Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 13 lutego 2026 21:20
  • Data zakończenia: 13 lutego 2026 21:40

Egzamin zdany!

Wynik: 36/40 punktów (90,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Które z poniższych stwierdzeń NIE odnosi się do pamięci cache L1?

A. Zastosowano w niej pamięć typu SRAM
B. Czas dostępu jest dłuższy niż w przypadku pamięci RAM
C. Znajduje się we wnętrzu układu procesora
D. Jej wydajność jest równa częstotliwości procesora
Wybór odpowiedzi, że pamięć cache L1 ma dłuższy czas dostępu niż pamięć RAM jest poprawny, ponieważ pamięć cache, w tym L1, charakteryzuje się znacznie szybszym czasem dostępu niż tradycyjna pamięć RAM. Cache L1, będąca pamięcią typu SRAM (Static Random Access Memory), jest projektowana z myślą o minimalizowaniu opóźnień w dostępie do danych, co jest kluczowe dla wydajności procesora. Przykładem zastosowania tej technologii jest jej rola w architekturze procesorów, gdzie dane najczęściej używane są przechowywane w cache, co znacząco przyspiesza operacje obliczeniowe. Normalny czas dostępu do pamięci RAM wynosi kilka nanosekund, podczas gdy cache L1 operuje na poziomie około 1-3 nanosekund, co czyni ją znacznie szybszą. W praktyce, umiejscowienie pamięci cache wewnątrz rdzenia procesora oraz jej związane z tym szybkie połączenia z centralną jednostką obliczeniową (CPU) pozwala na znaczne zredukowanie czasu potrzebnego do wykonania operacji, co jest standardem w projektowaniu nowoczesnych mikroprocesorów. Dobre praktyki inżynieryjne zalecają maksymalne wykorzystanie pamięci cache, aby zminimalizować opóźnienia i zwiększyć efektywność energetyczną systemów obliczeniowych.

Pytanie 2

Na podstawie filmu wskaż z ilu modułów składa się zainstalowana w komputerze pamięć RAM oraz jaką ma pojemność.

A. 2 modułów, każdy po 8 GB.
B. 1 modułu 16 GB.
C. 1 modułu 32 GB.
D. 2 modułów, każdy po 16 GB.
W tym zadaniu kluczowe są dwie rzeczy: liczba fizycznych modułów pamięci RAM oraz pojemność pojedynczej kości. Na filmie można zwykle wyraźnie zobaczyć, ile modułów jest wpiętych w sloty DIMM na płycie głównej. Każdy taki moduł to oddzielna kość RAM, więc jeśli widzimy dwie identyczne kości obok siebie, oznacza to dwa moduły. Typowym błędem jest patrzenie tylko na łączną pojemność podawaną przez system, np. „32 GB”, i automatyczne założenie, że jest to jeden moduł 32 GB. W praktyce w komputerach stacjonarnych i w większości laptopów bardzo często stosuje się konfiguracje wielomodułowe, właśnie po to, żeby wykorzystać tryb dual channel lub nawet quad channel. To jest jedna z podstawowych dobrych praktyk przy montażu pamięci – zamiast jednej dużej kości, używa się dwóch mniejszych o tej samej pojemności, częstotliwości i opóźnieniach. Dzięki temu kontroler pamięci w procesorze może pracować na dwóch kanałach, co znacząco zwiększa przepustowość i zmniejsza wąskie gardła przy pracy procesora. Odpowiedzi zakładające pojedynczy moduł 16 GB lub 32 GB ignorują ten aspekt i nie zgadzają się z tym, co widać fizycznie na płycie głównej. Kolejna typowa pułapka polega na myleniu pojemności całkowitej z pojemnością modułu. Jeśli system raportuje 32 GB RAM, to może to być 1×32 GB, 2×16 GB, a nawet 4×8 GB – sam wynik z systemu nie wystarcza, trzeba jeszcze zweryfikować liczbę zainstalowanych kości. Właśnie dlatego w zadaniu pojawia się odniesienie do filmu: chodzi o wizualne rozpoznanie liczby modułów. Dobrą praktyką w serwisie i diagnostyce jest zawsze sprawdzenie zarówno parametrów logicznych (w BIOS/UEFI, w systemie, w narzędziach diagnostycznych), jak i fizycznej konfiguracji na płycie. Pomija się też czasem fakt, że producenci płyt głównych w dokumentacji wprost rekomendują konfiguracje 2×8 GB, 2×16 GB zamiast pojedynczej kości, z uwagi na wydajność i stabilność. Błędne odpowiedzi wynikają więc zwykle z szybkiego zgadywania pojemności, bez przeanalizowania, jak pamięć jest faktycznie zamontowana i jak działają kanały pamięci w nowoczesnych platformach.

Pytanie 3

Na komputerze klienckim z systemem Windows XP plik "hosts" to plik tekstowy, który wykorzystywany jest do przypisywania

A. nazw hostów na adresy IP
B. nazw hostów na adresy MAC
C. dysków twardych
D. nazw hostów przez serwery DNS
Plik 'hosts' w systemie Windows XP jest kluczowym elementem systemu operacyjnego, pozwalającym na lokalne mapowanie nazw hostów na adresy IP. Działa to w ten sposób, że gdy użytkownik wpisuje nazwę domeny w przeglądarce, system najpierw sprawdza ten plik, zanim skontaktuje się z serwerem DNS. Dzięki temu można zdefiniować indywidualne przekierowania, co jest szczególnie przydatne w środowiskach testowych lub w przypadku blokowania niektórych stron internetowych. Na przykład, dodając linię "127.0.0.1 example.com" do pliku 'hosts', przekierowujemy ruch na ten adres lokalny, co skutkuje tym, że przeglądarka nie załadowuje strony. Tego typu praktyki są zgodne z dobrymi praktykami zarządzania siecią, umożliwiając administratorom łatwą kontrolę nad ruchem sieciowym oraz testowanie aplikacji bez potrzeby zmiany konfiguracji DNS. Często wykorzystywane są także w procesach debugowania, gdzie szybka modyfikacja pliku 'hosts' pozwala na testowanie nowych rozwiązań bez trwałych zmian w systemie DNS.

Pytanie 4

Wskaż złącze, które nie jest obecne w zasilaczach ATX?

A. MPC
B. PCI-E
C. DE-15/HD-15
D. SATA Connector
Złącza, takie jak MPC, PCI-E oraz SATA Connector, są standardowymi interfejsami w zasilaczach ATX, co sprawia, że ich wybór w tym kontekście może prowadzić do nieporozumień. MPC, czyli Multi-Purpose Connector, jest używane do zasilania różnych komponentów, takich jak wentylatory czy kontrolery RGB. PCI-E, natomiast, to złącze wykorzystywane do zasilania kart graficznych, które są kluczowe dla wydajności w grach i aplikacjach graficznych. Z kolei SATA Connector jest standardem do zasilania dysków twardych i SSD, co odzwierciedla rozwój technologii pamięci masowej w komputerach. Wiele osób mylnie utożsamia złącza z ich zastosowaniem w przesyłaniu sygnałów wideo, co skutkuje pomyłkami w identyfikacji złącz występujących w zasilaczach ATX. Zrozumienie funkcji poszczególnych złączy w kontekście architektury komputerowej jest kluczowe dla prawidłowego doboru komponentów oraz ich efektywnego użytkowania. Dlatego ważne jest, aby nie mylić złączy do zasilania z złączami do transmisji sygnału, co może prowadzić do błędnych założeń w budowie systemów komputerowych.

