Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.06 - Eksploatacja i programowanie urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 18 grudnia 2025 08:26
  • Data zakończenia: 18 grudnia 2025 08:52

Egzamin zdany!

Wynik: 23/40 punktów (57,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Gdzie nie powinno się stosować urządzeń mechatronicznych z silnikiem komutatorowym?

A. W chłodni
B. W suszarni
C. W mleczarni
D. W lakierni
Wybór odpowiedzi sugerujących użycie urządzeń mechatronicznych z silnikami komutatorowymi w miejscach takich jak suszarnie, chłodnie czy mleczarnie jest niepoprawny z kilku istotnych powodów. W suszarniach, gdzie obecne są wysokie temperatury i potencjalnie łatwopalne materiały, iskrzenie może również stanowić zagrożenie, jednak ryzyko to nie jest tak wysokie jak w lakierniach. Użycie silników komutatorowych w takich środowiskach może być stosowane, ale wymaga odpowiednich zabezpieczeń. W chłodniach, gdzie dominują warunki niskotemperaturowe, iskrzenie silników komutatorowych nie jest typowym zagrożeniem, lecz ich zastosowanie może prowadzić do problemów z utrzymaniem stabilności termicznej, co jest kluczowe w przechowywaniu produktów. Mleczarnie charakteryzują się specyficznymi wymaganiami sanitarnymi, gdzie wprowadzenie silników mogących generować zanieczyszczenia, takie jak cząstki węgla, nie jest zalecane. W każdym z tych przypadków można poprawnie zastosować silniki innych typów, które są bardziej odpowiednie dla danego środowiska. Warto zauważyć, że zrozumienie zastosowania odpowiednich technologii w różnych kontekstach przemysłowych jest kluczowe dla zapewnienia efektywności oraz bezpieczeństwa pracy. Przykłady zastosowań innych typów silników oraz ich przystosowanie do specyficznych warunków mogą przyczynić się do optymalizacji procesów oraz eliminacji zbędnych ryzyk.

Pytanie 2

Podczas eksploatacji silnika prądu stałego zauważono iskrzenie szczotek spowodowane zanieczyszczeniem komutatora. Aby pozbyć się tej awarii, należy wyłączyć silnik, a potem

A. nałożyć na komutator olej lub smar
B. przetrzeć komutator mokrą szmatką
C. oczyścić komutator i wypolerować papierem ściernym
D. wyczyścić komutator i szczotki
Odpowiedź "oczyścić komutator i wypolerować papierem ściernym" jest prawidłowa, ponieważ usunięcie zabrudzeń z komutatora jest kluczowym krokiem w utrzymaniu silnika prądu stałego w dobrym stanie. Komutator, będący istotnym elementem silnika, pełni funkcję przełączania prądu w uzwojeniach wirnika. Zabrudzenia, takie jak resztki węgla ze szczotek czy inne zanieczyszczenia, mogą prowadzić do iskrzenia, co z kolei zwiększa ryzyko uszkodzenia zarówno komutatora, jak i szczotek. Wypolerowanie komutatora papierem ściernym pozwala na usunięcie nie tylko zabrudzeń, ale również nierówności, co zapewnia lepszy kontakt ze szczotkami. Ta procedura jest zgodna z najlepszymi praktykami w branży, które zalecają regularne czyszczenie i konserwację komutatorów w celu zapewnienia ich długotrwałej wydajności. Przykładem zastosowania tej techniki może być regularna konserwacja silników w aplikacjach przemysłowych, gdzie niezawodność pracy jest kluczowa. Dobrą praktyką jest również monitorowanie stanu komutatora i regularne jego czyszczenie, co pozwala na minimalizowanie ryzyka awarii oraz oszczędności związane z kosztami naprawy.

