Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 19 grudnia 2025 22:32
  • Data zakończenia: 19 grudnia 2025 22:38

Egzamin niezdany

Wynik: 0/40 punktów (0,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

W jakiej kolejności nastąpi zadziałanie styczników i przekaźników podczas rozruchu silnika pierścieniowego w układzie, którego schemat połączeń przedstawiono na rysunkach, po załączeniu wyłączników Q i Q1 oraz przycisku sterującego S1?

Ilustracja do pytania
A. K1, K5, K4, K6, K3, K2, K7
B. K7, K2, K3, K6, K4, K5, K1
C. K1, K2, K3, K4, K5, K6, K7
D. K1, K5, K4, K6, K3, K7, K2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź K1, K5, K4, K6, K3, K7, K2 jest poprawna, ponieważ kolejność załączania styczników odzwierciedla logiczny przepływ energii w układzie rozruchowym silnika pierścieniowego. Po załączeniu wyłączników Q i Q1 oraz przycisku S1, stycznik K1, jako pierwszy w obwodzie, zostaje aktywowany, co jest zgodne z zasadami działania obwodów elektrycznych. Zamykanie styków K1 (13-14) uruchamia stycznik K5, który jest kluczowy w kolejnych etapach rozruchu. Następnie, przez zamknięcie styków K5, do akcji wchodzi K4, a następnie K6, które są połączone szeregowo, co jest typowe dla układów rozruchowych silników. Ważne jest, aby zrozumieć znaczenie takiej kolejności: każdy stycznik aktywuje kolejne elementy układu, co pozwala na kontrolowany i bezpieczny rozruch silnika. Zasady te są zgodne z normami IEC 60947 dotyczącymi aparatury łączycej. W praktyce, taka sekwencja działania jest nie tylko efektywna, ale także minimalizuje ryzyko przeciążenia, co jest kluczowe w projektowaniu systemów automatyki przemysłowej.

Pytanie 2

Wiatrołap jest oświetlany dwoma żarówkami. Żarówki w oprawach są włączane przez wyłącznik zmierzchowy. Gdy jedna z żarówek przestała świecić, jakie kroki należy podjąć, aby zidentyfikować i usunąć potencjalne przyczyny tej usterki?

A. Zamienić żarówkę, która nie świeci, sprawdzić funkcjonowanie wyłącznika oraz oprawy oświetleniowej
B. Sprawdzić działanie wyłącznika, zweryfikować oprawę i przewody
C. Wymienić żarówkę, która się nie świeci, sprawdzić przewody i oprawę oświetleniową
D. Zweryfikować przewody, sprawdzić działanie wyłącznika, wymienić żarówkę

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź polegająca na wymianie żarówki, która się nie świeci, oraz sprawdzeniu przewodów i oprawy oświetleniowej jest prawidłowa, ponieważ pozwala na kompleksowe zdiagnozowanie problemu. W pierwszej kolejności należy wymienić żarówkę, aby upewnić się, że usterka nie leży po stronie źródła światła. Zgodnie z dobrą praktyką, przed wymianą żarówki warto upewnić się, że źródło zasilania jest wyłączone, co zapewnia bezpieczeństwo podczas pracy. Następnie, sprawdzenie przewodów pozwala na wykrycie ewentualnych uszkodzeń lub przerwań, które mogą powodować brak zasilania. Warto również sprawdzić oprawę oświetleniową pod kątem korozji, zanieczyszczeń czy uszkodzeń mechanicznych, które mogą wpływać na funkcjonowanie układu. Przeprowadzanie tych kroków zgodnie z procedurami przewidzianymi w normach elektrycznych pozwala na skuteczną eliminację przyczyn usterki oraz zapobiega ewentualnym przyszłym problemom z oświetleniem. Długoterminowe utrzymanie systemów oświetleniowych w dobrym stanie technicznym jest kluczowe dla zapewnienia efektywności energetycznej i bezpieczeństwa użytkowników.

Pytanie 3

Jakiego urządzenia dotyczy przedstawiony opis przeglądu?
Podczas rutynowej inspekcji stanu technicznego systemu elektrycznego przeprowadzono przegląd z uwzględnieniem:
1. oceny stanu ochrony przed porażeniem prądem,
2. kontrolnego sprawdzenia funkcjonowania wyłącznika za pomocą przycisku testowego,
3. pomiaru rzeczywistej wartości prądu różnicowego, który wyzwala,
4. pomiaru czasu wyłączenia,
5. weryfikacji napięcia dotykowego dla wartości prądu wyzwalającego.

A. Wyłącznika nadprądowego
B. Ochronnika przepięć
C. Elektronicznego przekaźnika czasowego
D. Wyłącznika różnicowoprądowego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłącznik różnicowoprądowy jest urządzeniem zabezpieczającym, które ma na celu ochronę ludzi przed porażeniem prądem elektrycznym oraz zabezpieczenie instalacji elektrycznej przed skutkami zwarć. Opisane w pytaniu działania, takie jak badanie stanu ochrony przeciwporażeniowej, kontrolne sprawdzenie działania wyłącznika oraz pomiar czasu wyłączania, to podstawowe procedury diagnostyczne dla tego typu urządzeń. Standardy, takie jak IEC 61008 oraz IEC 61009, definiują wymogi dotyczące wyłączników różnicowoprądowych, w tym jak powinny być testowane i monitorowane. Przykładowo, regularne pomiary wartości prądu zadziałania oraz sprawdzanie napięcia dotykowego przy prądzie wyzwalającym są niezbędne, aby upewnić się, że wyłącznik działa prawidłowo w sytuacji awaryjnej. Dbanie o sprawność wyłączników różnicowoprądowych jest kluczowe dla zapewnienia bezpieczeństwa w obiektach użyteczności publicznej i mieszkalnych, gdzie występuje ryzyko porażenia prądem. W praktyce każdy wyłącznik różnicowoprądowy powinien być testowany przynajmniej raz na pół roku, co jest zgodne z wytycznymi zawartymi w normach branżowych.

Pytanie 4

Podczas pomiarów kontrolnych, przed odbiorem mieszkania, wykryto usterkę w instalacji oświetleniowej. Na zdjęciu przedstawiono fragment pomieszczenia przed tynkowaniem i wykonaniem wylewek. W celu wymiany uszkodzonych przewodów typu DY 1,5 mm2, prowadzonych w rurach instalacyjnych giętkich, należy w pierwszej kolejności

Ilustracja do pytania
A. do końców starych przewodów zamocować nowe i wyciągając stare wprowadzać do rur nowe przewody.
B. rozkuć ściany, wprowadzić nowe przewody w ścianach i listwach przypodłogowych.
C. rozkuć ściany i podłogę oraz wymienić uszkodzone odcinki instalacji.
D. wyciągnąć stare przewody z rur i wciągnąć nowe za pomocą sprężystego drutu stalowego.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź polegająca na zamocowaniu nowych przewodów do końców starych i wyciąganiu ich podczas wprowadzania nowych jest najbardziej efektywnym sposobem wymiany uszkodzonych przewodów w instalacji elektrycznej. Metoda ta minimalizuje inwazyjność pracy, co jest kluczowe w kontekście renowacji pomieszczeń. Działając w ten sposób, oszczędzamy czas i koszty związane z ewentualnymi naprawami ścian i podłóg. Ponadto, stosując ten sposób, możemy zachować integralność istniejącej instalacji, unikając potencjalnego uszkodzenia rur, co może prowadzić do dodatkowych kosztów. W praktyce, ta technika jest szeroko zalecana w standardach branżowych, takich jak PN-IEC 60364, które podkreślają znaczenie skutecznych i bezpiecznych metod naprawy instalacji elektrycznych. Warto również dodać, że przy tej metodzie kluczowe jest użycie odpowiednich materiałów, takich jak przewody o właściwej specyfikacji oraz narzędzi, które umożliwiają precyzyjne wykonanie wymiany.