Pytanie 5

Przy realizacji projektu dotyczącego sieci LAN wykorzystano medium transmisyjne standardu Ethernet 1000Base-T. Które z poniższych stwierdzeń jest prawdziwe?

A. To standard sieci optycznych działających na wielomodowych światłowodach
B. To standard sieci optycznych, którego maksymalny zasięg wynosi 1000 metrów
C. Standard ten pozwala na transmisję typu full-duplex przy maksymalnym zasięgu 100 metrów
D. Standard ten umożliwia transmisję typu half-duplex przy maksymalnym zasięgu 1000 metrów
Odpowiedź, że standard 1000Base-T umożliwia transmisję typu full-duplex przy maksymalnym zasięgu 100 metrów, jest prawidłowa, ponieważ 1000Base-T to standard Ethernet pracujący na kablach miedzianych, który wykorzystuje cztery pary skręconych przewodów. Standard ten zapewnia wysoką przepustowość do 1 Gbps, a jego maksymalny zasięg wynosi właśnie 100 metrów w typowej aplikacji z użyciem kabla kategorii 5e lub wyższej. Transmisja full-duplex oznacza, że dane mogą być przesyłane i odbierane jednocześnie, co znacząco zwiększa efektywność wykorzystania medium transmisyjnego. Dzięki temu standard 1000Base-T jest idealny do zastosowań w biurach czy centrach danych, gdzie wymagana jest wysoka wydajność i niezawodność połączeń sieciowych. Przykłady zastosowań obejmują lokalne sieci komputerowe w firmach, gdzie wiele urządzeń, takich jak komputery, serwery i drukarki, wymaga szybkiego dostępu do sieci. Oprócz tego, 1000Base-T jest powszechnie wspierany przez większość nowoczesnych przełączników i kart sieciowych, co ułatwia jego implementację.

Pytanie 6

Jakie urządzenie można kontrolować pod kątem parametrów za pomocą S.M.A.R.T.?

A. Chipsetu
B. Procesora
C. Dysku twardego
D. Płyty głównej
S.M.A.R.T. (Self-Monitoring, Analysis, and Reporting Technology) to technologia, która umożliwia monitorowanie stanu dysków twardych oraz SSD. Głównym celem S.M.A.R.T. jest przewidywanie awarii dysków poprzez analizę ich parametrów operacyjnych. Na przykład, monitorowane są takie wskaźniki jak liczba błędów odczytu/zapisu, temperatura dysku, czas pracy oraz liczba cykli start-stop. Dzięki tym danym, systemy operacyjne oraz aplikacje mogą informować użytkowników o potencjalnych problemach, co daje możliwość wykonania kopii zapasowej danych oraz wymiany uszkodzonego dysku przed awarią. W praktyce, regularne monitorowanie stanu dysku za pomocą S.M.A.R.T. staje się kluczowe w zarządzaniu infrastrukturą IT i zapewnieniu ciągłości pracy. Warto również zaznaczyć, że wiele programów do zarządzania dyskami, takich jak CrystalDiskInfo czy HD Tune, wykorzystuje S.M.A.R.T. do analizy stanu dysków, co stanowi dobrą praktykę w zarządzaniu danymi.

Pytanie 7

Najbardziej rozwinięty tryb funkcjonowania portu równoległego zgodnego z normą IEEE-1284, który tworzy dwukierunkową szeregę 8-bitową zdolną do przesyłania zarówno danych, jak i adresów z maksymalną prędkością transmisji wynoszącą 2,3 MB/s oraz umożliwia podłączenie do 64 urządzeń, to

A. Tryb bajtowy
B. EPP Mode
C. Tryb nibble
D. Tryb zgodności
EPP Mode, czyli Enhanced Parallel Port, to najbardziej zaawansowany tryb pracy portu równoległego definiowany przez standard IEEE-1284. Umożliwia on dwukierunkową komunikację danych z prędkościami sięgającymi 2,3 MB/s. Kluczowym aspektem EPP jest jego zdolność do przesyłania zarówno danych, jak i adresów, co czyni go znacznie bardziej elastycznym w porównaniu do starszych trybów. W praktyce, EPP jest często stosowany w urządzeniach takich jak drukarki, skanery czy zewnętrzne dyski twarde, gdzie szybka i efektywna komunikacja jest niezbędna. Dzięki możliwości podłączenia do 64 urządzeń, EPP znajduje zastosowanie w bardziej złożonych systemach, gdzie wiele urządzeń potrzebuje współdzielić tę samą magistralę. Warto również zaznaczyć, że EPP jest zgodny z innymi standardami IEEE-1284, co zapewnia jego szeroką kompatybilność oraz możliwość łatwej integracji z istniejącymi systemami. Przykładem zastosowania EPP może być podłączenie nowoczesnych drukarek do komputerów, co pozwala na szybki transfer danych i zwiększoną wydajność pracy.

Pytanie 8

Na którym schemacie znajduje się panel krosowniczy?

Ilustracja do pytania
A. Opcja C
B. Opcja A
C. Opcja B
D. Opcja D
Panel krosowniczy, znany również jako patch panel, to kluczowy element infrastruktury sieciowej stosowany w centrach danych i serwerowniach. Na rysunku B przedstawiona jest urządzenie, które umożliwia organizację kabli sieciowych przez połączenie wielu przewodów w jednym miejscu. Panel ten zawiera rzędy gniazd, do których podłącza się kable, co umożliwia łatwe zarządzanie i rekonfigurację połączeń sieciowych. W praktyce panele krosownicze ułatwiają utrzymanie porządku w okablowaniu oraz szybkie identyfikowanie i rozwiązywanie problemów z połączeniami. Standardy branżowe, takie jak TIA/EIA-568, definiują specyfikacje dla tych urządzeń, zapewniając kompatybilność i efektywność pracy. Panele te są niezwykle ważne w utrzymaniu elastyczności infrastruktury sieciowej i minimalizacji czasu przestoju dzięki możliwości szybkiej rekonfiguracji połączeń. Dobre praktyki obejmują oznaczanie kabli i użycie odpowiednich narzędzi do zaciskania kabli, co zwiększa niezawodność systemu.

Pytanie 9

Jakie narzędzie służy do połączenia pigtaila z włóknami światłowodowymi?

A. przedłużacz kategorii 5e z zestawem pasywnych kabli o maksymalnej prędkości połączenia 100 Mb/s
B. spawarka światłowodowa, łącząca włókna przy użyciu łuku elektrycznego
C. narzędzie zaciskowe do wtyków RJ45, posiadające odpowiednie gniazdo dla kabla
D. stacja lutownicza, która wykorzystuje mikroprocesor do ustawiania temperatury
Spawarka światłowodowa to urządzenie, które łączy włókna światłowodowe poprzez spawanie ich za pomocą łuku elektrycznego. Jest to kluczowe narzędzie w instalacji i konserwacji systemów światłowodowych, gdyż umożliwia tworzenie połączeń o niskim tłumieniu i wysokiej wydajności, co jest niezbędne w kontekście przesyłania danych na dużych odległościach. Przykładowo, w przypadku budowy sieci FTTH (Fiber To The Home), precyzyjne łączenie włókien światłowodowych za pomocą spawarki jest krytyczne dla zapewnienia odpowiedniej jakości sygnału. Standardy branżowe, takie jak ITU-T G.657, podkreślają znaczenie prawidłowych połączeń w systemach światłowodowych, ponieważ błędne spawy mogą prowadzić do znacznych strat sygnału i obniżenia wydajności całej sieci. Dodatkowo, spawarki światłowodowe są wyposażone w zaawansowane technologie, takie jak automatyczne dopasowanie włókien i monitorowanie jakości spawów, co zwiększa efektywność procesu oraz zapewnia zgodność z najlepszymi praktykami w branży.

