Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 7 grudnia 2025 13:59
  • Data zakończenia: 7 grudnia 2025 14:16

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W jaki sposób zmieni się spadek napięcia na przewodzie zasilającym przenośny odbiornik, jeśli zamienimy przewód OWY 5×4 mm2 o długości 5 m na przewód OWY 5×6 mm2 o długości 15 m?

A. Zmniejszy się dwukrotnie
B. Zmniejszy się trzykrotnie
C. Zwiększy się dwukrotnie
D. Zwiększy się trzykrotnie
Wybór odpowiedzi sugerujących, że spadek napięcia zwiększy się trzykrotnie lub zmniejszy się trzykrotnie, opiera się na błędnym rozumieniu zasad obliczania spadku napięcia i wpływu długości oraz przekroju przewodu na ten parametr. Niektórzy mogą myśleć, że zwiększenie długości przewodu automatycznie prowadzi do proporcjonalnego wzrostu spadku napięcia, jednak to nie jest jedyny czynnik. Oporność przewodu zależy od jego długości oraz przekroju. Chociaż długość przewodu wzrasta, co sprzyja wzrostowi oporności, również zmienia się pole przekroju, które wpływa na opór. W przypadku zamiany przewodu o mniejszym przekroju na większy przy jednoczesnym wydłużeniu, wynikowy efekt na spadek napięcia nie jest prostą proporcją, ale wymaga złożonych obliczeń. Odpowiedzi sugerujące, że spadek napięcia zmniejszy się, pomijają aspekt, że większa długość przewodu, mimo lepszego przekroju, może generować większą oporność, co prowadzi do wyższego spadku napięcia. W praktyce, montując długie przewody, należy zawsze brać pod uwagę zarówno długość, jak i rozmiar przekroju, aby uzyskać optymalne parametry elektryczne. Użycie algorytmów obliczeniowych oraz norm branżowych, jak PN-IEC 60364, powinno zawsze towarzyszyć tym decyzjom. Błędne podejście do oceny wpływu długości i przekroju na spadek napięcia może prowadzić do poważnych problemów z jakością zasilania i naruszeniem zasad bezpieczeństwa.

Pytanie 2

Który z wymienionych rozwiązań powinien być zastosowany w warsztacie remontowym, aby zapewnić podstawową ochronę przed porażeniem prądem elektrycznym?

A. Wyłączniki różnicowoprądowe
B. Miejscowe połączenia wyrównawcze
C. Separacja elektryczna
D. Obudowy i osłony
Miejscowe połączenia wyrównawcze, separacja elektryczna oraz wyłączniki różnicowoprądowe to metody ochrony przed porażeniem prądem, które są istotne, jednak nie stanowią podstawowego zabezpieczenia w kontekście warsztatu remontowego. Miejscowe połączenia wyrównawcze są stosowane w celu eliminacji różnic potencjałów między elementami instalacji, co może być istotne w sytuacjach, gdy różne części instalacji mogą mieć inne napięcia. To podejście nie eliminuje jednak bezpośredniego ryzyka kontaktu z elementami pod napięciem. Separacja elektryczna, z kolei, polega na oddzieleniu obwodów elektrycznych od innych obwodów, co również nie wystarcza jako główna forma ochrony, gdyż nie zabezpiecza przed przypadkowym dotknięciem żywych części. Wyłączniki różnicowoprądowe, choć bardzo ważne w systemach zabezpieczeń elektrycznych, działają jako dodatkowa warstwa ochrony, a nie jako podstawowe zabezpieczenie. Ich funkcja polega na szybkim odcięciu zasilania w przypadku wykrycia różnicy między prądem wpływającym a prądem wypływającym, co nie zastąpi fizycznej ochrony urządzeń poprzez obudowy i osłony. Te metody powinny być traktowane jako uzupełnienie, a nie substytut dla podstawowego zabezpieczenia, jakim są obudowy i osłony, które chronią przed bezpośrednim dotykiem.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Tabela zawiera zalecane okresy pomiarów eksploatacyjnych urządzeń i instalacji elektrycznych pracujących w różnych warunkach środowiskowych. Jak często należy dokonywać pomiaru wyłącznika RCD oraz rezystancji izolacji instalacji zasilającej piec chlebowy w piekarni?