Pytanie 5

W jakim układzie sieciowym punkt neutralny transformatora zasilającego sieć nie jest metalicznie połączony z ziemią?

A. IT
B. TT
C. TN-S
D. TN-C

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Układ sieciowy IT jest charakterystyczny tym, że punkt neutralny transformatora nie jest połączony metalicznie z ziemią. W systemie tym, w przypadku awarii, nie występuje bezpośredni kontakt z ziemią, co minimalizuje ryzyko porażenia prądem. Zastosowanie układu IT ma istotne znaczenie w obiektach, gdzie wymagana jest wysoka niezawodność zasilania, takich jak szpitale czy obiekty przemysłowe. Dzięki temu, w przypadku uszkodzenia izolacji, prąd płynący do ziemi jest ograniczony, co pozwala na kontynuację pracy urządzeń. Praktyczne zastosowanie tego typu układu można zauważyć w sieciach niskiego napięcia, gdzie większy poziom bezpieczeństwa i ciągłość zasilania są priorytetem. Zgodnie z normami IEC 60364, system IT jest zalecany w środowiskach, gdzie awarie mogą prowadzić do poważnych konsekwencji, ponieważ zapewnia on możliwość pracy w warunkach awarii bez ryzyka porażenia."

Pytanie 6

Które urządzenie elektryczne przedstawiono na rysunku?

Ilustracja do pytania
A. Wyłącznik silnikowy.
B. Stycznik elektromagnetyczny.
C. Rozłącznik izolacyjny FRX400.
D. Wyłącznik nadprądowy S304.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to stycznik elektromagnetyczny. Na zdjęciu widoczne są charakterystyczne cewki elektromagnetyczne, które aktywują styki przy pomocy pola magnetycznego. Styczniki są kluczowymi elementami w systemach automatyki, umożliwiając zdalne załączanie i wyłączanie obwodów elektrycznych, co jest niezwykle istotne w kontekście sterowania silnikami elektrycznymi w aplikacjach przemysłowych. Dzięki nim można bezpiecznie kontrolować duże obciążenia, co przekłada się na efektywność operacyjną. Styczniki są projektowane zgodnie z normami IEC 60947-4-1, które definiują wymagania dotyczące ich konstrukcji oraz poziomów bezpieczeństwa operacyjnego. Przykłady zastosowania to sterowanie silnikami w maszynach produkcyjnych, systemach wentylacyjnych oraz w instalacjach oświetleniowych, gdzie można zdalnie załączać i wyłączać obwody. Użycie styczników pozwala też na integrację z systemami automatyki budynkowej, co zwiększa komfort i efektywność energetyczną.

Pytanie 7

W celu sprawdzenia poprawności działania dwóch wyłączników różnicowoprądowych EFI-2-25/003 pracujących w instalacji elektrycznej zmierzono ich różnicowe prądy zadziałania. Na podstawie wyników pomiarów zamieszczonych w tabeli, określ poprawność działania tych wyłączników przy założeniu, że zmierzony różnicowy prąd zadziałania powinien wynosić (0,5 ÷ 1) IΔN.

Wyłącznik różnicowoprądowyZmierzony prąd różnicowoprądowy
IΔ w mA
115
225
A. 1 - sprawny, 2 - niesprawny.
B. Oba sprawne.
C. 1 - niesprawny, 2 - sprawny.
D. Oba niesprawne.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Oba wyłączniki różnicowoprądowe EFI-2-25/003 są uznawane za sprawne, ponieważ zmierzone prądy różnicowe wynoszą odpowiednio 15 mA oraz 25 mA, co mieści się w zakresie 0,5 ÷ 1 IΔN, gdzie IΔN wynosi 30 mA. Oznacza to, że obydwa wyłączniki działają prawidłowo, co jest zgodne z normami bezpieczeństwa, które zalecają, aby różnicowe prądy zadziałania były w tym zakresie. Przykładem praktycznego zastosowania tych wyłączników może być ochrona ludzi przed porażeniem prądem oraz zabezpieczenie instalacji elektrycznych przed skutkami upływu prądu. Warto również zaznaczyć, że zgodnie z normą PN-EN 61008-1, wyłączniki różnicowoprądowe powinny być regularnie testowane, aby zapewnić ich niezawodność, a pomiary powinny być wykonywane przez wykwalifikowany personel. Odpowiednie testowanie pozwala na wczesne wykrycie potencjalnych usterek, co jest kluczowe dla bezpieczeństwa użytkowników oraz trwałości instalacji elektrycznych.

Pytanie 8

Który z przedstawionych przyrządów jest przeznaczony do wykrywania pod obciążeniem wadliwych połączeń elektrycznych w torach wielkoprądowych?

Ilustracja do pytania
A. Przyrząd 4.
B. Przyrząd 2.
C. Przyrząd 1.
D. Przyrząd 3.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przyrząd 3, czyli termowizor, jest kluczowym narzędziem w diagnostyce systemów elektrycznych, zwłaszcza w kontekście torów wielkoprądowych. Jego zdolność do wykrywania wadliwych połączeń elektrycznych opiera się na analizie rozkładu temperatury, co jest istotne w sytuacjach, gdzie obciążenie jest wysokie. W praktyce, gdy dochodzi do uszkodzenia połączenia, może pojawić się nadmierne nagrzewanie, które termowizor jest w stanie zidentyfikować z bezpiecznej odległości. Zastosowanie termowizji w monitorowaniu infrastruktury elektrycznej stało się standardem w wielu branżach, w tym w energetyce i przemyśle. Dzięki temu można szybko i efektywnie lokalizować problemy, co z kolei przyczynia się do zmniejszenia ryzyka awarii oraz obniżenia kosztów eksploatacji. Ponadto, regularne inspekcje za pomocą termowizora wspierają utrzymanie zgodności z normami bezpieczeństwa i jakości, co jest kluczowe w utrzymaniu infrastruktury elektrycznej w dobrym stanie.

Pytanie 9

Który rodzaj żarówki przedstawiono na ilustracji?

Ilustracja do pytania
A. Ledowy.
B. Halogenowy.
C. Rtęciowy.
D. Wolframowy.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Żarówka LED, którą przedstawiono na ilustracji, jest doskonałym przykładem nowoczesnych rozwiązań oświetleniowych. Charakteryzuje się ona nie tylko wysoką efektywnością energetyczną, ale także długą żywotnością, sięgającą nawet 25 000 godzin. Diody LED, umieszczone na żółtych paskach wewnątrz szklanej bańki, zapewniają równomierne rozproszenie światła, co wpływa na komfort użytkowania. W przeciwieństwie do tradycyjnych żarówek wolframowych, które emitują dużą ilość ciepła, żarówki LED pozostają chłodne podczas pracy, co zwiększa bezpieczeństwo i zmniejsza ryzyko pożaru. Ponadto, żarówki LED są dostępne w różnych temperaturach barwowych, co pozwala na dostosowanie oświetlenia do indywidualnych potrzeb użytkownika. Przykładem zastosowania żarówek LED mogą być systemy oświetleniowe w biurach, gdzie ich wysoka efektywność przekłada się na zmniejszenie kosztów energii oraz poprawę jakości pracy dzięki lepszemu oświetleniu. Warto również zauważyć, że według norm unijnych i standardów efektywności energetycznej, stosowanie żarówek LED jest promowane jako sposób na ograniczenie emisji CO2 oraz zmniejszenie wpływu na środowisko.

