Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 16 listopada 2025 00:39
  • Data zakończenia: 16 listopada 2025 01:06

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakiego z wymienionych przyrządów należy użyć wraz z watomierzem, aby obliczyć współczynnik mocy urządzenia elektrycznego zasilanego prądem sinusoidalnym?

A. Woltomierza
B. Amperomierza
C. Częstościomierza
D. Waromierza
Amperomierz, woltomierz i częstościomierz to urządzenia pomiarowe, które, choć mają swoje zastosowania, nie są wystarczające do precyzyjnego określenia współczynnika mocy w obwodach prądu sinusoidalnego. Amperomierz mierzy natężenie prądu w obwodzie, co jest ważne, ale samodzielny pomiar nie dostarcza informacji o fazie prądu w stosunku do napięcia. W przypadku pomiaru mocy, kluczowe znaczenie ma określenie nie tylko wartości prądu, ale również jego relacji do napięcia, co nie jest możliwe bez urządzenia mierzącego różnicę fazową, jakim jest waromierz. Woltomierz, z kolei, mierzy napięcie w obwodzie, co także jest istotne, ale jego zastosowanie w obliczeniach mocy wymaga dodatkowego kontekstu fazowego. Częstościomierz mierzy częstotliwość sygnału, co nie ma bezpośredniego wpływu na obliczanie mocy czynnej czy współczynnika mocy. Typowym błędem w myśleniu o pomiarach mocy jest przekonanie, że wystarczy znać wartości prądu i napięcia, aby obliczyć moc, ignorując istotne aspekty związane z fazą sygnałów. Dlatego, aby uzyskać dokładne dane dotyczące współczynnika mocy, konieczne jest użycie waromierza w parze z watomierzem, co pozwala na pełne zrozumienie efektywności energetycznej danego urządzenia elektrycznego.

Pytanie 2

Aby przeprowadzić bezpieczne oraz efektywne działania mające na celu zlokalizowanie uszkodzenia w silniku jednofazowym z kondensatorem rozruchowym, należy wykonać kolejność następujących czynności:

A. przeprowadzić oględziny oraz pomiary kontrolne, odłączyć zasilanie, odkręcić pokrywę tabliczki zaciskowej, rozładować kondensator
B. rozładować kondensator, przeprowadzić oględziny oraz pomiary kontrolne, odłączyć zasilanie, odkręcić pokrywę tabliczki zaciskowej
C. odłączyć zasilanie, odkręcić pokrywę tabliczki zaciskowej, rozładować kondensator, przeprowadzić oględziny oraz pomiary kontrolne
D. odkręcić pokrywę tabliczki zaciskowej, rozładować kondensator, przeprowadzić oględziny oraz pomiary kontrolne, odłączyć zasilanie
Wybór niewłaściwej kolejności działań w trakcie lokalizacji uszkodzenia silnika jednofazowego z kondensatorem rozruchowym może prowadzić do poważnych konsekwencji, zarówno w zakresie bezpieczeństwa, jak i efektywności naprawy. Rozpoczynanie odkręcania pokrywy tabliczki zaciskowej bez wcześniejszego odłączenia napięcia zasilania jest rażącym naruszeniem zasad bezpieczeństwa. Taki błąd może narazić technika na porażenie prądem, nawet jeśli nie zamierza on pracować na aktywnych elementach, ze względu na potencjalny ładunek zgromadzony w kondensatorze. Z tego powodu, procedura powinna zawsze zaczynać się od odłączenia zasilania, co jest standardem w branży. Kolejnym błędem jest rozładowanie kondensatora przed dostępem do niego, co również stwarza zagrożenie, jeżeli nie jest zachowana odpowiednia kolejność działań. Oględziny powinny być przeprowadzane dopiero po zapewnieniu bezpieczeństwa, co wymaga zachowania odpowiednich norm i wskazówek producenta. Przykładowo, w wielu przypadkach standardy branżowe zalecają stosowanie osobnych narzędzi do odłączania napięcia oraz do rozładowywania kondensatorów, aby uniknąć wypadków. Niezastosowanie się do tych zasad może prowadzić do niepełnej diagnostyki uszkodzenia, a w konsekwencji do niewłaściwych napraw, co zwiększa ryzyko dalszych awarii oraz generuje niepotrzebne koszty.

Pytanie 3

Na podstawie wyników pomiarów zamieszczonych w przedstawionej tabeli określ uszkodzenie występujące w instalacji.

Pomiar napięcia między przewodem PE i drugim punktem instalacji
Drugi punkt pomiaru:Przewód fazowy LPrzewód neutralny NMetalowa rura COMetalowa rura gazowaMetalowa wanna łazienkowa
232 V0 V51 V49 V0 V
Wynik:232 V0 V51 V49 V0 V
A. Zwarcie między przewodem neutralnym i fazowym.
B. Uszkodzone połączenia wyrównawcze miejscowe.
C. Przebicie izolacji przewodu fazowego do metalowych rur.
D. Uszkodzona izolacja przewodu neutralnego w pobliżu wanny.
Poprawna odpowiedź wskazuje na uszkodzone połączenia wyrównawcze miejscowe, co jest zgodne z wynikami pomiarów. W przypadku, gdy napięcie na metalowych elementach instalacji, takich jak rury, wynosi 51 V i 49 V w stosunku do przewodu ochronnego PE, sugeruje to, że połączenia wyrównawcze nie funkcjonują prawidłowo. W dobrze zaprojektowanej instalacji elektrycznej, wszystkie metalowe elementy powinny być podłączone do systemu uziemiającego, co pozwala na równomierne rozłożenie potencjału elektrycznego. Uszkodzenie połączeń wyrównawczych może prowadzić do niebezpiecznych sytuacji, takich jak porażenie prądem elektrycznym, a także stanowi naruszenie norm bezpieczeństwa określonych w Polskich Normach (PN) oraz Dyrektywie Niskonapięciowej. W praktyce, regularne kontrole i pomiary instalacji elektrycznych są kluczowe, aby zapewnić bezpieczeństwo użytkowników oraz zgodność z obowiązującymi normami. Wykonana analiza wskazuje na konieczność przeprowadzania napraw w celu przywrócenia prawidłowego działania systemu ochrony przeciwporażeniowej.

Pytanie 4

Do zabezpieczenia silnika, którego parametry znamionowe zamieszczono w ramce, należy wybrać wyłącznik silnikowy o oznaczeniu fabrycznym

Silnik 3~   Typ MAS063-2BA90-Z

0,25 kW   0,69 A   Izol. F

IP54   2755 obr/min   cosφ 0,81

400 V (Y)   50 Hz

A. PKZM01 – 0,63
B. MMS-32S – 1,6A
C. PKZM01 – 1
D. MMS-32S – 4A
Wybranie wyłącznika silnikowego PKZM01 – 1 jest najlepszym rozwiązaniem do zabezpieczenia silnika o prądzie znamionowym 0,69 A. Wyłącznik ten ma prąd znamionowy 1 A, co zapewnia odpowiednią ochronę przed przeciążeniem silnika. Zgodnie z normą IEC 60947-4-1, wyłączniki silnikowe powinny być dobrane tak, aby ich prąd znamionowy był nieco wyższy od prądu znamionowego chronionego urządzenia, co pozwala na uniknięcie fałszywych wyłączeń przy normalnej pracy. Dodatkowo, wyłącznik PKZM01 – 1 posiada funkcję zabezpieczenia przed zwarciem i przeciążeniem, co jest kluczowe w kontekście długoterminowej niezawodności układów elektrycznych. W praktyce, użycie tego typu wyłącznika pozwala nie tylko na zabezpieczenie silnika, ale także na zwiększenie trwałości instalacji, co jest zgodne z najlepszymi praktykami w dziedzinie automatyki przemysłowej. Warto również dodać, że wybierając odpowiedni wyłącznik, należy wziąć pod uwagę charakterystykę obciążenia, co pozwala na minimalizację ryzyka uszkodzeń w systemie.

Pytanie 5

Jaka jest podstawowa funkcja wyłącznika różnicowoprądowego?

