Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 24 grudnia 2025 10:06
  • Data zakończenia: 24 grudnia 2025 10:13

Egzamin niezdany

Wynik: 6/40 punktów (15,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Który z poniższych przypadków prowadzi do nadmiernego iskrzenia na komutatorze w silniku szeregowym?

A. Zbyt wysokie obroty wirnika
B. Przegrzanie uzwojeń stojana
C. Przegrzanie uzwojeń wirnika
D. Zwarcie pomiędzy zwojami wirnika
W przypadku nagrzewania się uzwojeń stojana, choć może to prowadzić do różnych problemów w pracy silnika, nie jest to bezpośrednią przyczyną nadmiernego iskrzenia na komutatorze. Wysokie temperatury mogą prowadzić do degradacji izolacji, co z kolei zwiększa ryzyko zwarcia, ale samo w sobie nagrzewanie nie generuje bezpośrednio iskrzenia. Zjawisko zwarcia pomiędzy zwojami wirnika ma znacznie większy wpływ na to zjawisko. Nagrzewanie się uzwojeń wirnika również nie jest przyczyną iskrzenia, a raczej objawem nieprawidłowego działania silnika, jednak nie generuje ono iskrzenia na komutatorze. Zbyt duże obroty wirnika mogą prowadzić do problemów mechanicznych i niewłaściwego działania komutacji, ale ich wpływ na iskrzenie jest marginalny w porównaniu do zwarcia. W silnikach szeregowych, które charakteryzują się bezpośrednim połączeniem uzwojeń wirnika z obwodem zasilania, nadmierne obroty mogą prowadzić do niestabilności pracy, ale konieczne jest rozróżnienie pomiędzy przyczyną a skutkiem. Typowym błędem myślowym jest zakładanie, że każdy problem z silnikiem musi być związany z jego temperaturą lub prędkością obrotową, podczas gdy kluczowe przyczyny, takie jak zwarcia, mogą być pomijane.

Pytanie 2

W ramce zamieszczono wybrane parametry silnika trójfazowego. Jakie zakresy cewek prądowych i napięciowych watomierzy należy wybrać, aby w układzie Arona zmierzyć moc pobieraną przez silnik zasilany napięciem 3×400 V, 50 Hz i obciążony znamionowo przy połączeniu w gwiazdę?

Silnik 3~   Typ 1E2-90S-4 S1
1,1 kW   3,2/1,8 A   Izol. F
IP55   1420 obr/min   cosφ 0,75
230/400 V   50 Hz
A. In = 2 A, Un = 400 V
B. In = 1 A, Un = 200 V
C. In = 2 A, Un = 200 V
D. In = 1 A, Un = 400 V
Wybór zakresu cewek prądowych i napięciowych watomierza w układzie Arona jest kluczowy dla dokładnych pomiarów mocy silnika trójfazowego. W tym przypadku, znamionowy prąd silnika wynosi 1,8 A, co oznacza, że cecha cewki prądowej powinna być dostosowana do wyższej wartości, aby zminimalizować ryzyko przeciążenia. Dlatego wybór 2 A dla cewek prądowych jest uzasadniony. Co więcej, napięcie znamionowe silnika wynosi 400 V w układzie gwiazda, co odpowiada napięciu międzyfazowemu. Zastosowanie cewki napięciowej o wartości 400 V zapewnia, że pomiar będzie dokonany w odpowiednim zakresie, co jest zgodne z najlepszymi praktykami branżowymi. Takie podejście nie tylko zapewnia precyzyjność, ale również bezpieczeństwo operacyjne, gdyż pozwala na uniknięcie przeciążeń, które mogą prowadzić do uszkodzeń sprzętu. W praktyce, dobór odpowiednich zakresów cewek prądowych i napięciowych jest kluczowy dla prawidłowego monitorowania i zarządzania pracą silników trójfazowych, co jest istotne dla efektywności energetycznej i długowieczności urządzeń. Dobrze dobrany sprzęt pomiarowy może również przyczynić się do zmniejszenia kosztów operacyjnych, co jest istotne w obszarze przemysłowym.

Pytanie 3

W obwodzie gniazd w przedpokoju zainstalowano przewód YDYt 3×2,5 mm2. Podczas wiercenia w ścianie pracownik przypadkowo uszkodził przewód, przecinając dwie jego żyły. Jak należy prawidłowo naprawić powstałą usterkę?

A. Przeciągnąć wyłącznie uszkodzone żyły, zastępując każdą przewodem jednodrutowym.
B. Zdemontować tynk w miejscu uszkodzenia, połączyć przewody, zaizolować taśmą i zatynkować ścianę.
C. Przeciągnąć nowy przewód pomiędzy najbliższymi puszkami, używając pilota.
D. Zdemontować tynk w miejscu uszkodzenia, zainstalować dodatkową puszkę i w niej połączyć żyły.
Poprawna odpowiedź wskazuje na konieczność rozebrania tynku w miejscu uszkodzenia, co pozwala na dostęp do przewodów. Instalacja dodatkowej puszki jest zgodna z normami bezpieczeństwa, ponieważ umożliwia bezpieczne połączenie uszkodzonych żył oraz ewentualne wprowadzenie dodatkowych elementów zabezpieczających. Połączenie żył powinno być wykonane za pomocą odpowiednich złączek, które zapewniają ich trwałość i bezpieczeństwo. Takie rozwiązanie jest zgodne z praktykami branżowymi, które zalecają unikanie izolowania przewodów taśmą w miejscu uszkodzenia, co może prowadzić do ryzyka przepięć lub zwarć. Przykładem zastosowania tej metody może być sytuacja, gdy w ramach modernizacji instalacji elektrycznej, pracownik stwierdza, że przewody zostały uszkodzone, a jednocześnie potrzebuje zainstalować nowe gniazda. Wówczas montaż puszki zapewnia łatwy dostęp do przewodów w przyszłości, co ułatwia konserwację i ewentualne naprawy. Działanie to jest zgodne z zasadami BHP oraz ochroną przed pożarami, co czyni je najlepszym wyborem w tej sytuacji.

Pytanie 4

Zwiększenie liczby kabli umieszczonych w jednej rurze instalacyjnej spowoduje

A. zmniejszenie wartości obliczeniowej rezystancji żył pojedynczego kabla
B. zmniejszenie dopuszczalnego obciążenia prądem długotrwałym jednego kabla
C. zwiększenie dozwolonej wartości spadku napięcia na kablach
D. wydłużenie czasu osiągania granicznej temperatury izolacji kabli
Zrozumienie konsekwencji zwiększenia liczby przewodów w jednej rurze instalacyjnej wymaga znajomości podstawowych zasad dotyczących przewodnictwa elektrycznego oraz zarządzania ciepłem. Wydłużenie czasu osiągania temperatury granicznej izolacji przewodów to pojęcie, które nie ma zastosowania w kontekście większej liczby przewodów w rurze. Zwiększona liczba przewodów prowadzi do szybszego nagrzewania się izolacji, a nie do wydłużenia czasu, co może skutkować jej uszkodzeniem. Podobnie, zmniejszenie wartości obliczeniowej rezystancji żył pojedynczego przewodu nie jest również poprawnym podejściem, ponieważ rezystancja konkretnego przewodu nie ulega zmianie wskutek liczby przewodów w tej samej rurze. Rezystancja żył obliczana jest na podstawie materiałów, z których są wykonane oraz ich przekroju, a nie od ich liczby. Z kolei zwiększenie dopuszczalnej wartości spadku napięcia na przewodach jest całkowicie błędnym założeniem; spadek napięcia wzrasta proporcjonalnie do obciążenia i długości przewodów. Dlatego kluczowe jest zrozumienie, że niepoprawne odpowiedzi wynikają z mylnego postrzegania zjawisk cieplnych oraz zasad obliczeniowych stosowanych w elektryce. Konsekwencje niewłaściwego obciążenia mogą prowadzić do poważnych awarii, co podkreśla konieczność przestrzegania norm oraz zasad planowania instalacji elektrycznych.