Pytanie 10

Jakie jest główne przeznaczenie przekaźnika w instalacjach elektrycznych?

A. Ochrona przed przeciążeniami
B. Zmniejszenie zużycia energii
C. Zdalne sterowanie obwodami elektrycznymi
D. Kontrola temperatury przewodów

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przekaźnik to bardzo wszechstronne urządzenie stosowane w instalacjach elektrycznych głównie do zdalnego sterowania obwodami elektrycznymi. Działa na zasadzie elektromagnetycznego przełącznika, który pozwala na kontrolowanie dużych prądów za pomocą małego sygnału elektrycznego. To właśnie ta funkcja umożliwia automatyzację wielu procesów w instalacjach. Przekaźniki są kluczowe w systemach sterowania, gdzie pozwalają na włączanie i wyłączanie obwodów bez konieczności fizycznego kontaktu, co zwiększa bezpieczeństwo i efektywność operacyjną. W praktyce, przekaźniki są używane w wielu aplikacjach, takich jak automatyka domowa, układy sterowania maszynami czy systemy zabezpieczeń. Ponadto, ich zastosowanie jest standardem w systemach, gdzie konieczna jest szybka reakcja na zmianę stanu, np. w przypadku awarii lub nadmiernego obciążenia. Ich niezawodność i łatwość w integracji sprawiają, że są nieodzownym elementem współczesnych systemów elektrycznych.

Pytanie 11

W jaki sposób realizowana jest ochrona przed porażeniem elektrycznym poprzez dotyk pośredni w oprawie oświetleniowej drugiej klasy ochronności działającej w sieci TN-S?

A. Użycie napięcia zasilania o zmniejszonej wartości
B. Połączenie obudowy z przewodem ochronnym sieci
C. Zasilanie z transformatora izolacyjnego
D. Zastosowanie podwójnej warstwy izolacji

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zastosowanie podwójnej warstwy izolacji jest kluczowym elementem ochrony przeciwporażeniowej w oprawach oświetleniowych klasy II, które nie wymagają przewodu ochronnego. W tego typu rozwiązaniach, sprzęt jest projektowany w taki sposób, aby minimalizować ryzyko porażenia prądem elektrycznym, poprzez wprowadzenie dodatkowej warstwy izolacyjnej, która skutecznie odseparowuje części przewodzące od części, które mogą być dotykane przez użytkowników. Przykładem może być wykorzystanie materiałów izolacyjnych o wysokiej wytrzymałości, które są odporne na działanie wysokiej temperatury oraz wilgoci, co jest istotne w kontekście opraw oświetleniowych stosowanych w różnych warunkach atmosferycznych. W praktyce, urządzenia spełniające normy IEC 61140 oraz IEC 60598-1, których celem jest zapewnienie bezpieczeństwa użytkowników, korzystają z tej technologii, a jej zastosowanie jest powszechnie zalecane w branży elektrycznej, co przekłada się na redukcję ryzyka wypadków związanych z porażeniem prądem.

Pytanie 12

Narzędzie pokazane na rysunku służy do

Ilustracja do pytania
A. zdejmowania izolacji.
B. zaciskania końcówek tulejkowych.
C. zaginania końcówek.
D. cięcia przewodów.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "cięcia przewodów" jest poprawna, ponieważ narzędzie pokazane na zdjęciu to szczypce boczne, które są specjalnie zaprojektowane do precyzyjnego cięcia różnorodnych przewodów elektrycznych. Szczypce te charakteryzują się ostrymi, wąskimi krawędziami, które umożliwiają dotarcie do trudno dostępnych miejsc, co jest istotne w pracach instalacyjnych oraz naprawczych. W praktyce, użycie szczypiec bocznych pozwala na dokładne cięcie przewodów bez ryzyka uszkodzenia ich izolacji, co jest kluczowe dla zachowania bezpieczeństwa w instalacjach elektrycznych. To narzędzie jest niezbędne w branży elektrycznej oraz w wielu projektach DIY, gdzie precyzyjne cięcie przewodów jest wymagane, aby uniknąć zwarć oraz zapewnić estetykę i funkcjonalność instalacji. Zgodnie z normami bezpieczeństwa, właściwe użycie szczypiec bocznych powinno obejmować również stosowanie odzieży ochronnej, aby zminimalizować ryzyko kontuzji podczas pracy.

Pytanie 13

Którą wielkość fizyczną można zmierzyć przyrządem pokazanym na rysunku?

Ilustracja do pytania
A. Luminancję.
B. Natężenie oświetlenia.
C. Światłość.
D. Temperaturę barwową światła.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to natężenie oświetlenia, które jest mierzonym parametrem przez luksomierz, przyrząd specjalistyczny zaprojektowany do oceny ilości światła padającego na określoną powierzchnię. Natężenie oświetlenia wyrażane jest w luksach (lx), co odnosi się do strumienia świetlnego padającego na powierzchnię jednego metra kwadratowego. W praktyce, luksomierze są używane w wielu dziedzinach, takich jak architektura, fotografia czy ergonomia, aby zapewnić odpowiednie warunki oświetleniowe, które wpływają na komfort oraz efektywność pracy. Na przykład, w biurach często normy dotyczące natężenia oświetlenia wynoszą od 300 do 500 luksów, co jest wystarczające do prowadzenia typowych prac biurowych. Użycie luksomierzy pozwala na optymalizację warunków oświetleniowych, co jest istotne dla zdrowia i wydajności pracowników. To narzędzie jest również kluczowe w budownictwie ekologicznym, gdzie odpowiednie oświetlenie wpływa na oszczędność energii.

Pytanie 14

Na którym rysunku przedstawiono prawidłowy sposób wykorzystania zacisku śrubowego?

Ilustracja do pytania
A. B.
B. D.
C. A.
D. C.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Rysunek A przedstawia prawidłowy sposób wykorzystania zacisku śrubowego, co jest kluczowe dla zapewnienia stabilności i bezpieczeństwa połączenia. W tej konfiguracji śruba jest odpowiednio dokręcona do elementu, co pozwala na zminimalizowanie luzów oraz zwiększa trwałość połączenia. Zaciski śrubowe są powszechnie stosowane w przemyśle i rzemiośle do łączenia różnych elementów, takich jak deski w meblarstwie czy elementy metalowe w konstrukcjach. Przy prawidłowym użyciu, zaciski te mogą wytrzymać znaczne obciążenia, co czyni je niezastąpionymi w wielu zastosowaniach. Ważne jest również, aby podczas dokręcania śruby zachować odpowiedni moment obrotowy, aby nie uszkodzić materiału. Dobre praktyki obejmują również regularne sprawdzanie stanu zacisków oraz ich ponowne dokręcanie w miarę potrzeb, co zapewnia długotrwałe i niezawodne użytkowanie.

Pytanie 15

Który kolor izolacji przewodu w instalacjach elektrycznych jest przypisany do przewodu neutralnego?