A. Regulacja napięcia wyjściowego
B. Ochrona przed przeciążeniem obwodu
C. Ochrona przed porażeniem poprzez wykrycie różnicy prądów w przewodach
D. Przekształcenie prądu przemiennego na stały
Wyłącznik różnicowoprądowy jest kluczowym elementem systemów ochrony elektrycznej, którego głównym zadaniem jest zapobieganie porażeniom prądem elektrycznym. Działa on na zasadzie wykrywania różnicy pomiędzy prądem wpływającym a wypływającym z urządzenia lub instalacji. Jeśli taka różnica zostanie wykryta, oznacza to, że część prądu gdzieś 'ucieka', co może sugerować uszkodzenie izolacji lub kontakt prądu z osobą. W praktyce wyłącznik różnicowoprądowy automatycznie odłącza zasilanie w momencie wykrycia tego typu anomalii, minimalizując ryzyko porażenia. To urządzenie jest szeroko stosowane w instalacjach domowych i przemysłowych, zapewniając dodatkową warstwę ochrony w miejscach, gdzie mogą występować uszkodzenia izolacji lub wilgoć. Warto pamiętać, że nie zastępuje on standardowych zabezpieczeń nadprądowych, ale uzupełnia je, oferując ochronę przed skutkami niekontrolowanego przepływu prądu do ziemi. W kontekście bezpieczeństwa użytkownika wyłącznik różnicowoprądowy jest nieocenionym narzędziem, które powinno być standardem w każdej nowoczesnej instalacji elektrycznej.

Pytanie 6

Jakie środki ochrony przeciwporażeniowej stosuje się w przypadku uszkodzenia obwodu pojedynczego odbiornika?

A. separację elektryczną
B. jedynie obudowy
C. wyłącznie specjalne ogrodzenia
D. umiejscowienie poza zasięgiem ręki
Separacja elektryczna to metoda ochrony przed porażeniem elektrycznym, która polega na oddzieleniu obwodów elektrycznych od żywych części, co znacząco minimalizuje ryzyko bezpośredniego kontaktu z prądem. W praktyce, separacja elektryczna może być realizowana poprzez zastosowanie transformatorów separacyjnych, które izolują odbiorniki od źródła zasilania, co pozwala na uniknięcie niebezpiecznych sytuacji w przypadku uszkodzenia izolacji. Dobre praktyki w zakresie ochrony elektrycznej zalecają używanie transformatorów o odpowiednich parametrach, które nie tylko spełniają normy bezpieczeństwa, ale także są zgodne z obowiązującymi standardami, takimi jak norma IEC 61140 dotycząca ochrony przeciwporażeniowej. W kontekście instalacji elektrycznych, separacja elektryczna jest szczególnie ważna w obszarach o wysokim ryzyku, jak np. w łazienkach czy na zewnątrz budynków, gdzie ryzyko kontaktu z wodą jest zwiększone. Ponadto, stosowanie separacji elektrycznej w obiektach przemysłowych, gdzie występuje duża liczba maszyn i urządzeń, również przyczynia się do poprawy bezpieczeństwa pracowników i minimalizacji ryzyka wypadków. W związku z tym, separacja elektryczna jest nie tylko skuteczną, ale i rekomendowaną metodą ochrony przed porażeniem elektrycznym.

Pytanie 7

Prąd ustawczy przekaźnika termobimetalowego, chroniącego silnik pompy wody, o prądzie znamionowym In = 10 A nie może być większy niż

A. 9,50 A
B. 10,50 A
C. 10,10 A
D. 11,00 A
Odpowiedź 11,00 A jest prawidłowa, ponieważ zgodnie z zasadami działania przekaźników termobimetalowych, ich prąd nastawczy powinien być dostosowany do wartości znamionowej urządzenia, które ma zabezpieczać. W tym przypadku, dla przekaźnika zabezpieczającego silnik pompy o prądzie znamionowym I<sub>n</sub> = 10 A, wartość prądu nastawczego powinna być ustawiona na wartość nieprzekraczającą 11,00 A. Umożliwia to zapewnienie odpowiedniego zabezpieczenia w przypadku przeciążenia silnika, ponieważ pozwala na zachowanie marginesu bezpieczeństwa. W praktyce, taka regulacja jest kluczowa, aby uniknąć uszkodzenia silnika oraz samego przekaźnika. Warto również zaznaczyć, że branżowe standardy, takie jak IEC 60947, podkreślają znaczenie odpowiedniego ustawienia wartości prądowych dla zapewnienia bezpiecznego i niezawodnego działania urządzeń. Przykładowo, w przypadku, gdy prąd nastawczy byłby zbyt niski, mogłoby dojść do fałszywego wyzwolenia przekaźnika, co prowadziłoby do niepotrzebnych przestojów maszyny. Z drugiej strony, ustawienie zbyt wysokiego prądu mogłoby nie zabezpieczyć silnika przed realnym przeciążeniem. Dlatego też, 11,00 A jest wartością optymalną, gwarantującą nie tylko bezpieczeństwo, ale również efektywność operacyjną systemu.

Pytanie 8

Jakie będą konsekwencje zasilenia silnika asynchronicznego, którego znamionowa częstotliwość napięcia stojana wynosi 50 Hz, z sieci o częstotliwości 60 Hz?

A. Uszkodzenie wirnika silnika
B. Zwiększenie prędkości obrotowej wirnika silnika
C. Nawrót wirnika silnika
D. Zmniejszenie prędkości obrotowej wirnika silnika
Zwiększenie prędkości obrotowej wirnika silnika asynchronicznego zasilanego napięciem o częstotliwości 60 Hz w porównaniu do znamionowej częstotliwości 50 Hz jest wynikiem zjawiska zwanego poślizgiem. W przypadku silników asynchronicznych prędkość obrotowa wirnika jest zawsze niższa od prędkości synchronicznej, która zależy od częstotliwości zasilania oraz liczby par biegunów. Wzór na prędkość synchroniczną jest następujący: n_s = (120 * f) / P, gdzie n_s to prędkość synchroniczna w obrotach na minutę (RPM), f to częstotliwość zasilania w hercach, a P to liczba par biegunów. W przypadku zasilania 60 Hz, prędkość synchroniczna wzrośnie, co skutkuje wzrostem prędkości obrotowej wirnika. Praktycznie, dla silnika z dwiema parami biegunów zasilanego z sieci 50 Hz, prędkość będzie wynosić 1200 RPM, natomiast przy 60 Hz wzrośnie do 1440 RPM. Takie zjawisko może być wykorzystywane w aplikacjach, gdzie wymagana jest większa prędkość obrotowa, jednak należy pamiętać o możliwych konsekwencjach, takich jak zwiększone straty cieplne i ryzyko uszkodzenia silnika. W przemyśle standardem jest dostosowywanie zasilania do znamionowych parametrów silnika w celu zapewnienia jego długowieczności i efektywności.

Pytanie 9

W tabeli zamieszczono wyniki kontrolnych pomiarów rezystancji uzwojeń stojana silnika trójfazowego połączonego w gwiazdę. Przedstawione wyniki świadczą o

Rezystancja uzwojeń stojana między zaciskamiWartość, Ω
U1 – V115
V1 – W1
W1 – U1
Ilustracja do pytania
A. zwarciu międzyzwojowym w uzwojeniu Ul - U2
B. przerwie w uzwojeniu Wl - W2
C. zwarciu międzyzwojowym w uzwójeniu V1 - V2
D. przerwie w uzwojeniu VI - V2
Poprawna odpowiedź wskazuje na przerwę w uzwojeniu W1-W2, co można zdiagnozować na podstawie pomiarów rezystancji. W przypadku silników trójfazowych połączonych w gwiazdę, każdy z trzech uzwojeń (U, V, W) powinien mieć zbliżoną rezystancję. W analizowanym przypadku, jeśli rezystancja między zaciskami V1-W1 oraz W1-U1 wynosi nieskończoność, oznacza to, że w obwodzie występuje przerwa. Tego rodzaju awarie mają poważne konsekwencje operacyjne, ponieważ przerywają ciągłość elektryczną, co prowadzi do nieprawidłowego działania silnika. Przerwa w uzwojeniu skutkuje brakiem obciążenia dla pozostałych uzwojeń, co może prowadzić do ich przegrzewania się i w konsekwencji do uszkodzenia. W praktyce ważne jest, aby regularnie przeprowadzać pomiary rezystancji uzwojeń, co jest zgodne z normami branżowymi, takimi jak IEC 60034, które podkreślają znaczenie monitorowania stanu technicznego maszyn elektrycznych.

Pytanie 10

Co należy zrobić w przypadku przeciążenia silnika elektrycznego podczas pracy?

