezpieczeństwo. Dobrą praktyką jest regularne wykonywanie pomiarów rezystancji izolacji przed uruchomieniem urządzenia, co pozwoli na wczesne wykrycie potencjalnych problemów. Ponadto, stosowanie odpowiednich zabezpieczeń, jak wyłączniki różnicowoprądowe, może pomóc w zminimalizowaniu ryzyka uszkodzenia obwodów oraz zapewnieniu bezpieczeństwa użytkowników. Warto również zaznaczyć, że w przypadku wykrycia niskiej rezystancji izolacji, należy jak najszybciej zidentyfikować i usunąć źródło problemu, aby uniknąć poważniejszych awarii.

Pytanie 20

Jakiej informacji nie jest konieczne zawarcie w instrukcji użytkowania instalacji elektrycznych chronionych wyłącznikami nadmiarowo-prądowymi?

A. Danych technicznych instalacji
B. Terminów dotyczących prób oraz kontrolnych pomiarów
C. Wybory i konfiguracji urządzeń zabezpieczających
D. Zasad bezpieczeństwa przy realizacji prac eksploatacyjnych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kiedy dobierasz urządzenia zabezpieczające, musisz naprawdę wiedzieć, co robisz i przeanalizować, jakie masz parametry techniczne. Instrukcja dotycząca instalacji elektrycznych, które mają wyłączniki nadmiarowo-prądowe, nie musi opisywać wszystkiego na szczegółowo, bo każdy przypadek jest inny i trzeba to dopasować do konkretnej sytuacji. W praktyce dobierasz te urządzenia na podstawie tego, jak duże masz obciążenie, jak wygląda sama instalacja i jakie są warunki pracy. Na przykład, wyłączniki nadmiarowo-prądowe powinny być wybierane zgodnie z normami PN-EN 60898. Ważne jest, żebyś wiedział, jakie są ich cechy – na przykład typ wyłącznika. Powinieneś to określić, analizując obciążenie i możliwe zagrożenia. Dlatego instrukcja eksploatacji koncentruje się na zasadach użytkowania, kontroli i konserwacji – to wszystko jest kluczowe, żeby zapewnić bezpieczeństwo i sprawność systemu.

Pytanie 21

Który z podanych przewodów powinien zostać wybrany w celu zastąpienia uszkodzonego przewodu zasilającego silnik trójfazowy zainstalowany w odbiorniku ruchomym?

A. SM3x2,5 mm2
B. YDY 4x2,5 mm2
C. YLY 3x2,5 mm2
D. OP4x2,5 mm2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź OP4x2,5 mm2 jest prawidłowa, ponieważ przewód ten spełnia wymagania dotyczące zasilania silników trójfazowych w aplikacjach przemysłowych. Przewód OP (olejoodporny) charakteryzuje się dużą odpornością na działanie olejów i substancji chemicznych, co jest kluczowe w środowiskach, gdzie takie czynniki mogą występować. Przekrój 2,5 mm2 zapewnia odpowiedni przepływ prądu dla silników o mocy do około 5,5 kW, co jest standardem w wielu instalacjach. Użycie przewodów zgodnych z normami PN-IEC 60364-1 oraz PN-EN 60228 gwarantuje bezpieczeństwo i niezawodność systemu. W praktyce, przewody te stosuje się w różnych mechanizmach, takich jak taśmy transportowe czy maszyny produkcyjne, gdzie mobilność i odporność na uszkodzenia mechaniczne są kluczowe. Zastosowanie odpowiedniego przewodu zasilającego jest istotne nie tylko dla prawidłowego działania urządzeń, ale też dla zapewnienia bezpieczeństwa w miejscu pracy.

Pytanie 22

W instalacji trójfazowej prąd obciążenia w przewodach fazowych IB = 25 A, a maksymalna obciążalność długotrwała tych przewodów Idd = 30 A. Który z poniższych wyłączników nadprądowych powinien być użyty do ochrony tej instalacji przed działaniem nadmiernego prądu?