Pytanie 5

Przeglądy okresowe instalacji elektrycznej w budynkach mieszkalnych powinny być realizowane co najmniej raz na

A. 4 lata
B. 3 lata
C. 5 lat
D. 1 rok
Badania okresowe mieszkaniowej instalacji elektrycznej powinny być przeprowadzane co pięć lat, co jest zgodne z obowiązującymi przepisami prawa budowlanego oraz normami PN-HD 60364. Regularne kontrole instalacji elektrycznej są kluczowe dla zapewnienia bezpieczeństwa użytkowników oraz prawidłowego funkcjonowania systemu. W trakcie takich badań specjaliści sprawdzają między innymi stan izolacji przewodów, działanie zabezpieczeń oraz ich prawidłowe umiejscowienie. W praktyce oznacza to, że po pięciu latach użytkowania instalacji, warto zlecić jej audyt, aby upewnić się, że nie doszło do degradacji elementów elektrycznych, co mogłoby prowadzić do zwarcia lub pożaru. Dobrą praktyką jest również prowadzenie dokumentacji z przeprowadzonych badań, co ułatwia późniejsze analizy i decyzje dotyczące eksploatacji oraz ewentualnych modernizacji. Osoby wynajmujące mieszkania powinny być świadome, że odpowiedzialność za stan instalacji spoczywa na właścicielu, a regularne przeglądy są nie tylko wyrazem dbałości o bezpieczeństwo, ale również wymaganiem prawnym.

Pytanie 6

Kto jest zobowiązany do opracowania planów regularnych przeglądów oraz konserwacji instalacji elektrycznej w obiekcie mieszkalnym?

A. Organ inspekcji technicznej
B. Użytkownicy mieszkań
C. Właściciel lub zarządca nieruchomości
D. Dostawca energii elektrycznej
Rozważając inne dostępne odpowiedzi, można zauważyć, że przypisanie odpowiedzialności za kontrolę i naprawy instalacji elektrycznej do Urzędów Dozoru Technicznego jest nieprawidłowe, ponieważ ich rola ogranicza się do nadzoru oraz certyfikacji, a nie do sporządzania planów kontroli. Urząd ten zajmuje się jedynie weryfikacją zgodności z przepisami i normami, ale to właściciel lub zarządca budynku ma obowiązek wprowadzenia odpowiednich działań w zakresie konserwacji. Z kolei sugestia, że dostawca energii elektrycznej miałby ponosić odpowiedzialność, jest mylna, gdyż jego zadaniem jest jedynie dostarczenie energii oraz zapewnienie sprawności infrastruktury przesyłowej, ale nie zarządzanie instalacjami w budynkach. Co więcej, idea, że użytkownicy lokali mogliby być odpowiedzialni za planowanie tych działań, jest również błędna. Użytkownicy nie mają dostępu do pełnych informacji o stanie instalacji ani kompetencji do podejmowania decyzji w zakresie ich konserwacji, co może prowadzić do poważnych zagrożeń dla bezpieczeństwa. Właściwe podejście do zarządzania instalacjami elektrycznymi wymaga zrozumienia, że to właściciele lub zarządcy budynków są odpowiedzialni za utrzymanie standardów bezpieczeństwa, a ich brak może skutkować poważnymi konsekwencjami, w tym wypadkami związanymi z porażeniem prądem lub pożarami. Dlatego kluczowe jest, aby właściciele byli świadomi swojej roli i obowiązków w tym zakresie.

Pytanie 7

W jakim celu stosuje się kondensator rozruchowy w silniku, którego schemat przedstawiono na rysunku?

Ilustracja do pytania
A. Zwiększenia mocy silnika.
B. Zmniejszenia sprawności silnika.
C. Zmniejszenia mocy czynnej pobieranej z sieci.
D. Zwiększenia momentu rozruchowego.
Kondensator rozruchowy w silniku jednofazowym odgrywa kluczową rolę w poprawie momentu rozruchowego, co jest istotne w wielu zastosowaniach przemysłowych. Działa on na zasadzie tworzenia przesunięcia fazowego między prądem w uzwojeniu głównym a prądem w uzwojeniu pomocniczym. Dzięki temu silnik uzyskuje lepsze pole obrotowe, co skutkuje zwiększonym momentem obrotowym przy uruchomieniu. Przykładem zastosowania kondensatora rozruchowego są kompresory chłodnicze, które wymagają dużego momentu przy uruchomieniu, zwłaszcza w warunkach wysokiej temperatury. W praktyce, kondensatory te są projektowane zgodnie z normami IEC i NEMA, co zapewnia ich wysoką niezawodność i efektywność. Oprócz poprawy momentu rozruchowego, kondensatory rozruchowe redukują drgania mechaniczne, co przekłada się na dłuższą żywotność urządzenia. Zastosowanie kondensatorów zgodnych z najlepszymi praktykami w branży elektrycznej przyczynia się do optymalizacji wydajności i bezpieczeństwa operacyjnego silników, co jest niezbędne w nowoczesnym przemyśle.

Pytanie 8

W instalacji trójfazowej prąd obciążenia w przewodach fazowych IB = 25 A, a maksymalna obciążalność długotrwała tych przewodów Idd = 30 A. Który z poniższych wyłączników nadprądowych powinien być użyty do ochrony tej instalacji przed działaniem nadmiernego prądu?

A. B32
B. B16
C. B20
D. B25
Zastosowanie wyłącznika B20, B16 czy B32 w tej instalacji będzie niewłaściwe z kilku powodów. Wyłącznik B20, z prądem znamionowym 20 A, nie zaspokoi wymogów obciążenia wynoszącego 25 A. W sytuacjach, gdy prąd obciążenia przekracza wartość znamionową wyłącznika, może dojść do niezamierzonych zadziałań, co prowadzi do częstych i niepotrzebnych wyłączeń systemu. Taki wybór mógłby narazić przewody na przeciążenie, co z kolei zwiększa ryzyko uszkodzeń, a nawet pożaru. Wyłącznik B16, o prądzie znamionowym 16 A, jest jeszcze bardziej niewłaściwy, ponieważ jego wartość jest znacznie niższa niż prąd obciążenia, co prowadzi do permanentnego wyłączenia w normalnych warunkach pracy. Z drugiej strony, wyłącznik B32 mógłby wydawać się odpowiedni, jednak jego zastosowanie w tej konkretnej instalacji nie jest zalecane, gdyż przewyższa on wartość prądu obciążenia, co może prowadzić do sytuacji, w której przewody nie będą odpowiednio chronione przed przeciążeniem, co narusza zasady ochrony instalacji. Właściwy dobór wyłącznika nadprądowego powinien być oparty na analizie rzeczywistego obciążenia oraz normach dotyczących instalacji elektrycznych. Aby zapewnić optymalną ochronę, warto zawsze wybierać wyłącznik, którego wartość znamionowa jest bliska prądowi obciążenia, co pozwala na uniknięcie fałszywych alarmów oraz skutecznie zabezpiecza instalację elektryczną.

Pytanie 9

Jakiego przewodu należy użyć, aby zastąpić uszkodzony kabel zasilający silnik trójfazowy zainstalowany w urządzeniu mobilnym?

A. OP 4x2,5 mm2
B. YLY 3x2,5 mm2
C. SM 3x2,5 mm2
D. YDY 4x2,5 mm2
Odpowiedź OP 4x2,5 mm2 jest prawidłowa, ponieważ ten typ przewodu jest odpowiedni do zasilania silników trójfazowych, zwłaszcza w aplikacjach, gdzie przewód ma być elastyczny i odporny na różne warunki pracy. Przewód OP (Ochronny Przewód) charakteryzuje się podwyższoną odpornością na działanie czynników zewnętrznych, co czyni go idealnym do zastosowań w odbiornikach ruchomych, gdzie przewód może być narażony na zginanie i tarcie. Zastosowanie przewodu o przekroju 4x2,5 mm2 oznacza, że mamy do czynienia z czterema żyłami, co jest typowe dla instalacji trójfazowych, gdzie potrzebne są trzy żyły fazowe i jedna żyła ochronna. Wybór odpowiedniego przewodu jest kluczowy dla zapewnienia bezpieczeństwa i efektywności działania silnika, a także minimalizowania ryzyka awarii. Przewody OP są zgodne z normami PN-EN 60228 oraz PN-EN 50525, co potwierdza ich wysoką jakość i odpowiednie parametry elektryczne w zastosowaniach przemysłowych.