Pytanie 3

Do precyzyjnego pomiaru natężenia prądu elektrycznego w układach mechatronicznych zaleca się wykorzystanie amperomierza o

A. rezystancji wewnętrznej równej rezystancji odbiornika
B. jak najmniejszej rezystancji wewnętrznej
C. jak największej rezystancji wewnętrznej
D. dowolnej wartości rezystancji wewnętrznej, ponieważ nie wpływa ona na uzyskany wynik
Użycie amperomierza z jak najmniejszą rezystancją wewnętrzną jest kluczowe dla uzyskania dokładnych pomiarów natężenia prądu elektrycznego w układach mechatronicznych. Amperomierz, będąc elementem pomiarowym, powinien mieć minimalny wpływ na obwód, w którym jest włączony. Im mniejsza rezystancja wewnętrzna, tym mniej energii z obwodu odbierze amperomierz, co przekłada się na dokładniejsze odczyty. W praktyce, jeśli użyjemy amperomierza o dużej rezystancji, może to prowadzić do znacznego spadku natężenia prądu w obwodzie, co skutkuje błędnym pomiarem. Przykładem zastosowania wysokiej jakości amperomierzy o niskiej rezystancji wewnętrznej są aplikacje w elektronice, w których precyzyjne pomiary prądu są niezbędne do właściwego funkcjonowania urządzeń. Standardy branżowe, takie jak IEC 61010, podkreślają znaczenie używania urządzeń pomiarowych, które minimalizują wpływ na badany obwód.

Pytanie 4

Tłoczysko siłownika pneumatycznego porusza się poziomo ruchem prostoliniowym, lecz z wolniejszą prędkością niż zazwyczaj. Co może być najprawdopodobniejszą przyczyną opóźnienia ruchu siłownika?

A. Wyboczone lub uszkodzone tłoczysko
B. Nieszczelność, zużycie uszczelek lub pierścieni tłoka
C. Uszkodzone zewnętrzne amortyzatory siłownika
D. Zepsute mocowanie siłownika
Nieszczelność, zużycie uszczelek lub pierścieni tłoka są głównymi przyczynami spowolnienia ruchu siłownika pneumatycznego. W momencie, gdy uszczelki lub pierścienie są uszkodzone, dochodzi do wycieku powietrza, co prowadzi do utraty ciśnienia w układzie. To z kolei powoduje, że siłownik nie może osiągnąć pełnej prędkości, co jest kluczowe w wielu zastosowaniach przemysłowych, takich jak automatyzacja procesów lub linie montażowe. W praktyce, regularne kontrole stanu uszczelek i pierścieni są niezmiernie ważne, aby zapewnić optymalną wydajność systemu pneumatycznego. W przypadku wykrycia nieszczelności, należy natychmiast zidentyfikować źródło problemu i wymienić uszkodzone elementy, co minimalizuje ryzyko awarii całego systemu. Dobre praktyki w tej dziedzinie obejmują także stosowanie wysokiej jakości materiałów uszczelniających oraz przestrzeganie instrukcji producenta dotyczących montażu i konserwacji siłowników pneumatycznych.

Pytanie 5

W systemie hydraulicznym maksymalne ciśnienie robocze płynu wynosi 20 MPa. Jaki powinien być minimalny zakres pomiarowy manometru zamontowanego w tym systemie?

A. 0÷250 barów
B. 0÷10 barów
C. 0÷160 barów
D. 0÷25 barów
Wybór zakresu pomiarowego 0÷250 barów dla manometru zainstalowanego w układzie hydraulicznym, w którym maksymalne ciśnienie robocze wynosi 20 MPa, jest poprawny z kilku powodów. Po pierwsze, manometr powinien mieć zakres pomiarowy wyższy niż maksymalne ciśnienie, aby zapewnić dokładność i bezpieczeństwo pomiaru. Wybierając manometr o zakresie 0÷250 barów, uzyskujemy rezerwę bezpieczeństwa wynoszącą 5 MPa, co jest zgodne z praktykami branżowymi, gdzie standardem jest posiadanie co najmniej 25% zapasu nad maksymalne ciśnienie robocze. Takie podejście minimalizuje ryzyko przekroczenia zakresu pomiarowego i potencjalnych uszkodzeń urządzenia. Przykładowo, w przemyśle budowlanym i motoryzacyjnym, gdzie ciśnienia robocze mogą się szybko zmieniać, dobór odpowiedniego manometru jest kluczowy dla bezpieczeństwa i efektywności procesów. Ponadto, manometry z wyższymi zakresami pomiarowymi są bardziej odporne na uszkodzenia mechaniczne oraz lepiej radzą sobie z wysokimi impulsami ciśnienia, co jest istotne w dynamicznych układach hydraulicznych.