A. B32
B. B20
C. B16
D. B25

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłącznik nadprądowy B25 jest odpowiedni do zabezpieczenia instalacji trójfazowej, w której prąd obciążenia wynosi 25 A, a obciążalność długotrwała przewodów to 30 A. Wyłączniki nadprądowe oznaczone literą 'B' charakteryzują się określoną charakterystyką działania, która zazwyczaj jest stosowana w instalacjach domowych i małych przedsiębiorstwach. W przypadku prądu znamionowego B25, wyłącznik ten będzie działał przy prądzie obciążenia do 25 A, co oznacza, że nie zadziała w warunkach normalnej pracy. Jednakże, dla prądów przekraczających ten poziom, wyłącznik zareaguje, zapewniając odpowiednią ochronę. W praktyce oznacza to, że B25 oferuje wystarczający margines bezpieczeństwa, aby chronić przewody przed przeciążeniem, które mogłoby prowadzić do uszkodzenia izolacji, przegrzania lub nawet pożaru. Stosując B25, przestrzegamy zasad dotyczących doboru zabezpieczeń, zgodnych z normami PN-IEC 60898, które rekomendują, aby prąd znamionowy wyłącznika był bliski wartości prądu obciążenia, ale nie mniejszy, aby uniknąć niepotrzebnych wyłączeń. Przykładowo, w instalacjach o dużych obciążeniach, takich jak warsztaty czy zakłady produkcyjne, dobór odpowiednich wyłączników nadprądowych jest kluczowy dla zapewnienia bezpieczeństwa i efektywności operacyjnej.

Pytanie 23

Urządzenia elektryczne o klasie ochrony 0 mogą być stosowane wyłącznie w sytuacji

A. korzystania z nich pod nadzorem technicznym ze strony dostawcy energii elektrycznej
B. wdrożenia ochrony przed porażeniem w formie separacji elektrycznej lub izolacji miejsca wykonywania pracy
C. wcześniejszego zweryfikowania efektywności ochrony w instalacji
D. zasilania ich z gniazd z ochronnym bolcem uziemiającym

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Urządzenia elektryczne klasy ochronności 0 są projektowane w sposób, który nie zapewnia żadnej formy ochrony przed porażeniem elektrycznym. W związku z tym ich stosowanie wymaga zastosowania dodatkowych środków ochrony, takich jak separacja elektryczna lub izolacja stanowiska pracy. Zgodnie z normą PN-IEC 61140, urządzenia tej klasy powinny być wykorzystywane w środowiskach, gdzie ryzyko porażenia jest minimalizowane poprzez odpowiednie techniki zabezpieczające. Przykładem może być stosowanie tych urządzeń w pomieszczeniach suchych, gdzie nie ma ryzyka kontaktu z wodą, oraz w sytuacjach, gdzie pracownicy są odpowiednio przeszkoleni w zakresie bezpieczeństwa. W praktyce, można zastosować również urządzenia ochronne, które odcinają zasilanie w przypadku wykrycia upływu prądu, co dodatkowo zwiększa bezpieczeństwo. Dlatego kluczowe jest, aby przed użyciem takich urządzeń, upewnić się, że są spełnione wszystkie warunki ochrony przeciwporażeniowej oraz że urządzenia są wykorzystywane zgodnie z ich przeznaczeniem.

Pytanie 24

Włączenie grzejnika skutkuje natychmiastowym działaniem zabezpieczenia nadprądowego. Co to oznacza?

A. zwarcie między przewodem fazowym a neutralnym
B. uszkodzenie w grzałce
C. zwarcie przewodu ochronnego z obudową
D. uszkodzenie w przewodzie fazowym

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zadziałanie zabezpieczenia nadprądowego przy załączeniu grzejnika wskazuje na wystąpienie zwarcia w obwodzie. W przypadku zwarcia przewodu fazowego do neutralnego, prąd przepływający przez obwód gwałtownie wzrasta, co przekracza dopuszczalne wartości dla zabezpieczeń nadprądowych, powodując ich natychmiastowe wyłączenie. Tego rodzaju sytuacje mogą wystąpić w przypadku uszkodzenia instalacji elektrycznej, co może skutkować niebezpiecznymi warunkami pracy urządzeń elektrycznych. Przykładem zastosowania tej wiedzy w praktyce jest regularna kontrola stanu instalacji elektrycznych, w tym grzejników, aby zminimalizować ryzyko zwarć. Standardy branżowe, jak PN-IEC 60364, nakładają obowiązek przeprowadzania okresowych przeglądów oraz stosowania odpowiednich zabezpieczeń, co ma na celu zapewnienie bezpieczeństwa użytkowników oraz utrzymanie sprawności systemów elektrycznych.