Pytanie 10

W budynkach wielorodzinnych liczniki energii elektrycznej powinny być umieszczone

A. poza lokalami mieszkalnymi wyłącznie w zamkniętych szafkach
B. w piwnicach w otwartych skrzynkach
C. na strychu w otwartych skrzynkach
D. w lokalach mieszkalnych tylko w zamkniętych szafkach
Odpowiedź, że liczniki zużycia energii elektrycznej powinny znajdować się poza lokalami mieszkalnymi wyłącznie w zamkniętych szafkach, jest zgodna z obowiązującymi normami i praktykami w zakresie instalacji elektrycznych w budynkach wielorodzinnych. Taka lokalizacja liczników ma na celu zapewnienie bezpieczeństwa użytkowników oraz ułatwienie prac konserwacyjnych i pomiarowych. Liczniki umieszczone w zamkniętych szafkach ograniczają ryzyko przypadkowego dostępu do urządzeń, co jest istotne w kontekście ochrony przed nieautoryzowanym manipulowaniem oraz potencjalnymi uszkodzeniami. Ponadto, zgodnie z Polskimi Normami PN-IEC 61010, miejsca instalacji liczników powinny być dobrze oznakowane i dostępne tylko dla uprawnionego personelu. Praktycznym przykładem może być zastosowanie szafek z zamkiem, co dodatkowo zwiększa bezpieczeństwo oraz porządek w przestrzeni wspólnej budynku. Takie podejście jest również zgodne z zasadami zarządzania wspólnotami mieszkaniowymi, które dążą do minimalizacji ryzyka związanego z eksploatacją urządzeń elektrycznych.

Pytanie 11

Która z poniższych okoliczności wymaga przeprowadzenia pomiarów kontrolnych w instalacji elektrycznej niskiego napięcia?

A. Rozbudowanie instalacji
B. Zmiana rodzaju źródeł światła w oprawach oświetleniowych
C. Zadziałanie zabezpieczenia przedlicznikowego
D. Zadziałanie wyłącznika różnicowoprądowego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Rozbudowa instalacji elektrycznej niskiego napięcia wiąże się z koniecznością przeprowadzenia pomiarów kontrolnych, aby zapewnić zgodność z obowiązującymi normami oraz bezpieczeństwo użytkowników. Zgodnie z normą PN-IEC 60364, każde zmiany w instalacji, takie jak jej rozbudowa, wymagają weryfikacji parametrów technicznych, jak rezystancja izolacji, ciągłość przewodów ochronnych oraz sprawność urządzeń zabezpieczających. Przykładowo, dodanie nowych obwodów może wpływać na działanie istniejących zabezpieczeń, co w konsekwencji może prowadzić do ich nieprawidłowego funkcjonowania. Dlatego przed oddaniem rozbudowanej instalacji do eksploatacji, konieczne jest przeprowadzenie pomiarów kontrolnych, aby potwierdzić, że instalacja spełnia wymogi bezpieczeństwa i użytkowania. Dodatkowo, takie pomiary mogą pomóc w identyfikacji potencjalnych problemów, które mogą wystąpić w przyszłości, co jest kluczowe dla utrzymania wysokiego standardu bezpieczeństwa.

Pytanie 12

Podczas intensywnych opadów śniegu w jednym z rejonów napowietrznej linii niskiego napięcia zaobserwowano zanik napięcia w jednej fazie. Monterzy wymienili uszkodzony bezpiecznik w stacji transformatorowej na słupie, ale po ponownym uruchomieniu zasilania bezpiecznik natychmiast znowu uległ awarii. Jakie mogą być najprawdopodobniejsze przyczyny tej usterki?

A. Przeciążenie obwodu linii spowodowane dogrzewaniem elektrycznym mieszkań
B. Zawilgocenie izolacji przewodów AFL do odbiorców
C. Zbyt duża asymetria obciążenia odbiornikami u jednego z odbiorców
D. Zwarcie doziemne jednej fazy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zwarcie doziemne jednej fazy jest najprawdopodobniejszą przyczyną opisanego problemu. W przypadku gęstych opadów śniegu, woda może gromadzić się na izolacji przewodów, co prowadzi do obniżenia ich właściwości izolacyjnych. Jeżeli następuje kontakt przewodu fazowego z ziemią lub innym przewodem o potencjale ziemi, tworzy się obwód, przez który może płynąć prąd, co skutkuje zadziałaniem zabezpieczeń, takich jak bezpieczniki. Wymiana uszkodzonego bezpiecznika w tym przypadku nie rozwiązuje problemu, ponieważ zwarcie doziemne nadal występuje. Aby zapobiec takim sytuacjom, ważne jest regularne sprawdzanie stanu technicznego linii oraz ich ochrony przed warunkami atmosferycznymi. W praktyce, stosowanie odpowiednich zabezpieczeń nadprądowych oraz regularne inspekcje mogą znacznie zmniejszyć ryzyko wystąpienia takich awarii. Dobrą praktyką jest również zapewnienie odpowiedniej odległości między przewodami a ziemią oraz stosowanie odpowiednich systemów uziemiających, co zwiększa bezpieczeństwo systemów elektrycznych.

Pytanie 13

Kontrola instalacji elektrycznych w obiektach użyteczności publicznej powinna być przeprowadzana nie rzadziej niż co

A. 4 lata
B. 3 lata
C. 5 lat
D. 2 lata

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wiesz, przeglądy instalacji elektrycznej w budynkach publicznych powinny być robione co 5 lat. To ważne, bo chodzi o bezpieczeństwo ludzi i to, by wszystko działało jak należy. Jak robisz to regularnie, to można szybciej zauważyć różne usterki, takie jak uszkodzone kable czy korozja. Na przykład, w teatrach czy halach sportowych jest mnóstwo ludzi, więc tam warto być szczególnie czujnym, żeby nie było awarii, które mogą być niebezpieczne. Fajnie też mieć dokumentację tych przeglądów, bo widać, co się działo z instalacją przez lata. Ważne, żeby przeglądami zajmowali się fachowcy, którzy potrafią ocenić, co jest do zrobienia. W Polsce można znaleźć przepisy na ten temat w Kodeksie Pracy i normach PN-IEC.

Pytanie 14

Jakie oznaczenie powinna nosić wkładka bezpiecznikowa, którą trzeba zainstalować w celu zabezpieczenia silników oraz urządzeń rozdzielczych?

A. aM
B. gB
C. aL
D. gR

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wkładka bezpiecznikowa oznaczona symbolem aM jest przeznaczona do ochrony silników oraz urządzeń rozdzielczych przed przeciążeniem i zwarciem. Oznaczenie to wskazuje, że bezpiecznik ten ma charakterystykę czasowo-prądową, która jest dostosowana do pracy urządzeń z silnikami, co oznacza, że pozwala na chwilowe przekroczenie dopuszczalnego prądu w momencie rozruchu silnika, co jest niezbędne dla prawidłowego funkcjonowania urządzeń elektrycznych. W praktyce oznacza to, że wkładka aM jest w stanie znieść większy prąd przez krótki czas, co zapobiega niepotrzebnym wyłączeniom w przypadku chwilowych przeciążeń. Takie wkładki są szczególnie zalecane w instalacjach, gdzie silniki startują z dużym momentem, co generuje znaczne obciążenia prądowe. Wdrożenie wkładek aM zgodnie z normami IEC 60269, które określają wymagania dla wkładek bezpiecznikowych, jest dobrą praktyką, zapewniającą bezpieczeństwo oraz niezawodność systemów elektrycznych.