A. Zastosować dodatkowy filtr harmonicznych
B. Zwiększyć napięcie zasilające
C. Zredukować obciążenie lub sprawdzić wyłączniki termiczne
D. Zwiększyć długość przewodów zasilających
W przypadku przeciążenia silnika elektrycznego kluczowe jest szybkie zidentyfikowanie i zredukowanie obciążenia, które może być przyczyną problemu. Przeciążenie często wynika z nadmiernego zapotrzebowania na moc, co prowadzi do przegrzania i potencjalnego uszkodzenia silnika. Standardy branżowe zalecają, aby regularnie monitorować obciążenie silników i odpowiednio reagować na wszelkie nieprawidłowości. Dodatkowo, sprawdzenie wyłączników termicznych to dobra praktyka, która pozwala na wykrycie i zapobieganie dalszym uszkodzeniom. Wyłączniki termiczne są zabezpieczeniem, które automatycznie odłącza zasilanie w przypadku wykrycia nadmiernego wzrostu temperatury, co chroni silnik przed uszkodzeniem. Regularna konserwacja i kontrola tych elementów jest niezbędna, aby zapewnić bezpieczną i efektywną pracę silników elektrycznych. Praktyczne zastosowanie tej wiedzy pozwala na dłuższą żywotność urządzeń i zmniejszenie ryzyka kosztownych napraw.

Pytanie 11

Jaką minimalną liczbę osób należy zaangażować do pracy w warunkach szczególnego zagrożenia?

A. Cztery osoby
B. Jedna osoba
C. Trzy osoby
D. Dwie osoby
Minimalna liczba osób wykonujących prace w warunkach szczególnego zagrożenia powinna wynosić dwie osoby, co jest zgodne z zasadami bezpieczeństwa pracy oraz regulacjami prawnymi. W praktyce, obecność co najmniej dwóch pracowników zapewnia wzajemne wsparcie i możliwość szybkiej reakcji w sytuacjach awaryjnych. Na przykład, w przypadku prac w zamkniętych przestrzeniach, takich jak zbiorniki czy kanały, jeden pracownik może pełnić rolę osoby asekurującej, co jest niezbędne w przypadku wystąpienia zagrożenia zdrowia lub życia. Istotne jest, by w ramach tych prac, każdy z pracowników miał przypisane konkretne zadania oraz mógł efektywnie komunikować się z partnerem. Zgodnie z normami, takimi jak PN-N-18002 dotycząca zarządzania bezpieczeństwem i higieną pracy, pracodawcy są zobowiązani do zapewnienia odpowiednich warunków, które minimalizują ryzyko wypadków. W praktyce, w przypadku awarii sprzętu lub nagłych problemów zdrowotnych, obecność drugiej osoby może być kluczowa w zapewnieniu szybkiej pomocy oraz wezwania służb ratunkowych.

Pytanie 12

Której z poniższych czynności nie da się zrealizować podczas próbnego uruchamiania zgrzewarki oporowej?

A. Pomiaru rezystancji izolacji pomiędzy uzwojeniem pierwotnym transformatora a obudową
B. Sprawdzenia działania przełącznika do zgrzewania pojedynczego oraz ciągłego
C. Pomiaru czasu poszczególnych etapów zgrzewania: docisku i przerwy
D. Sprawdzenia stanu oraz prawidłowości ustawienia elektrod
Pomiar rezystancji izolacji między uzwojeniem pierwotnym transformatora a obudową jest kluczowym krokiem w zapewnieniu bezpieczeństwa i niezawodności zgrzewarki oporowej. Wykonanie tego pomiaru przed rozpoczęciem użytkowania urządzenia pozwala na wykrycie ewentualnych uszkodzeń izolacji, co może prowadzić do zwarć elektrycznych czy porażenia prądem użytkowników. W praktyce, standardowe normy dotyczące bezpieczeństwa elektrycznego, takie jak IEC 60204-1, nakładają na producentów i operatorów obowiązek regularnego sprawdzania stanu izolacji urządzeń. Pomiar rezystancji izolacji można przeprowadzić za pomocą specjalistycznych mierników, które umożliwiają określenie wartości rezystancji w stosunku do wymaganych norm. Przykładowo, minimalna wartość rezystancji izolacji powinna wynosić co najmniej 1 MΩ w urządzeniach przemysłowych, co zapewnia odpowiedni poziom bezpieczeństwa. Regularne kontrole i pomiary takich parametrów, jak rezystancja izolacji, są częścią dobrych praktyk konserwacyjnych, które zapewniają długotrwałą sprawność i bezpieczeństwo urządzenia.

Pytanie 13

Podczas użytkowania standardowej instalacji z żarowym źródłem światła zaobserwowano po kilku minutach działania częste wahania natężenia oświetlenia (migotanie światła). Najrzadziej występującą przyczyną usterki może być

A. zwarcie między przewodem ochronnym a neutralnym
B. wypalenie styków w łączniku
C. wilgotna izolacja przewodów zasilających
D. zwarcie między przewodem fazowym a neutralnym
Wypalenie styków w łączniku jest najczęstszą przyczyną migania światła w instalacjach oświetleniowych. W trakcie pracy instalacji, styk łącznika może podlegać znacznym obciążeniom elektrycznym, co prowadzi do przegrzewania i wypalania się materiału styku. W takich przypadkach pojawiają się przerwy w przewodzeniu prądu, co skutkuje wahań natężenia oświetlenia. Zastosowanie wysokiej jakości łączników oraz regularna ich konserwacja mogą znacząco wpłynąć na niezawodność instalacji. Dobrze zaprojektowane instalacje elektryczne powinny uwzględniać dobór odpowiednich komponentów, które są zgodne z normami PN-EN 60669-1. Przykładowo, w instalacjach o wysokim natężeniu prądu warto stosować łączniki o zwiększonej odporności na wypalanie. Warto również regularnie kontrolować stan łączników, aby uniknąć sytuacji, które mogą prowadzić do awarii, co z kolei wpływa na bezpieczeństwo użytkowania i komfort oświetlenia.

Pytanie 14

Podstawowa ochrona przed porażeniem prądem za pomocą przegród lub obudów jest realizowana dzięki

A. zastosowaniu osłon chroniących przed zamierzonym dotykiem
B. wprowadzeniu barier chroniących przed przypadkowym kontaktem
C. umieszczeniu elementów aktywnych poza zasięgiem ręki
D. całkowitemu i trwałemu pokryciu części czynnych materiałem izolacyjnym
Pomimo że różne metody ochrony przed porażeniem prądem są ważnymi zagadnieniami w inżynierii elektrycznej, to odpowiedzi dotyczące umieszczenia części czynnych poza zasięgiem ręki, całkowitego pokrycia materiałem izolacyjnym oraz zastosowania przeszkód chroniących przed przypadkowym dotykiem nie są wystarczające. Umieszczenie części czynnych poza zasięgiem ręki może w pewnym stopniu ograniczyć ryzyko, jednak nie zapewnia skutecznej ochrony przed zamierzonym dotykiem. W praktyce, takie podejście może być stosowane jedynie w ograniczonym zakresie, np. w instalacjach, gdzie dostęp do urządzeń jest kontrolowany. Ponadto, całkowite pokrycie części czynnych materiałem izolacyjnym, choć może być skuteczne w pewnych warunkach, nie zawsze jest wykonalne ze względów praktycznych i technologicznych. Izolacja musi być zgodna z normami, aby rzeczywiście spełniać swoje funkcje. Zastosowanie przeszkód chroniących przed przypadkowym dotykiem również nie rozwiązuje problemu celowego kontaktu z częściami czynnymi. Ostatecznie, aby skutecznie chronić przed porażeniem, niezbędne jest zastosowanie kompleksowego podejścia, które uwzględnia zarówno osłony ochronne, jak i odpowiednie zabezpieczenia, zgodne z międzynarodowymi standardami bezpieczeństwa. Kluczowe jest zrozumienie, że ochrona przeciwporażeniowa wymaga nie tylko fizycznych barier, ale również edukacji użytkowników oraz przestrzegania norm i zasad bezpieczeństwa.

Pytanie 15

W celu oceny stanu technicznego silnika prądu stałego dokonano jego oględzin i pomiarów. Na podstawie wyników pomiarów zamieszczonych w tabeli określ stan techniczny tego silnika.