Pytanie 10

Jakie narzędzie służy do delikatnego wyginania blachy obudowy komputera oraz przykręcania śruby montażowej w miejscach trudno dostępnych?

Ilustracja do pytania
A. A
B. C
C. B
D. D
Odpowiedź D jest prawidłowa ponieważ przedstawia kombinerki płaskie które są narzędziem doskonale nadającym się do lekkiego odgięcia blachy obudowy komputera oraz zamocowania śruby montażowej w trudno dostępnych miejscach. Kombinerki płaskie posiadają wąskie szczęki co pozwala na precyzyjne operowanie w ciasnych przestrzeniach. W przypadku obudów komputerowych takie narzędzie jest przydatne gdy konieczne jest dostosowanie kształtu blachy bez ryzyka jej uszkodzenia. Dobrą praktyką w branży IT jest stosowanie narzędzi które nie tylko ułatwiają pracę ale również minimalizują ryzyko uszkodzenia komponentów. Kombinerki płaskie często wykonane są ze stali nierdzewnej co zapewnia ich trwałość oraz odporność na korozję. Przy montażu i demontażu komponentów komputerowych konieczna jest delikatność i precyzja dlatego kombinerki płaskie są popularnym wyborem wśród specjalistów. Ich zastosowanie obejmuje nie tylko branżę informatyczną ale również szeroki zakres innych dziedzin w których precyzyjne manipulacje są kluczowe.

Pytanie 11

Protokół ARP (Address Resolution Protocol) służy do konwersji adresu IP na

A. adres e-mailowy
B. domenę
C. nazwa komputera
D. adres fizyczny
ARP, czyli Address Resolution Protocol, to naprawdę ważny element w sieciach komputerowych. Jego główne zadanie to przekształcanie adresów IP na adresy MAC, czyli sprzętowe. W lokalnych sieciach komunikacja między urządzeniami odbywa się głównie na poziomie warstwy łącza danych, gdzie te adresy MAC są kluczowe. Wyobraź sobie, że komputer chce przesłać dane do innego urządzenia. Jeśli zna tylko adres IP, to musi wysłać zapytanie ARP, by dowiedzieć się, jaki jest odpowiedni adres MAC. Bez ARP wszystko by się trochę zacięło, bo to on pozwala na prawidłowe połączenia w sieciach lokalnych. Na przykład, gdy komputer A chce wysłać dane do komputera B, ale zna tylko adres IP, to wysyła zapytanie ARP, które dociera do wszystkich urządzeń w sieci. Komputer B odsyła swój adres MAC, dzięki czemu komputer A może skonstruować ramkę i wysłać dane. Jak dobrze rozumiesz, jak działa ARP, to stajesz się lepszym specjalistą w sieciach, bo to dosłownie fundament komunikacji w sieciach TCP/IP. Takie rzeczy są mega istotne w branży, dlatego warto je dobrze ogarnąć.

Pytanie 12

Które z urządzeń może powodować wzrost liczby kolizji pakietów w sieci?

A. Koncentratora
B. Przełącznika
C. Rutera
D. Mostu
Koncentrator, jako urządzenie działające na warstwie drugiej modelu OSI, jest odpowiedzialny za propagację sygnałów do wszystkich podłączonych do niego urządzeń w sieci lokalnej. W praktyce oznacza to, że gdy jeden komputer wysyła dane, koncentrator przesyła te dane do wszystkich innych portów jednocześnie. To zjawisko powoduje zwiększenie liczby kolizji pakietów, ponieważ wiele urządzeń może próbować nadawać jednocześnie. W wyniku tego efektu, kolizje mogą prowadzić do opóźnień w transmisji danych oraz do konieczności ponownego nadawania, co obniża efektywność sieci. Dobre praktyki branżowe zalecają stosowanie przełączników (switchy) zamiast koncentratorów w nowoczesnych sieciach, ponieważ przełączniki działają na zasadzie przekazywania pakietów tylko do docelowego urządzenia, co znacząco ogranicza kolizje i poprawia wydajność. Warto również zauważyć, że w przypadku rozbudowanych sieci lokalnych, zastosowanie protokołów takich jak Ethernet oraz stosowanie technologii VLAN, może dodatkowo zminimalizować problemy związane z kolizjami.

Pytanie 13

Zrzut ekranu ilustruje wynik polecenia arp -a. Jak należy zrozumieć te dane?

Ikona CMDWiersz polecenia
C:\>arp -a
Nie znaleziono wpisów ARP

C:\>
A. Host nie jest podłączony do sieci
B. Brak aktualnych wpisów w protokole ARP
C. Adres MAC hosta jest niepoprawny
D. Komputer ma przypisany niewłaściwy adres IP
Polecenie arp -a to naprawdę fajne narzędzie do pokazywania tabeli ARP na komputerze. W skrócie, ARP jest mega ważny w sieciach lokalnych, bo pozwala na odnajdywanie adresów MAC bazując na adresach IP. Jak widzisz komunikat 'Nie znaleziono wpisów ARP', to znaczy, że komputer nie miał ostatnio okazji porozmawiać z innymi urządzeniami w sieci lokalnej. Może to być dlatego, że nic się nie działo albo komputer dopiero co wystartował. Dla adminów sieciowych to dość istotna informacja, bo mogą dzięki temu sprawdzać, czy coś jest nie tak z łącznością. Z tego, co zauważyłem, kiedy urządzenie łączy się z innym w tej samej sieci, ARP automatycznie zapisuje adres MAC przypisany do IP w tabeli. I to, że nie ma wpisów, może też oznaczać, że sieć jest dobrze skonfigurowana i nie było jeszcze żadnych interakcji, które wymagałyby tego tłumaczenia. Ogólnie monitorowanie tabeli ARP to dobry pomysł, bo można szybko wychwycić problemy z łącznością oraz sprawdzić, jak dobrze działa sieć.

Pytanie 14

W doborze zasilacza do komputera kluczowe znaczenie

A. ma łączna moc wszystkich komponentów komputera
B. mają parametry zainstalowanego systemu operacyjnego
C. ma rodzaj procesora
D. współczynnik kształtu obudowy
Wybór odpowiedniego zasilacza komputerowego jest kluczowy dla stabilności i wydajności całego systemu. Najważniejszym czynnikiem, który należy wziąć pod uwagę, jest łączna moc wszystkich podzespołów komputera, ponieważ zasilacz musi dostarczać wystarczającą ilość energii, aby zasilić każdy komponent. Niewłaściwa moc zasilacza może prowadzić do niestabilności systemu, losowych restartów, a nawet uszkodzeń sprzętu. Standardowo, całkowita moc wszystkich podzespołów powinna być zsumowana, a następnie dodane około 20-30% zapasu mocy, aby zapewnić bezpieczną i stabilną pracę. Na przykład, jeśli złożone komponenty wymagają 400 W, warto zaopatrzyć się w zasilacz o mocy co najmniej 500 W. Przy wyborze zasilacza warto także zwrócić uwagę na jego efektywność, co najlepiej określa certyfikacja 80 PLUS, która zapewnia, że zasilacz działa z wysoką efektywnością energetyczną. Dobrze zbilansowany zasilacz to fundament niezawodnego komputera, szczególnie w przypadku systemów gamingowych i stacji roboczych wymagających dużej mocy.