Pytanie 15

Jak wymiana uzwojenia pierwotnego na inne, wykonane z drutów nawojowych o podwójnym przekroju i tej samej liczbie zwojów, wpłynie na działanie transformatora, przy zachowanym uzwojeniu wtórnym?

A. Zwiększy się efektywność transformatora
B. Zredukuje się moc pobierana z transformatora
C. Wzrasta napięcie na końcówkach uzwojenia wtórnego
D. Zmaleje napięcie na końcówkach uzwojenia wtórnego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wymiana uzwojenia pierwotnego na druty o większym przekroju, przy tej samej liczbie zwojów, wpływa korzystnie na sprawność transformatora. Zwiększenie przekroju drutów prowadzi do obniżenia oporu elektrycznego uzwojenia, co w efekcie zmniejsza straty mocy na skutek efektu Joule'a (straty I²R). To oznacza, że przy tej samej wartości prądu, straty ciepła w uzwojeniu pierwotnym będą mniejsze, co przekłada się na wyższą sprawność całego urządzenia. W praktyce, zastosowanie drutów o większym przekroju jest zgodne z zasadami inżynierii, gdzie dąży się do minimalizacji strat energii oraz poprawy efektywności energetycznej urządzeń. W przemyśle energetycznym, efektywność transformatorów jest kluczowa, ponieważ ma bezpośredni wpływ na zużycie energii i koszty operacyjne. Na przykład, w elektrowniach i stacjach transformacyjnych stosuje się takie rozwiązania, aby zminimalizować straty energii i poprawić parametry pracy urządzeń.

Pytanie 16

Aby zapewnić ochronę przeciwporażeniową uzupełniającą do podstawowej, obwody zasilające gniazda wtyczkowe z prądem do 32 A powinny być chronione wyłącznikiem RCD o znamionowym prądzie różnicowym

A. 100 mA
B. 500 mA
C. 1 000 mA
D. 30 mA

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór wyłącznika różnicowoprądowego (RCD) o znamionowym prądzie różnicowym 30 mA jest zgodny z aktualnymi normami bezpieczeństwa, takimi jak PN-EN 61008, które rekomendują jego zastosowanie w instalacjach zasilających obwody gniazd wtyczkowych, szczególnie w przypadku narażenia na porażenie prądem. Wyłącznik RCD 30 mA skutecznie minimalizuje ryzyko porażenia prądem przez szybkie odłączenie zasilania w przypadku wykrycia różnicy prądów, co jest istotne w obwodach o napięciu 230 V, gdzie ochrona osób jest priorytetem. Przykładem zastosowania wyłączników o tym znamionowym prądzie różnicowym jest instalacja w pomieszczeniach, gdzie wykorzystuje się urządzenia elektryczne w pobliżu wody, takie jak kuchnie czy łazienki. W takich miejscach, zgodnie z normami, zastosowanie RCD 30 mA jest koniecznością, co znacząco zwiększa bezpieczeństwo użytkowników i ogranicza ryzyko wypadków. Regularna kontrola i testowanie RCD zapewnia jego prawidłowe działanie oraz podnosi świadomość użytkowników na temat znaczenia ochrony przeciwporażeniowej w instalacjach elektrycznych.

Pytanie 17

Korzystając z tabeli, w której zamieszczono dopuszczalne wartości obciążalności prądowej długotrwałej, dobierz przekrój przewodów jednożyłowych typu DY do wykonania trójfazowego obwodu instalacji mieszkaniowej ułożonej w rurach. Obwód ma zasilać odbiorniki energii elektrycznej o łącznej mocy znamionowej 16 kVA przy napięciu znamionowym 400 V.

Przekrój przewodu mm²Jeden lub kilka przewodów 1-żyłowych ułożonych w rurzePrzewody płaszczowe, rurowe, wtynkowePrzewody gołe
Żyła Cu, AŻyła Al., AŻyła Cu, AŻyła Al, AŻyła Cu, AŻyła Al, A
A.1,011-15-19-
B.1,515-18-24-
C.2,5201526203226
D.4,0252034274233
A. B.
B. C.
C. A.
D. D.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź D jest poprawna, ponieważ została oparta na właściwych obliczeniach. Aby dobrać odpowiedni przekrój przewodów jednożyłowych typu DY, należy najpierw obliczyć prąd obciążenia obwodu trójfazowego. Moc znamionowa wynosząca 16 kVA przy napięciu 400 V prowadzi do obliczenia prądu obciążenia jako 16 kVA / (√3 * 400 V) co daje około 23.09 A. Z tabeli obciążalności prądowej wynika, że przewód o przekroju 4 mm² ma obciążalność 25 A, co przewyższa wymaganą wartość prądu. W praktyce, stosowanie odpowiednich przekrojów przewodów jest kluczowe dla zapewnienia bezpieczeństwa i niezawodności instalacji elektrycznych. Przewody o niewłaściwym przekroju mogą się przegrzewać, co może prowadzić do uszkodzeń, a nawet pożaru. W zainstalowanych systemach elektrycznych zaleca się także stosowanie kabelków o zapasie mocy, co pozwala na przyszłe rozbudowy instalacji oraz może pomóc w uniknięciu potencjalnych problemów.

Pytanie 18

Jakie zjawisko można zaobserwować przy cewce indukcyjnej w przypadku zwarcia międzyzwojowego?

A. wzrostu rezystancji cewki
B. spadku indukcyjności cewki
C. zmniejszenia natężenia prądu płynącego przez cewkę
D. wzrostu reaktancji cewki

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zwarcie międzyzwojowe w cewce indukcyjnej objawia się przede wszystkim zmniejszeniem jej indukcyjności. Indukcyjność cewki jest miarą zdolności do magazynowania energii w polu magnetycznym i jest ściśle związana z liczbą zwojów, ich rozmieszczeniem oraz właściwościami materiałów rdzenia. Kiedy zachodzi zwarcie, część zwojów staje się praktycznie połączona ze sobą, co prowadzi do redukcji efektywnej liczby zwojów, a w konsekwencji do obniżenia indukcyjności. W praktyce, zmniejszona indukcyjność może prowadzić do nieprawidłowego działania obwodów, na przykład w aplikacjach takich jak zasilacze impulsowe czy filtry LC, gdzie wymagane są określone parametry indukcyjności. Przykładem może być zasilacz, w którym spadek indukcyjności cewki może prowadzić do wzrostu prądu, co z kolei może skutkować przegrzewaniem się komponentów lub ich uszkodzeniem. W branży elektroenergetycznej i automatyce, regularne testowanie indukcyjności cewki jest kluczowe w utrzymaniu wydajności urządzeń i zapobieganiu awariom.

Pytanie 19

Obwody zasilające gniazda wtyczkowe o maksymalnym prądzie 32 A powinny być chronione przez wyłącznik RCD o prądzie różnicowym nominalnym

A. 100 mA
B. 500 mA
C. 30 mA
D. 1 000 mA

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłącznik RCD o znamionowym prądzie różnicowym 30 mA jest zalecany do ochrony osób przed porażeniem elektrycznym, szczególnie w obwodach zasilających gniazda wtyczkowe, gdzie może wystąpić kontakt z wodą lub innymi substancjami przewodzącymi. Zgodnie z normami, takimi jak PN-EN 61008-1, wyłączniki te są projektowane w celu wykrywania niewielkich różnic prądowych, które mogą wskazywać na niebezpieczne sytuacje. Przykładowo, w łazienkach, kuchniach czy miejscach narażonych na wilgoć, użycie RCD 30 mA znacząco zwiększa bezpieczeństwo użytkowników, minimalizując ryzyko porażenia prądem. Dodatkowo, warto zauważyć, że wyłączniki o wyższych wartościach prądów różnicowych, jak 100 mA czy 500 mA, są zazwyczaj stosowane w obwodach ochrony przeciwpożarowej, a nie w zastosowaniach bezpośrednio związanych z użytkownikami, co czyni 30 mA optymalnym wyborem w kontekście ochrony osób.