A. Czerwony
B. Zielony
C. Żółty
D. Niebieski

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kolor niebieski jest zastrzeżony dla przewodu neutralnego w instalacjach elektrycznych, zgodnie z międzynarodowymi standardami, takimi jak IEC 60446. Przewód neutralny pełni kluczową rolę w systemach elektrycznych, ponieważ służy do zamykania obwodu i umożliwia przepływ prądu z powrotem do źródła. Użycie koloru niebieskiego dla przewodów neutralnych pozwala na ich łatwe zidentyfikowanie, co jest istotne w kontekście bezpieczeństwa oraz efektywności pracy elektryków. W praktyce, podczas instalacji systemów elektrycznych, korzystanie z ustalonych kolorów przewodów ma na celu minimalizację ryzyka błędów przy podłączaniu urządzeń, co jest kluczowe dla zapewnienia ich prawidłowego funkcjonowania oraz ochrony przed porażeniem prądem. Dodatkowo, w przypadku konserwacji lub naprawy, wyraźne oznaczenie przewodów neutralnych znacząco ułatwia pracę elektryków, co podkreśla znaczenie standardyzacji w branży elektrycznej.

Pytanie 16

Jaki rodzaj złączki stosowanej w instalacjach elektrycznych przedstawiono na rysunku?

Ilustracja do pytania
A. Śrubową.
B. Skrętną.
C. Gwintową.
D. Samozaciskową.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "Samozaciskową" jest poprawna, ponieważ przedstawiona złączka instalacyjna rzeczywiście jest złączką samozaciskową. Złączki tego typu charakteryzują się prostym mechanizmem, który umożliwia szybkie i wygodne połączenie przewodów bez konieczności używania narzędzi. Wystarczy włożyć przewód do otworu zaciskowego, a mechanizm samozaciskowy automatycznie zaciska przewód, co zapewnia stabilne połączenie. Tego rodzaju złączki są powszechnie stosowane w instalacjach elektrycznych, ponieważ przyspieszają proces montażu oraz eliminują ryzyko niewłaściwego użycia narzędzi, które mogą uszkodzić przewody. Złączki samozaciskowe znajdują zastosowanie w różnych obszarach, od instalacji domowych po przemysłowe systemy elektryczne. Warto zaznaczyć, że ich stosowanie jest zgodne z zasadami bezpieczeństwa, ponieważ zapewniają one solidne połączenia, które są niezbędne dla bezpiecznego funkcjonowania instalacji elektrycznych.

Pytanie 17

Jaka jest znamionowa sprawność silnika jednofazowego przy danych: PN = 3,7 kW (moc mechaniczna), UN = 230 V, IN = 21,4 A oraz cos φN = 0,95?

A. 0,75
B. 0,79
C. 0,71
D. 0,95

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Znamionowa sprawność silnika jednofazowego obliczana jest na podstawie wzoru: η = P_N / (U_N * I_N * cos φ_N), gdzie P_N to moc mechaniczna, U_N to napięcie znamionowe, I_N to prąd znamionowy, a cos φ_N to współczynnik mocy. Podstawiając wartości: η = 3,7 kW / (230 V * 21,4 A * 0,95) ≈ 0,79. Zrozumienie sprawności silnika jest kluczowe dla efektywności energetycznej w zastosowaniach przemysłowych. Wysoka sprawność oznacza mniejsze straty energii, co przekłada się na niższe koszty eksploatacji oraz mniejszą emisję zanieczyszczeń. W praktyce, dobór silników o znamionowej sprawności powyżej 0,80 jest standardem w branży, co zgodne jest z normami IEC 60034-30, które promują silniki o wysokiej efektywności. Dlatego, przy wyborze silnika, warto zwrócić uwagę na jego sprawność, co przyczyni się do zrównoważonego rozwoju i oszczędności energetycznych w dłuższym okresie.

Pytanie 18

Korzystając z podanego wzoru i tabeli wyznacz wartość rezystancji izolacji kabla w temperaturze 20 oC, jeżeli rezystancja izolacji tego kabla zmierzona w temperaturze 10 oC wyniosła 8,1 MΩ.

Współczynniki przeliczeniowe K₂₀ dla rezystancji izolacji kabli z izolacją połwinnitową
R₂₀ = K₂₀·Rₜ
Temperatura w °C4810121620242628
Współczynnik przeliczeniowy K₂₀0,110,190,250,330,631,001,852,383,13
A. 2,0 MΩ
B. 32,4 MΩ
C. 16,2 MΩ
D. 4,1 MΩ

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wartość rezystancji izolacji kabla w temperaturze 20°C to 2,0 MΩ. Żeby to obliczyć, trzeba pamiętać, że rezystancja zmienia się z temperaturą. Na przykład, jeśli przy 10°C zmierzyłeś 8,1 MΩ, to musisz uwzględnić, że jak temperatura rośnie, to rezystancja maleje. W praktyce, według norm IEC, rezystancja izolacji nie powinna spadać poniżej 1 MΩ na każde 1000 V napięcia roboczego. Wiedza o tym, jak obliczyć rezystancję w wyższej temperaturze, jest ważna, żeby ocenić, w jakim stanie jest kabel i zapobiec awariom. Dobrze jest regularnie kontrolować rezystancję izolacji, bo to daje nam szansę na zauważenie problemów, zanim dojdzie do awarii, co ma ogromne znaczenie dla bezpieczeństwa ludzi.

Pytanie 19

Którym symbolem graficznym należy oznaczyć łącznik świecznikowy w schemacie ideowym instalacji elektrycznej?

Ilustracja do pytania
A. Symbolem 1.
B. Symbolem 3.
C. Symbolem 2.
D. Symbolem 4.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź oznaczona symbolem 4 jest poprawna, ponieważ w schematach ideowych instalacji elektrycznych stosuje się ściśle określone symbole graficzne. Łącznik świecznikowy, będący kluczowym elementem w instalacjach oświetleniowych, posiada swój specyficzny symbol, który wyróżnia go spośród innych urządzeń. W kontekście norm, takich jak PN-EN 60617, symbol ten jest przedstawiany jako wyłącznik z dodatkowym oznaczeniem, co sugeruje możliwość regulacji oświetlenia. Przykładowo, w praktyce instalacyjnej, łącznik świecznikowy jest często stosowany w pomieszczeniach mieszkalnych, gdzie użytkownik ma potrzebę łatwego włączania i wyłączania oświetlenia, a także jego przyciemniania. Prawidłowe rozpoznanie symboli w schematach ideowych jest kluczowe dla właściwego montażu i późniejszej eksploatacji instalacji elektrycznej, co z kolei ma wpływ na bezpieczeństwo użytkowników oraz efektywność energetyczną budynku.

Pytanie 20

W jaki sposób steruje się oświetleniem w układzie, którego schemat przedstawiono na rysunku?

Łącznik 1 sterujeŁącznik 2 steruje
A.oddzielnie źródłami światła tylko w punkcie A.oddzielnie źródłami światła tylko w punkcie B.
B.oddzielnie po jednym ze źródeł światła w punktach A i B.oddzielnie po jednym ze źródeł światła w punktach A i B.
C.wszystkimi źródłami światła jednocześnie tylko w punkcie A.wszystkimi źródłami światła jednocześnie tylko w punkcie B.
D.wszystkimi źródłami światła w punktach A i B jednocześnie.wszystkimi źródłami światła w punktach A i B jednocześnie.
Ilustracja do pytania
A. C.
B. B.
C. A.
D. D.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź D wskazuje, że w układzie przedstawionym na schemacie, oświetlenie jest sterowane za pomocą dwóch łączników, które są połączone z dwoma źródłami światła. Każde źródło posiada po dwie żarówki o mocy 60 W, co daje łączną moc 240 W dla całego układu. W praktyce oznacza to, że użytkownik ma możliwość włączania i wyłączania wszystkich żarówek jednocześnie poprzez oba łączniki. Takie rozwiązanie jest zgodne z zasadami prostoty i funkcjonalności, które są kluczowe w projektowaniu instalacji oświetleniowych. W branży elektrycznej standardem jest stosowanie łączników w taki sposób, aby ich działanie było intuicyjne dla użytkowników. Dodatkowo, takie sterowanie pozwala na oszczędność energii, gdyż użytkownik może łatwo wyłączyć całe oświetlenie, gdy nie jest potrzebne. Zastosowanie dwóch łączników w jednym obwodzie jest również praktyczne w kontekście bezpieczeństwa, gdyż pozwala na zdalne sterowanie oświetleniem z różnych miejsc w pomieszczeniu.