Rodzaj pomieszczeniaOkres pomiędzy kolejnymi sprawdzeniami
skuteczności ochrony przeciwporażeniowejrezystancji izolacji instalacji
O wyziewach żrącychnie rzadziej niż co 1 roknie rzadziej niż co 1 rok
Zagrożone wybuchemnie rzadziej niż co 1 roknie rzadziej niż co 1 rok
Otwarta przestrzeńnie rzadziej niż co 1 roknie rzadziej niż co 5 lat
Bardzo wilgotne o wilgotności ok. 100% i wilgotne przejściowo od 75% do 100%nie rzadziej niż co 1 roknie rzadziej niż co 5 lat
Gorące o temperaturze powietrza ponad 35 °Cnie rzadziej niż co 1 roknie rzadziej niż co 5 lat
Zagrożone pożaremnie rzadziej niż co 5 latnie rzadziej niż co 1 rok
Stwarzające zagrożenie dla ludzi (ZL I, ZL II, ZL III)nie rzadziej niż co 5 latnie rzadziej niż co 1 rok
Zapylonenie rzadziej niż co 5 latnie rzadziej niż co 5 lat
A. Wyłącznik RCD co 5 lat; rezystancja izolacji co 1 rok.
B. Wyłącznik RCD co 5 lat; rezystancja izolacji co 5 lat.
C. Wyłącznik RCD co 1 rok; rezystancja izolacji co 5 lat.
D. Wyłącznik RCD co 1 rok; rezystancja izolacji co 1 rok.
Kontrola wyłącznika RCD to naprawdę ważna sprawa, szczególnie w miejscach, gdzie jest sporo wilgoci, jak w piekarni. Z tego co wiem, powinna być przeprowadzana co roku, bo to może pomóc uniknąć porażenia prądem. RCD ma za zadanie wychwytywać różnice prądów, które mogą wskazywać na problemy z izolacją. A jeśli chodzi o sprawdzanie rezystancji izolacji pieca chlebowego, to przynajmniej co 5 lat to dobry pomysł. Takie coś jest zgodne z normami jak PN-IEC 60364, które mówią, jak często trzeba robić pomiary, żeby było bezpiecznie. W piekarni, gdzie wilgotność osiąga prawie 100%, regularne badania izolacji są niezbędne, żeby unikać kłopotów. To nie tylko spełnia wymagania, ale też chroni pracowników oraz sprzęt przed niebezpieczeństwami związanymi z uszkodzoną izolacją elektryczną.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Która z poniższych opcji najprawdopodobniej prowadzi do obniżenia prędkości obrotowej silnika indukcyjnego pod obciążeniem?

A. Nierównomierna szczelina powietrzna w silniku
B. Niewłaściwe wyważenie wirnika silnika
C. Wyższa częstotliwość napięcia zasilającego
D. Przerwa w jednym z fazowych przewodów zasilających
Przerwa w jednym z fazowych przewodów zasilających jest najczęstszą przyczyną zmniejszenia prędkości obrotowej obciążonego silnika indukcyjnego. Taki stan rzeczy prowadzi do nierównomiernego zasilania silnika, co skutkuje nieodpowiednim momentem obrotowym oraz destabilizacją pracy maszyny. W przypadku silników trójfazowych, przerwa w jednej z faz powoduje, że silnik nie może osiągnąć pełnej prędkości obrotowej, co prowadzi do nadmiernego nagrzewania oraz potencjalnego uszkodzenia wirnika. Praktycznie, operatorzy maszyn powinni regularnie kontrolować linie zasilające oraz stosować odpowiednie zabezpieczenia, takie jak wyłączniki różnicowoprądowe, które mogą zapobiec awariom w wyniku przerwy w zasilaniu. Ważne jest również, aby przeprowadzać okresowe inspekcje stanu kabli oraz złączek, co jest zgodne z normami branżowymi, takimi jak IEC 60204-1 dotycząca bezpieczeństwa urządzeń elektrycznych.

Pytanie 8

Dokumentacja użytkowania instalacji elektrycznych chronionych wyłącznikami nadprądowymi nie musi obejmować

A. spisu terminów oraz zakresów prób i badań kontrolnych
B. opisu doboru urządzeń zabezpieczających
C. specyfikacji technicznej instalacji
D. zasad bezpieczeństwa przy realizacji prac eksploatacyjnych
W kontekście eksploatacji instalacji elektrycznych zabezpieczonych wyłącznikami nadprądowymi, kluczowe jest zrozumienie zakresu informacji, które powinny być zawarte w instrukcji eksploatacyjnej. Odpowiedzi, które sugerują, że opis doboru urządzeń zabezpieczających jest konieczny, mija się z celem funkcji dokumentacji. W rzeczywistości, opis doboru urządzeń zabezpieczających dotyczy etapu projektowania, a nie eksploatacji. Instrukcja powinna zawierać informacje praktyczne, takie jak wykaz prób i pomiarów kontrolnych, które umożliwiają monitorowanie funkcjonowania instalacji, oraz zasady bezpieczeństwa przy wykonywaniu prac, które są niezbędne dla ochrony ludzi i mienia. Ponadto, charakterystyka techniczna instalacji jest również istotna, ponieważ dostarcza informacji o właściwościach systemu, co może być pomocne w przypadku awarii lub przeglądów. Użytkownicy, którzy koncentrują się na doborze urządzeń, mogą zignorować kluczowe aspekty związane z codziennym użytkowaniem instalacji, co prowadzi do niewłaściwego zarządzania i potencjalnych zagrożeń. Zrozumienie różnicy pomiędzy projektowaniem a eksploatacją instalacji elektrycznych jest fundamentem skutecznego zarządzania systemami elektrycznymi w obiektach.