Pytanie 6

W systemie mechatronicznym planowane jest użycie sieci polowej AS-i w wersji 2.0. Jaką maksymalną ilość urządzeń podrzędnych jedno urządzenie główne (master) może obsługiwać?

A. 31 urządzeń
B. 24 urządzenia
C. 64 urządzenia
D. 32 urządzenia
Wybór liczby 24, 32 lub 64 urządzeń jest nieprawidłowy i opiera się na nieporozumieniach dotyczących specyfikacji technicznych sieci AS-i. Standard AS-i 2.0 wyraźnie określa maksymalną liczbę urządzeń podporządkowanych na poziomie 31. Wybierając 24, można sądzić, że jest to mniejsza liczba, jednak nie odnosi się to do rzeczywistych możliwości systemu AS-i. Użytkownicy mogą myśleć, że niższe liczby są łatwiejsze w zarządzaniu, co jest błędnym założeniem, ponieważ sieć AS-i jest zaprojektowana do obsługi dużych ilości urządzeń w sposób wydajny i zorganizowany. Z kolei wybór 32 lub 64 urządzeń wskazuje na niedopasowanie do specyfikacji standardu, co może prowadzić do przekroczenia możliwości, co w praktyce skutkuje awariami, błędami komunikacyjnymi i znacznymi opóźnieniami w operacjach. Takie błędne podejście często wynika z niewłaściwego zrozumienia koncepcji architektury sieci oraz jej ograniczeń, co jest kluczowe w kontekście projektowania i implementacji systemów automatyzacji. Wiedza na temat tych ograniczeń jest niezbędna dla inżynierów, aby unikać nieefektywnych rozwiązań i zapewnić zgodność z najlepszymi praktykami w branży.

Pytanie 7

Jak określa się punkt zerowy elementu poddawanego obróbce na maszynie CNC?

A. Jego lokalizacja może być ustawiona w dowolny sposób, zaleca się, aby ustalić ten punkt na osi elementu
B. Jest określany przez producenta maszyny w trakcie jej projektowania
C. Jego lokalizacja jest ustalana w zależności od typu oraz celu wykorzystywanego narzędzia do obróbki
D. Jest ustalana z uwzględnieniem sposobu mocowania elementu, z tego miejsca narzędzie rozpocznie proces obróbczy
Prawidłowa odpowiedź wskazuje, że punkt zerowy przedmiotu toczenia w obrabiarce CNC może być ustalony w dowolnym miejscu, chociaż zaleca się lokalizację na osi przedmiotu. Ustalenie punktu zerowego jest kluczowym krokiem w procesie obróbczy, ponieważ od tego punktu rozpoczyna się cała operacja toczenia. W praktyce, umiejscowienie punktu zerowego na osi przedmiotu pozwala na uzyskanie większej precyzji i powtarzalności obróbki. Zgodnie z dobrą praktyką, operatorzy powinni upewnić się, że punkt ten jest dobrze zdefiniowany, aby uniknąć błędów, które mogą prowadzić do odrzucenia części. Wiele nowoczesnych obrabiarek CNC oferuje funkcje automatycznej detekcji punktu zerowego, co może znacznie usprawnić proces przygotowania maszyny. Dobrze ustalony punkt zerowy ma również kluczowe znaczenie w kontekście dalszych operacji, takich jak frezowanie czy wiercenie, gdzie precyzyjna lokalizacja narzędzia względem przedmiotu jest niezbędna do osiągnięcia wysokiej jakości obróbki.

Pytanie 8

W systemie Komputerowo Zintegrowanego Wytwarzania (CIM) za co odpowiada moduł RDP?