Pytanie 25

Podczas badania skuteczności działania dwóch wyłączników różnicowoprądowych, których znamionowy prąd różnicowy wynosi 30 mA, uzyskano wyniki przedstawione w tabeli. Przy założeniu, że prąd wyzwalający nie powinien być mniejszy niż 0,5 znamionowego prądu różnicowego oraz nie powinien przekraczać wartości znamionowego prądu różnicowego, o działaniu tych wyłączników można powiedzieć, że

Numer wyłącznika różnicowoprądowegoRzeczywisty, zmierzony prąd różnicowy
120 mA
210 mA
A. pierwszy i drugi działają nieprawidłowo.
B. pierwszy działa prawidłowo, a drugi działa nieprawidłowo.
C. pierwszy działa nieprawidłowo, a drugi działa prawidłowo.
D. pierwszy i drugi działają prawidłowo.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłącznik różnicowoprądowy nr 1 działa prawidłowo, co oznacza, że jego rzeczywisty prąd wyzwalający wynoszący 20 mA jest zgodny z wymaganiami. Zgodnie z normami, prąd wyzwalający powinien mieścić się w przedziale od 0,5 do 1,0 wartości znamionowej, w tym przypadku od 15 mA do 30 mA. Taki wyłącznik zapewnia odpowiednią ochronę przed porażeniem prądem elektrycznym oraz minimalizuje ryzyko uszkodzenia instalacji elektrycznej. W praktyce, wyłączniki różnicowoprądowe są kluczowe w instalacjach elektrycznych, szczególnie w miejscach narażonych na wilgoć. Ważne jest, aby regularnie testować ich działanie, co można zrealizować za pomocą przycisków testowych umieszczonych na obudowie urządzenia. Zgodnie z zasadami dobrej praktyki, zaleca się, aby co najmniej raz na pół roku przeprowadzać kontrolę działania wyłączników, aby upewnić się, że są w pełni sprawne i mogą skutecznie chronić użytkowników.

Pytanie 26

Jakie oznaczenie ma elektryczny silnik, który jest przeznaczony do pracy cyklicznej w trybie: 4 minuty – działanie, 6 minut – przerwa?

A. S2 40
B. S3 60%
C. S3 40%
D. S2 60

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Silnik elektryczny oznaczony jako S3 40% jest przeznaczony do pracy przerywanej, w której cykl składa się z fazy pracy i przerwy. W tym przypadku cykl trwa 10 minut, z czego 4 minuty to czas pracy, a 6 minut to przerwa. Oznaczenie S3 40% informuje, że silnik może pracować w tym trybie przez 40% swojego cyklu, co odpowiada 4 minutom pracy w ciągu 10 minut. To zastosowanie jest typowe dla silników, które nie muszą pracować ciągle, ale muszą być aktywne przez określony czas w cyklu. Przykładem zastosowania mogą być wentylatory, pompy czy inne maszyny, które nie wymagają stałej pracy. W praktyce wykorzystanie silników S3 znacząco wpływa na wydajność energetyczną oraz żywotność urządzenia, ponieważ zmniejsza obciążenie termiczne oraz zużycie komponentów silnika. Warto również zwrócić uwagę na normy IEC 60034-1, które regulują klasyfikację silników elektrycznych, co pozwala na lepsze zrozumienie ich przeznaczenia i możliwości.

Pytanie 27

Podczas wymiany gniazdka trójfazowego w instalacji przemysłowej należy

A. zamontować końcówki oczkowe na przewodach
B. zmienić przewody na nowe o większym przekroju
C. utrzymać odpowiednią kolejność przewodów fazowych w zaciskach gniazda
D. zagiąć oczka na końcach przewodów

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zachowanie kolejności przewodów fazowych w zaciskach gniazda trójfazowego jest kluczowym aspektem bezpieczeństwa i prawidłowego działania instalacji. W układach trójfazowych, każdy z przewodów fazowych (L1, L2, L3) ma przypisane określone funkcje oraz wartości napięć, które powinny być utrzymywane w odpowiedniej sekwencji. Niezachowanie tej kolejności może prowadzić do problemów z równowagą obciążenia, co z kolei może skutkować uszkodzeniem urządzeń elektrycznych, a nawet zagrożeniem pożarowym. W praktyce, np. w przypadku podłączania silników elektrycznych, niewłaściwa kolejność faz może spowodować, że silnik będzie działał w odwrotnym kierunku, co może prowadzić do poważnych uszkodzeń. Zgodnie z normami PN-IEC 60364, zachowanie odpowiedniej kolejności połączeń jest niezbędne dla zapewnienia właściwej funkcjonalności oraz bezpieczeństwa instalacji elektrycznych.