Pytanie 21

Na wyłączniku różnicowoprądowym są następujące oznaczenia:

CIF-6 30/4/003
IΔn= 0,03 A
In=30 A
~230/400 V
Prąd różnicowy i znamionowy tego wyłącznika wynoszą odpowiednio
A. 30 A i 0,03 A
B. 3 A i 0,03 A
C. 0,03 A i 30 A
D. 0,003 A i 30 A

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to 0,03 A i 30 A, co jest zgodne z oznaczeniami przedstawionymi na wyłączniku różnicowoprądowym. Prąd różnicowy, oznaczany jako IΔn, wynoszący 0,03 A, jest kluczowy dla ochrony przed porażeniem elektrycznym, gdyż wykrywa niewielkie różnice w prądzie między przewodami fazowymi a neutralnym. Taki wyłącznik jest stosowany w obwodach z urządzeniami narażonymi na kontakt z wodą, co zwiększa ryzyko porażenia. Z kolei prąd znamionowy In, wynoszący 30 A, definiuje maksymalne obciążenie, jakie wyłącznik może bezpiecznie obsłużyć. Dobre praktyki branżowe zalecają stosowanie wyłączników różnicowoprądowych o prądzie różnicowym 0,03 A w obwodach z urządzeniami wrażliwymi, takimi jak łazienki czy kuchnie, aby zapewnić odpowiednią ochronę. Ważne jest, aby przed instalacją wyłącznika sprawdzić, czy jego parametry są zgodne z wymaganiami określonymi w normach, takich jak PN-EN 61008-1, co gwarantuje wysoką jakość i bezpieczeństwo instalacji.

Pytanie 22

W celu wyrównania potencjałów na elementach metalowych, występujących w budynku, które w normalnych warunkach nie są częścią obwodu elektrycznego, należy zainstalować element oznaczony cyfrą

Ilustracja do pytania
A. 5
B. 3
C. 7
D. 1

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź ta jest poprawna, ponieważ wyrównanie potencjałów na elementach metalowych w budynku, które nie są częścią obwodu elektrycznego, jest kluczowym zagadnieniem w zakresie bezpieczeństwa elektrycznego. Szyna wyrównawcza, oznaczona cyfrą '1', pełni istotną funkcję w zapewnieniu, że wszystkie metalowe elementy, takie jak rury, obudowy urządzeń czy inne konstrukcje, są połączone z uziemieniem. Dzięki temu zapobiega się powstawaniu niebezpiecznych różnic potencjałów, które mogą prowadzić do porażeń elektrycznych. W praktyce, stosowanie szyn wyrównawczych jest zgodne z normami, takimi jak PN-EN 62305, które określają wymagania dotyczące ochrony przed porażeniem elektrycznym i zjawiskami wyładowań atmosferycznych. Dobrą praktyką jest regularne sprawdzanie stanu tych połączeń oraz ich integralności, co przyczynia się do zwiększenia bezpieczeństwa użytkowników budynków. W przypadku awarii lub uszkodzenia instalacji, odpowiednio zainstalowana szyna wyrównawcza umożliwia skuteczne odprowadzenie prądów upływowych, zminimalizowanie ryzyka uszkodzenia sprzętu oraz ochronę zdrowia osób przebywających w danym obiekcie.

Pytanie 23

Którego miernika należy użyć do pomiaru natężenia oświetlenia w pomieszczeniu biurowym?

Ilustracja do pytania
A. D.
B. B.
C. A.
D. C.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Luksomierz to specjalistyczne urządzenie zaprojektowane do pomiaru natężenia oświetlenia, co czyni go idealnym narzędziem do oceny warunków oświetleniowych w pomieszczeniach biurowych. Pomiar natężenia oświetlenia jest kluczowy, aby zagwarantować odpowiednią ergonomię i komfort pracy. Standardy, takie jak PN-EN 12464-1, zalecają minimalne poziomy oświetlenia w różnych typach pomieszczeń, co podkreśla znaczenie tego pomiaru w kontekście zdrowia i wydajności pracowników. Używając luksomierza, można z łatwością określić, czy oświetlenie spełnia wymagania norm dotyczących natężenia oświetlenia, umożliwiając wprowadzenie odpowiednich korekt w celu poprawy warunków pracy. Praktyczne zastosowania luksomierza obejmują także monitorowanie zmian w oświetleniu w ciągu dnia czy ocenę efektywności różnych źródeł światła, co jest nieocenione w projektowaniu przestrzeni biurowych i utrzymaniu zgodności z regulacjami budowlanymi.

Pytanie 24

Które urządzenie przedstawiono na ilustracji?

Ilustracja do pytania
A. Regulator temperatury.
B. Automat zmierzchowy.
C. Przekaźnik priorytetowy.
D. Przekaźnik czasowy.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Urządzenie przedstawione na ilustracji to przekaźnik czasowy, co można stwierdzić na podstawie charakterystycznych oznaczeń obecnych na jego obudowie, w tym symboli związanych z czasem oraz pokręteł służących do ustawiania opóźnień. Przekaźniki czasowe są kluczowymi elementami w systemach automatyki, umożliwiającymi kontrolowanie działania urządzeń w określonych odstępach czasu. Na przykład, w instalacjach oświetleniowych, przekaźniki czasowe mogą być ustawiane tak, aby włączać światło o zmierzchu i wyłączać je o świcie, co jest zgodne z zasadami efektywnego zarządzania energią. Dodatkowo, oznaczenia takie jak 'T1' i 'T2' na urządzeniu wskazują na różne funkcje czasowe, co potwierdza jego przeznaczenie. Zastosowanie przekaźników czasowych jest powszechne w różnych sektorach, od budynków mieszkalnych, gdzie automatyzują oświetlenie, po przemysł, gdzie kontrolują maszyny w zależności od czasu pracy. Stosowanie przekaźników czasowych w zgodzie z normami branżowymi, takimi jak IEC 60947, zapewnia bezpieczeństwo oraz efektywność operacyjną systemów elektrycznych i elektronicznych.

Pytanie 25

Który element oznaczony jest na przedstawionym schemacie symbolem literowym dT?

Ilustracja do pytania
A. Przekaźnik termobimetalowy.
B. Wyłącznik silnikowy.
C. Bezpiecznik.
D. Rozłącznik.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "Przekaźnik termobimetalowy" jest prawidłowa, ponieważ symbol dT na schemacie odnosi się do urządzenia, które ma kluczowe znaczenie w ochronie silników elektrycznych. Przekaźnik termobimetalowy działa na zasadzie reakcji na temperaturę, co czyni go idealnym rozwiązaniem do monitorowania i ochrony przed przeciążeniem prądowym. Kiedy prąd przekracza dopuszczalny poziom, generowane ciepło powoduje odkształcenie bimetalu, co prowadzi do otwarcia obwodu i wyłączenia silnika. Tego typu urządzenia są często stosowane w aplikacjach przemysłowych oraz w systemach automatyki, gdzie wymagane jest niezawodne zabezpieczenie przed uszkodzeniem spowodowanym przeciążeniem. Zgodnie z normami IEC 60204-1, przekaźniki termobimetalowe są zalecane do ochrony silników, co podkreśla ich wysoką jakość i skuteczność w praktycznych zastosowaniach. Warto również zaznaczyć, że ich instalacja jest zgodna z dobrymi praktykami w zakresie bezpieczeństwa, co przyczynia się do długowieczności oraz efektywności pracy silników.