Pytanie 20

Poniżej przedstawiono wybrane parametry silnika trójfazowego. Jakie zakresy cewek prądowych oraz napięciowych watomierzy powinny być dobrane, aby w układzie Arona zmierzyć moc pobieraną przez silnik zasilany napięciem 3×400 V, 50 Hz i pracujący z obciążeniem znamionowym przy połączeniu w gwiazdę?

Silnik 3~ Typ IE2-90S-4 S1
1,1 kW 3,2/1,8 A Izol. F
IP 55 1420 obr/min cosφ 0,75
230/400 V 50 Hz

A. In = 2 A, Un = 400 V
B. In = 1 A, Un = 400 V
C. In = 1 A, Un = 200 V
D. In = 2 A, Un = 200 V

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź In = 2 A, Un = 400 V jest poprawna, ponieważ silnik zasilany jest napięciem 3×400 V i ma znamionowy prąd 3,2 A. Przy połączeniu w gwiazdę prąd w każdej fazie silnika wynosi Iz = 3,2 A, co oznacza, że wybierając zakres prądowy, wartość 2 A jest najbardziej odpowiednia, gdyż w praktyce przy pomiarach można zastosować urządzenia o wyższych zakresach. W przypadku napięcia, wybór 400 V jest również adekwatny, ponieważ to napięcie odpowiada zasilaniu silnika. Warto zwrócić uwagę, że stosowanie watomierzy z zakresami dostosowanymi do rzeczywistych parametrów pracy urządzeń jest kluczowe dla uzyskania dokładnych wyników pomiarów. Przykładem zastosowania takiej konfiguracji może być monitorowanie efektywności energetycznej silników w przemyśle, co pozwala na optymalizację zużycia energii oraz minimalizację strat. Dobrą praktyką w takich zastosowaniach jest również regularne kalibrowanie sprzętu pomiarowego oraz stosowanie urządzeń zgodnych z normami IEC 61010, co zapewnia bezpieczeństwo oraz dokładność pomiarów.

Pytanie 21

Kto jest zobowiązany do utrzymania odpowiedniego stanu technicznego układów pomiarowych i rozliczeniowych energii elektrycznej w biurowcu?

A. Właściciel obiektu
B. Producent energii elektrycznej
C. Zarządca obiektu
D. Dostawca energii elektrycznej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Dostawca energii elektrycznej ma obowiązek zapewnić należyty stan techniczny układów pomiarowo-rozliczeniowych energii elektrycznej. Oznacza to, że odpowiedzialność za utrzymanie tych układów w dobrym stanie spoczywa na dostawcy, który ma świadomość, że niesprawne urządzenia mogą powodować błędne pomiary, co w efekcie wpływa na rozliczenia finansowe z odbiorcami. Przykładem może być konieczność regularnych przeglądów i kalibracji liczników, aby zapewnić ich prawidłowe działanie. Zgodnie z normami PN-EN 62052-11 oraz PN-EN 62053-21, dostawcy energii są zobowiązani do przestrzegania określonych standardów jakości, co przekłada się na rzetelność pomiarów. Ważne jest, aby odbiorcy byli świadomi, że to dostawca energii jest odpowiedzialny za wszelkie aspekty związane z technicznym stanem układów pomiarowych, co wpływa na przejrzystość i zaufanie w relacjach z klientami.

Pytanie 22

Który z wymienionych czynników dotyczących przewodów nie wpływa na wartość spadku napięcia w systemie elektrycznym?

A. Typ materiału żyły
B. Przekrój żył
C. Typ materiału izolacyjnego
D. Długość przewodu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Rodzaj materiału izolacji nie ma wpływu na spadek napięcia w przewodach elektrycznych, ponieważ spadek napięcia jest ściśle związany z oporem żyły przewodowej, jej długością oraz przekrojem. Opór elektryczny przewodu jest obliczany na podstawie materiału, z którego wykonana jest żyła, oraz jej wymiarów. Izolacja przewodu ma na celu zapewnienie bezpieczeństwa, ochrony przed uszkodzeniami i minimalizacji strat energii, ale sama w sobie nie wpływa na opór elektryczny. Przykładowo, w instalacjach domowych wykorzystywane są przewody miedziane o odpowiednich przekrojach, co zapewnia minimalny spadek napięcia. Standardy takie jak PN-IEC 60228 oraz PN-EN 50525 precyzują wymagania dotyczące przewodów, skupiając się na ich właściwościach elektrycznych, a nie na materiale izolacyjnym. Ważne jest, aby inżynierowie i elektrycy zdawali sobie sprawę, że odpowiednio dobrane przewody mogą znacznie zwiększyć efektywność energetyczną instalacji elektrycznych.

Pytanie 23

Kontrolę instalacji elektrycznej, znajdującej się w pomieszczeniach o wysokiej wilgotności (75÷100%), w zakresie efektywności ochrony przed porażeniem elektrycznym należy przeprowadzać co najmniej raz na

A. 3 lata
B. 1 rok
C. 4 lata
D. 2 lata

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Instalacje elektryczne w pomieszczeniach wilgotnych, takich jak łazienki czy piwnice, wymagają szczególnej uwagi w kontekście ochrony przeciwporażeniowej. Wilgotność powietrza w takich miejscach może prowadzić do zwiększonego ryzyka porażenia prądem, dlatego też zgodnie z obowiązującymi normami i zaleceniami, takie instalacje powinny być poddawane kontroli co najmniej raz w roku. Regularne przeglądy pozwalają na wczesne wykrywanie potencjalnych usterek, takich jak uszkodzenia izolacji, niewłaściwe zabezpieczenia czy korozja elementów instalacji. Przykładem może być kontrola stanu gniazdek elektrycznych, które w miejscach o wysokiej wilgotności narażone są na działanie wody, co może prowadzić do zwarć. Warto również zwrócić uwagę na zastosowanie odpowiednich zabezpieczeń, takich jak różnicowoprądowe wyłączniki zabezpieczające (RCD), które mogą istotnie zwiększyć poziom bezpieczeństwa. Przestrzeganie tych zasad jest zgodne z normami, takimi jak PN-IEC 60364, które określają wymagania dotyczące instalacji elektrycznych w miejscach narażonych na wilgoć.

Pytanie 24

Która z podanych czynności nie zalicza się do weryfikacji stanu technicznego podczas przeglądu układu napędowego z energoelektronicznym przekształtnikiem?

A. Pomiar natężenia oświetlenia na stanowisku obsługi układu napędowego
B. Sprawdzenie jakości zabezpieczeń nadprądowych i zmiennozwarciowych
C. Weryfikacja połączeń stykowych
D. Ocena czystości filtrów powietrza chłodzącego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Sprawdzenie oświetlenia na stanowisku obsługi układu napędowego nie jest tak naprawdę częścią ogólnej oceny stanu technicznego tego układu, szczególnie jeśli chodzi o przekształtniki energoelektroniczne. Większość przeglądów skupia się na tym, czy wszystkie elementy mechaniczne i elektryczne są w porządku. To znaczy, trzeba porządnie sprawdzić połączenia stykowe, upewnić się, że filtry powietrza chłodzącego są czyste, a także kontrolować zabezpieczenia nadprądowe i zmiennozwarciowe. Oświetlenie jest ważne dla bezpieczeństwa ludzi pracujących przy tych urządzeniach, ale nie ma bezpośredniego wpływu na to, jak wydajnie układ działa. Na przykład, jeśli mówimy o przekształtnikach, kluczowe jest zapewnienie właściwego chłodzenia, co możemy kontrolować poprzez te filtry powietrza. Dobre połączenia stykowe i odpowiednie zabezpieczenia są także bardzo ważne, żeby uniknąć awarii. Warto pamiętać, że istnieją normy, jak IEC czy ISO, które podkreślają, jak istotne są regularne przeglądy komponentów elektrycznych dla bezpieczeństwa w pracy.