Wartość rezystancji pomiędzy zaciskami:
A1-A2D1-D2E1-E2A1-PED1-PEE1-PE
0,8 Ω0,9 Ω4,7 Ω123,1 MΩ102,5 MΩ166,6 MΩ
A. Przebicie izolacji uzwojenia bocznikowego do obudowy.
B. Pogorszony stan izolacji między uzwojeniem szeregowym, a obudową.
C. Pogorszony stan połączeń uzwojenia twornika w tabliczce zaciskowej.
D. Zwarcie międzyzwojowe w uzwojeniu bocznikowym.
Analizowane odpowiedzi sugerują różne problemy, które mogą wystąpić w silniku prądu stałego, jednak żadna z nich nie odnosi się właściwie do zidentyfikowanego stanu technicznego silnika. Pogorszenie stanu połączeń uzwojenia twornika w tabliczce zaciskowej mogłoby mieć wpływ na wydajność silnika, ale nie jest to głównym czynnikiem, który prowadzi do podwyższonej rezystancji E1-E2. Z kolei przebicie izolacji uzwojenia bocznikowego do obudowy jest poważnym problemem, który można zidentyfikować poprzez niskie wartości rezystancji między uzwojeniem a masą, co w tym przypadku nie miało miejsca, ponieważ pomiary wykazały wysokie wartości w tych punktach. Z kolei pogorszenie stanu izolacji między uzwojeniem szeregowym a obudową również nie znajduje potwierdzenia w analizowanych wynikach, które pokazują brak przebicia. Pojęcie zwarcia międzyzwojowego jest kluczowe, ponieważ jego skutki mogą prowadzić do znacznych strat mocy i przegrzewania się silnika. Często mylone są objawy zwarć z innymi rodzajami uszkodzeń, co może prowadzić do właściwego zdiagnozowania problemu. Ważne jest, aby w praktyce prowadzić regularne kontrole rezystancji uzwojeń oraz stosować się do wytycznych zawartych w normach branżowych, aby uniknąć nieprawidłowej diagnozy i niepotrzebnych kosztów napraw.

Pytanie 16

Jakie z wymienionych uszkodzeń można zidentyfikować podczas przeglądów podtynkowej instalacji elektrycznej?

A. Uszkodzenia mechaniczne obudów oraz osłon urządzeń elektrycznych
B. Pogorszenie jakości izolacji przewodów instalacji
C. Przekroczenie maksymalnego czasu reakcji RCD
D. Zerwanie w układzie przewodów ochronnych
Podczas analizowania innych opcji odpowiedzi, warto zwrócić uwagę na ich niedoskonałości w kontekście możliwości identyfikacji uszkodzeń w podtynkowej instalacji elektrycznej. Przerwę w systemie przewodów ochronnych jest bardzo trudne do wykrycia jedynie poprzez wizualną inspekcję, ponieważ często nie jest ona widoczna na zewnątrz. Wymaga ona użycia specjalistycznych narzędzi, takich jak multimetry czy detektory do pomiaru rezystancji, aby jednoznacznie ustalić, czy przewód ochronny jest sprawny. Z kolei pogorszenie się stanu izolacji przewodów również jest procesem, który nie objawia się od razu i często wymaga przeprowadzenia testów dielektrycznych, aby wykryć utratę izolacji, co jest zadaniem dla wykwalifikowanego personelu. Przekroczenie dopuszczalnego czasu zadziałania RCD (wyłącznika różnicowoprądowego) to kolejny aspekt, który jest monitorowany przez urządzenia pomiarowe, a nie w ramach prostych oględzin. W rzeczywistości, aby ocenić prawidłowe działanie RCD, konieczne jest przeprowadzenie testów funkcjonalnych w odpowiednich warunkach. Wreszcie, odpowiedzi te wskazują na powszechnie występujące błędne przekonania, które mogą prowadzić do mylnych wniosków, jako że inspekcje wizualne mają ograniczenia i są dalekie od kompleksowego audytu stanu instalacji elektrycznej. Właściwa diagnostyka wymaga zastosowania właściwych narzędzi oraz metod zgodnych z dobrą praktyką inżynieryjną.

Pytanie 17

Jakie będą konsekwencje podniesienia częstotliwości napięcia zasilającego stojan w trakcie działania trójfazowego silnika indukcyjnego?

A. Nawrót wirnika silnika
B. Spadek prędkości obrotowej wirnika silnika
C. Całkowite zniszczenie wirnika silnika
D. Wzrost prędkości obrotowej wirnika silnika
Zwiększenie częstotliwości napięcia zasilania stojana trójfazowego silnika indukcyjnego prowadzi do podwyższenia prędkości obrotowej wirnika zgodnie z zasadą synchronizacji. W silnikach indukcyjnych prędkość obrotowa wirnika jest ściśle związana z częstotliwością zasilania, co wynika z relacji: n = 120 * f / p, gdzie n to prędkość obrotowa w obr/min, f to częstotliwość w Hz, a p to liczba par biegunów. Zwiększenie częstotliwości powoduje, że wirnik osiąga wyższą prędkość, co ma zastosowanie w różnych procesach przemysłowych, gdzie wymagana jest regulacja prędkości napędu, na przykład w systemach transportowych czy w automatyce przemysłowej. W praktyce możemy wykorzystać falowniki, które umożliwiają precyzyjne sterowanie częstotliwością, a tym samym prędkością obrotową silnika, co optymalizuje zużycie energii i zwiększa efektywność procesów. Warto również zauważyć, że zgodnie z normami IEC 60034, projektowanie systemów napędowych powinno uwzględniać odpowiednie parametry zasilania, co wpływa na trwałość i wydajność silników."

Pytanie 18

Zamiana przewodu OWY 2,5 mm2 na YKY 2,5 mm2 w odbiorniku ruchomym doprowadzi do

A. podniesienia obciążalności prądowej
B. zmiany wytrzymałości mechanicznej przewodu
C. obniżenia obciążalności prądowej
D. wzrostu wytrzymałości mechanicznej przewodu
Wybór odpowiedzi dotyczącej zmniejszenia wytrzymałości mechanicznej przewodu YKY 2,5 mm² w porównaniu do OWY 2,5 mm² jest trafny z kilku powodów. Przewody OWY, wykonane z miedzi i zwykle stosowane w instalacjach, charakteryzują się większą elastycznością i odpornością na uszkodzenia mechaniczne. W przeciwieństwie do nich, przewody YKY, chociaż mają lepsze właściwości izolacyjne i są bardziej odporne na działanie chemikaliów, są również sztywniejsze. Zmiana na przewód YKY w zastosowaniach, gdzie przewód jest narażony na ruch, może prowadzić do łatwiejszych uszkodzeń związanych z nadmiernym zginaniem czy przecieraniem. To bardzo ważne w kontekście projektowania instalacji elektrycznych, gdzie przewody często muszą być elastyczne, aby wytrzymać różne ruchy i wibracje. W praktyce, standardy takie jak PN-EN 60228 definiują różne parametry przewodów i ich zastosowań, co podkreśla znaczenie wyboru odpowiedniego typu w zależności od środowiska operacyjnego. Dlatego w kontekście zastosowania przewodów w instalacjach ruchomych, zmiana na YKY może nie być optymalnym rozwiązaniem.

Pytanie 19

Na podstawie podanych w tabeli wyników pomiarów rezystancji izolacji silnika asynchronicznego trójfazowego o danych UN = 230/400 V i PN = 3 kW można stwierdzić, że

RPE-U1RPE-V1RPE-W1RU1-V1RV1-W1RW1-U1
6,2 MΩ5,4 MΩ3,9 MΩ6,9 MΩ4,4 MΩ4,8 MΩ
A. pogorszyła się izolacja uzwojenia W.
B. wystąpiło zwarcie między uzwojeniami V i W.
C. w uzwojeniu V występuje przerwa.
D. w uzwojeniu U występuje zwarcie do obudowy.
Prawidłowa odpowiedź wskazuje na to, że pogorszenie izolacji uzwojenia W jest dostrzegalne w analizowanych wynikach pomiarów. Rezystancja izolacji między uzwojeniami powinna być zbliżona, co jest zgodne z normami bezpieczeństwa i jakości, takimi jak IEC 60364. W przypadku, gdy rezystancja izolacji uzwojenia W jest znacznie niższa niż dla uzwojeń U i V, świadczy to o osłabieniu izolacji, co może prowadzić do niebezpiecznych warunków pracy silnika. W praktyce, niezidentyfikowane problemy związane z izolacją mogą prowadzić do zwarć, przegrzewania się i w końcu awarii silnika, co wiąże się z kosztownymi naprawami oraz przestojami w pracy maszyn. Regularne pomiary rezystancji izolacji są kluczowe dla zapewnienia niezawodności urządzeń elektrycznych, a odpowiednia dokumentacja wyników pozwala na monitorowanie stanu technicznego uzwojeń. W przypadku wykrycia niskiej rezystancji, należy natychmiast podjąć kroki w celu oceny i naprawy uszkodzeń izolacji, co jest zgodne z dobrą praktyką w konserwacji urządzeń elektrycznych.