Pytanie 15

W systemie Linux wykonanie komendy passwd Ala spowoduje

A. pokazanie ścieżki do katalogu Ala
B. zmianę hasła użytkownika Ala
C. stworzenie konta użytkownika Ala
D. wyświetlenie członków grupy Ala
Użycie polecenia 'passwd Ala' w systemie Linux ma na celu ustawienie hasła dla użytkownika o nazwie 'Ala'. To polecenie jest standardowym sposobem zarządzania hasłami użytkowników na systemach zgodnych z unixowym stylem. Podczas jego wykonania, administrator systemu lub użytkownik z odpowiednimi uprawnieniami zostanie poproszony o podanie nowego hasła oraz, w niektórych przypadkach, o potwierdzenie go. Ustawienie silnego hasła jest kluczowe dla bezpieczeństwa systemu, ponieważ chroni dane użytkownika przed nieautoryzowanym dostępem. Przykładowo, w organizacjach, gdzie dostęp do danych wrażliwych jest normą, regularne zmiany haseł i ich odpowiednia konfiguracja są częścią polityki bezpieczeństwa. Dobre praktyki sugerują również stosowanie haseł składających się z kombinacji liter, cyfr oraz znaków specjalnych, co zwiększa ich odporność na ataki brute force. Warto również pamiętać, że w systemie Linux polecenie 'passwd' może być stosowane zarówno do zmiany hasła własnego użytkownika, jak i do zarządzania hasłami innych użytkowników, co podkreśla jego uniwersalność i znaczenie w kontekście administracji systemem.

Pytanie 16

Równoważnym zapisem 232 bajtów jest zapis

A. 8GB
B. 1GiB
C. 2GB
D. 4GiB
Dokładnie tak, zapis 2^32 bajtów to właśnie 4 GiB, czyli 4 gibibajty. W informatyce bardzo często napotykamy się na rozróżnienie pomiędzy jednostkami opartymi na potęgach dwójki (GiB, MiB, KiB) a tymi opartymi na potęgach dziesiątki (GB, MB, kB). Standard IEC precyzyjnie definiuje, że 1 GiB to 1024^3 bajtów, czyli 1 073 741 824 bajtów. Skoro 2^32 to dokładnie 4 294 967 296 bajtów, po podzieleniu tej liczby przez wartość 1 GiB otrzymujemy właśnie 4 GiB bez żadnych zaokrągleń. W praktyce, chociaż w sklepach czy reklamach często używa się GB, to w technicznych zastosowaniach—na przykład przy partycjonowaniu dysków, adresacji pamięci RAM czy systemowych narzędziach—korzysta się z jednostek GiB, żeby uniknąć nieporozumień. Moim zdaniem to bardzo ważne, żeby już na etapie nauki wyraźnie rozróżniać te jednostki, bo potem przy pracy z systemami operacyjnymi, serwerami czy programowaniem niskopoziomowym niejednokrotnie można się na tym "przejechać". Opieranie się na potęgach dwójki jest naturalne dla komputerów, bo cała architektura bazuje na binarnym systemie liczbowym. Warto wiedzieć, że np. adresacja w 32-bitowych systemach operacyjnych naturalnie zamyka się w zakresie 4 GiB, co jest ograniczeniem architekturalnym. Takie niuanse są kluczowe w praktyce, szczególnie gdy pracuje się z dużą ilością danych lub sprzętem na poziomie systemowym.

Pytanie 17

Na płycie głównej z chipsetem Intel 865G

A. można zainstalować kartę graficzną z interfejsem PCI-Express
B. nie ma możliwości zainstalowania karty graficznej
C. można zainstalować kartę graficzną z interfejsem AGP
D. można zainstalować kartę graficzną z interfejsem ISA
No więc, odpowiedź, że da się włożyć kartę graficzną z AGP na płytę z chipsetem Intel 865G, jest jak najbardziej na miejscu. Ten chipset to część serii Intel 800 i został zaprojektowany tak, by obsługiwać właśnie AGP, co czyni go idealnym do starszych kart graficznych. Złącze AGP, czyli Accelerated Graphics Port, pozwala na lepszą komunikację z kartą graficzną i ma większą przepustowość niż starsze PCI. Wiesz, że w pierwszej dekadzie XXI wieku takie karty były na porządku dziennym w komputerach do grania? Ich montaż w systemach opartych na Intel 865G był normalnością. Oczywiście, teraz mamy PCI-Express, które oferuje jeszcze lepsze osiągi, ale w kontekście starych maszyn AGP nadal się sprawdza. Jak modernizujesz wiekowe komputery, dobrze jest dobierać części, które pasują do tego, co już masz, a tu właśnie AGP jest takim rozwiązaniem.

Pytanie 18

Ile par kabli jest używanych w standardzie 100Base-TX do obustronnej transmisji danych?

A. 1
B. 8
C. 2
D. 4
W standardzie 100Base-TX, który jest częścią standardu Ethernet 802.3, do transmisji danych w obu kierunkach wykorzystywane są dwie pary przewodów. Standard ten opiera się na technologii skrętki, gdzie każda para przewodów jest odpowiedzialna za przesyłanie danych. Dwie pary są używane, ponieważ 100Base-TX transmituje dane z prędkością 100 Mbps, co wymaga odpowiedniego podziału sygnału na dwie drogi komunikacji, aby zapewnić efektywną transmisję oraz minimalizację zakłóceń. Przykładem zastosowania standardu 100Base-TX mogą być lokalne sieci komputerowe, w których urządzenia muszą wymieniać dane w czasie rzeczywistym. Zastosowanie dwóch par pozwala również na pełnodupleksową komunikację, co oznacza, że dane mogą być przesyłane w obie strony jednocześnie, co znacząco zwiększa wydajność sieci. W praktyce, standard 100Base-TX jest powszechnie stosowany w biurach i zastosowaniach przemysłowych, gdzie istnieje potrzeba szybkiej i niezawodnej komunikacji sieciowej.

Pytanie 19

W systemie Linux narzędzie fsck służy do

A. wykrywania i naprawy uszkodzonych sektorów na dysku twardym
B. eliminacji nieprawidłowych wpisów w rejestrze systemowym
C. obserwacji stanu procesora
D. sprawdzania wydajności karty sieciowej
Program fsck, czyli 'file system check', jest narzędziem w systemie Linux służącym do analizy i naprawy systemów plików. Jego główną funkcją jest identyfikacja i naprawa uszkodzonych sektorów oraz błędów w strukturze systemu plików, co ma kluczowe znaczenie dla zapewnienia integralności danych oraz stabilności systemu. Przykładowo, jeśli system operacyjny lub aplikacja zawiodą w trakcie zapisu danych, może dojść do uszkodzenia systemu plików. Użycie fsck w takich sytuacjach umożliwia użytkownikom przywrócenie pełnej funkcjonalności dysku, co jest niezbędne w przypadku systemów produkcyjnych, gdzie dostęp do danych jest krytyczny. W standardach branżowych, regularne używanie fsck jako części rutynowych zadań konserwacyjnych jest zalecane, aby uniknąć poważniejszych problemów z danymi w przyszłości. Narzędzie to może być także używane w trybie offline, co oznacza, że można je uruchomić podczas rozruchu systemu, aby naprawić błędy przed załadowaniem systemu operacyjnego.

Pytanie 20

Jakie urządzenie powinno się zastosować do przeprowadzenia testu POST dla komponentów płyty głównej?