Pytanie 9

W jakich okolicznościach aktywuje się samoczynne częstotliwościowe odciążenie (SCO) w sieci zasilanej przez generator synchroniczny?

A. Nadkompensacji sieci.
B. Pojawienia się przepięcia.
C. Zwiększenia mocy pobieranej ponad moc wytwarzaną.
D. Podwyższenia częstotliwości ponad wartość nominalną.
Samoczynne częstotliwościowe odciążenie (SCO) w sieci zasilanej z generatora synchronicznego zadziała w momencie zwiększenia mocy pobieranej ponad wartość mocy wytwarzanej. W sytuacji, gdy zapotrzebowanie na moc przekracza moc generowaną przez system, dochodzi do spadku częstotliwości w sieci. Generator synchroniczny, aby dostosować się do nowego obciążenia, może zredukować częstotliwość obrotową, co w efekcie może prowadzić do zwiększenia mocy generowanej przez jednostki w systemie. W praktyce, aby przeciwdziałać tym zmianom, stosuje się mechanizmy automatycznego odciążenia, które w odpowiedzi na wzrost poboru mocy, aktywują rezerwy mocy dostępne w sieci. Przykładem zastosowania SCO może być sytuacja w sieci rozdzielczej, gdzie nagły wzrost poboru mocy przez dużego odbiorcę wymaga natychmiastowej reakcji generatorów w celu utrzymania stabilności systemu. Standardy takie jak NERC i IEC podkreślają znaczenie takich mechanizmów w zapewnieniu niezawodności i stabilności systemów elektroenergetycznych.

Pytanie 10

W skład badań eksploatacyjnych silnika klatkowego wchodzi pomiar

A. rezystancji uzwojeń stojana
B. rezystancji uzwojeń wirnika
C. stratności magnetycznej blach stojana
D. natężenia pola magnetycznego rozproszenia
Pomiar rezystancji uzwojeń stojana jest kluczowym elementem badań eksploatacyjnych silnika klatkowego, ponieważ pozwala na ocenę stanu technicznego silnika oraz jego efektywności. Wysoka rezystancja może wskazywać na uszkodzenia uzwojeń, które mogą prowadzić do przegrzewania i obniżenia sprawności energetycznej silnika. Przykładem zastosowania tej wiedzy jest regularna konserwacja silników w przemyśle, gdzie monitorowanie rezystancji uzwojeń pozwala na wczesne wykrycie potencjalnych awarii. Zgodnie z normą IEC 60034, regularne pomiary rezystancji oraz analiza ich trendów mogą być wykorzystane do planowania działań prewencyjnych, co znacząco wydłuża żywotność maszyny i zwiększa bezpieczeństwo pracy. Dodatkowo, wiedza na temat rezystancji uzwojeń stoi w związku z szerszym zagadnieniem strat w silnikach elektrycznych, co jest kluczowe dla optymalizacji zużycia energii w zakładach przemysłowych.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Jaką wartość powinno mieć napięcie testowe podczas pomiaru rezystancji izolacyjnej uzwojenia wtórnego transformatora ochronnego?

A. 500 V
B. 1 000 V
C. 250 V
D. 2 000 V
Wybór wartości napięcia probierczego spośród 1000 V, 500 V oraz 2000 V może być wynikiem niepełnego zrozumienia specyfiki pomiarów rezystancji izolacji uzwojeń wtórnych transformatorów bezpieczeństwa. Przy pomiarze rezystancji izolacji kluczowe jest zrozumienie, że transformator bezpieczeństwa jest przeznaczony do pracy w niskonapięciowych systemach elektrycznych, co wymaga zastosowania odpowiednich wartości napięcia probierczego. Napięcia na poziomie 1000 V i 2000 V są zbyt wysokie i mogą prowadzić do uszkodzenia izolacji oraz wrażliwych komponentów elektrycznych, co w konsekwencji zagraża bezpieczeństwu użytkowników. Napięcie 500 V, choć niższe od 1000 V, nadal jest zbyt wysokie dla niektórych zastosowań, szczególnie w kontekście transformatorów bezpieczeństwa, gdzie obowiązują normy ograniczające stosowane napięcia probiercze. Wybierając niewłaściwe napięcie, można również pominąć kluczowe testy, które powinny być przeprowadzane zgodnie z najlepszymi praktykami branżowymi. Dlatego istotne jest, aby podczas określania wartości napięcia probierczego kierować się zaleceniami takich norm jak IEC 61557, które wyraźnie wskazują na 250 V jako optymalną wartość dla takich pomiarów. Niezrozumienie tej kwestii może prowadzić do nieodpowiednich wniosków oraz potencjalnych zagrożeń, co podkreśla wagę znajomości i przestrzegania obowiązujących standardów w branży.