Pytanie 28

Który przekrój przewodu jest najczęściej używany do tworzenia obwodów gniazd wtyczkowych w podtynkowych instalacjach mieszkaniowych?

A. 1,5 mm2
B. 4 mm2
C. 1 mm2
D. 2,5 mm2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przewód o przekroju 2,5 mm2 jest standardowo stosowany w obwodach gniazd wtyczkowych w instalacjach elektroenergetycznych w budownictwie mieszkaniowym. Taki przekrój zapewnia odpowiednią przewodność elektryczną oraz bezpieczeństwo użytkowania, co jest niezwykle istotne, biorąc pod uwagę maksymalne obciążenia, które mogą wystąpić w codziennym użytkowaniu. Przykładowo, w przypadku podłączenia urządzeń elektrycznych, takich jak odkurzacze czy piekarniki, które mogą wymagać wyższego poboru prądu, przewód 2,5 mm2 spełnia normy bezpieczeństwa i nie doprowadza do przegrzewania się instalacji. Zgodnie z normami PN-IEC 60364, stosowanie przewodów o mniejszym przekroju może prowadzić do nieefektywności energetycznej i zwiększonego ryzyka pożaru. Ważne jest również, aby pamiętać o odpowiednim doborze zabezpieczeń, takich jak bezpieczniki, które powinny być dostosowane do przekroju przewodu oraz przewidywanego obciążenia.

Pytanie 29

Podczas użytkowania instalacji elektrycznych w pobliżu urządzeń elektrycznych znajdujących się pod napięciem niedozwolone są prace (z wyłączeniem prac określonych w instrukcji eksploatacji dotyczących obsługi)?

A. związane z konserwacją i renowacjami instalacji oraz odbiorników elektrycznych
B. dotyczące wymiany wkładek bezpiecznikowych oraz żarówek lub świetlówek w nienaruszonej obudowie i oprawie
C. przy użyciu specjalnych środków wskazanych w szczegółowych instrukcjach stanowiskowych, zapewniających bezpieczne wykonanie pracy
D. przy realizacji prób i pomiarów zgodnie z instrukcjami lub wskazówkami bhp na poszczególnych stanowiskach pracy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź, którą zaznaczyłeś, jest w porządku. Przy pracach nad konserwacją i remontem instalacji elektrycznych rzeczywiście trzeba zawsze wyłączać zasilanie. Bezpieczeństwo jest najważniejsze, a prąd potrafi być groźny, więc lepiej nie ryzykować. Zawsze przed wymianą jakiejkolwiek części warto upewnić się, że napięcie nie płynie. Na przykład, jeśli zmieniasz uszkodzoną instalację, to najlepszym pomysłem jest wyłączenie odpowiednich obwodów. No i procedura Lockout-Tagout (LOTO) jest po prostu kluczowa! Dzięki niej nie ma szans, że ktoś przez przypadek włączy prąd, gdy ty akurat pracujesz. Wydaje mi się, że trzymanie się tych zasad nie tylko chroni ludzi, ale także sprawia, że wszystko jest zgodne z BHP i normami bezpieczeństwa, które są naprawdę ważne w tej branży.

Pytanie 30

Silnik prądu stałego w układzie szeregowym dysponuje parametrami: PN = 8 kW, UN = 440 V, IN = 20 A, Rt = 0,5 ? (całkowita rezystancja twornika), RW = 0,5 ? (rezystancja wzbudzenia). Jaką wartość powinna mieć całkowita rezystancja rozrusznika, jeśli prąd rozruchowy silnika ma wynosić dwa razy więcej niż prąd znamionowy?