Pytanie 25

Jak często powinny być przeprowadzane okresowe kontrole użytkowe instalacji elektrycznej w budynku jednorodzinnym, minimalnie raz w czasie?

A. 4 lata
B. 5 lat
C. 8 lat
D. 6 lat

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Okresowe badania eksploatacyjne sieci elektrycznej w domach jednorodzinnych są kluczowym elementem zapewnienia ich bezpieczeństwa i sprawności. Zgodnie z obowiązującymi normami, szczególnie z rozporządzeniem Ministra Infrastruktury oraz normami PN-IEC 60364 i PN-EN 61010, przeglądy te powinny być przeprowadzane co 5 lat. W praktyce, regularne kontrole umożliwiają wczesne wykrywanie potencjalnych usterek, takich jak uszkodzenia izolacji, niewłaściwe połączenia czy degradacja elementów systemu elektrycznego. Na przykład, w przypadku starych instalacji, działanie na granicy normy może prowadzić do przegrzewania się przewodów, co stwarza ryzyko pożaru. Dlatego ważne jest, aby użytkownicy domów jednorodzinnych byli świadomi tego obowiązku i zapewniali odpowiednie przeglądy w ustalonych interwałach. Dodatkowo, w miarę starzejących się instalacji, może być konieczne zwiększenie częstotliwości badań, co podkreśla znaczenie odpowiedzialnego zarządzania systemem elektrycznym w domu.

Pytanie 26

Dla urządzenia zasilanego trójfazową instalacją elektryczną o napięciu nominalnym 400 V maksymalny pobór mocy wynosi 13 kW. Określ minimalną wartość prądu znamionowego zabezpieczenia przedlicznikowego, przyjmując rezystancyjny charakter odbiorników i pomijając problem selektywności zabezpieczeń?

A. 16 A
B. 25 A
C. 20 A
D. 10 A

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
W przypadku obiektu zasilanego instalacją elektryczną trójfazową o napięciu znamionowym 400 V, aby obliczyć minimalną wartość prądu znamionowego zabezpieczenia przedlicznikowego, należy skorzystać z zależności między mocą, napięciem a prądem. Znamionowa moc wynosząca 13 kW (13 000 W) w połączeniu z napięciem 400 V umożliwia obliczenie prądu za pomocą wzoru: P = √3 * U * I, gdzie P to moc, U to napięcie, a I to prąd. Przekształcając wzór, otrzymujemy: I = P / (√3 * U). Podstawiając dane: I = 13000 / (√3 * 400) ≈ 18,7 A. W praktyce dobieramy zabezpieczenie na wartość wyższą, aby zapewnić odpowiedni margines. Z tego powodu wybrana wartość 20 A jest odpowiednia, zgodna z dobrymi praktykami doboru zabezpieczeń, które powinny mieć również margines na ewentualne przeciążenia. Zastosowanie zabezpieczeń o wartości minimalnej 20 A zapewnia lepszą ochronę przed uszkodzeniem instalacji oraz zmniejsza ryzyko wyzwolenia zabezpieczeń podczas normalnej pracy urządzeń. Warto także pamiętać o konieczności przestrzegania norm PN-IEC 60364, które stanowią wytyczne dotyczące projektowania i wykonania instalacji elektrycznych.

Pytanie 27

Należy kontrolować instalację elektryczną w obiektach o wysokiej wilgotności (75-100%) pod kątem efektywności ochrony przed porażeniem nie rzadziej niż co

A. 2 lata
B. 4 lata
C. 3 lata
D. 1 rok

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Sprawdzenie instalacji elektrycznej przynajmniej raz do roku w wilgotnych pomieszczeniach to naprawdę ważna sprawa. Jest to zgodne z zasadami bezpieczeństwa i ochrony przed porażeniem prądem. Jeśli wilgotność w pomieszczeniu wynosi od 75% do 100%, ryzyko porażenia wzrasta, więc warto, żebyśmy zajmowali się tym regularniej. Dobrze jest przeprowadzać inspekcje urządzeń i instalacji, żeby upewnić się, że nic nie zagraża bezpieczeństwu. Do takiej kontroli należy sprawdzić stan przewodów, działanie wyłączników różnicowoprądowych oraz ogólny stan instalacji. Na przykład, w łazience, gdzie wilgotność jest wysoka, regularne kontrole oświetlenia są kluczowe. Dzięki odpowiednim testom i konserwacji można uniknąć niebezpiecznych sytuacji. Warto też pamiętać o normie PN-EN 61140, która wskazuje na potrzebę regularnych przeglądów w takich warunkach.

Pytanie 28

Jakie będą konsekwencje zasilenia silnika asynchronicznego, którego znamionowa częstotliwość napięcia stojana wynosi 50 Hz, z sieci o częstotliwości 60 Hz?

A. Zwiększenie prędkości obrotowej wirnika silnika
B. Uszkodzenie wirnika silnika
C. Zmniejszenie prędkości obrotowej wirnika silnika
D. Nawrót wirnika silnika

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zwiększenie prędkości obrotowej wirnika silnika asynchronicznego zasilanego napięciem o częstotliwości 60 Hz w porównaniu do znamionowej częstotliwości 50 Hz jest wynikiem zjawiska zwanego poślizgiem. W przypadku silników asynchronicznych prędkość obrotowa wirnika jest zawsze niższa od prędkości synchronicznej, która zależy od częstotliwości zasilania oraz liczby par biegunów. Wzór na prędkość synchroniczną jest następujący: n_s = (120 * f) / P, gdzie n_s to prędkość synchroniczna w obrotach na minutę (RPM), f to częstotliwość zasilania w hercach, a P to liczba par biegunów. W przypadku zasilania 60 Hz, prędkość synchroniczna wzrośnie, co skutkuje wzrostem prędkości obrotowej wirnika. Praktycznie, dla silnika z dwiema parami biegunów zasilanego z sieci 50 Hz, prędkość będzie wynosić 1200 RPM, natomiast przy 60 Hz wzrośnie do 1440 RPM. Takie zjawisko może być wykorzystywane w aplikacjach, gdzie wymagana jest większa prędkość obrotowa, jednak należy pamiętać o możliwych konsekwencjach, takich jak zwiększone straty cieplne i ryzyko uszkodzenia silnika. W przemyśle standardem jest dostosowywanie zasilania do znamionowych parametrów silnika w celu zapewnienia jego długowieczności i efektywności.

Pytanie 29

Jakie z wymienionych powodów wpływa na zmniejszenie prędkości obrotowej trójfazowego silnika klatkowego w trakcie jego pracy?

A. Wzrost wartości napięcia zasilającego.
B. Zmniejszenie obciążenia silnika.
C. Przerwa w zasilaniu jednej z faz.
D. Zwarcie pierścieni ślizgowych.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przerwa w zasilaniu jednej fazy w trójfazowym silniku klatkowym prowadzi do poważnych zaburzeń w jego pracy. Silniki te są zaprojektowane do pracy w układzie trójfazowym, co oznacza, że ​​każda faza zasilania przyczynia się do generowania pola magnetycznego o określonym kącie fazowym. Gdy jedna z faz zostaje odcięta, silnik zaczyna działać na zasadzie silnika jednofazowego, co prowadzi do spadku momentu obrotowego i prędkości obrotowej. W praktyce może to doprowadzić do przegrzania silnika, a w konsekwencji do uszkodzenia uzwojeń. Przykładem zastosowania tej wiedzy jest konieczność monitorowania jakości zasilania w zakładach przemysłowych, gdzie stosuje się urządzenia pomiarowe do identyfikacji przerw w zasilaniu, co pozwala zapobiegać awariom i minimalizować przestoje. W branży elektromaszynowej stosowanie rozwiązań takich jak zabezpieczenia przed przeciążeniem i monitorowanie fazy jest standardem, który wspiera efektywność operacyjną i bezpieczeństwo urządzeń.