Ilustracja do pytania
A. Rys. C
B. Rys. B
C. Rys. D
D. Rys. A
Przyrząd przedstawiony na Rys. B to karta diagnostyczna POST, która jest niezbędna do uzyskania wyników testu Power-On Self-Test (POST) dla modułów płyty głównej. Karty diagnostyczne POST są używane w celu diagnozowania problemów z płytą główną oraz innymi kluczowymi komponentami systemu komputerowego. Po podłączeniu do gniazda PCI, PCIe lub ISA na płycie głównej, karta odbiera i interpretuje kody błędów POST generowane przez BIOS podczas uruchamiania systemu. Jej wyświetlacz LED lub LCD pokazuje te kody, co pozwala na szybką identyfikację problemów takich jak uszkodzone moduły pamięci RAM, procesor, czy inne elementy. W branży IT stosowanie kart diagnostycznych POST jest standardową praktyką przy rozwiązywaniu problemów z uruchamianiem komputerów, gdyż umożliwiają natychmiastowe rozpoznanie i klasyfikację błędów, co jest nieocenione w szybkim diagnozowaniu i naprawie sprzętu komputerowego. Korzystanie z takich narzędzi wpisuje się w najlepsze praktyki branżowe i jest polecane w sytuacjach, gdzie szybkie i precyzyjne określenie problemu sprzętowego jest kluczowe dla utrzymania sprawnego działania systemu.

Pytanie 21

Po przeanalizowaniu wyników testu dysku twardego, jakie czynności powinny zostać wykonane, aby zwiększyć jego wydajność?

Wolumin (C:)
Rozmiar woluminu=39,06 GB
Rozmiar klastra=4 KB
Zajęte miejsce=27,48 GB
Wolne miejsce=11,58 GB
Procent wolnego miejsca=29 %
Fragmentacja woluminu
Fragmentacja całkowita=15 %
Fragmentacja plików=31 %
Fragmentacja wolnego miejsca=0 %
A. Usuń niepotrzebne pliki z dysku
B. Przeprowadź formatowanie dysku
C. Rozdziel dysk na różne partycje
D. Zdefragmentuj dysk
Zdefragmentowanie dysku to proces reorganizacji rozproszonych fragmentów plików aby były zapisane w sposób ciągły na powierzchni dysku twardego. Fragmentacja plików wynosząca 31% oznacza że wiele plików jest podzielonych i zapisanych w różnych miejscach na dysku co może znacząco spowolnić odczyt i zapis danych. Zdefragmentowanie dysku pomoże w zoptymalizowaniu jego wydajności skracając czas dostępu do danych i poprawiając ogólną sprawność operacyjną systemu operacyjnego. Proces ten jest szczególnie istotny w przypadku dysków HDD gdzie mechaniczne ramię musi fizycznie przesuwać się w celu odczytywania danych. Warto regularnie przeprowadzać defragmentację jako część rutynowej konserwacji systemu komputerowego co jest zalecane w branżowych standardach zarządzania infrastrukturą IT. W nowoczesnych systemach operacyjnych dostępne są narzędzia które automatyzują ten proces co można skonfigurować aby odbywał się w regularnych odstępach czasu. Zdefragmentowanie dysku nie tylko poprawi szybkość działania systemu ale również może przedłużyć żywotność samego dysku dzięki mniejszemu zużyciu mechanicznemu.

Pytanie 22

Zatrzymując pracę na komputerze, możemy szybko wznowić działania po wybraniu w systemie Windows opcji

A. stanu wstrzymania
B. wylogowania
C. uruchomienia ponownego
D. zamknięcia systemu
Opcja 'stanu wstrzymania' w systemie Windows to funkcja, która pozwala na szybkie wstrzymanie pracy komputera, co umożliwia użytkownikowi powrót do tej samej sesji pracy w bardzo krótkim czasie. Gdy komputer jest w stanie wstrzymania, zawartość pamięci RAM jest zachowywana, co oznacza, że wszystkie otwarte aplikacje i dokumenty pozostają w takim samym stanie, w jakim były przed wstrzymaniem. Przykładem zastosowania może być sytuacja, gdy użytkownik chce na chwilę odejść od komputera, na przykład na przerwę, i chce szybko wznowić pracę bez potrzeby ponownego uruchamiania programów. Stan wstrzymania jest zgodny z najlepszymi praktykami zarządzania energią, ponieważ komputer zużywa znacznie mniej energii w tym trybie, co jest korzystne zarówno dla środowiska, jak i dla użytkowników, którzy korzystają z laptopów. Warto również zaznaczyć, że funkcja ta może być używana w połączeniu z innymi ustawieniami oszczędzania energii, co pozwala na optymalne zarządzanie zasobami systemowymi.

Pytanie 23

Zamontowany w notebooku trackpoint jest urządzeniem wejściowym reagującym na

A. odbicia światła w czujniku optycznym.
B. zmiany pojemności elektrycznej.
C. wzrost rezystancji między elektrodami.
D. siłę i kierunek nacisku.
Trackpoint, często nazywany też czerwoną kropką między klawiszami G, H i B w notebookach, to naprawdę ciekawe urządzenie wskazujące. Działa on na zasadzie wykrywania siły oraz kierunku nacisku, którą użytkownik wywiera za pomocą palca. Im mocniej naciśniesz i w określonym kierunku, tym szybciej poruszy się kursor – to dość sprytne i wygodne rozwiązanie, szczególnie dla osób pracujących dużo na klawiaturze. Takie rozwiązanie pozwala na sterowanie bez odrywania rąk od klawiatury, co w praktyce znacznie zwiększa ergonomię pracy, zwłaszcza w środowiskach biznesowych czy informatycznych. Z ciekawostek: trackpointy są wykorzystywane głównie w laptopach takich jak Lenovo ThinkPad – tam to jest wręcz standard, często doceniany przez programistów i administratorów IT. Inżynierowie przy projektowaniu takich rozwiązań korzystają z czujników tensometrycznych, które precyzyjnie mierzą siłę nacisku. To zupełnie inne podejście niż w przypadku touchpadów, które zazwyczaj bazują na wykrywaniu pojemności elektrycznej, czy myszek optycznych, które analizują odbicia światła. Moim zdaniem, trackpoint jest jednym z lepszych przykładów przemyślanego urządzenia wejściowego, które spełnia swoje zadanie poprzez analizę siły i kierunku nacisku, zgodnie z branżowymi standardami projektowania interfejsów użytkownika.

Pytanie 24

Który z elementów oznaczonych numerami od 1 do 4, ukazanych na schemacie blokowym frame grabbera oraz opisanych w fragmencie dokumentacji technicznej, jest odpowiedzialny za wymianę danych z innymi urządzeniami przetwarzającymi obraz wideo, unikając zbędnego obciążenia magistrali PCI?

Ilustracja do pytania
A. 4
B. 3
C. 2
D. 1
Odpowiedź 4 jest prawidłowa, ponieważ element oznaczony numerem 4 na schemacie blokowym pełni rolę VMChannel, który umożliwia bezpośrednią wymianę danych z innymi urządzeniami przetwarzającymi obraz wideo bez obciążania magistrali PCI. VMChannel jako dedykowany interfejs zapewnia szybki transfer danych, osiągając prędkości do 132 MB/s, co jest niezwykle korzystne w aplikacjach wymagających dużej przepustowości i niskich opóźnień. W praktyce takie rozwiązanie pozwala na efektywne przetwarzanie danych w czasie rzeczywistym, co jest kluczowe w zastosowaniach przemysłowych, takich jak systemy wizyjne w automatyce czy monitoring wizyjny. Zastosowanie VMChannel wpisuje się w standardy projektowania systemów wbudowanych, gdzie minimalizacja obciążenia głównych magistrali systemowych jest istotnym aspektem. Transfer danych przez VMChannel odbywa się poza magistralą PCI, co pozwala na równoległe wykonywanie innych operacji przez procesor, zwiększając ogólną wydajność systemu. Tego typu rozwiązania są zgodne z dobrymi praktykami optymalizacji przepływu danych w zaawansowanych systemach wizyjnych.