A. komputerowo wspomagane projektowanie
B. organizowanie i zarządzanie produkcją
C. rejestrowanie danych procesowych
D. komputerowe wspomaganie produkcji
Moduł RDP (Rejestracja Danych Procesowych) w Komputerowo Zintegrowanym Wytwarzaniu (CIM) odgrywa kluczową rolę w zbieraniu i rejestracji danych dotyczących procesów produkcyjnych. Jego głównym zadaniem jest monitorowanie kluczowych parametrów, takich jak czas obróbki, zużycie narzędzi, a także inne istotne dane, które umożliwiają analizę efektywności produkcji. Zbierane informacje są niezbędne do optymalizacji procesów, co przekłada się na zwiększenie wydajności oraz redukcję kosztów. Na przykład, analiza zebranych danych może wskazać, czy dany proces wymaga modyfikacji, aby zmniejszyć czas przestoju lub zwiększyć jakość produkcji. Zgodnie z najlepszymi praktykami w branży, regularne monitorowanie tych danych pozwala na wprowadzenie usprawnień oraz szybką reakcję na ewentualne problemy, co jest kluczowe w środowisku produkcyjnym. Wykorzystując moduł RDP, przedsiębiorstwa mogą zastosować metody ciągłego doskonalenia, takie jak Six Sigma czy Lean Manufacturing, co prowadzi do długotrwałego wzrostu konkurencyjności na rynku.

Pytanie 9

Którą funkcję logiczną realizuje program napisany w języku listy instrukcji?

LD (%I0.1
ANDN%I0.2
)
OR (%I0.2
ANDN%I0.1
)
ST%Q0.1
A. OR
B. XOR
C. NOR
D. NAND
Niepoprawne odpowiedzi, takie jak NAND, NOR czy OR, reprezentują inne funkcje logiczne, które mają zupełnie odmienne zastosowania i wyniki. Funkcja NAND zwraca prawdę, gdy co najmniej jedna z wejściowych zmiennych jest fałszywa, co czyni ją podstawą wielu układów cyfrowych i może prowadzić do błędnych wniosków, jeśli zastosujemy ją w sytuacjach wymagających ekskluzywnego wykluczenia. Z kolei NOR zwraca prawdę tylko wtedy, gdy wszystkie wejścia są fałszywe. Ta funkcja logiczna jest często stosowana w projektach wymagających negacji, ale nie ma zastosowania w scenariuszu, w którym potrzebujemy stanu prawdy dla jednego z dwóch stanów. Funkcja OR jest bardziej podstawowa, ponieważ aktywuje wyjście, gdy przynajmniej jedno z wejść jest prawdziwe, co również różni się od działania XOR. Te różnice w logice mogą prowadzić do znaczących błędów w programowaniu oraz w projektowaniu układów cyfrowych. Użytkownicy często mylą te funkcje, nie rozumiejąc ich specyficznych właściwości, co w rezultacie prowadzi do nieprawidłowych analiz i błędów w implementacji. W związku z tym, ważne jest, aby dokładnie rozumieć różnice między tymi funkcjami, aby móc świadomie je stosować w praktyce.

Pytanie 10

Zmierzyliśmy rezystancję pomiędzy czterema końcówkami 1, 2, 3, 4 uzwojeń transformatora napięcia 230 V/24 V i otrzymaliśmy następujące wartości: R12 = ∞, R13 = 0,05 Ω, R14 = ∞, R23 = ∞, R24 = 0,85 Ω, R34 = ∞. Które końcówki powinny być użyte do podłączenia napięcia 230 V?

A. 1, 2
B. 2, 4
C. 2, 3
D. 1, 3
Podane odpowiedzi mogą prowadzić do nieporozumień związanych z analizą połączeń w transformatorach. Wybór końcówek 2 i 3 lub 1 i 4 nie uwzględnia faktu, że transformator działa na zasadzie współpracy uzwojeń, a niewłaściwe połączenie może prowadzić do zjawiska, w którym transformator nie będzie w stanie poprawnie funkcjonować lub wręcz może ulec uszkodzeniu. Na przykład, końcówki 2 i 3 mają nieskończoną rezystancję, co oznacza, że nie są one fizycznie połączone w obwodzie uzwojenia transformatora. Oznacza to, że podłączenie napięcia do tych końcówek nie przyniesie oczekiwanych rezultatów i nie aktywuje transformatora. Ponadto, podłączenie końcówek 1 i 4, gdzie rezystancja również wynosi nieskończoność, jest kolejnym błędem, ponieważ uniemożliwia to przepływ prądu przez uzwojenie. W praktyce, aby prawidłowo zasilić transformator, należy zwrócić uwagę na rezystancje pomiędzy końcówkami oraz na to, które z nich rzeczywiście są połączone. Zrozumienie tych zasad jest kluczowe dla zapewnienia efektywnego funkcjonowania układów elektrycznych w zastosowaniach przemysłowych i domowych, a także dla przestrzegania norm bezpieczeństwa i dobrych praktyk w branży elektrotechnicznej.