A. 11 ?
B. 10 ?
C. 21 ?
D. 22 ?

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby obliczyć całkowitą wartość rezystancji rozrusznika, należy najpierw zrozumieć, że przy rozruchu silnika prąd osiąga wartość dwukrotnie wyższą niż prąd znamionowy. W tym przypadku prąd rozruchowy wynosi 2 * I_N = 2 * 20 A = 40 A. Całkowita rezystancja układu, która pozwoli na osiągnięcie tego prądu przy napięciu znamionowym, może być obliczona za pomocą prawa Ohma: R = U / I. Podstawiając dane: R = 440 V / 40 A = 11 ?. Następnie, uwzględniając rezystancje twornika (R_t = 0,5 ?) oraz rezystancję wzbudzenia (R_W = 0,5 ?), możemy obliczyć całkowitą rezystancję rozrusznika jako: R_rozrusznika = R - (R_t + R_W) = 11 ? - 1 ? = 10 ?. Takie wyliczenie jest kluczowe przy projektowaniu obwodów rozruchowych i zapewnia, że silnik będzie uruchamiany w sposób bezpieczny i efektywny. W praktyce, prawidłowe dobranie rezystancji rozrusznika może znacznie wydłużyć żywotność sprzętu oraz zminimalizować ryzyko uszkodzeń.

Pytanie 31

Jaką liczbę należy zastosować do pomnożenia wartości znamionowego prądu silnika trójfazowego klatkowego, który napędza pompę, aby obliczyć maksymalną dozwoloną wartość nastawy prądu na jego zabezpieczeniu przeciążeniowym?

A. 0,9
B. 2,0
C. 1,1
D. 1,2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to 1,1, co oznacza, że wartość znamionowego prądu silnika trójfazowego klatkowego należy pomnożyć przez ten współczynnik, aby obliczyć maksymalną dopuszczalną wartość nastawy prądu na zabezpieczeniu przeciążeniowym. Zastosowanie współczynnika 1,1 wynika z faktu, że silniki elektryczne, w tym silniki klatkowe, mogą mieć chwilowe przeciążenia, które są normalne w czasie rozruchu lub przy zmiennych warunkach pracy. Przyjęcie wartości 1,1 jako mnożnika do prądu znamionowego uwzględnia te momenty, co jest zgodne z praktykami opisanymi w normach IEC 60947-4-1 dotyczących wyłączników silnikowych. Przykładowo, jeśli znamionowy prąd silnika wynosi 10 A, to maksymalna dopuszczalna wartość nastawy na zabezpieczeniu przeciążeniowym wynosi 11 A. Takie ustawienie zabezpieczenia pozwala na bezpieczne działanie silnika, jednocześnie chroniąc go przed uszkodzeniem w wyniku przeciążenia.

Pytanie 32

Który z podanych wyłączników nadprądowych powinien być użyty w obwodzie zasilającym tylko rezystancyjny grzejnik elektryczny z trzema grzałkami o mocy 3 kW każda, połączonymi w trójkąt i zasilanym z sieci 3/N/PE ~ 400/230 V 50 Hz?

A. CLS6-C16/1N
B. CLS6-B16/3N
C. CLS6-B16/4
D. CLS6-B16/3

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź CLS6-B16/3 jest poprawna, ponieważ wyłącznik nadprądowy CLS6-B16/3 został zaprojektowany do ochrony obwodów zasilających urządzenia trójfazowe, w tym grzejniki elektryczne. W przypadku grzejnika o trzech grzałkach po 3 kW każdy, całkowita moc wynosi 9 kW. Przy zasilaniu z sieci 400/230 V i przy założeniu pracy w układzie trójfazowym, obliczamy prąd obwodu. Moc w watach podzielona przez napięcie w woltach daje prąd w amperach: 9000 W / 400 V = 22,5 A. Wyłącznik CLS6-B16/3, mający nominalny prąd 16 A, nie zapewnia wystarczającej ochrony, ponieważ w przypadku przeciążenia prąd przekroczy wartość znamionową. Jednakże, z uwagi na zastosowanie trójfazowego zasilania, rzeczywisty prąd w każdej fazie nie powinien przekraczać 16 A. W praktyce, stosując wyłącznik B, mamy zapewnioną szybką reakcję na przeciążenia, co jest zgodne z normami IEC 60947-2 oraz dobrymi praktykami instalacyjnymi, które zalecają dobór wyłączników w zależności od charakterystyki obciążenia. Użycie tego wyłącznika w instalacji z grzejnikami elektrycznymi zapewnia bezpieczne użytkowanie, z zachowaniem odpowiednich marginesów bezpieczeństwa dla przewodów zasilających.

Pytanie 33

Jaką wartość prądu znamionowego powinien mieć wyłącznik nadmiarowo-prądowy, aby odpowiednio zabezpieczyć jednofazowy obwód z napięciem znamionowym 230 V, w którym łączna moc podłączonych odbiorników wynosi 4,5 kW przy cosφ = 1? Współczynnik jednoczesności w tym obwodzie wynosi 0,8.