Pytanie 25

Określenie najbardziej efektywnej trasy dla połączenia w sieci to

A. conntrack
B. tracking
C. sniffing
D. routing
Routing, czyli wyznaczanie optymalnej trasy dla połączenia sieciowego, jest kluczowym procesem w zarządzaniu ruchu w sieciach komputerowych. Proces ten polega na określaniu najefektywniejszej drogi, jaką dane powinny przejść od nadawcy do odbiorcy. Przykładem zastosowania routingu jest sieć Internet, gdzie różne protokoły, takie jak OSPF (Open Shortest Path First) czy BGP (Border Gateway Protocol), umożliwiają dynamiczne wyznaczanie tras w zależności od aktualnych warunków sieciowych. Routing nie tylko zwiększa efektywność przesyłania danych, ale także wpływa na niezawodność i wydajność całej infrastruktury sieciowej. Dobrym przykładem praktycznym jest sytuacja, gdy jedna z tras do serwera staje się niedostępna; protokoły routingu automatycznie aktualizują tablice routingu, aby znaleźć alternatywne połączenie. Zrozumienie koncepcji routingu oraz jego implementacji jest niezbędne dla każdego specjalisty w dziedzinie sieci komputerowych, a znajomość standardów branżowych, takich jak IETF, jest kluczowa dla efektywnego projektowania i zarządzania sieciami.

Pytanie 26

Zastąpienie koncentratorów przełącznikami w sieci Ethernet doprowadzi do

A. potrzeby zmiany adresów IP.
B. redukcji liczby kolizji.
C. zmiany w topologii sieci.
D. rozszerzenia domeny rozgłoszeniowej.
Wymiana koncentratorów na przełączniki w sieci Ethernet prowadzi do znacznego zmniejszenia ilości kolizji. Koncentratory działają na zasadzie rozsyłania sygnału do wszystkich połączonych urządzeń, co zwiększa ryzyko kolizji danych, gdy wiele urządzeń próbuje jednocześnie wysłać dane. Przełączniki natomiast działają na poziomie warstwy drugiej modelu OSI i używają tabel MAC do kierowania ruchu do odpowiednich portów. Dzięki temu, gdy jedno urządzenie wysyła dane do innego, przełącznik przesyła je tylko na odpowiedni port, a nie do wszystkich urządzeń w sieci. To zastosowanie zmniejsza liczbę kolizji, a w efekcie zwiększa wydajność sieci. W praktyce, sieci z przełącznikami mogą obsługiwać większą liczbę jednoczesnych połączeń oraz oferują lepszą kontrolę nad ruchem sieciowym, co jest kluczowe w nowoczesnych środowiskach korporacyjnych, gdzie zasoby takie jak serwery i aplikacje wymagają stabilnych i szybkich połączeń.

Pytanie 27

Jak sprawdzić, który z programów w systemie Windows generuje największe obciążenie dla procesora?

A. menedżer zadań
B. regedit
C. dxdiag
D. msconfig
Menedżer zadań jest kluczowym narzędziem w systemie Windows, które umożliwia monitorowanie i zarządzanie procesami działającymi na komputerze. Dzięki niemu użytkownicy mogą uzyskać wgląd w aktualne obciążenie procesora przez poszczególne aplikacje oraz procesy systemowe. W zakładce 'Procesy' można zobaczyć zarówno zużycie CPU, jak i pamięci RAM przez różne aplikacje, co jest niezwykle pomocne w identyfikacji programów, które obciążają system. Przykładowo, jeśli zauważysz, że jeden z procesów, jak przeglądarka internetowa, zużywa znaczną część CPU, można podjąć decyzję o jego zamknięciu lub optymalizacji. Dobre praktyki sugerują regularne sprawdzanie Menedżera zadań w celu utrzymania optymalnej wydajności systemu. Dodatkowo, program ten pozwala na zakończenie nieodpowiadających aplikacji oraz zarządzanie uruchamianiem programów przy starcie systemu, co również wpływa na ogólną wydajność komputera.

Pytanie 28

Aby dezaktywować transmitowanie nazwy sieci Wi-Fi, należy w punkcie dostępowym wyłączyć opcję

A. UPnP AV
B. Wide Channel
C. SSID
D. Filter IDENT
Odpowiedź SSID (Service Set Identifier) jest prawidłowa, ponieważ to właśnie ta funkcja pozwala na rozgłaszanie lub ukrywanie nazwy sieci bezprzewodowej. W przypadku, gdy administratorzy sieci chcą zwiększyć bezpieczeństwo, decydują się na wyłączenie rozgłaszania SSID, co sprawia, że nazwa sieci nie jest widoczna dla użytkowników próbujących połączyć się z siecią. W praktyce oznacza to, że urządzenia muszą znać dokładną nazwę sieci, aby nawiązać połączenie, co może chronić przed nieautoryzowanym dostępem. Zgodnie z najlepszymi praktykami w branży, takie działanie ogranicza możliwość dostępu do sieci tylko dla znanych urządzeń, co jest szczególnie ważne w środowiskach, gdzie bezpieczeństwo danych jest kluczowe. Wyłączenie rozgłaszania SSID jest często stosowane w sieciach korporacyjnych oraz w miejscach publicznych, gdzie ochrona prywatności i danych jest priorytetem.

Pytanie 29

Co oznacza skrót 'RAID' w kontekście systemów komputerowych?

A. Redundant Array of Independent Disks
B. Random Access Identification Device
C. Rapid Application Integration Development
D. Remote Access Internet Dashboard
Skrót 'RAID' oznacza 'Redundant Array of Independent Disks'. Jest to technologia używana do zwiększenia niezawodności i wydajności przechowywania danych w systemach komputerowych poprzez łączenie wielu dysków twardych w jedną logiczną jednostkę magazynującą. RAID oferuje różne poziomy, takie jak RAID 0, RAID 1, RAID 5, które różnią się sposobem rozkładania danych i nadmiarowości. Na przykład, RAID 1 polega na mirroringu, czyli odbiciu danych na dwa lub więcej dysków, co zapewnia ochronę przed utratą danych w przypadku awarii jednego z nich. RAID 5, z kolei, wykorzystuje striping z parzystością, co oznacza, że dane są dzielone na bloki, a dodatkowe informacje parzystości są wykorzystywane do ich odtworzenia w razie awarii jednego dysku. RAID jest szeroko stosowany w serwerach, systemach NAS i innych profesjonalnych rozwiązaniach IT, gdzie niezawodność przechowywania danych jest kluczowa. Dobre praktyki branżowe zalecają stosowanie RAID w środowiskach, gdzie przerwy w dostępie do danych mogą prowadzić do znaczących strat.

Pytanie 30

Jakie zastosowanie ma narzędzie tracert w systemach operacyjnych rodziny Windows?