Pytanie 13

Ruch napędu należy zatrzymać w sytuacji zagrożenia bezpieczeństwa operatora lub otoczenia, jak również w przypadku wykrycia uszkodzeń lub zakłóceń uniemożliwiających jego prawidłowe działanie, a szczególnie gdy występuje

A. nadmierne wibracje
B. spadek rezystancji izolacji uzwojeń do 5 MΩ
C. spadek napięcia zasilania poniżej 3 %
D. znamionowe zużycie prądu
Odpowiedź 3, dotycząca nadmiernych drgań, jest poprawna, ponieważ drgania w urządzeniach napędowych mogą prowadzić do poważnych problemów operacyjnych oraz uszkodzeń. Zgodnie z normami branżowymi, takim jak ISO 10816, nadmierne drgania mogą wskazywać na niewłaściwe osadzenie, zużycie łożysk czy też problemy z wirnikami. Przykładem może być sytuacja, gdy maszyna wibracyjna, taka jak silnik elektryczny, przekroczy dopuszczalne poziomy drgań, co może skutkować nie tylko uszkodzeniem samego urządzenia, ale również stanowić zagrożenie dla operatorów. W praktyce, w przypadku stwierdzenia nadmiernych drgań, należy natychmiast wstrzymać działanie urządzenia, aby przeprowadzić odpowiednią diagnostykę i naprawy, co jest zgodne z zasadą prewencji w zarządzaniu bezpieczeństwem pracy. Takie działania mają na celu minimalizację ryzyka obrażeń oraz zapewnienie ciągłości operacji, co jest kluczowe w przemyśle produkcyjnym.

Pytanie 14

Jakie jest prawidłowe postępowanie w przypadku podejrzenia obecności napięcia na obudowie urządzenia elektrycznego?

A. Natychmiastowe wyłączenie zasilania
B. Podłączenie dodatkowego obciążenia, co może pogorszyć sytuację
C. Zmiana przewodów, chociaż to nie rozwiązuje problemu napięcia na obudowie
D. Odłączenie uziemienia, co jest niebezpieczne i niewłaściwe
W przypadku podejrzenia obecności napięcia na obudowie urządzenia elektrycznego, najlepszym i najbezpieczniejszym działaniem jest natychmiastowe odłączenie zasilania. Jest to zgodne z podstawowymi zasadami bezpieczeństwa elektrycznego i normami BHP. Gdy urządzenie elektryczne ma napięcie na obudowie, może to oznaczać uszkodzenie izolacji lub inny problem techniczny, który stwarza ryzyko porażenia prądem. Szybkie odłączenie zasilania eliminuje to ryzyko i pozwala na dalsze, bezpieczne działania. Po odłączeniu zasilania należy również upewnić się, że urządzenie jest odpowiednio uziemione, aby uniknąć podobnych problemów w przyszłości. Następnie można przystąpić do diagnostyki i naprawy urządzenia przez wykwalifikowanego specjalistę, co jest zgodne z dobrą praktyką w branży elektrycznej. Ważne jest również, by regularnie sprawdzać stan techniczny urządzeń elektrycznych i ich uziemienia, aby uniknąć takich sytuacji w przyszłości. Moim zdaniem, wiedza o bezpiecznym postępowaniu w takich sytuacjach powinna być podstawą w każdej edukacji technicznej.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Jaką wartość prądu znamionowego powinien mieć wyłącznik nadprądowy o charakterystyce B, żeby zabezpieczyć grzejnik jednofazowy o parametrach UN = 230 V, PN = 2,4 kW?

A. 20A
B. 16A
C. 6A
D. 10A
Prawidłowa odpowiedź to 16A, co wynika z obliczeń związanych z mocą grzejnika oraz standardów dotyczących doboru wyłączników instalacyjnych nadprądowych. Grzejnik o mocy 2,4 kW zasilany jest napięciem 230 V, co pozwala obliczyć natężenie prądu za pomocą wzoru: I = P / U. Podstawiając dane, otrzymujemy I = 2400 W / 230 V, co daje około 10,43 A. Zgodnie z zasadami doboru wyłączników, powinno się wybierać wartość prądu znamionowego, która jest co najmniej 1,25-krotnie większa od obliczonej wartości prądu roboczego, aby uwzględnić różne zmiany obciążenia oraz zjawiska, takie jak prądy rozruchowe, które mogą występować w przypadku grzejników. Dlatego wartość 10,43 A powinna być pomnożona przez 1,25, co daje około 13 A. Najbliższą standardową wartością, która spełnia ten wymóg, jest 16A. Użycie wyłącznika o charakterystyce B, która jest zalecana dla urządzeń o charakterze rezystancyjnym, jest zgodne z dobrymi praktykami w instalacjach elektrycznych, zapewniając właściwą ochronę przed przeciążeniem i zwarciem. Warto zauważyć, że stosowanie wyłączników o zbyt małym prądzie znamionowym może prowadzić do ich częstego wyłączania, co będzie nie tylko uciążliwe, ale i niebezpieczne w kontekście bezpieczeństwa użytkowania urządzeń elektrycznych.