Pytanie 11

Jakie musi być ciśnienie powietrza, aby siłownik o przekroju cylindra 312,5 mm2 i efektywności 80% wytworzył siłę nacisku równą 100 N?

A. 5 bar
B. 4 bar
C. 3 bar
D. 6 bar
Poprawna odpowiedź to 4 bar, co można obliczyć przy użyciu wzoru na siłę nacisku w siłownikach pneumatycznych. Siła nacisku F może być określona jako F = p * A * η, gdzie p to ciśnienie, A to pole przekroju cylindra, a η to sprawność. W tym przypadku mamy F = 100 N, A = 312,5 mm² (co odpowiada 312,5 * 10^-6 m²) oraz η = 0,8. Przekształcając wzór, otrzymujemy p = F / (A * η). Podstawiając wartości, obliczamy ciśnienie: p = 100 N / (312,5 * 10^-6 m² * 0,8) = 4 bar. W praktyce, właściwe obliczenie ciśnienia jest kluczowe w zastosowaniach przemysłowych, gdzie siłowniki pneumatyczne są wykorzystywane do podnoszenia lub przesuwania ciężkich przedmiotów. Utrzymanie odpowiedniego ciśnienia zapewnia efektywność działania urządzeń, co jest zgodne z najlepszymi praktykami branżowymi w zakresie automatyki i pneumatyki.

Pytanie 12

Na podstawie danych znamionowych prądnicy tachometrycznej określ, jaką wartość napięcia będzie wskazywał woltomierz na wyjściu prądnicy, jeżeli wirnik obraca się z prędkością 4800 obr/min.

Dane znamionowe prądnicy tachometrycznej
PZTK 51-18
ku = 12,5 V/1000 obr/min
Robc min = 5 kΩ
nmax = 8000 obr/min
A. 12,5 V
B. 60 V
C. 5 V
D. 18 V
Wybór innej wartości napięcia, takiej jak 18 V, 12,5 V czy 5 V, świadczy o braku zrozumienia fundamentalnych zasad działania prądnic tachometrycznych. Każda z tych odpowiedzi wynika z błędnego założenia dotyczącego proporcjonalności między prędkością obrotową a generowanym napięciem. Prądnice tachometryczne działają na zasadzie indukcji elektromagnetycznej, gdzie napięcie wyjściowe jest proporcjonalne do prędkości obrotowej wirnika. W przypadku prądnicy, której znamionowa wartość napięcia wynosi 60 V przy 4800 obr/min, każda inna wartość jest wynikiem zrozumienia niewłaściwej charakterystyki prądnicy. Możliwe jest, że wybór niższych napięć wynika z mylnego wrażenia, że wyższe prędkości obrotowe generują mniejsze napięcia, co jest odwrotnością rzeczywistości. W praktyce, błędne odpowiedzi mogą również wynikać z braku znajomości danych znamionowych urządzenia oraz jego zastosowań w układach automatyki, gdzie precyzyjne pomiary są kluczowe. Zrozumienie zasad działania i charakterystyki prądnic tachometrycznych jest niezbędne, a ich zastosowanie w regulacji prędkości silników elektrycznych wymaga znajomości odpowiednich parametrów pracy oraz ich wpływu na cały system.