A. pokazywania oraz modyfikacji tablicy trasowania pakietów w sieciach
B. tworzenia połączenia ze zdalnym serwerem na wyznaczonym porcie
C. analizowania trasy przesyłania pakietów w sieci
D. uzyskiwania szczegółowych danych dotyczących serwerów DNS
Narzędzie tracert, będące częścią systemów operacyjnych rodziny Windows, służy do śledzenia trasy, jaką pokonują pakiety danych w sieci. Działa na zasadzie wysyłania pakietów ICMP (Internet Control Message Protocol) typu Echo Request do docelowego adresu IP, a następnie rejestruje odpowiedzi od urządzeń pośredniczących, zwanych routerami. Dzięki temu użytkownik może zidentyfikować każdy przeskok, czyli 'hop', przez który przechodzą pakiety, oraz zmierzyć opóźnienia czasowe dla każdego z tych przeskoków. Praktyczne zastosowanie narzędzia tracert jest niezwykle istotne w diagnostyce sieci, pomagając administratorom w lokalizowaniu problemów z połączeniami, takich jak zbyt długie czasy odpowiedzi lub utraty pakietów. Dzięki temu można efektywnie analizować wydajność sieci oraz identyfikować wąskie gardła. Zgodnie z najlepszymi praktykami branżowymi, narzędzie to powinno być częścią regularnych audytów sieciowych, pozwalając na utrzymanie wysokiej jakości usług i optymalizację infrastruktury sieciowej.

Pytanie 31

Jaki typ złącza powinien być zastosowany w przewodzie UTP Cat 5e, aby połączyć komputer z siecią?

A. MT-RJ
B. RJ11
C. BNC
D. RJ45
RJ45 to standardowy złącze używane w sieciach Ethernet, które jest odpowiednie dla przewodów UTP Cat 5e. Użycie RJ45 zapewnia optymalne połączenie komputerów i innych urządzeń sieciowych, umożliwiając transfer danych z prędkościami do 1 Gb/s w środowiskach lokalnych. Złącze to zostało zaprojektowane z myślą o obsłudze czterech par skręconych przewodów, co pozwala na zwiększenie wydajności komunikacji w sieciach komputerowych. Przykładowo, w biurach i domach, RJ45 jest stosowane do podłączania komputerów do routerów, przełączników oraz innych urządzeń sieciowych, co jest zgodne z normami TIA/EIA-568. Poprawne podłączenie złącza RJ45 jest kluczowe dla stabilności i prędkości sieci. Na rynku dostępne są różne typy złącz RJ45, w tym złącza w wersji 'shielded' (ekranowane), które oferują dodatkową ochronę przed zakłóceniami elektromagnetycznymi, co jest istotne w środowiskach o wysokim poziomie zakłóceń elektronicznych.

Pytanie 32

Do umożliwienia komunikacji pomiędzy sieciami VLAN, wykorzystuje się

A. Router
B. Punkt dostępowy
C. Modem
D. Koncentrator
Router jest urządzeniem, które umożliwia komunikację między różnymi sieciami, w tym sieciami VLAN. VLAN, czyli Virtual Local Area Network, to technologia, która pozwala na segregację ruchu sieciowego w obrębie tej samej fizycznej sieci. Aby dane mogły być wymieniane między różnymi VLAN-ami, konieczne jest użycie routera, który zajmuje się przesyłaniem pakietów danych między tymi odrębnymi segmentami sieci. Router jest w stanie analizować adresy IP oraz inne informacje w nagłówkach pakietów, co pozwala na ich prawidłowe kierowanie. Przykładowo, w dużych organizacjach, gdzie różne działy mogą mieć swoje VLAN-y (np. dział finansowy i IT), router umożliwia tym działom wymianę informacji, przy jednoczesnym zachowaniu bezpieczeństwa i segregacji danych. Stosowanie routerów w kontekście VLAN-ów jest zgodne z dobrą praktyką w projektowaniu rozbudowanych architektur sieciowych, co podkreśla znaczenie tych urządzeń w zwiększaniu efektywności i bezpieczeństwa komunikacji sieciowej.

Pytanie 33

Czym jest odwrotność bezstratnego algorytmu kompresji danych?

A. dekompresja
B. archiwizacja
C. prekompresja
D. pakowanie danych
Dekomresja to proces, w którym dane skompresowane są przywracane do ich oryginalnej postaci. W przypadku bezstratnej kompresji, dekompresja gwarantuje, że otrzymane dane są identyczne z tymi, które zostały pierwotnie skompresowane. W praktyce, dekompresja jest kluczowym elementem w obszarze zarządzania danymi, na przykład w przesyłaniu plików w formatach takich jak ZIP czy GZIP, gdzie po pobraniu pliku użytkownik musi go dekompresować, aby uzyskać dostęp do zawartych danych. W branży IT, standardy kompresji i dekompresji, takie jak DEFLATE, zapewniają efektywność i oszczędność przestrzeni dyskowej. Dobre praktyki branżowe sugerują regularne testowanie narzędzi do kompresji i dekompresji, aby zapewnić integralność danych oraz ich szybki dostęp, co jest szczególnie istotne w kontekście dużych zbiorów danych oraz aplikacji wymagających wysokiej wydajności.

Pytanie 34

Czym jest klaster komputerowy?

A. zespół komputerów działających równocześnie, tak jakby stanowiły jeden komputer
B. komputer rezerwowy, na którym regularnie tworzy się kopię systemu głównego
C. komputer z systemem macierzy dyskowej
D. komputer z wieloma rdzeniami procesora
Klaster komputerowy to grupa komputerów, które współpracują ze sobą w celu realizacji zadań, jakby były jednym, potężnym systemem. Taka konfiguracja pozwala na równoległe przetwarzanie danych, co znacząco zwiększa wydajność i niezawodność systemu. Przykłady zastosowania klastrów obejmują obliczenia naukowe, analizy danych big data oraz usługi w chmurze, gdzie wiele maszyn wspólnie wykonuje zadania, dzieląc obciążenie i zwiększając dostępność. W praktyce klastry mogą być implementowane w różnych architekturach, na przykład klaster obliczeniowy, klaster serwerów czy klaster do przechowywania danych. Standardy takie jak OpenStack dla chmur obliczeniowych czy Apache Hadoop dla przetwarzania danych również korzystają z koncepcji klastrów. Kluczowe korzyści to poprawa wydajności, elastyczność oraz wysoka dostępność, co czyni klastry istotnym elementem nowoczesnych rozwiązań IT.

Pytanie 35

Cienki klient (thin client) to?

A. klient o ograniczonym budżecie
B. terminal w sieci
C. szczupły programista
D. niewielki przełącznik
Cienki klient, znany jako thin client, to rodzaj terminala sieciowego, który minimalizuje lokalne zasoby obliczeniowe. Jego główną funkcją jest umożliwienie użytkownikom dostępu do aplikacji i danych przechowywanych centralnie na serwerze. Koncepcja thin clienta jest szczególnie popularna w środowiskach takich jak biura i szkoły, gdzie centralizacja danych zapewnia lepsze zarządzanie, bezpieczeństwo i łatwiejszą aktualizację oprogramowania. Przykładem zastosowania thin clientów może być infrastruktura Desktop as a Service (DaaS), w której użytkownicy korzystają z wirtualnych pulpitu, co umożliwia efektywne wykorzystanie zasobów serwerowych i zmniejsza koszty sprzętowe. Ponadto, w kontekście wirtualizacji, thin clienty doskonale wpisują się w strategię zdalnego dostępu, co jest zgodne z najlepszymi praktykami branżowymi, które promują skalowalność i efektywność operacyjną w organizacjach.