Pytanie 20

Jaki dodatkowy komponent (urządzenie) jest wymagany do funkcjonowania silnika indukcyjnego trójfazowego, zasilanego napięciem jednofazowym U = 230 V, f= 50 Hz?

A. Bezpiecznik różnicowoprądowy
B. Bezpiecznik silnikowy
C. Opornik
D. Kondensator
Kondensator jest niezbędnym elementem w przypadku zasilania silnika indukcyjnego trójfazowego napięciem jednofazowym. Silniki indukcyjne trójfazowe wymagają trzech faz zasilania dla uzyskania pełnej mocy oraz momentu obrotowego. Zasilanie jednofazowe powoduje, że silnik nie może wygenerować odpowiedniego momentu obrotowego oraz obrotu, dlatego kondensator służy jako środek do generowania drugiej fazy. W praktyce, kondensatory są stosowane w różnych konfiguracjach, takich jak kondensatory rozruchowe, które pomagają w uruchomieniu silnika, oraz kondensatory pracy, które poprawiają efektywność jego działania. Zastosowanie kondensatora pozwala na zrównoważenie obciążeń oraz zmniejszenie zniekształceń w sieci zasilającej, co jest zgodne z dobrymi praktykami zarządzania energią w instalacjach elektrycznych. W branży często stosuje się standardy IEC dotyczące urządzeń elektrycznych, w tym odpowiednich parametrów kondensatorów do silników, co zapewnia ich bezpieczeństwo i efektywność.

Pytanie 21

Który z poniższych rodzajów silników wyróżnia się najlepszą kontrolą prędkości obrotowej poprzez modyfikację wartości napięcia zasilającego?

A. Asynchroniczny pierścieniowy
B. Asynchroniczny klatkowy
C. Synchroniczny jawnobiegunowy
D. Prądu stałego
Silniki prądu stałego charakteryzują się doskonałą regulacją prędkości obrotowej, co czyni je idealnym wyborem w aplikacjach wymagających precyzyjnego sterowania. Dzięki prostocie zmiany napięcia zasilającego, można łatwo dostosować prędkość obrotową silnika do konkretnego zadania. Przykłady zastosowania obejmują napędy w robotyce, gdzie wymagana jest zmienna prędkość w zależności od zadań do wykonania, czy też w wentylatorach, gdzie regulacja obrotów wpływa na efektywność energetyczną. W przemyśle, silniki prądu stałego są wykorzystywane w maszynach takich jak dźwigi czy taśmociągi, gdzie precyzyjne zarządzanie prędkością jest kluczowe dla bezpieczeństwa i efektywności procesu. Dobre praktyki wskazują na wykorzystanie kontrolerów PWM (Pulse Width Modulation) do efektywnej regulacji napięcia oraz ograniczenia strat energii. Warto również zauważyć, że silniki te są bardziej odpowiednie do zadań, gdzie wymagana jest często zmiana kierunku obrotów, co również wpływa na ich popularność w różnorodnych aplikacjach.

Pytanie 22

Możliwość przebicia izolacji uzwojeń silnika indukcyjnego trójfazowego w stosunku do korpusu można ustalić przez pomiar

A. rezystancji uzwojeń stojana
B. symetrii uzwojeń
C. rezystancji przewodu ochronnego
D. prądu upływu
Prąd upływu jest kluczowym wskaźnikiem stanu izolacji uzwojeń silnika indukcyjnego trójfazowego. W momencie wystąpienia przebicia izolacji, prąd upływu wzrasta, co może prowadzić do niebezpiecznych sytuacji, w tym uszkodzenia silnika oraz zagrożeń dla użytkowników. Pomiar prądu upływu pozwala na wykrycie niewłaściwych warunków izolacyjnych oraz wczesną identyfikację problemów, zanim dojdzie do poważniejszych awarii. W praktyce, stosuje się urządzenia pomiarowe, takie jak mierniki izolacji czy detektory prądu upływu, które mogą zarówno diagnozować stan izolacji, jak i monitorować jej zmiany w czasie. W myśl dobrych praktyk, regularne kontrole stanu izolacji silników są zalecane przez standardy branżowe, takie jak IEC 60034, co podkreśla znaczenie zapobiegania awariom oraz zapewnienia bezpieczeństwa eksploatacji urządzeń elektrycznych.

Pytanie 23

Podczas wymiany trójfazowego wyłącznika różnicowoprądowego należy mieć na uwadze, że do wyłącznika nie może być podłączony przewód

A. ochronny PE
B. fazowy L2
C. fazowy LI
D. neutralny N
Odpowiedź dotycząca przewodu ochronnego PE jako nieodpowiedniego do podłączenia do trójfazowego wyłącznika różnicowoprądowego jest poprawna. Przewód ochronny PE ma za zadanie zapewnienie bezpieczeństwa użytkowników poprzez odprowadzenie prądu w przypadku awarii do ziemi, co zmniejsza ryzyko porażenia prądem elektrycznym. Wyłącznik różnicowoprądowy jest zaprojektowany do monitorowania różnicy prądów między przewodami fazowymi a neutralnym. Podłączenie przewodu PE do tego urządzenia nie tylko jest niezgodne z jego przeznaczeniem, ale również może prowadzić do niebezpiecznych sytuacji, w których wyłącznik nie zadziała w przypadku wykrycia różnicy prądu. Zgodnie z normami PN-IEC 61008-1, wyłączniki różnicowoprądowe powinny być podłączane w sposób, który umożliwia ich prawidłowe działanie i spełnienie wymogów związanych z ochroną przeciwporażeniową. Przykładem poprawnej instalacji jest wykorzystanie wyłącznika różnicowoprądowego w połączeniu z przewodami fazowymi i neutralnym, co zapewnia skuteczną ochronę i minimalizuje ryzyko uszkodzeń.

Pytanie 24

Podczas pracy szlifierka kątowa nagle przestała działać. Ustalono, że nie jest to spowodowane brakiem zasilania. Aby zlokalizować awarię, należy odłączyć napięcie, a następnie

A. sprawdzić rezystancję przewodu ochronnego
B. ocenić stan szczotek
C. zmierzyć rezystancję izolacji kabla zasilającego
D. zmierzyć temperaturę uzwojenia stojana
Pytanie dotyczy lokalizacji usterki w szlifierce kątowej, która zatrzymała się w czasie pracy. Podczas takiej diagnozy nie można pominąć fundamentalnych funkcji silnika, które są kluczowe dla jego prawidłowego działania. Mierzenie rezystancji żyły ochronnej jest istotne w kontekście bezpieczeństwa, ale nie pomoże w ustaleniu przyczyny zatrzymania się urządzenia. Żyła ochronna jest odpowiedzialna za przewodzenie prądu w razie awarii i nie ma bezpośredniego wpływu na funkcjonowanie silnika. Sprawdzanie temperatury uzwojenia stojana również nie jest kluczowe w tym przypadku, ponieważ przegrzanie silnika zazwyczaj prowadzi do jego zniszczenia, a nie do natychmiastowego zatrzymania. Mierzenie rezystancji izolacji przewodu zasilającego jest istotne, jednak w kontekście nagłego zatrzymania maszyny, nie uwzględnia to przyczyny problemu. Głównym błędem w myśleniu jest tu skupienie się na aspektach bezpieczeństwa i ogólnej konserwacji, zamiast na specyficznych elementach, które mogą prowadzić do nagłego zatrzymania silnika, jak właśnie szczotki. Powinno to podkreślać znaczenie szczegółowej analizy problemów z urządzeniami elektrycznymi, gdzie każda część i jej stan mają kluczowe znaczenie dla funkcjonowania całości.

Pytanie 25

W jakich okolicznościach aktywuje się samoczynne częstotliwościowe odciążenie (SCO) w sieci zasilanej przez generator synchroniczny?