Pytanie 30

Jaki parametr silnika elektrycznego można zmierzyć mostkiem tensometrycznym, którego schemat ideowy zamieszczono na rysunku?

Ilustracja do pytania
A. Moment obrotowy.
B. Temperaturę uzwojeń.
C. Położenie kątowe wału.
D. Prędkość obrotową.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Mostek tensometryczny jest efektywnym narzędziem do pomiaru momentu obrotowego, dzięki swojej zdolności do rejestrowania deformacji mechanicznych. Kiedy moment obrotowy działa na wał silnika elektrycznego, powoduje on odkształcenie materiału, w którym zainstalowane są czujniki tensometryczne. Te odkształcenia są proporcjonalne do przyłożonego momentu, co umożliwia precyzyjny pomiar. W praktyce, mostki tensometryczne są szeroko stosowane w inżynierii do monitorowania wydajności silników, co ma kluczowe znaczenie w aplikacjach wymagających optymalizacji mocy i efektywności. Korzystając z danych uzyskanych z mostków tensometrycznych, inżynierowie mogą dostosować parametry pracy silników, co prowadzi do zwiększenia ich wydajności oraz żywotności. Stosując te technologie, przestrzegane są normy branżowe, takie jak ISO 376, co zapewnia wiarygodność i dokładność pomiarów. Warto również zauważyć, że pomiar momentu obrotowego jest istotny w kontekście zapewnienia bezpieczeństwa operacyjnego urządzeń mechanicznych, co ma na celu zapobieganie awariom i zwiększenie niezawodności systemów mechanicznych.

Pytanie 31

Jaką wkładkę topikową należy zastosować zamiast przepalonej wkładki oznaczonej WTS 10A, aby nie zagrażać działaniu ochrony przeciwporażeniowej w przypadku uszkodzenia?

A. WTS o prądzie 10 A
B. WTZ o prądzie 10 A
C. WTS o wyższym prądzie znamionowym
D. WTZ o wyższym prądzie znamionowym

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór wkładki topikowej WTS o prądzie 10 A jest prawidłowy, ponieważ ta wkładka jest zaprojektowana do użycia w obwodach chronionych przez zabezpieczenia przeciwporażeniowe. Wkładki typu WTS, czyli wkładki szybkie, zapewniają skuteczną ochronę przed zwarciami i przeciążeniami, a ich zastosowanie w obwodach z zabezpieczeniami różnicowymi jest zgodne z wymaganiami normy PN-EN 60947-3. Utrzymanie tego samego prądu znamionowego (10 A) jest kluczowe, aby nie zakłócić działania istniejących zabezpieczeń. W przypadku zmniejszenia prądu znamionowego, może to prowadzić do nieprzewidywalnych wyłączeń, a zwiększenie prądu może narazić układ na ryzyko uszkodzenia. W praktyce, jeśli w danym obwodzie zastosujemy wkładkę o innym prądzie znamionowym, może to prowadzić do nieprawidłowego działania urządzeń, a w najgorszym przypadku do utraty ochrony przeciwporażeniowej. Dlatego kluczowe jest, aby dobierać wkładki zgodnie z ich oznaczeniem oraz wymaganiami projektu elektrycznego.

Pytanie 32

Która z podanych okoliczności powoduje obniżenie prędkości obrotowej silnika trójfazowego z pierścieniami w trakcie jego działania?

A. Zmniejszenie obciążenia silnika
B. Zwiększenie napięcia zasilającego
C. Zwarcie pierścieni ślizgowych
D. Przerwa w zasilaniu jednej fazy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przerwa w zasilaniu jednej fazy w trójfazowym silniku pierścieniowym powoduje, że silnik zaczyna pracować w trybie niesymetrycznym. W takim przypadku moment obrotowy generowany przez silnik ulega znacznemu osłabieniu, co prowadzi do zmniejszenia prędkości obrotowej. Silniki te są zaprojektowane do pracy z równomiernym rozkładem napięcia w wszystkich trzech fazach. Kiedy jedna z faz jest przerwana, silnik nie jest w stanie uzyskać maksymalnej mocy, co skutkuje spadkiem prędkości obrotowej. W praktyce, może to prowadzić do przegrzewania się silnika, a w skrajnych przypadkach nawet do uszkodzenia wirnika lub stojana. Z tego powodu, monitorowanie zasilania i jego stabilności jest kluczowe w zastosowaniach przemysłowych. W branżowych standardach, takich jak IEC 60034, zwraca się uwagę na konieczność stosowania urządzeń zabezpieczających przed utratą jednego z faz, aby zapewnić ciągłość pracy silników oraz minimalizować ryzyko awarii.

Pytanie 33

Które z wymienionych urządzeń służy do ochrony przewodów w systemach elektrycznych przed skutkami zwarć?

A. Odłącznik
B. Przekaźnik termiczny
C. Wyłącznik różnicowoprądowy
D. Bezpiecznik

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Bezpiecznik to kluczowe urządzenie w instalacjach elektrycznych, które chroni obwody przed skutkami zwarć oraz przepięć. Jego główną funkcją jest przerwanie obwodu w momencie, gdy natężenie prądu przekroczy ustaloną wartość, co zapobiega uszkodzeniu urządzeń oraz minimalizuje ryzyko pożaru. W praktyce, bezpieczniki są szeroko stosowane w domowych i przemysłowych instalacjach elektrycznych oraz są zgodne z normami, takimi jak PN-EN 60947-2. Standardowe zastosowanie bezpiecznika polega na jego instalacji w rozdzielniach elektrycznych, gdzie zapewnia on ochronę dla poszczególnych obwodów. Warto również zwrócić uwagę na różne typy bezpieczników, w tym bezpieczniki topikowe i automatyczne, które mają różne zastosowania w zależności od charakterystyki obciążenia. Dobre praktyki obejmują regularne kontrole i wymianę bezpieczników, aby zagwarantować ich skuteczność oraz niezawodność działania w sytuacjach awaryjnych.

Pytanie 34

Jakie jest minimalne zabezpieczenie, jakie powinien posiadać osprzęt instalacyjny przeznaczony do montażu instalacji elektrycznej w pomieszczeniach charakteryzujących się częstym występowaniem podwyższonej wilgotności oraz pylenia?

A. IP 66
B. IP 44
C. IP 00
D. IP 22

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź IP 44 to dobry wybór. Oznacza, że osprzęt jest odporny na ciało stałe, które jest większe niż 1 mm, i nie przepuszcza wody. To sprawia, że nadaje się do miejsc, gdzie jest więcej wilgoci, jak w łazienkach czy kuchniach. W praktyce oznacza to, że możesz używać tego osprzętu tam, gdzie jest para wodna, kurz lub inne zanieczyszczenia. W pomieszczeniach przemysłowych, gdzie produkuje się dużo pyłu, IP 44 też się sprawdzi. Nasze normy, czyli IEC 60529, mówią, że IP 44 to dobry poziom ochrony, co jest istotne, żeby było bezpiecznie i trwało to dłużej. Ale jeśli potrzebujesz czegoś lepszego, to niektóre sytuacje mogą wymagać wyższych stopni ochrony, jak IP 54 czy IP 66. Jednak zazwyczaj IP 44 da radę w standardowych warunkach.

Pytanie 35

Na podstawie informacji przedstawionych na zamieszczonym na rysunku ekranie urządzenia pomiarowego oceń stan techniczny wyłącznika różnicowoprądowego 40 A/0,03 A.