A. 16 A
B. 25 A
C. 10 A
D. 20 A

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wiesz, żeby obliczyć prąd znamionowy wyłącznika nadmiarowo-prądowego, musimy skorzystać z wzoru: I = P / (U * cosφ. Tutaj P to moc urządzeń, U to napięcie, a cosφ to współczynnik mocy. W tym przypadku mamy P = 4500 W, U = 230 V, a cosφ = 1. Jak to podstawimy do wzoru, to wychodzi I = 4500 W / (230 V * 1) = 19,57 A. Ale pamiętajmy o współczynniku jednoczesności, który wynosi 0,8. To znaczy, że rzeczywista moc, którą musimy wziąć pod uwagę, to 4500 W * 0,8 = 3600 W. Po obliczeniu z tą mocą, dostajemy I = 3600 W / (230 V * 1) = 15,65 A. To oznacza, że najlepiej wybrać wyłącznik 16 A. Z mojego doświadczenia, fajnie jest mieć zapas, bo to zwiększa bezpieczeństwo. Dla domowych zastosowań standardem jest 16 A dla obwodów do 3,5 kW, a jak mamy obwód do 4,5 kW, też się sprawdzi, bo daje nam to dodatkowe zabezpieczenie przed fałszywym wyzwoleniem przy chwilowych przeciążeniach.

Pytanie 34

Jakie z wymienionych powodów wpływa na zmniejszenie prędkości obrotowej trójfazowego silnika klatkowego w trakcie jego pracy?

A. Zwarcie pierścieni ślizgowych.
B. Przerwa w zasilaniu jednej z faz.
C. Wzrost wartości napięcia zasilającego.
D. Zmniejszenie obciążenia silnika.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przerwa w zasilaniu jednej fazy w trójfazowym silniku klatkowym prowadzi do poważnych zaburzeń w jego pracy. Silniki te są zaprojektowane do pracy w układzie trójfazowym, co oznacza, że ​​każda faza zasilania przyczynia się do generowania pola magnetycznego o określonym kącie fazowym. Gdy jedna z faz zostaje odcięta, silnik zaczyna działać na zasadzie silnika jednofazowego, co prowadzi do spadku momentu obrotowego i prędkości obrotowej. W praktyce może to doprowadzić do przegrzania silnika, a w konsekwencji do uszkodzenia uzwojeń. Przykładem zastosowania tej wiedzy jest konieczność monitorowania jakości zasilania w zakładach przemysłowych, gdzie stosuje się urządzenia pomiarowe do identyfikacji przerw w zasilaniu, co pozwala zapobiegać awariom i minimalizować przestoje. W branży elektromaszynowej stosowanie rozwiązań takich jak zabezpieczenia przed przeciążeniem i monitorowanie fazy jest standardem, który wspiera efektywność operacyjną i bezpieczeństwo urządzeń.

Pytanie 35

Jaką wartość prądu znamionowego powinien mieć wyłącznik nadprądowy o charakterystyce B, żeby zabezpieczyć grzejnik jednofazowy o parametrach UN = 230 V, PN = 2,4 kW?

A. 6A
B. 16A
C. 20A
D. 10A

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prawidłowa odpowiedź to 16A, co wynika z obliczeń związanych z mocą grzejnika oraz standardów dotyczących doboru wyłączników instalacyjnych nadprądowych. Grzejnik o mocy 2,4 kW zasilany jest napięciem 230 V, co pozwala obliczyć natężenie prądu za pomocą wzoru: I = P / U. Podstawiając dane, otrzymujemy I = 2400 W / 230 V, co daje około 10,43 A. Zgodnie z zasadami doboru wyłączników, powinno się wybierać wartość prądu znamionowego, która jest co najmniej 1,25-krotnie większa od obliczonej wartości prądu roboczego, aby uwzględnić różne zmiany obciążenia oraz zjawiska, takie jak prądy rozruchowe, które mogą występować w przypadku grzejników. Dlatego wartość 10,43 A powinna być pomnożona przez 1,25, co daje około 13 A. Najbliższą standardową wartością, która spełnia ten wymóg, jest 16A. Użycie wyłącznika o charakterystyce B, która jest zalecana dla urządzeń o charakterze rezystancyjnym, jest zgodne z dobrymi praktykami w instalacjach elektrycznych, zapewniając właściwą ochronę przed przeciążeniem i zwarciem. Warto zauważyć, że stosowanie wyłączników o zbyt małym prądzie znamionowym może prowadzić do ich częstego wyłączania, co będzie nie tylko uciążliwe, ale i niebezpieczne w kontekście bezpieczeństwa użytkowania urządzeń elektrycznych.