Pytanie 26

Na podstawie przedstawionego planu instalacji określ, które z wymienionych elementów należy wytrasować w pokoju i na tarasie.

Ilustracja do pytania
A. 1 punkt oświetleniowy sufitowy, 1 kinkiet, 1 gniazdo pojedyncze bez uziemienia, 2 gniazda podwójne bez uziemienia, 1 łącznik.
B. 2 punkty oświetleniowe sufitowe, 3 gniazda wtyczkowe, 2 łączniki.
C. 1 punkt oświetleniowy sufitowy, 1 kinkiet, 4 gniazda wtyczkowe z uziemieniem, 1 gniazdo wtyczkowe bez uziemienia.
D. 2 punkty oświetleniowe sufitowe, 1 kinkiet, 4 gniazda wtyczkowe z uziemieniem, 1 gniazdo podwójne bez uziemienia.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Świetnie, że wskazałeś dwa punkty oświetleniowe sufitowe, trzy gniazda wtyczkowe i dwa łączniki. To naprawdę dobrze pasuje do planu instalacji. Te dwa punkty sufitowe to dobra sprawa, bo zapewnią fajne oświetlenie w pomieszczeniu, a różne źródła światła na pewno będą tu przydatne. Według normy PN-EN 12464-1 to wszystko powinno być ok. Co do gniazd, trzy sztuki to minimum, żeby móc podłączyć różne sprzęty, więc pod tym względem jest super. Co do łączników, to świetna sprawa, że są dwa, bo można zarządzać oświetleniem z różnych miejsc, a to naprawdę ułatwia życie. No i pamiętaj, że dobrze zaplanowana instalacja zwiększa bezpieczeństwo, unikając gniazd bez uziemienia, co jest ważne dla zgodności z przepisami.

Pytanie 27

Jaka jest maksymalna wartość napięcia dotykowego bezpiecznego dla człowieka przy normalnych warunkach eksploatacji?

A. 12 V
B. 50 V
C. 100 V
D. 230 V

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Napięcie dotykowe bezpieczne dla człowieka przy normalnych warunkach eksploatacji wynosi 50 V. To stwierdzenie opiera się na normach elektrycznych, takich jak PN-EN 61140, które definiują granice bezpieczeństwa w kontekście ochrony przed porażeniem prądem elektrycznym. Powyżej tej wartości istnieje znaczne ryzyko wystąpienia niebezpiecznych sytuacji zdrowotnych, w tym migotania komór serca. W praktyce, przestrzeganie tego limitu jest kluczowe w projektowaniu i eksploatacji instalacji elektrycznych, aby zapewnić ochronę użytkowników. Przykładem mogą być instalacje niskonapięciowe, które są szeroko stosowane w budynkach mieszkalnych oraz przemysłowych, gdzie zachowanie tego limitu jest absolutnie konieczne. Dodatkowo, stosowanie odpowiednich środków ochrony, takich jak izolacja i uziemienie, pomaga w utrzymaniu bezpieczeństwa elektrycznego. Z mojego doświadczenia, wiedza o tych wartościach jest podstawą dla każdego fachowca zajmującego się instalacjami elektrycznymi i warto ją mieć na uwadze, szczególnie podczas inspekcji i konserwacji.

Pytanie 28

Który z poniższych sposobów ochrony przed porażeniem elektrycznym jest weryfikowany przez pomiar rezystancji pętli zwarcia w instalacji elektrycznej?

A. Umieszczenie części dostępnych poza zasięgiem ręki
B. Uziemienie ochronne
C. Separacja elektryczna
D. Samoczynne wyłączanie zasilania

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Samoczynne wyłączanie zasilania jest jednym z kluczowych środków ochrony przeciwporażeniowej, który polega na szybkim odłączeniu zasilania w przypadku wykrycia zwarcia lub innego niebezpiecznego stanu w instalacji elektrycznej. Aby ocenić skuteczność tego systemu, przeprowadza się pomiar rezystancji pętli zwarcia, który pozwala określić, czy prąd zwarciowy jest wystarczająco niski, aby automatyczne wyłączniki mogły zareagować. Standardy, takie jak IEC 60364, określają wymagania dotyczące pomiarów rezystancji pętli, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. Praktycznie, jeśli rezystancja pętli zwarcia jest zbyt wysoka, może to oznaczać, że samoczynne wyłączanie zasilania nie zadziała prawidłowo, co może prowadzić do niebezpiecznych sytuacji. Dlatego regularne testowanie i konserwacja instalacji elektrycznych są niezbędne, aby zapewnić ich bezpieczeństwo i sprawność. Warto również zauważyć, że w przypadku braku odpowiednich przeciwwskazań, instalacje elektryczne powinny być projektowane tak, aby ułatwiały pomiar rezystancji pętli, co jest zgodne z najlepszymi praktykami inżynieryjnymi.

Pytanie 29

W zakres inspekcji instalacji elektrycznej nie wchodzi

A. weryfikacja poprawności oznaczeń przewodów neutralnych oraz ochronnych
B. sprawdzenie oznaczeń obwodów i urządzeń zabezpieczających
C. pomiar rezystancji uziemienia
D. ocena dostępu do urządzeń, co umożliwia ich wygodną obsługę oraz eksploatację

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar rezystancji uziemienia to kluczowy element zapewnienia bezpieczeństwa i prawidłowego funkcjonowania instalacji elektrycznych. Uziemienie ma na celu odprowadzenie nadmiaru prądu do ziemi, co chroni przed porażeniem elektrycznym i uszkodzeniem urządzeń. Przykładowo, w instalacjach przemysłowych, gdzie stosowane są maszyny o wysokich mocach, pomiar rezystancji uziemienia jest niezbędny do zapewnienia, że układ uziemiający jest skuteczny. Zgodnie z normą PN-EN 61557-4, rezystancja uziemienia powinna być mniejsza niż 10 Ω, co zapewnia odpowiednią ochronę przed skutkami udarów elektrycznych. Regularne pomiary rezystancji uziemienia pozwalają na wczesne wykrywanie problemów, takich jak korozja elementów uziemiających, co może prowadzić do ich degradacji. W praktyce, takie pomiary powinny być przeprowadzane co najmniej raz w roku lub częściej w przypadku instalacji narażonych na zmienne warunki atmosferyczne. Właściwe utrzymanie systemu uziemiającego jest nie tylko wymogiem prawnym, ale także kluczowym elementem ochrony osób i mienia.

Pytanie 30

Który z wymienionych parametrów można zmierzyć przyrządem przedstawionym na ilustracji?