Pytanie 17

Na podstawie zamieszczonych w tabeli danych łożysk dobierz łożysko do silnika o średnicy wału d = 12 mm, średnicy wewnętrznej tarczy łożyskowej D = 37 mm i szerokości tarczy łożyskowej B = 12 mm.

SymbolWymiary podstawowe
d [mm]D [mm]B [mm]r [mm]
6700101530,1
62003090,6
6001122880,3
630137121
A. 6200
B. 6700
C. 6001
D. 6301
Odpowiedź 6301 jest prawidłowa, ponieważ dokładnie spełnia wszystkie wymagane wymiary dla danego zastosowania. Średnica wału o wartości 12 mm odpowiada średnicy otworu wewnętrznego łożyska 6301, który wynosi również 12 mm. Dodatkowo, średnica zewnętrzna tego łożyska wynosi 37 mm, co idealnie pasuje do średnicy wewnętrznej tarczy łożyskowej, a jego szerokość wynosząca 12 mm również jest zgodna z wymaganiami. W praktyce, dobór odpowiedniego łożyska jest kluczowy dla trwałości i niezawodności maszyn. Wybór łożyska zgodnego z wymiarami zapewnia optymalne przenoszenie obciążeń i minimalizuje zużycie. Zgodnie z międzynarodowymi standardami, właściwy dobór łożysko wpływa na efektywność działania silników i urządzeń, co często przekłada się na obniżenie kosztów eksploatacji oraz wydłużenie żywotności komponentów. W branży inżynieryjnej, stosowanie łożysk takich jak 6301 jest powszechne w silnikach elektrycznych, gdzie kluczowym aspektem jest redukcja tarcia, co z kolei zwiększa efektywność energetyczną.

Pytanie 18

Który z poniższych środków ostrożności nie jest wymagany do bezpiecznego przeprowadzenia prac na linii napowietrznej odłączonej od zasilania?

A. Uziemienie odłączonej linii
B. Zarządzanie pracą w grupie
C. Ogrodzenie obszaru pracy
D. Używanie sprzętu izolacyjnego
Prace przy linii napowietrznej wyłączonej spod napięcia wymagają przestrzegania określonych zasad bezpieczeństwa, które zapewniają ochronę pracowników i minimalizują ryzyko wystąpienia niebezpiecznych sytuacji. Wykonywanie pracy zespołowo jest kluczowym elementem, ponieważ zespół wzajemnie się wspiera, co pozwala na szybsze reagowanie w przypadku niespodziewanych okoliczności. Pracownicy powinni być świadomi otoczenia i potencjalnych zagrożeń, co skutkuje zwiększoną ochroną. Uziemienie wyłączonej linii jest kolejnym kluczowym środkiem ostrożności. Uziemienie nie tylko chroni przed przypadkowym porażeniem, ale także zapewnia, że w przypadku jakiejkolwiek nieprzewidzianej sytuacji, nie wystąpi niebezpieczne napięcie. Ogrodzenie miejsca wykonywania pracy również odgrywa ważną rolę; zabezpiecza obszar przed dostępem osób nieuprawnionych, co jest zgodne z zasadami BHP. Błędne jest przekonanie, że te środki są zbędne, ponieważ każdy moment pracy przy instalacjach elektrycznych wiąże się z potencjalnym niebezpieczeństwem, nawet jeśli linia jest wyłączona. Standardy BHP oraz normy krajowe wyraźnie wskazują, że zabezpieczenie miejsca pracy i stosowanie odpowiednich procedur są nie tylko zalecane, ale wręcz wymagane, aby zapewnić maksymalne bezpieczeństwo w miejscu pracy.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Jaką wartość prądu nominalnego powinien mieć wyłącznik instalacyjny nadprądowy typu B, aby zabezpieczyć grzejnik jednofazowy o parametrach UN = 230 V oraz PN = 2,4 kW przed zwarciem?

A. 10 A
B. 20 A
C. 16 A
D. 6 A
Wyłącznik instalacyjny nadprądowy o charakterystyce typu B powinien mieć wartość prądu znamionowego dobraną odpowiednio do obciążenia, które ma zabezpieczać. W przypadku grzejnika jednofazowego o mocy P<sub>N</sub> = 2,4 kW oraz napięciu U<sub>N</sub> = 230 V, obliczamy prąd znamionowy, korzystając z wzoru: I<sub>N</sub> = P<sub>N</sub> / U<sub>N</sub>. Zatem I<sub>N</sub> = 2400 W / 230 V = 10,43 A. Ze względu na to, że wyłączniki nadprądowe są dobierane w standardowych wartościach, w tym przypadku zaleca się wybór wyłącznika o prądzie znamionowym 16 A, który jest wystarczający dla tego obciążenia, a jednocześnie zapewnia odpowiedni margines bezpieczeństwa. W praktyce, wybierając wyłącznik o wyższej wartości prądu, zmniejszamy ryzyko fałszywych wyłączeń, które mogą wystąpić w przypadku krótkotrwałych przeciążeń, a także zwiększamy żywotność urządzenia. Zgodnie z normą PN-EN 60898-1, dobór wyłączników nadprądowych powinien być zgodny z wymaganiami dla ochrony instalacji elektrycznych oraz jego przewodów.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Istotnym czynnikiem wpływającym na skuteczność chłodzenia indukcyjnego silnika elektrycznego jest