Pytanie 36

Jaką maskę podsieci należy wybrać dla sieci numer 1 oraz sieci numer 2, aby urządzenia z podanymi adresami mogły komunikować się w swoich podsieciach?

sieć nr 1sieć nr 2
110.12.0.1210.16.12.5
210.12.12.510.16.12.12
310.12.5.1210.16.12.10
410.12.5.1810.16.12.16
510.12.16.510.16.12.20
A. 255.255.255.240
B. 255.255.128.0
C. 255.255.240.0
D. 255.255.255.128
Odpowiedzi z maskami 255.255.255.240 i 255.255.255.128 wskazują na mylne zrozumienie zasad podziału sieci i odpowiedniego doboru maski sieciowej. Maska 255.255.255.240 jest stosowana dla bardzo małych sieci, gdzie potrzeba tylko kilku adresów hostów, co nie pasuje do podanych adresów IP, które wymagają znacznie większej przestrzeni adresowej. Zastosowanie takiej maski skutkowałoby w sytuacji, gdzie urządzenia nie mogłyby się komunikować wewnątrz tej samej sieci, ponieważ zasięg adresów byłby zbyt mały. Maska 255.255.255.128 jest również stosowana w kontekście małych sieci, co oznacza, że nie obejmuje wystarczającego zakresu dla wszystkich wymienionych adresów IP. Z kolei maska 255.255.240.0 oferuje większy zasięg niż 255.255.255.128, ale wciąż nie jest odpowiednia, ponieważ nie zapewnia wystarczającego zakresu dla podanego zakresu adresów. Typowy błąd w myśleniu polega na nieodpowiednim doborze maski poprzez brak zrozumienia rzeczywistej ilości wymaganych adresów hostów oraz błędnym założeniu, że mniejsze maski pozwalają na elastyczniejszą konfigurację bez uwzględnienia rzeczywistego zapotrzebowania na przestrzeń adresową w danej sieci. Właściwy dobór maski sieciowej wymaga analizy potrzeb sieciowych oraz zrozumienia struktury adresacji IP w celu zapewnienia efektywnej komunikacji pomiędzy urządzeniami.

Pytanie 37

Polecenie Gpresult

A. prezentuje dane dotyczące kontrolera
B. przywraca domyślne zasady grupowe dla kontrolera
C. odświeża ustawienia zasad grupowych
D. wyświetla wynikowy zestaw zasad dla użytkownika lub komputera
Polecenie Gpresult jest narzędziem w systemach Windows, które umożliwia administratorom wyświetlenie szczegółowych informacji na temat zastosowanych zasad grup dla użytkowników oraz komputerów. Poprawna odpowiedź wskazuje, że Gpresult wyświetla wynikowy zestaw zasad, co oznacza, że administratorzy mogą zobaczyć, jakie zasady są aktywne dla danego użytkownika lub komputera, a także jakie zasady mogły być dziedziczone z wyższych poziomów w hierarchii Active Directory. Dzięki temu narzędziu można identyfikować problemy związane z zasadami grup, oceniać ich wpływ na konfigurację systemu oraz dostosowywać ustawienia w celu zapewnienia zgodności z politykami bezpieczeństwa. Na przykład, administratorzy mogą użyć Gpresult do zweryfikowania, czy konkretna zasada zabezpieczeń, dotycząca haseł użytkowników, została poprawnie zastosowana. To narzędzie jest istotne w kontekście audytów bezpieczeństwa i zarządzania politykami, jako że umożliwia dokładną analizę, która jest zgodna z najlepszymi praktykami w zarządzaniu IT.

Pytanie 38

W celu zainstalowania serwera proxy w systemie Linux, należy wykorzystać oprogramowanie

A. Samba
B. Squid
C. Webmin
D. Postfix
Wybór programów takich jak Samba, Postfix czy Webmin do zainstalowania serwera proxy w systemie Linux jest błędny, ponieważ każde z tych narzędzi ma zupełnie inne zastosowania. Samba to oprogramowanie, które umożliwia współdzielenie plików oraz drukarek między systemami Windows a Linux. Oferuje możliwość integracji w środowisku Windows, ale nie ma funkcji serwera proxy, które są kluczowe do pośredniczenia w ruchu sieciowym. Postfix to z kolei system pocztowy, który służy do obsługi wiadomości email, pozwalając na zarządzanie przesyłaniem i odbieraniem poczty elektronicznej. Brak funkcji proxy sprawia, że jego zastosowanie w tej roli jest całkowicie nieadekwatne. Webmin to narzędzie do zarządzania różnymi aspektami systemu Linux z interfejsem webowym, które pozwala na administrację serwerem, ale nie pełni funkcji serwera proxy ani nie zapewnia buforowania ani filtrowania ruchu. Typowe błędy myślowe przy wyborze tych programów wynikają z mylenia funkcji i ról, które każde z nich odgrywa w ekosystemie Linux, co często prowadzi do nieefektywności w zarządzaniu infrastrukturą IT.

Pytanie 39

Elementem, który umożliwia wymianę informacji pomiędzy procesorem a magistralą PCI-E, jest

A. układ Super I/O
B. pamięć RAM
C. cache procesora
D. chipset
Chipset jest kluczowym elementem płyty głównej, który zarządza komunikacją między procesorem a innymi komponentami, w tym magistralą PCI-E. Jego zadaniem jest koordynacja transferu danych, co jest niezbędne do efektywnego działania systemu komputerowego. Chipset działa jako swoisty punkt pośredni, umożliwiając synchronizację i optymalizację przepływu informacji między procesorem, pamięcią RAM, a urządzeniami peryferyjnymi podłączonymi do magistrali PCI-E, takimi jak karty graficzne czy dyski SSD. W praktyce oznacza to, że dobrze zaprojektowany chipset może znacznie poprawić wydajność systemu, umożliwiając szybki i niezawodny transfer danych. Na przykład, w systemach z intensywnym przetwarzaniem grafiki, odpowiedni chipset pozwala na efektywne wykorzystanie możliwości nowoczesnych kart graficznych, co jest kluczowe dla zadań takich jak renderowanie 3D czy obróbka wideo. W branży IT standardem stało się projektowanie chipsetów, które wspierają najnowsze technologie komunikacyjne, takie jak PCIe 4.0 czy 5.0, co pozwala na jeszcze wyższe prędkości transferu danych.

Pytanie 40

Jaką minimalną ilość pamięci RAM musi mieć komputer, aby móc uruchomić 64-bitowy system operacyjny Windows 7 w trybie graficznym?

A. 256MB
B. 2GB
C. 512MB
D. 1GB
Wybór 2GB jako minimalnej pamięci RAM do systemu Windows 7 w wersji 64-bitowej jest zgodny z wymaganiami technicznymi Microsoftu. Zgodnie z dokumentacją techniczną, Windows 7 64-bitowy wymaga minimum 2GB pamięci RAM dla optymalnej pracy w trybie graficznym, co pozwala na płynne uruchamianie aplikacji, korzystanie z interfejsu graficznego oraz obsługę podstawowych funkcji systemowych. Przykładowo, w przypadku uruchamiania aplikacji biurowych, przeglądarek internetowych czy programów multimedialnych, 2GB RAM pozwala na zachowanie odpowiedniej wydajności oraz komfortu użytkowania. Warto także zauważyć, że w praktyce, dla bardziej zaawansowanych zadań, takich jak obróbka grafiki czy gry, zalecana jest jeszcze większa ilość pamięci, co jest zgodne z aktualnymi standardami branżowymi. Użytkownicy powinni również pamiętać, że zainstalowanie większej ilości RAM może znacząco wpłynąć na ogólną wydajność systemu, pozwalając na jednoczesne uruchamianie większej liczby aplikacji oraz poprawiając szybkość działania systemu.