A. Zwiększenia mocy pobieranej ponad moc wytwarzaną.
B. Nadkompensacji sieci.
C. Podwyższenia częstotliwości ponad wartość nominalną.
D. Pojawienia się przepięcia.
Samoczynne częstotliwościowe odciążenie (SCO) w sieci zasilanej z generatora synchronicznego zadziała w momencie zwiększenia mocy pobieranej ponad wartość mocy wytwarzanej. W sytuacji, gdy zapotrzebowanie na moc przekracza moc generowaną przez system, dochodzi do spadku częstotliwości w sieci. Generator synchroniczny, aby dostosować się do nowego obciążenia, może zredukować częstotliwość obrotową, co w efekcie może prowadzić do zwiększenia mocy generowanej przez jednostki w systemie. W praktyce, aby przeciwdziałać tym zmianom, stosuje się mechanizmy automatycznego odciążenia, które w odpowiedzi na wzrost poboru mocy, aktywują rezerwy mocy dostępne w sieci. Przykładem zastosowania SCO może być sytuacja w sieci rozdzielczej, gdzie nagły wzrost poboru mocy przez dużego odbiorcę wymaga natychmiastowej reakcji generatorów w celu utrzymania stabilności systemu. Standardy takie jak NERC i IEC podkreślają znaczenie takich mechanizmów w zapewnieniu niezawodności i stabilności systemów elektroenergetycznych.

Pytanie 26

Jakie styczniki z podanych kategorii powinny być użyte podczas modernizacji szafy sterowniczej z szyną TH 35, zasilającej urządzenie napędzane silnikami indukcyjnymi klatkowym?

A. DC-2
B. DC-4
C. AC-3
D. AC-1
Wybór stycznika AC-3 do sterowania silnikami indukcyjnymi klatkowym jest uzasadniony jego specyfiką oraz przeznaczeniem. Klasyfikacja AC-3 jest dedykowana do zastosowań związanych z silnikami asynchronicznymi, w szczególności w momentach ich rozruchu, co wiąże się z dużymi prądami rozruchowymi. Styki AC-3 są zaprojektowane do pracy z prądami roboczymi, a ich konstrukcja pozwala na skuteczne rozłączanie i załączanie obwodów z silnikami, co jest kluczowe w kontekście wydajności energetycznej i bezpieczeństwa systemu. Przykładem zastosowania AC-3 może być szafa sterownicza w zakładzie przemysłowym, gdzie stycznik ten obsługuje silnik napędzający taśmociąg. Zgodnie z normami IEC 60947-4-1, styczniki klasy AC-3 są także przystosowane do pracy z dużymi cyklami załączania, co czyni je odpowiednimi w aplikacjach o dużym obciążeniu. Wybór ten jest zgodny z najlepszymi praktykami branżowymi, zapewniając nie tylko efektywność, ale i długowieczność komponentów w zautomatyzowanych systemach.

Pytanie 27

Aby zabezpieczyć silnik o parametrach znamionowych podanych poniżej, należy dobrać wyłącznik silnikowy według oznaczenia producenta

Silnik 3~ Typ MAS063-2BA90-Z
0,25 kW 0,69 A Izol. F
IP 54 2755 obr/min cosφ 0,81
400 V (Y) 50 Hz

A. MMS-32S – 1,6A
B. PKZM01 – 0,63
C. PKZM01 – 1
D. MMS-32S – 4A
Wybór wyłącznika silnikowego PKZM01 – 1 jest poprawny, ponieważ jego znamionowy prąd 1 A jest zgodny z wymaganiami silnika o mocy 0,25 kW i prądzie znamionowym 0,69 A. Wyłączniki silnikowe powinny być dobierane na podstawie prądu znamionowego silnika, co w tym przypadku oznacza, że wymagany prąd roboczy wyłącznika powinien być nieco wyższy niż prąd znamionowy silnika, aby zapewnić odpowiednią ochronę. PKZM01 – 1, przy prądzie 1 A, zapewnia odpowiedni margines bezpieczeństwa, co jest zgodne z dobrymi praktykami w branży. Dodatkowo, wyłączniki serii PKZ są wyposażone w funkcję zabezpieczenia przeciążeniowego i zwarciowego, co czyni je odpowiednim wyborem do ochrony silników. W przypadku awarii, wyłącznik ten zadziała szybko, chroniąc zarówno silnik, jak i podłączone instalacje. Wykorzystując wyłączniki zgodne z normami IEC 60947-4-1, można być pewnym ich niezawodności i efektywności działania.

Pytanie 28

Który z wymienionych parametrów przewodów nie wpływa na wartość spadku napięcia w instalacji elektrycznej?

A. Przekrój żył
B. Długość przewodu
C. Typ materiału żyły
D. Typ materiału izolacji
Rodzaj materiału izolacji nie wpływa na wartość spadku napięcia w instalacji elektrycznej, ponieważ spadek napięcia jest determinowany przez właściwości przewodnika, a nie jego otoczenie. Kluczowymi czynnikami wpływającymi na spadek napięcia są długość przewodu, jego przekrój oraz materiał, z którego wykonana jest żyła. Spadek napięcia można obliczyć przy pomocy wzorów, które uwzględniają opór przewodnika, a ten z kolei zależy od jego długości, przekroju oraz rodzaju materiału (miedź lub aluminium). W praktyce, dla zminimalizowania spadków napięcia w instalacjach elektrycznych, stosuje się przewody o większym przekroju oraz starannie planuje długości odcinków przewodów. Na przykład, w instalacjach o dużym obciążeniu, takich jak sieci zasilające przemysłowe, zastosowanie przewodów miedzianych o dużym przekroju pozwala na skuteczne ograniczenie strat napięcia, co jest zgodne z wymogami norm PN-IEC 60364-5-52.

Pytanie 29

W instalacji trójfazowej działającej w układzie TN-C, gdy na odbiornikach wystąpi napięcie fazowe przekraczające 300 V, co może być tego przyczyną?

A. zwarciem pomiędzy fazami
B. zwarciem między fazą a przewodem PEN
C. przerwaniem ciągłości przewodu PEN
D. przerwą w jednej z faz
Zwarcie fazy z przewodem PEN prowadziłoby do nieprawidłowego rozkładu napięć, jednak nie jest to główny powód wzrostu napięcia powyżej 300 V na odbiornikach. W sytuacji zwarcia fazowego, napięcia na pozostałych fazach mogą spadać, ponieważ dochodzi do podziału prądów i obciążenia. Zwarcie międzyfazowe także wprowadza nieprawidłowości w dostawie energii, lecz skutkiem jest zazwyczaj wyzwolenie zabezpieczeń, co chroni urządzenia przed nadmiernym napięciem. Natomiast przerwa w jednej z faz skutkuje z kolei nierównomiernym rozkładem obciążenia w systemie trójfazowym, co może prowadzić do problemów z równowagą obciążenia, ale rzadko skutkuje wzrostem napięcia na odbiornikach do wartości niebezpiecznych. W przypadku układu TN-C kluczowe znaczenie ma ciągłość przewodu PEN, który jest odpowiedzialny za ochronę przed porażeniem. Brak tego przewodu może spowodować, że napięcie na odbiornikach będzie w sposób niekontrolowany rosło, co zagraża bezpieczeństwu użytkowników oraz urządzeń. Dlatego uznanie przerwania ciągłości przewodu PEN za główną przyczynę wzrostów napięcia w tym układzie jest kluczowe dla prawidłowego zrozumienia funkcjonowania instalacji elektrycznych oraz ich bezpieczeństwa.

Pytanie 30

Co należy zrobić przed przystąpieniem do pomiaru rezystancji izolacji za pomocą megomierza?

A. Podłączyć urządzenie do sieci
B. Uziemić megomierz
C. Zmierzyć napięcie zasilania
D. Odłączyć zasilanie
Przed pomiarem rezystancji izolacji za pomocą megomierza należy bezwzględnie odłączyć zasilanie badanego obwodu. To kluczowy krok, który zapewnia bezpieczeństwo zarówno osoby wykonującej pomiar, jak i chroni sprzęt przed uszkodzeniem. Megomierz generuje wysokie napięcie, które w połączeniu z istniejącym zasilaniem mogłoby spowodować porażenie elektryczne lub uszkodzenie izolacji. Dodatkowo, odłączenie zasilania pozwala na uzyskanie dokładnych wyników, ponieważ eliminuje wpływ napięcia zasilającego na pomiar. W praktyce, przed rozpoczęciem pomiarów, należy również upewnić się, że obwód nie jest pod napięciem za pomocą odpowiednich narzędzi, takich jak wskaźnik napięcia. Przestrzeganie tych zasad jest zgodne z normami bezpieczeństwa pracy z urządzeniami elektrycznymi, które podkreślają znaczenie odłączenia zasilania przed jakimikolwiek pracami serwisowymi czy pomiarowymi.