A. klatka wirnika
B. czujnik temperatury
C. wlot powietrza
D. koło pasowe
Wlot powietrza odgrywa kluczową rolę w efektywności chłodzenia indukcyjnego silnika elektrycznego. Odpowiednia wentylacja jest niezbędna do odprowadzania ciepła generowanego podczas pracy silnika, co wpływa na jego wydajność i żywotność. Wlot powietrza umożliwia cyrkulację chłodnego powietrza do wnętrza silnika, co przyczynia się do obniżenia temperatury komponentów, takich jak stator i wirnik. Zastosowanie odpowiednio zaprojektowanych kanałów wentylacyjnych, zgodnych z normami IEC 60034, pozwala na optymalne chłodzenie silnika, minimalizując ryzyko przegrzania. W praktyce, wloty powietrza powinny być regularnie kontrolowane oraz wentylowane, aby zapewnić właściwe odprowadzanie ciepła. Przykładem skutecznego zastosowania jest użycie wentylatorów chłodzących, które wspomagają naturalną cyrkulację powietrza w silnikach o dużej mocy, co znacząco poprawia ich efektywność energetyczną i wydajność operacyjną.

Pytanie 24

Podczas pracy z urządzeniami elektrycznymi na wysokościach, jakiego środka ochrony indywidualnej należy użyć?

A. Kask ochronny
B. Uprząż ochronna
C. Buty robocze
D. Rękawice ochronne
Uprząż ochronna jest kluczowym elementem zabezpieczenia podczas pracy na wysokościach, szczególnie w przypadku pracy z urządzeniami elektrycznymi. Główne zadanie uprzęży to zapewnienie bezpieczeństwa użytkownikowi przez zapobieganie upadkom z wysokości. Praca na wysokościach wiąże się z ryzykiem, które może prowadzić do poważnych obrażeń lub nawet śmierci. Dlatego przestrzeganie norm BHP i stosowanie odpowiednich środków ochrony indywidualnej jest absolutnie niezbędne. Standardy w branży elektrycznej, takie jak normy EN 361, dokładnie określają wymagania dotyczące uprzęży, w tym ich wytrzymałość oraz sposób użycia. Ważne jest, aby uprzęże były prawidłowo dopasowane i regularnie kontrolowane pod kątem uszkodzeń. Dodatkowo, w kontekście pracy z elektryką, warto zwrócić uwagę na to, aby uprząż nie zawierała metalowych elementów, które mogłyby przewodzić prąd. Moim zdaniem, stosowanie uprzęży ochronnych to nie tylko wymóg prawny, ale przede wszystkim kwestia odpowiedzialności za własne życie i zdrowie.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

W którym z poniższych miejsc podczas pracy z urządzeniami elektrycznymi nie wolno stosować izolacji stanowiska jako zabezpieczenia przed dotykiem pośrednim?

A. Pracownia szkolna
B. Laboratorium
C. Warsztat sprzętu RTV
D. Plac budowy
Plac budowy to miejsce, gdzie występują szczególne warunki pracy, które wymagają szczegółowych zasad bezpieczeństwa. Izolowanie stanowiska jako ochrona przed dotykiem pośrednim, choć teoretycznie może być stosowane, w praktyce nie jest wystarczające ze względu na dynamiczny charakter tego środowiska. Na placu budowy często występują zagrożenia związane z wilgocią, zmiennymi warunkami atmosferycznymi oraz możliwością uszkodzenia izolacji przez inne urządzenia lub materiały budowlane. Dlatego w takich miejscach kluczowe jest stosowanie bardziej zaawansowanych systemów ochronnych, takich jak urządzenia różnicowoprądowe oraz odpowiednie uziemienie, które zapewniają znacznie większą ochronę przed porażeniem prądem elektrycznym. Dodatkowo, zgodnie z normami PN-IEC 60364, na placach budowy należy stosować zabezpieczenia, które są dostosowane do specyfiki tego typu pracy, co podkreśla istotność stosowania wielowarstwowych metod ochrony, a nie tylko polegania na izolacji.

Pytanie 28

Jakiego typu zakłócenie zabezpieczają samodzielnie wkładki topikowe typu aM w przypadku przewodów zasilających urządzenia odbiorcze?