Pytanie 13

Obniżenie błędu statycznego, skrócenie czasu odpowiedzi, pogorszenie jakości regulacji przy niższych częstotliwościach, wzmocnienie szumów z przetwornika pomiarowego charakteryzuje działanie regulatora

A. PD
B. I
C. P
D. PID
Regulator PD (proporcjonalno-derywacyjny) jest stosowany w systemach regulacji, gdzie kluczowe znaczenie ma szybka reakcja na zmiany w wartościach regulowanych. Jego działanie polega na ograniczeniu błędu statycznego oraz skróceniu czasu reakcji, co czyni go idealnym rozwiązaniem w aplikacjach wymagających dynamicznej regulacji. Przykładami zastosowania regulatora PD są systemy automatyki przemysłowej, gdzie szybkie dostosowanie parametrów, takich jak temperatura czy ciśnienie, jest niezbędne dla zachowania efektywności procesów produkcyjnych. W praktyce, zastosowanie regulatora PD może prowadzić do znacznego zmniejszenia czasu potrzebnego na osiągnięcie wartości docelowej, co jest zgodne z najlepszymi praktykami inżynieryjnymi. Jednakże, należy pamiętać, że przy niższych częstotliwościach może dojść do pogorszenia jakości regulacji, co jest istotnym czynnikiem, który warto uwzględnić podczas projektowania systemu regulacji.

Pytanie 14

Który z wymienionych przewodów należy zastosować w celu podłączenia sterownika wyposażonego w moduł komunikacyjny Ethernet do switcha przedstawionego na ilustracji?

Ilustracja do pytania
A. UTP kat. 5.
B. Profibus 2-żyłowy w oplocie.
C. Profibus 4-żyłowy w oplocie.
D. Koncentryczny 75 Ω.
Jak wybierzesz zły kabel do łączenia urządzeń w sieci Ethernet, to możesz narobić sobie problemów. Profibus, niezależnie od tego, czy ma 2 czy 4 żyły, to standard używany głównie w automatyce, ale nie nadaje się do Ethernetu. Te kable są stworzone do fieldbus i nie ogarniają protokołu Ethernet, więc nie jest to dobre rozwiązanie. Kabel koncentryczny 75 Ω był popularny w starszych systemach, jak koaksjalne sieci Ethernet, ale dzisiaj to już trochę archaizm, bo nie spełnia wymagań nowoczesnych aplikacji, które potrzebują większej przepustowości. Wybierając niewłaściwy kabel, możesz narazić się na gorszą jakość sygnału i więcej błędów w przesyłaniu danych, co może spowodować, że sieć zacznie się przeciążać lub urządzenia przestaną ze sobą gadać. A to w automatyce to już w ogóle może zrobić niezły bałagan. Dlatego ważne jest, żeby wybierać odpowiednie kable, jak UTP kat. 5, które są zgodne z Ethernetem i zapewniają dobrą jakość połączeń.

Pytanie 15

Interfejs sieciowy, symbolicznie przedstawionego na rysunku komputera, z zainstalowanym oprogramowaniem do programowania sterowników PLC, posiada przypisany adres IP 192.168.100.2. Który z podanych adresów IP należy nadać sterownikowi aby mógł komunikować się z komputerem?

Ilustracja do pytania
A. 192.168.101.3
B. 192.168.100.2
C. 192.168.100.3
D. 192.168.99.2
Odpowiedź 192.168.100.3 jest poprawna, ponieważ dla efektywnej komunikacji w sieci lokalnej, urządzenia muszą znajdować się w tej samej podsieci. Adres IP komputera, 192.168.100.2, oznacza, że maska podsieci wynosi prawdopodobnie 255.255.255.0, co pozwala na przypisanie adresów IP od 192.168.100.1 do 192.168.100.254 w tej samej podsieci. Aby sterownik PLC mógł skutecznie wymieniać dane z komputerem, musi również używać adresu z tej samej klasy adresowej, czyli 192.168.100.x, gdzie x jest unikalnym numerem, który nie koliduje z innymi używanymi adresami w tej podsieci. Adres 192.168.100.2 jest już zajęty przez komputer, więc 192.168.100.3 jest odpowiedni, gdyż jest dostępny. W praktyce, podczas konfigurowania urządzeń w sieci, kluczowe jest przestrzeganie zasad zarządzania adresami IP, aby unikać konfliktów i zapewnić prawidłowe działanie sieci. Przykładowo, w systemach automatyki przemysłowej, każdy sterownik PLC i urządzenia komunikacyjne powinny mieć przypisane statyczne adresy IP, aby zapewnić niezawodną komunikację.