Pytanie 31

Która z wymienionych czynności nie jest częścią oceny stanu technicznego podczas przeglądu układu napędowego z wykorzystaniem przekształtnika energoelektronicznego?

A. Weryfikacja jakości zabezpieczeń nadprądowych oraz zmiennozwarciowych
B. Ocena czystości filtrów powietrza chłodzącego
C. Sprawdzenie natężenia oświetlenia na stanowisku obsługi układu napędowego
D. Kontrola połączeń stykowych
Sprawdzanie natężenia oświetlenia na stanowisku obsługi układu napędowego to nie to samo, co przegląd stanu technicznego tego układu. Jak dla mnie, w takim przeglądzie powinniśmy skupić się na kluczowych aspektach, które wpływają na to, czy układ działa wydajnie i bezpiecznie. Na przykład, trzeba by sprawdzić zabezpieczenia nadprądowe i zmiennozwarciowe, bo one chronią urządzenia przed uszkodzeniem, gdy coś idzie nie tak, jak powinno. I nie zapominajmy o połączeniach stykowych, które odpowiadają za przekazywanie sygnałów elektrycznych. Filtry powietrza chłodzącego też mają ogromne znaczenie, bo odpowiednia temperatura pracy układu wpływa na jego długowieczność. Zadbanie o te wszystkie aspekty to klucz do efektywności operacyjnej oraz bezpieczeństwa użycia systemów z przekształtnikami. Przeglądy zgodne z normami, jak IEC 60204, mogą pomóc w uniknięciu awarii i sprawić, że układy napędowe będą działały jak należy.

Pytanie 32

Pomiar jakiego parametru umożliwia wykrycie przebicia izolacji uzwojeń silnika indukcyjnego trójfazowego w stosunku do obudowy?

A. rezystancji uzwojeń stojana
B. prądu stanu jałowego
C. rezystancji przewodu ochronnego
D. prądu upływu
Pomiar prądu upływu jest skuteczną metodą wykrywania przebicia izolacji uzwojeń silnika indukcyjnego trójfazowego względem obudowy. Prąd upływu to prąd, który przepływa z uzwojeń przez izolację do obudowy silnika. W przypadku uszkodzenia izolacji, wartość prądu upływu wzrasta, co może prowadzić do niebezpiecznych sytuacji, w tym do porażenia prądem. Praktyczne zastosowanie tej metody polega na wykorzystaniu specjalistycznych mierników, które rejestrują wartość prądu upływu podczas pracy silnika. Zgodnie z normą IEC 60364, dopuszczalne wartości prądu upływu powinny być ściśle przestrzegane, aby zapewnić bezpieczeństwo użytkowników oraz prawidłowe działanie urządzeń. Regularne pomiary prądu upływu mogą być również częścią procedur konserwacyjnych, co pozwala na wczesne wykrywanie problemów z izolacją i zapobieganiu awariom. Warto pamiętać, że pomiar ten powinien być przeprowadzany w warunkach pełnego obciążenia, aby uzyskać wiarygodne wyniki.

Pytanie 33

Dokumentacja użytkowania instalacji elektrycznych chronionych wyłącznikami nadprądowymi nie musi obejmować

A. spisu terminów oraz zakresów prób i badań kontrolnych
B. zasad bezpieczeństwa przy realizacji prac eksploatacyjnych
C. specyfikacji technicznej instalacji
D. opisu doboru urządzeń zabezpieczających
W kontekście eksploatacji instalacji elektrycznych zabezpieczonych wyłącznikami nadprądowymi, kluczowe jest zrozumienie zakresu informacji, które powinny być zawarte w instrukcji eksploatacyjnej. Odpowiedzi, które sugerują, że opis doboru urządzeń zabezpieczających jest konieczny, mija się z celem funkcji dokumentacji. W rzeczywistości, opis doboru urządzeń zabezpieczających dotyczy etapu projektowania, a nie eksploatacji. Instrukcja powinna zawierać informacje praktyczne, takie jak wykaz prób i pomiarów kontrolnych, które umożliwiają monitorowanie funkcjonowania instalacji, oraz zasady bezpieczeństwa przy wykonywaniu prac, które są niezbędne dla ochrony ludzi i mienia. Ponadto, charakterystyka techniczna instalacji jest również istotna, ponieważ dostarcza informacji o właściwościach systemu, co może być pomocne w przypadku awarii lub przeglądów. Użytkownicy, którzy koncentrują się na doborze urządzeń, mogą zignorować kluczowe aspekty związane z codziennym użytkowaniem instalacji, co prowadzi do niewłaściwego zarządzania i potencjalnych zagrożeń. Zrozumienie różnicy pomiędzy projektowaniem a eksploatacją instalacji elektrycznych jest fundamentem skutecznego zarządzania systemami elektrycznymi w obiektach.

Pytanie 34

Jakie powinno być maksymalne natężenie prądu, które może zmierzyć amperomierz w instalacji zasilanej napięciem 230/400 V, o częstotliwości 50 Hz, obciążonej jednofazowym silnikiem elektrycznym o parametrach: P = 0,55 kW, η = 70%, cosα = 0,96?

A. 2 A
B. 1 A
C. 4 A
D. 3 A
Wybór niewłaściwego zakresu pomiarowego amperomierza może wynikać z kilku błędnych założeń. Przede wszystkim, niektóre odpowiedzi mogą sugerować, że natężenie prądu będzie znacznie niższe niż w rzeczywistości, co jest wynikiem nieprawidłowego zrozumienia wzorów związanych z mocą oraz współczynnikiem mocy. Na przykład, wybierając zakres 1 A lub 2 A, można zakładać, że wyniki pomiarów będą dostateczne, jednak w praktyce taki amperomierz mógłby ulec uszkodzeniu w przypadku przekroczenia jego maksymalnych wartości. Należy też pamiętać, że obliczana moc bierna, związana z parametrem cosα, wpływa na całkowity prąd pobierany przez silnik. Przy obliczeniu prądu, istotne jest uwzględnienie rzeczywistej mocy czynnej oraz sprawności silnika, co może prowadzić do błędnych wniosków, jeśli te wartości nie zostaną prawidłowo zaimplementowane w obliczeniach. W każdym przypadku przed dokonaniem wyboru sprzętu pomiarowego, warto zapoznać się z wytycznymi dotyczącymi doboru przyrządów, które zalecają wybór urządzeń z odpowiednim marginesem bezpieczeństwa. Aby uzyskać pełen obraz sytuacji, warto również zwrócić uwagę na rzeczywiste warunki pracy silnika oraz charakterystykę obciążenia, które mogą dodatkowo wpływać na wartość prądu. Dobre praktyki wymagają, aby przy doborze amperomierza brać pod uwagę rzeczywiste zastosowanie oraz możliwe zmiany w obciążeniu, co w przypadku silników elektrycznych bywa dość istotne.

Pytanie 35

Aby ocenić efektywność ochrony przeciwporażeniowej w silniku trójfazowym działającym w systemie TN-S, konieczne jest przeprowadzenie pomiaru

A. rezystancji uzwojeń fazowych silnika
B. impedancji pętli zwarcia w instalacji
C. prądu zadziałania wyłącznika instalacyjnego nadprądowego
D. czasu reakcji przekaźnika termobimetalowego
Odpowiedzi, które nie wskazują na pomiar impedancji pętli zwarcia, nie są właściwe w kontekście oceny skuteczności ochrony przeciwporażeniowej. Pomiar prądu zadziałania wyłącznika instalacyjnego nadprądowego, choć istotny, nie dostarcza pełnej informacji o skuteczności ochrony. Wyłącznik nadprądowy nie jest jedynym elementem ochrony, a jego prawidłowe działanie nie gwarantuje, że system jest odporny na wszystkie rodzaje uszkodzeń. Oprócz tego, pomiar rezystancji uzwojeń fazowych silnika, choć może być przydatny w diagnostyce silnika, nie odnosi się bezpośrednio do kwestii zadziałania zabezpieczeń w przypadku zwarcia. Z kolei pomiar czasu zadziałania przekaźnika termobimetalowego dotyczy ochrony przeciążeniowej, a nie bezpośrednio ochrony przeciwporażeniowej. Należy pamiętać, że skuteczna ochrona przeciwporażeniowa wymaga systematycznego monitora impedancji pętli zwarcia, co pozwala na identyfikację potencjalnych problemów w instalacji, które mogą prowadzić do poważnych zagrożeń. Kluczowym błędem jest zatem skupienie się na elementach, które nie dotyczą bezpośrednio ochrony przed porażeniem elektrycznym, co może prowadzić do fałszywego poczucia bezpieczeństwa.