Ilustracja do pytania
A. Rezystancję uziomu.
B. Impedancję pętli zwarcia.
C. Reaktancję rozproszenia transformatora.
D. Rezystancję izolacji.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to rezystancja uziomu, którą można zmierzyć przy pomocy miernika rezystancji uziemienia, jak przedstawiony na ilustracji. Tego typu przyrząd jest niezbędny do oceny efektywności systemów uziemienia, które są kluczowe dla bezpieczeństwa instalacji elektrycznych oraz ochrony przed przepięciami. Zgodnie z normą PN-IEC 60364, rezystancja uziomu powinna być jak najniższa, aby zapewnić prawidłowe odprowadzanie prądów zwarciowych do ziemi. W praktyce, miernik umożliwia ocenę, czy wartości rezystancji mieszczą się w akceptowalnych granicach, co jest kluczowe dla minimalizacji ryzyka porażenia prądem elektrycznym. Regularne pomiary rezystancji uziomu są zalecane w ramach konserwacji instalacji elektrycznych, a także przed oddaniem do użytku nowo zainstalowanych systemów. Wiedza o tym, jak korzystać z miernika rezystancji uziemienia oraz interpretować wyniki, jest istotna dla każdego elektryka i inżyniera zajmującego się bezpieczeństwem elektrycznym.

Pytanie 31

Którą z funkcji umożliwia układ zasilania silnika elektrycznego przedstawiony na schemacie?

Ilustracja do pytania
A. Pracę ze zmiennym kierunkiem obrotów.
B. Przełączanie uzwojeń z gwiazdy na trójkąt.
C. Rozruch za pomocą rozrusznika rezystorowego.
D. Hamowanie dynamiczne.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Rozruch silnika elektrycznego z użyciem rozrusznika rezystorowego to jedna z popularnych metod w przemyśle. Jak to wygląda w praktyce? No, na schemacie widzimy styczniki K1M, K2M, K3M oraz rezystory R1 i R2, które współpracują, żeby stopniowo podnosić napięcie do silnika M1. Na początku rozruchu te rezystory ograniczają prąd, co zmniejsza ryzyko przeciążenia i udaru. Dzięki temu silnik osiąga pełną prędkość w kontrolowany sposób. Z mojego doświadczenia wiem, że to ważne dla trwałości maszyn. Rozruszniki rezystorowe są zgodne z normami IEC i są dobrym rozwiązaniem, bo ograniczają zakłócenia w sieci energetycznej i zwiększają bezpieczeństwo. Przy dużych mocach, taki układ to wręcz konieczność, by utrzymać integralność elektryczną i mechaniczną urządzenia.

Pytanie 32

Na którym rysunku przedstawiono rozdzielnicę natynkową?

Ilustracja do pytania
A. B.
B. D.
C. A.
D. C.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Rozdzielnica natynkowa, jak wskazuje odpowiedź D, jest konstrukcją zaprojektowaną do montażu na powierzchni ścian, co odróżnia ją od modeli podtynkowych, które są osadzone w murze. W odpowiedzi D widzimy wyraźnie rozdzielnicę z drzwiczkami, co umożliwia dostęp do osprzętu elektrycznego, takiego jak bezpieczniki czy wyłączniki. W praktyce, rozdzielnice natynkowe są często stosowane w budynkach użyteczności publicznej, biurach oraz obiektach przemysłowych, gdzie zapewniają łatwy dostęp do instalacji elektrycznych. Dobrze zaprojektowana rozdzielnica powinna przestrzegać norm bezpieczeństwa, takich jak PN-EN 61439, która reguluje wymagania dotyczące rozdzielnic niskonapięciowych. W kontekście aplikacji, uwagę należy zwrócić na odpowiednie rozmieszczenie urządzeń w rozdzielnicy oraz ich oznakowanie, co wspomaga zarówno wykonanie prac serwisowych, jak i codzienną eksploatację instalacji elektrycznej.

Pytanie 33

Jakie z poniższych działań jest uznawane za czynność konserwacyjną w instalacji elektrycznej?

A. Zmiana rodzaju użytych przewodów
B. Modernizacja rozdzielnicy instalacji elektrycznej
C. Wymiana uszkodzonych źródeł światła
D. Instalacja dodatkowego gniazda elektrycznego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wymiana uszkodzonych źródeł światła to naprawdę ważna sprawa, jeśli chodzi o dbanie o instalację elektryczną. To nie tylko poprawia oświetlenie, co jest kluczowe dla komfortu ludzi, ale także dba o ich bezpieczeństwo. Uszkodzone żarówki czy świetlówki mogą być niebezpieczne, bo mogą prowadzić do pożarów czy porażenia prądem, jeśli ich nie wymienimy na czas. Z tego, co wiem, zgodnie z normami PN-IEC 60364, regularne sprawdzanie i konserwacja, w tym wymiana źródeł światła, powinny się odbywać w ustalonych odstępach czasowych. Dzięki temu wszystko działa sprawnie i bez pieprzenia. Przykładowo, zamiana tradycyjnych żarówek na LEDy nie tylko oszczędza prąd, ale też dłużej działają, a to jest korzystne zarówno dla portfela, jak i dla środowiska.

Pytanie 34

Ile maksymalnie jednofazowych gniazd wtykowych o napięciu 230 V można zainstalować w pomieszczeniach mieszkalnych zasilanych z jednego obwodu?

A. 13 szt.
B. 6 szt.
C. 10 szt.
D. 3 szt.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Maksymalna zalecana liczba jednofazowych gniazd wtykowych o napięciu 230 V w pomieszczeniach mieszkalnych, zasilanych z jednego obwodu, wynosi 10 sztuk. Jest to zgodne z polskimi normami budowlanymi oraz standardami ochrony przeciwpożarowej. W praktyce oznacza to, że na jednym obwodzie elektrycznym możemy bezpiecznie podłączyć do 10 gniazd, co umożliwia równomierne rozłożenie obciążenia elektrycznego. Przy projektowaniu instalacji elektrycznej konieczne jest uwzględnienie nie tylko liczby gniazd, ale także ich przewidywanego obciążenia. W sytuacji, kiedy przez gniazda będą podłączane urządzenia o dużym poborze mocy, jak np. odkurzacze czy grzejniki, warto ograniczyć liczbę gniazd na obwodzie do mniejszej wartości, aby uniknąć przeciążenia. Dla obwodów o większej liczbie gniazd wtykowych można zastosować dodatkowe zabezpieczenia, takie jak wyłączniki różnicowoprądowe, co zapewnia dodatkową ochronę użytkowników. Dobra praktyka obejmuje również regularne sprawdzanie stanu technicznego instalacji oraz wymianę zużytych komponentów, co zwiększa bezpieczeństwo użytkowania.

Pytanie 35

Jaką oprawę oświetleniową pokazano na rysunku?

Ilustracja do pytania
A. Uliczną.
B. Biurową.
C. Punktową.
D. Przenośną.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Oprawa oświetleniowa przedstawiona na rysunku jest klasycznym przykładem oświetlenia ulicznego. Charakteryzuje się ona specyficznym kształtem i montażem, które są dostosowane do oświetlania przestrzeni publicznych, takich jak ulice, parki czy chodniki. W praktyce, oprawy uliczne są projektowane z myślą o maksymalnej efektywności świetlnej oraz odporności na warunki atmosferyczne. Standardy branżowe, takie jak normy PN-EN 13201, określają wymagania dotyczące oświetlenia dróg, co zapewnia bezpieczeństwo użytkowników dróg. W zależności od specyfiki terenu, oprawy te mogą być stosowane z różnymi źródłami światła, w tym LED, co zwiększa ich efektywność energetyczną i żywotność. Dobre praktyki w zakresie instalacji oświetlenia ulicznego uwzględniają także odpowiednie rozmieszczenie opraw, co ma kluczowe znaczenie dla zapewnienia równomiernego oświetlenia i minimalizacji efektu olśnienia dla kierowców i pieszych. Odpowiednia oprawa uliczna nie tylko poprawia widoczność, ale również wpływa na bezpieczeństwo oraz komfort użytkowników dróg.

Pytanie 36

Który typ silnika elektrycznego najczęściej stosuje się w urządzeniach gospodarstwa domowego?