Pytanie 36

Gdy chodzi o odbiornik o dużej mocy, taki jak kuchenka elektryczna, jak należy go zasilać?

A. z wydzielonego obwodu z własnym zabezpieczeniem
B. z wspólnego obwodu gniazd wtyczkowych
C. z wspólnego obwodu oświetleniowego
D. z wydzielonego obwodu bez własnych zabezpieczeń

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź, że odbiornik dużej mocy, taki jak kuchenka elektryczna, powinien być zasilany z wydzielonego obwodu z własnym zabezpieczeniem, jest poprawna i zgodna z najlepszymi praktykami w zakresie bezpieczeństwa elektrycznego. Kuchenki elektryczne są urządzeniami o dużym zużyciu energii, co oznacza, że wymagają dedykowanego obwodu, który jest w stanie wytrzymać ich obciążenie. Wydzielony obwód zapewnia, że inne urządzenia podłączone do obwodu nie będą wpływać na jego działanie, co minimalizuje ryzyko przeciążenia. Dodatkowo, posiadanie własnego zabezpieczenia, jak na przykład wyłącznik nadprądowy, pozwala na szybkie reagowanie w przypadku zwarcia lub przeciążenia. W praktyce oznacza to, że w przypadku awarii kuchenki, zabezpieczenie automatycznie odłączy zasilanie, chroniąc zarówno urządzenie, jak i instalację elektryczną budynku. Przykładem są przepisy zawarte w normie PN-IEC 60364, które zalecają stosowanie oddzielnych obwodów dla urządzeń o dużym poborze mocy, co jest kluczowe dla zapewnienia bezpieczeństwa i efektywności systemu elektrycznego.

Pytanie 37

W trakcie serwisowania silnika indukcyjnego jednofazowego pracownik przez przypadek zamienił miejscami kondensator rozruchowy o pojemności 300 µF z kondensatorem roboczym o pojemności 50 µF. Jakie mogą być konsekwencje tego błędu?

A. Silnik zmieni swój kierunek obrotów
B. Zniszczenie kondensatora 50 µF podczas uruchamiania silnika
C. Uszkodzenie uzwojenia pomocniczego po kilku minutach działania silnika
D. Silnik nie włączy się

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Podczas rozruchu silnika indukcyjnego jednofazowego, kondensator rozruchowy o pojemności 300 µF jest kluczowy dla zapewnienia momentu obrotowego niezbędnego do uruchomienia silnika. Jeśli zamienimy go z kondensatorem pracy 50 µF, silnik nie otrzyma odpowiedniej wartości pojemności, co skutkuje niewystarczającym momentem obrotowym. W rezultacie silnik nie ruszy. To zjawisko jest zgodne z zasadami działania silników indukcyjnych, gdzie kondensatory pełnią istotną rolę w tworzeniu przesunięcia fazowego między prądem a napięciem. W praktyce, stosowanie odpowiednich kondensatorów zgodnych z wymaganiami producenta, jest kluczowe dla prawidłowego działania silników. Właściwe dobieranie kondensatorów to standardowa praktyka, która minimalizuje ryzyko awarii i zapewnia długotrwałą niezawodność urządzeń elektrycznych.

Pytanie 38

Oceń oraz uzasadnij stan techniczny transformatora jednofazowego UN = 230/115 V, który pracuje z prądem znamionowym, gdy podłączenie dodatkowego odbiornika doprowadziło do podwyższenia napięcia po stronie wtórnej o 5%, przy jednoczesnym obniżeniu prądu pobieranego z sieci o 3%?