Pytanie 36

Która z poniższych okoliczności wymaga przeprowadzenia pomiarów kontrolnych w instalacji elektrycznej niskiego napięcia?

A. Rozbudowanie instalacji
B. Zadziałanie zabezpieczenia przedlicznikowego
C. Zmiana rodzaju źródeł światła w oprawach oświetleniowych
D. Zadziałanie wyłącznika różnicowoprądowego
Rozbudowa instalacji elektrycznej niskiego napięcia wiąże się z koniecznością przeprowadzenia pomiarów kontrolnych, aby zapewnić zgodność z obowiązującymi normami oraz bezpieczeństwo użytkowników. Zgodnie z normą PN-IEC 60364, każde zmiany w instalacji, takie jak jej rozbudowa, wymagają weryfikacji parametrów technicznych, jak rezystancja izolacji, ciągłość przewodów ochronnych oraz sprawność urządzeń zabezpieczających. Przykładowo, dodanie nowych obwodów może wpływać na działanie istniejących zabezpieczeń, co w konsekwencji może prowadzić do ich nieprawidłowego funkcjonowania. Dlatego przed oddaniem rozbudowanej instalacji do eksploatacji, konieczne jest przeprowadzenie pomiarów kontrolnych, aby potwierdzić, że instalacja spełnia wymogi bezpieczeństwa i użytkowania. Dodatkowo, takie pomiary mogą pomóc w identyfikacji potencjalnych problemów, które mogą wystąpić w przyszłości, co jest kluczowe dla utrzymania wysokiego standardu bezpieczeństwa.

Pytanie 37

Podczas diagnostyki silnika elektrycznego stwierdzono, że uzwojenie stojana ma obniżoną rezystancję izolacji. Jakie działania należy podjąć?

A. Zwiększyć częstotliwość napięcia zasilającego
B. Zastosować dodatkowe uziemienie
C. Zmniejszyć prąd wzbudzenia
D. Przeprowadzić osuszanie uzwojenia lub wymienić izolację
Zwiększenie częstotliwości napięcia zasilającego nie jest właściwym rozwiązaniem problemu obniżonej rezystancji izolacji w uzwojeniu stojana silnika elektrycznego. Tego rodzaju działanie mogłoby prowadzić do dodatkowego stresu termicznego i mechanicznego na uzwojeniach, co tylko pogorszyłoby sytuację. Nie jest to zgodne z dobrą praktyką inżynierską, ponieważ nie odnosi się bezpośrednio do poprawy rezystancji izolacji. Z kolei zmniejszenie prądu wzbudzenia dotyczy głównie maszyn synchronicznych, a nie bezpośrednio kwestii izolacji w silnikach elektrycznych. Choć mogłoby to mieć pewien wpływ na ogólne warunki pracy silnika, nie rozwiązuje podstawowego problemu związanego z izolacją. Zastosowanie dodatkowego uziemienia jako środek zaradczy w sytuacji obniżonej rezystancji izolacji jest również niewłaściwe. Uziemienie jest istotnym elementem ochrony przed porażeniem elektrycznym, ale nie wpływa bezpośrednio na poprawę stanu izolacji uzwojeń. Uziemienie ma na celu bezpieczne odprowadzanie prądów upływowych w przypadku awarii, a nie poprawę parametrów izolacji. Wszystkie te błędne podejścia wynikają z nieporozumień dotyczących prawidłowego postępowania przy problemach z rezystancją izolacji i mogą prowadzić do niepotrzebnych awarii oraz zagrożeń dla bezpieczeństwa.

Pytanie 38

Jakie oznaczenie będzie miał przewód – alternatywa dla przewodu OW 4×2,5 mm2 zasilającego przenośny trójfazowy silnik indukcyjny używany w warsztacie ślusarskim?

A. H03V2V2-F 3X2,5
B. H07VV-U 4G2,5
C. H07RR-F 4G2,5
D. H03V2V2H2-F 3X2,5
W przypadku odpowiedzi H07VV-U 4G2,5, choć również jest to przewód wielożyłowy, nie jest on elastyczny, co jest kluczowe w zastosowaniach, gdzie przewód narażony jest na ruch i zginanie, jak w przypadku przenośnych silników. Przewód H03V2V2H2-F 3X2,5 ma jedynie trzy żyły, co nie odpowiada wymaganiom dla trójfazowych urządzeń, których zasilanie wymaga minimum czterech żył, w tym jednej neutralnej. Ostatecznie, H03V2V2-F 3X2,5, podobnie jak H03V2V2H2-F, nie spełnia wymagań dotyczących mocy i liczby żył dla silników trójfazowych. Wybór niewłaściwego przewodu może prowadzić do przegrzewania się instalacji, a tym samym do zagrożeń dla bezpieczeństwa osób pracujących w pobliżu. Niedostateczne zrozumienie oznaczeń przewodów elektrycznych może skutkować poważnymi błędami w doborze odpowiednich elementów instalacji elektrycznej. Kluczowym elementem w tym kontekście jest znajomość specyfikacji dotyczących przewodów, w tym ich przeznaczenia, rodzaju izolacji oraz zastosowania. W praktyce nieprzestrzeganie tych zasad może prowadzić do awarii sprzętu oraz potencjalnych wypadków.

Pytanie 39

W przypadku gdy instrukcje stanowiskowe nie określają szczegółowych terminów, przegląd urządzeń napędowych powinien być przeprowadzany przynajmniej raz na

A. pięć lat
B. cztery lata
C. rok
D. dwa lata
Odpowiedzi wskazujące na cztery lata, rok lub pięć lat jako okres pomiędzy przeglądami urządzeń napędowych wykazują brak zrozumienia zasadności i potrzeby regularnych inspekcji. Zbyt długi okres przeglądów, na przykład cztery czy pięć lat, może prowadzić do nieodkrycia istotnych usterek, które mogą zagrażać bezpieczeństwu użytkowników oraz powodować poważne straty finansowe w wyniku awarii. Często mylone jest również pojęcie regularności przeglądów z intensywnością eksploatacji urządzeń; niezależnie od tego, jak intensywnie urządzenie jest używane, powinno być regularnie sprawdzane. Z kolei odpowiedź 'rok' jest niewystarczająca, ponieważ w przypadku wielu urządzeń napędowych, taki okres może być zbyt krótki, a niewłaściwe przeglądy mogą prowadzić do nadmiernych kosztów operacyjnych. Każdy system napędowy ma swoje specyficzne wymagania i normy, które powinny być brane pod uwagę przy ustalaniu harmonogramu przeglądów, a ogólne zasady wskazują na dwa lata jako maksymalny okres, który zapewnia bezpieczeństwo i efektywność działania urządzeń. Zrozumienie tych zasad jest kluczowe dla każdej osoby pracującej w obszarze zarządzania urządzeniami oraz ich konserwacją.

Pytanie 40

Do nawinięcia stojana w trójfazowym silniku indukcyjnym o mocy 7,5 kW nie stosuje się

A. pierścienia zwierającego
B. drutu nawojowego
C. lakieru izolacyjnego
D. izolacji żłobkowej
Pierścień zwierający nie jest stosowany w przezwojeniu stojana trójfazowego silnika indukcyjnego o mocy 7,5 kW, ponieważ jego konstrukcja opiera się na rdzeniu stalowym, w którym uzwojenia są umieszczone w żłobkach. Pierścienie zwierające są używane głównie w silnikach z wirnikami klatkowym, gdzie zapewniają zamknięcie obwodu wirnika. W przypadku silników indukcyjnych z uzwojeniem stojana, kluczowe komponenty to drut nawojowy, izolacja żłobkowa oraz lakier izolacyjny. Drut nawojowy, wykonany z miedzi, jest niezbędny do utworzenia uzwojeń, które generują pole magnetyczne. Izolacja żłobkowa oraz lakier izolacyjny chronią drut przed zwarciem oraz uszkodzeniami mechanicznymi, a także zapewniają odpowiednią wydajność cieplną. Dobrze przeprowadzone przezwojenie zwiększa efektywność silnika, co jest istotne w kontekście obciążenia i żywotności maszyny.