A. Silnik indukcyjny jednofazowy
B. Silnik krokowy
C. Silnik synchroniczny trójfazowy
D. Silnik liniowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Silniki indukcyjne jednofazowe są najczęściej stosowane w urządzeniach gospodarstwa domowego ze względu na ich prostotę konstrukcji, niezawodność oraz stosunkowo niskie koszty produkcji. Jednofazowe silniki indukcyjne działają w oparciu o zasadę indukcji elektromagnetycznej, gdzie prąd zmienny przepływający przez uzwojenie stojana wytwarza pole magnetyczne, które indukuje prąd w wirniku. To z kolei generuje siłę napędową, która wprawia wirnik w ruch obrotowy. Tego typu silniki są powszechnie stosowane w urządzeniach takich jak pralki, lodówki, wentylatory czy miksery. Ich zaletą jest brak szczotek komutatora, co eliminuje problem iskrzenia i konieczność częstej konserwacji. Dzięki swojej prostocie, silniki te charakteryzują się długą żywotnością i są odporne na przeciążenia. Ponadto są stosunkowo ciche i energooszczędne, co czyni je idealnym wyborem do zastosowań domowych. Standardy przemysłowe i dobre praktyki również preferują użycie jednofazowych silników indukcyjnych w kontekście urządzeń gospodarstwa domowego, podkreślając ich efektywność i trwałość.

Pytanie 37

Który z podanych silników elektrycznych ma najbardziej sztywną charakterystykę mechaniczną n = f(M) w trybie pracy stabilnej?

A. Synchroniczny
B. Szeregowy prądu stałego
C. Obcowzbudny prądu stałego
D. Asynchroniczny klatkowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Silnik synchroniczny charakteryzuje się najbardziej sztywną charakterystyką mechaniczną n = f(M) w zakresie pracy stabilnej, co oznacza, że jego prędkość obrotowa jest ściśle związana z częstotliwością zasilania. W praktyce oznacza to, że silniki synchroniczne są idealnym rozwiązaniem w aplikacjach, gdzie wymagana jest precyzyjna kontrola prędkości oraz stabilność obrotów, na przykład w systemach napędowych w dużych maszynach przemysłowych, turbinach wiatrowych, czy w energetyce odnawialnej. Dzięki swojej konstrukcji, silniki te mogą pracować w warunkach, gdzie inne typy silników, jak np. silniki asynchroniczne, mogą wykazywać większe wahania prędkości. W zastosowaniach, gdzie ważne są parametry jakości energii, silniki synchroniczne mogą też przyczynić się do poprawy współczynnika mocy, co jest zgodne z aktualnymi standardami efektywności energetycznej, jak IEC 60034. Ponadto, zastosowanie technologii takich jak falowniki do sterowania silnikami synchronicznymi umożliwia osiąganie jeszcze większej wydajności i elastyczności w działaniu.

Pytanie 38

Na schematach instalacji elektrycznych symbol z rysunku oznacza

Ilustracja do pytania
A. cewkę przekaźnika z opóźnionym odpadaniem.
B. wyzwalanie cieplne.
C. wyzwalanie elektroniczne.
D. cewkę przekaźnika z opóźnionym działaniem.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyzwalanie cieplne, przedstawione na schemacie, jest kluczowym elementem w kontekście zabezpieczeń elektrycznych, które ma na celu ochronę przed przeciążeniem. Zgodnie z normą PN-EN 60617, symbol ten odnosi się do mechanizmu, który działa na zasadzie rozszerzalności cieplnej materiałów. Przykładem zastosowania wyzwalania cieplnego są wyłączniki nadprądowe, które automatycznie odłączają obwód, gdy prąd przekracza określony próg przez zbyt długi czas. Dzięki temu zapobiegają uszkodzeniu urządzeń oraz minimalizują ryzyko pożaru. Oprócz wyłączników nadprądowych, wyzwalanie cieplne stosowane jest również w przekaźnikach termicznych, które mogą być używane w silnikach elektrycznych do monitorowania temperatury i zapobiegania przegrzaniu. Zrozumienie działania tego mechanizmu jest fundamentem dla inżynierów pracujących nad projektowaniem systemów zabezpieczeń elektrycznych, co podkreśla znaczenie znajomości symboliki występującej w dokumentacji technicznej.

Pytanie 39

Na którym rysunku przedstawiono narzędzie niezbędne do formowania oczek na przewodzie instalacyjnym?

Ilustracja do pytania
A. A.
B. B.
C. C.
D. D.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź B jest poprawna, ponieważ szczypce do zdejmowania izolacji, które zobrazowane są w tym rysunku, są kluczowym narzędziem w procesie formowania oczek na przewodach instalacyjnych. Ich główną funkcją jest precyzyjne usunięcie izolacji z końców przewodów bez uszkodzenia rdzenia, co jest niezbędne do uzyskania solidnych połączeń elektrycznych. W praktyce, zastosowanie takich szczypiec minimalizuje ryzyko zwarcia oraz poprawia jakość połączeń, co jest istotne w kontekście bezpieczeństwa instalacji. Przykładowo, w trakcie prac instalacyjnych, stosowanie szczypiec ułatwia nie tylko przygotowanie przewodów do połączenia, ale także pozwala na szybkie i efektywne wykonanie napraw, co jest zgodne z zasadami dobrej praktyki elektrycznej. Warto również zaznaczyć, że zgodnie z normami branżowymi, właściwe formowanie oczek na przewodach znacząco wpływa na trwałość oraz niezawodność instalacji elektrycznych.

Pytanie 40

Podaj rodzaj i miejsce uszkodzenia w trójfazowym silniku indukcyjnym o uzwojeniach połączonych w gwiazdę, jeżeli wyniki pomiarów rezystancji jego uzwojeń przedstawione są w tabeli.

Rezystancja między zaciskamiWartość
U - V20,0 Ω
V - W15,0 Ω
W - U15,0 Ω
A. Zwarcie międzyzwojowe w fazie V
B. Przerwa w uzwojeniu fazy W
C. Zwarcie międzyzwojowe w fazie W
D. Przerwa w uzwojeniu fazy V

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "Zwarcie międzyzwojowe w fazie W" jest prawidłowa, ponieważ analiza wyników pomiarów rezystancji uzwojeń trójfazowego silnika indukcyjnego wskazuje na istotne różnice w wartościach rezystancji, które są kluczowym wskaźnikiem stanu uzwojeń. W przypadku uzwojenia W, wartość rezystancji wynosi 5,0 Ω, co jest znacznie niższe od wartości uzwojeń U i V, które wynoszą odpowiednio 20,0 Ω i 15,0 Ω. Taka różnica wskazuje na wystąpienie zwarcia międzyzwojowego. W praktyce, gdy rezystancja jednego z uzwojeń jest znacznie niższa, oznacza to, że w tym uzwojeniu doszło do nieprawidłowości, która prowadzi do utraty właściwości izolacyjnych. W przypadku silników indukcyjnych, regularne monitorowanie rezystancji uzwojeń jest kluczowe dla wczesnego wykrywania uszkodzeń, co pozwala na zapobieganie poważniejszym awariom. Standardy branżowe, takie jak IEC 60034, podkreślają znaczenie regularnych przeglądów oraz testów, by zapewnić niezawodność i efektywność pracy urządzeń elektrycznych. Dodatkowo, znajomość typowych uszkodzeń, takich jak zwarcia międzyzwojowe, jest niezbędna dla techników w celu szybkiej diagnozy i naprawy silników elektrycznych.