A. Wyłącznie przed przeciążeniem
B. Przed zwarciem i przeciążeniem
C. Przed przepięciem i przeciążeniem
D. Wyłącznie przed zwarciem
Zrozumienie funkcji wkładek topikowych aM w kontekście zabezpieczeń elektrycznych wymaga znajomości mechanizmów, które je definiują. Odpowiedzi sugerujące, że wkładki aM chronią tylko przed przeciążeniem, są błędne, ponieważ te elementy nie mają zdolności do wykrywania długotrwałych przeciążeń prądowych. W przypadku przeciążenia, wkładki te w ogóle nie reagują, co prowadzi do ich powolnego przegrzewania się, a w konsekwencji może doprowadzić do uszkodzenia instalacji. Ponadto, twierdzenie, że wkładki aM chronią przed przepięciem, jest również mylące. Przepięcia, które są nagłymi wzrostami napięcia, wymagają innych typów zabezpieczeń, takich jak ograniczniki przepięć, które są zaprojektowane do szybkiej reakcji na zmiany napięcia. Właściwe zrozumienie zabezpieczeń elektrycznych polega na znajomości ich specyfikacji i zastosowań, co jest kluczowe dla zapewnienia bezpieczeństwa i efektywności działania instalacji. Często dochodzi do pomylenia funkcji różnych zabezpieczeń, co prowadzi do niewłaściwego ich doboru i tym samym zwiększa ryzyko awarii lub pożaru. Dlatego ważne jest, aby projektując instalacje elektryczne, opierać się na standardach branżowych, które jasno definiują wymagania dla zabezpieczeń, tak aby każda ich funkcja była zrozumiana i stosowana w odpowiednich warunkach.

Pytanie 29

Silnik prądu stałego w układzie szeregowym intensywnie iskrzy na segmentach komutatora. Najbardziej prawdopodobnym powodem uszkodzenia jest

A. zwarcie międzyzwojowe w obwodzie stojana
B. zwarcie międzyzwojowe w obwodzie wirnika
C. przerwa w obwodzie stojana
D. przerwa w obwodzie wirnika
Przerwa w obwodzie wirnika, zwarcie międzyzwojowe w obwodzie stojana oraz przerwa w obwodzie stojana to nieprawidłowe odpowiedzi, które mogą prowadzić do nieporozumień na temat działania silnika szeregowego prądu stałego. Przerwa w obwodzie wirnika skutkowałaby brakiem prądu w części uzwojenia, co teoretycznie mogłoby zmniejszyć iskrzenie, a nie je zwiększać. W praktyce, gdy wirnik nie jest w pełni zasilany, silnik doświadcza znacznych spadków momentu obrotowego, co może prowadzić do niestabilności w pracy. Podobnie, zwarcie międzyzwojowe w obwodzie stojana nie wpływa bezpośrednio na obwód wirnika, a ich skutki są odczuwalne tylko w kontekście całej maszyny. W efekcie, taki stan może prowadzić do nieprawidłowej pracy silnika, ale nie manifestuje się w postaci iskrzenia na komutatorze. Przerwa w obwodzie stojana, z drugiej strony, również prowadziłaby do utraty wydajności, jednak nie miałaby bezpośredniego wpływu na iskrzenie, ponieważ obwód stojana zazwyczaj nie jest odpowiedzialny za wytwarzanie efektów komutacji. Zrozumienie dynamiki działania silnika oraz jego komponentów jest kluczowe dla diagnozowania problemów, a błędne przypisanie przyczyn może prowadzić do nieprawidłowej konserwacji i kosztownych awarii.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Jaką maksymalną wartość impedancji pętli zwarcia można zastosować w trójfazowym układzie elektrycznym o napięciu nominalnym 230/400 V, aby zapewnić skuteczność ochrony przeciwporażeniowej w przypadku uszkodzenia izolacji, gdy wyłączenie tego obwodu ma być realizowane przez instalacyjny wyłącznik nadprądowy C10?

A. 8,0 Ω
B. 4,6 Ω
C. 2,3 Ω
D. 7,7 Ω
Maksymalna dopuszczalna wartość impedancji pętli zwarcia w trójfazowym obwodzie elektrycznym o napięciu znamionowym 230/400 V wynosząca 2,3 Ω jest zgodna z wymaganiami bezpieczeństwa, które zapewniają skuteczną ochronę przeciwporażeniową. W przypadku uszkodzenia izolacji, odpowiednia impedancja pętli zwarcia pozwala na szybkie wyłączenie zasilania przez wyłącznik nadprądowy, w tym przypadku typu C10. Zgodnie z normą PN-IEC 60364, szybkość wyłączenia zasilania jest kluczowa dla ochrony osób przed porażeniem prądem. Wyłącznik C10 ma charakterystykę, która zapewnia zadziałanie przy prądzie zwarciowym wynoszącym 10 A. W praktyce, im niższa impedancja pętli zwarcia, tym wyższy prąd zwarciowy, co przyspiesza zadziałanie wyłącznika. Przykładowo, przy impedancji 2,3 Ω, prąd zwarciowy wynosi około 174 A, co pozwala na zadziałanie wyłącznika w czasie nieprzekraczającym 0,4 sekundy. Takie wartości są zgodne z zasadami projektowania instalacji elektrycznych, które mają na celu minimalizację ryzyka porażenia prądem elektrycznym.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Korzystając z tabeli oceń, który wynik badania pozwala wyciągnąć pozytywny wniosek o stanie izolacji jednofazowej instalacji elektrycznej 230 V, 50 Hz.