Ilustracja do pytania
A. Aparat jest sprawny, miernik ustawiono w nieodpowiedni dla badanego RCD tryb.
B. Aparat jest uszkodzony, niewłaściwa wartość prądu zadziałania.
C. Aparat jest sprawny, właściwa wartość prądu zadziałania.
D. Aparat jest uszkodzony, zbyt duża wartość rezystancji przewodu ochronnego RE.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź, że aparat jest uszkodzony z powodu niewłaściwej wartości prądu zadziałania, jest prawidłowa, ponieważ wyświetlacz urządzenia pomiarowego pokazuje wartość 9.0 mA, co jest znacznie wyższe niż dopuszczalne maksimum 30 mA dla wyłącznika różnicowoprądowego o parametrach 40 A/0,03 A. Normy PN-EN 61008 oraz PN-EN 61009 precyzują, że wyłączniki różnicowoprądowe powinny zadziałać w przedziale 15 mA do 30 mA w celu skutecznej ochrony przed porażeniem prądem elektrycznym. Niewłaściwe działanie wyłącznika może prowadzić do poważnych zagrożeń, w tym do porażenia prądem lub pożaru. W praktyce, regularne testowanie wyłączników różnicowoprądowych jest kluczowe dla zapewnienia bezpieczeństwa instalacji elektrycznych, a brak ich odpowiedniego działania może być sygnałem, że urządzenie wymaga wymiany. Takie testy powinny być przeprowadzane zgodnie z zaleceniami producentów oraz obowiązującymi przepisami, a wyniki powinny być dokumentowane, co stanowi istotny element zarządzania bezpieczeństwem w obiektach budowlanych.

Pytanie 36

Który z przedstawionych na rysunkach przewodów przeznaczony jest do wykonywania instalacji mieszkaniowej wtynkowej?

Ilustracja do pytania
A. D.
B. B.
C. A.
D. C.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przewód z rysunku C sprawdzi się do instalacji elektrycznej w mieszkaniu. Jest zrobiony z dobrych materiałów i ma odpowiednią izolację z tworzyw sztucznych. Dzięki temu jest odporny na różne warunki atmosferyczne i uszkodzenia. Używanie takich przewodów w mieszkaniach jest zgodne z normami, takimi jak PN-IEC 60364, które mówią o bezpieczeństwie i ochronie przed prądem. W praktyce często można je spotkać przy gniazdkach i oświetleniu, bo są naprawdę niezbędne w każdej instalacji elektrycznej. Wybór odpowiedniego przewodu to kluczowa sprawa dla bezpieczeństwa. Powinny być też dobrze oznakowane i spełniać wymogi dotyczące przepływu prądu, co ma znaczenie dla efektywności energetycznej i zmniejsza ryzyko awarii.

Pytanie 37

Do czego służy przyrząd przedstawiony na rysunku?

Ilustracja do pytania
A. Do lokalizacji uszkodzeń linii kablowej.
B. Do pomiarów rezystancji uziemienia uziomu.
C. Do pomiarów rezystywności gruntu.
D. Do sprawdzania ciągłości przewodów.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Lokalizator uszkodzeń linii kablowej, przedstawiony na rysunku, jest kluczowym narzędziem w dziedzinie elektroenergetyki oraz telekomunikacji. Umożliwia on szybkie i precyzyjne zidentyfikowanie miejsc, w których doszło do uszkodzenia kabla, co jest niezwykle istotne w kontekście minimalizacji przestojów oraz obniżenia kosztów napraw. W praktyce, zastosowanie lokalizatora pozwala na wykrycie takich uszkodzeń jak przerwania, zwarcia czy degradacja izolacji. Przykładowo, w sytuacji awaryjnej, kiedy linia kablowa przestaje działać, użycie tego urządzenia pozwala na zlokalizowanie problemu bez konieczności kopania wzdłuż całej trasy kabla. W zgodzie z normami branżowymi, takie urządzenia powinny być wykorzystywane przez wykwalifikowany personel, który potrafi interpretować wyniki pomiarów oraz podejmować odpowiednie kroki naprawcze. Dzięki tym technologiom, branża energetyczna zwiększa efektywność oraz bezpieczeństwo operacji związanych z infrastrukturą kablową.

Pytanie 38

Dla układu o parametrach U0 = 230 V, Ia = 100 A oraz Zs = 3,1 Ω działającego w systemie TN-C nie działa efektywnie dodatkowa ochrona przed porażeniem prądem, ponieważ

A. opór uziemienia jest zbyt niski
B. impedancja sieci zasilającej jest zbyt niska
C. impedancja pętli zwarcia jest zbyt duża
D. opór izolacji miejsca pracy jest zbyt duży

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Impedancja pętli zwarcia jest kluczowym parametrem w systemach elektroenergetycznych, który wpływa na skuteczność ochrony przed porażeniem prądem elektrycznym. W przypadku układu TN-C, wysoka impedancja pętli zwarcia oznacza, że prąd zwarciowy, który może wyniknąć z uszkodzenia, jest zbyt niski, aby zadziałały zabezpieczenia, takie jak wyłączniki różnicowoprądowe czy bezpieczniki. Standardy, takie jak PN-IEC 60364, określają maksymalne wartości impedancji pętli zwarcia, aby zapewnić szybkie wyłączenie zasilania w przypadku awarii. W praktyce, dla instalacji niskonapięciowych, impedancja pętli zwarcia powinna być na tyle niska, aby prąd zwarciowy mógł osiągnąć wartość, która aktywuje zabezpieczenia w krótkim czasie, co minimalizuje ryzyko porażenia prądem. Przykładem może być obliczenie impedancji pętli w instalacji o zainstalowanych zabezpieczeniach, gdzie impedancja nie powinna przekraczać 1 Ω, aby zapewnić efektywność ochrony.

Pytanie 39

Który z poniższych przyrządów pozwala na zidentyfikowanie przerwy w przewodzie PE techniką bezpośrednią?

A. Omomierz
B. Woltomierz
C. Detektor napięcia
D. Miernik upływu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Omomierz to przyrząd, który jest kluczowy w lokalizowaniu braków ciągłości przewodu ochronnego (PE) metodą bezpośrednią. Działa na zasadzie pomiaru oporu elektrycznego, co pozwala na zidentyfikowanie ewentualnych uszkodzeń lub przerw w przewodach. W praktyce, aby skutecznie wykorzystać omomierz, należy podłączyć jego zaciski do końców przewodu PE. Jeśli wartość mierzonego oporu jest bardzo wysoka lub wynosi nieskończoność, oznacza to, że występuje przerwa w ciągłości przewodu. W przypadku, gdy opór jest zgodny ze standardami (najczęściej < 1 Ω), można uznać, że przewód jest w dobrym stanie. W branży elektrycznej stosuje się omomierze zgodnie z normami, np. PN-EN 61557, które określają wymagania dotyczące pomiarów bezpieczeństwa. Dobrą praktyką jest regularne kontrolowanie systemu uziemiającego za pomocą omomierzy, aby zapewnić, że instalacja elektryczna spełnia normy bezpieczeństwa.

Pytanie 40

Jakie styczniki z podanych kategorii powinny być użyte podczas modernizacji szafy sterowniczej z szyną TH 35, zasilającej urządzenie napędzane silnikami indukcyjnymi klatkowym?

A. AC-1
B. DC-4
C. AC-3
D. DC-2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór stycznika AC-3 do sterowania silnikami indukcyjnymi klatkowym jest uzasadniony jego specyfiką oraz przeznaczeniem. Klasyfikacja AC-3 jest dedykowana do zastosowań związanych z silnikami asynchronicznymi, w szczególności w momentach ich rozruchu, co wiąże się z dużymi prądami rozruchowymi. Styki AC-3 są zaprojektowane do pracy z prądami roboczymi, a ich konstrukcja pozwala na skuteczne rozłączanie i załączanie obwodów z silnikami, co jest kluczowe w kontekście wydajności energetycznej i bezpieczeństwa systemu. Przykładem zastosowania AC-3 może być szafa sterownicza w zakładzie przemysłowym, gdzie stycznik ten obsługuje silnik napędzający taśmociąg. Zgodnie z normami IEC 60947-4-1, styczniki klasy AC-3 są także przystosowane do pracy z dużymi cyklami załączania, co czyni je odpowiednimi w aplikacjach o dużym obciążeniu. Wybór ten jest zgodny z najlepszymi praktykami branżowymi, zapewniając nie tylko efektywność, ale i długowieczność komponentów w zautomatyzowanych systemach.