A. Transformator jest uszkodzony, a przyczyną uszkodzenia jest przerwa po stronie wtórnej
B. Transformator jest uszkodzony, a przyczyną uszkodzenia jest zwarcie międzyzwojowe po stronie wtórnej
C. Transformator działa poprawnie, a powodem zmian prądu i napięcia jest pojemnościowy charakter dołączonego odbiornika
D. Transformator działa prawidłowo, a przyczyną zmian prądu i napięcia odbiornika jest obniżenie napięcia zasilającego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Transformator jednofazowy, który podałeś, wykazuje charakterystykę sprawności operacyjnej wskazującą na pojemnościowy charakter dołączonego odbiornika. Wzrost napięcia po stronie wtórnej o 5% oraz zmniejszenie prądu pobieranego z sieci o 3% mogą być efektem obecności elementów pojemnościowych w obciążeniu, takich jak kondensatory, które mogą powodować zwiększenie napięcia w warunkach małego obciążenia. W praktyce, takie zjawisko może występować, gdy do obwodu dołączane są urządzenia o dużej pojemności, co prowadzi do przesunięcia fazowego pomiędzy napięciem a prądem. Warto również zaznaczyć, że zgodnie z normami IEC oraz dokumentami technicznymi dotyczącymi transformatorów, takie zmiany w napięciach i prądach powinny być regularnie monitorowane, aby zapewnić prawidłowe działanie systemu zasilania. Zrozumienie tych zjawisk jest kluczowe dla inżynierów odpowiedzialnych za analizę i diagnostykę systemów elektroenergetycznych, co pozwala na wcześniejsze wykrywanie ewentualnych problemów oraz ich skuteczne eliminowanie.

Pytanie 39

Aby ocenić kondycję techniczną przewodów wyrównawczych, należy zmierzyć między każdą dostępną częścią przewodzącą a najbliższym punktem głównego przewodu wyrównawczego

A. spadek napięcia
B. natężenie prądu
C. rezystancję przewodów
D. pojemność doziemną

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar rezystancji przewodów wyrównawczych jest kluczowym elementem w ocenie ich stanu technicznego. Wyrównanie potencjałów w instalacjach elektrycznych ma na celu zwiększenie bezpieczeństwa oraz ochronę przed porażeniem prądem. W przypadku przewodów wyrównawczych, ich ciągłość oraz niski opór elektryczny są niezbędne, aby zapewnić skuteczne odprowadzanie prądów zwarciowych. Zgodnie z normami, takimi jak PN-HD 60364, powinny być one badane, aby weryfikować, że rezystancja nie przekracza określonych wartości, co może zapobiegać niebezpiecznym sytuacjom. Praktycznym przykładem jest pomiar rezystancji przewodu między punktami, gdzie przewody są połączone z ziemią lub innymi elementami instalacji. Wartości te powinny być rejestrowane i analizowane, aby zapewnić, że instalacja spełnia wymogi bezpieczeństwa oraz normy techniczne. W przypadku wykrycia wysokiej rezystancji, konieczne mogą być działania naprawcze, takie jak wymiana lub naprawa przewodów, co jest niezbędne dla prawidłowego funkcjonowania systemów elektrycznych.

Pytanie 40

Przed rozpoczęciem pomiaru rezystancji izolacji uzwojeń wirnika silnika z pierścieniem w pierwszej kolejności należy

A. odłączyć rezystory rozruchowe
B. sprawdzić ciągłość obwodu wirnika
C. wymienić szczotki
D. zwierać uzwojenie stojana

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odłączenie rezystorów rozruchowych przed pomiarem rezystancji izolacji uzwojeń wirnika silnika pierścieniowego jest kluczowym krokiem, aby uniknąć uszkodzeń sprzętu oraz zapewnić dokładność pomiarów. Rezystory rozruchowe są stosowane w obwodach silników w celu kontroli prądu rozruchowego, co oznacza, że są one podłączone do układu w momencie uruchamiania silnika. Jeśli nie zostaną odłączone, mogą powstać niepożądane połączenia, które zakłócą wyniki pomiarów rezystancji izolacji oraz mogą spowodować uszkodzenie miernika. Zgodnie z normą IEC 61557-1 dotyczącą pomiarów ochronnych w instalacjach elektrycznych, należy zawsze dbać o bezpieczeństwo i dokładność pomiarów, co obliguje do odpowiedniego przygotowania układów przed ich wykonaniem. Działania takie są istotne w kontekście zapobiegania awariom, które mogą prowadzić do kosztownych napraw lub przestojów w pracy maszyn. W praktyce, przed każdym pomiarem izolacji, zaleca się także sprawdzenie stanu szczotek i wirnika, ale najpierw kluczowe jest odłączenie obwodów, które mogłyby wpłynąć na pomiar.