Napięcie nominalne obwoduNapięcie pomiarowe prądu stałego d.c.Wymagana rezystancja izolacji
V
SELV i PELV250≥ 0,5
do 500 V włącznie, w tym FELV500≥ 1,0
powyżej 500 V1000≥ 1,0

Wynik badaniaNapięcie pomiarowe prądu stałego, kVRezystancja izolacji, kΩ
A.2301050
B.250500
C.4001100
D.5001000
A. A.
B. B.
C. D.
D. C.
Odpowiedź D jest prawidłowa, ponieważ zgodnie z obowiązującymi normami, szczególnie normą PN-EN 60204-1, rezystancja izolacji dla instalacji jednofazowych o napięciu nominalnym do 500 V powinna wynosić co najmniej 1,0 MΩ. W przypadku badania przedstawionego w odpowiedzi D, rezystancja izolacji wynosi 1000 kΩ, co jest równoważne 1 MΩ, a więc spełnia wymagania normatywne. W praktyce oznacza to, że instalacja elektryczna jest w dobrym stanie, a ryzyko wystąpienia awarii izolacji lub porażenia prądem jest zminimalizowane. Istotne jest, aby regularnie przeprowadzać pomiary rezystancji izolacji, aby zapewnić bezpieczeństwo użytkowników oraz prawidłowe funkcjonowanie urządzeń elektrycznych. Normy te mają na celu nie tylko ochronę przed porażeniem prądem, ale także zapobieganie uszkodzeniom sprzętu w wyniku niewłaściwej izolacji. Utrzymywanie odpowiedniej izolacji w instalacjach elektrycznych jest kluczowym elementem zarządzania bezpieczeństwem w każdym obiekcie.

Pytanie 37

Jaką liczbę należy zastosować do pomnożenia wartości znamionowego prądu silnika trójfazowego klatkowego, który napędza pompę, aby obliczyć maksymalną dozwoloną wartość nastawy prądu na jego zabezpieczeniu przeciążeniowym?

A. 0,9
B. 1,1
C. 2,0
D. 1,2
Poprawna odpowiedź to 1,1, co oznacza, że wartość znamionowego prądu silnika trójfazowego klatkowego należy pomnożyć przez ten współczynnik, aby obliczyć maksymalną dopuszczalną wartość nastawy prądu na zabezpieczeniu przeciążeniowym. Zastosowanie współczynnika 1,1 wynika z faktu, że silniki elektryczne, w tym silniki klatkowe, mogą mieć chwilowe przeciążenia, które są normalne w czasie rozruchu lub przy zmiennych warunkach pracy. Przyjęcie wartości 1,1 jako mnożnika do prądu znamionowego uwzględnia te momenty, co jest zgodne z praktykami opisanymi w normach IEC 60947-4-1 dotyczących wyłączników silnikowych. Przykładowo, jeśli znamionowy prąd silnika wynosi 10 A, to maksymalna dopuszczalna wartość nastawy na zabezpieczeniu przeciążeniowym wynosi 11 A. Takie ustawienie zabezpieczenia pozwala na bezpieczne działanie silnika, jednocześnie chroniąc go przed uszkodzeniem w wyniku przeciążenia.

Pytanie 38

Zgodnie z aktualnymi regulacjami, czas pomiędzy następnymi kontrolami skuteczności ochrony przed porażeniem prądem dla instalacji elektrycznych w pomieszczeniach z wyziewami żrącymi, w strefach zagrożonych wybuchem oraz na terenie otwartym nie może przekraczać

A. jeden rok
B. pół roku
C. dwa lata
D. pięć lat
Odpowiedź "jeden rok" jest poprawna, ponieważ zgodnie z obowiązującymi przepisami, w tym normami IEC 60364 oraz krajowymi regulacjami, instalacje elektryczne w pomieszczeniach narażonych na działanie substancji żrących, zagrożone wybuchem czy na otwartej przestrzeni powinny być regularnie kontrolowane. Przepisy te mają na celu zapewnienie bezpieczeństwa użytkowników oraz ochrony przed ewentualnymi awariami, które mogą prowadzić do poważnych konsekwencji, w tym pożarów lub wybuchów. Regularne kontrole co roku pozwalają na wczesne identyfikowanie potencjalnych problemów, takich jak korozja elementów instalacji, luźne połączenia czy inne usterki, które w takich warunkach mogą pojawić się szybciej niż w standardowych warunkach. Przykładem zastosowania tej regulacji może być przemysł chemiczny, gdzie substancje agresywne mogą wpływać na stan techniczny instalacji elektrycznych i w konsekwencji na bezpieczeństwo pracy. Dlatego przestrzeganie rocznego terminu kontroli jest kluczowe dla minimalizacji ryzyka i zapewnienia odpowiednich standardów pracy.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.