Pytanie 16

Zakłada się, że projektowane urządzenie mechatroniczne będzie umieszczone w obudowie IP 65. Oznacza to, że

Stopnie ochrony IP zgodnie z normą PN-EN 60529
OznaczenieOchrona przed wnikaniem do urządzeniaOznaczenieOchrona przed wodą
IP 0Xbrak ochronyIP X0brak ochrony
IP 1Xobcych ciał stałych
o średnicy > 50 mm
IP X1kapiąca
IP 2Xobcych ciał stałych
o średnicy > 12,5 mm
IP X2kapiąca – odchylenie obudowy
urządzenia do 15°
IP 3Xobcych ciał stałych
o średnicy > 2,5 mm
IP X3opryskiwaną pod kątem
odchylonym max. 60° od
pionowego
IP 4Xobcych ciał stałych
o średnicy > 1 mm
IP X4rozpryskiwaną ze wszystkich
kierunków
IP 5Xpyłu w zakresie
nieszkodliwym dla
urządzenia
IP X5laną strumieniem
IP 6Xpyłu w pełnym zakresieIP X6laną mocnym strumieniem
----------------IP X7przy zanurzeniu krótkotrwałym
IP X8przy zanurzeniu ciągłym
A. nie będzie chronione przed pyłem.
B. nie będzie chronione przed wodą.
C. posiadać będzie najwyższy stopień ochrony przed pyłem.
D. posiadać będzie najwyższy stopień ochrony przed wodą.
Odpowiedź, że projektowane urządzenie mechatroniczne posiada najwyższy stopień ochrony przed pyłem, jest poprawna. Oznaczenie IP 65 wskazuje, że urządzenie jest w pełni chronione przed pyłem (stopień 6) oraz odporniejsze na strumień wody z dowolnego kierunku (stopień 5). Taki poziom ochrony jest szczególnie istotny w aplikacjach, gdzie urządzenia muszą funkcjonować w trudnych warunkach, na przykład w zakładach przemysłowych, gdzie kurz i zanieczyszczenia są powszechne. W przypadku urządzeń montowanych na zewnątrz, standard IP 65 zapewnia również ich dłuższą żywotność oraz niezawodność. Warto zaznaczyć, że zgodnie z normą PN-EN 60529, oznaczenia IP są kluczowe dla wyboru odpowiedniego sprzętu do zastosowań wymaganego poziomu ochrony. Na przykład, w automatyce przemysłowej, zastosowanie urządzeń z wysokim stopniem ochrony jest niezbędne w celu zapewnienia osób i sprzętu przed potencjalnymi zagrożeniami. Użytkownicy powinni zawsze zwracać uwagę na parametry IP przed zakupem, aby dostosować je do specyficznych warunków operacyjnych.

Pytanie 17

Jaka będzie różnica w warunkach pracy urządzenia mechatronicznego, jeżeli zamiast sensorów w obudowie IP 44 zastosowane będą sensory o takich samych parametrach, lecz w obudowie IP 54?

Stopnie ochrony IP zgodnie z normą PN-EN 60529
OznaczenieOchrona przed wnikaniem do urządzeniaOznaczenieOchrona przed wodą
IP 0Xbrak ochronyIP X0brak ochrony
IP 1Xobcych ciał stałych o średnicy > 50 mmIP X1kapiącą
IP 2Xobcych ciał stałych o średnicy > 12,5 mmIP X2kapiącą – odchylenie obudowy urządzenia do 15°
IP 3Xobcych ciał stałych o średnicy > 2,5 mmIP X3opryskiwaną pod kątem odchylonym max. 60° od pionowego
IP 4Xobcych ciał stałych o średnicy > 1 mmIP X4rozpryskiwaną ze wszystkich kierunków
IP 5Xpyłu w zakresie nieszkodliwym dla urządzeniaIP X5laną strumieniem
IP 6Xpyłu w pełnym zakresieIP X6laną mocnym strumieniem
----IP X7przy zanurzeniu krótkotrwałym
A. Lepsza ochrona przed wodą rozpryskiwaną.
B. Lepsza ochrona przed pyłem.
C. Gorsza ochrona przed wodą rozpryskiwaną.
D. Gorsza ochrona przed pyłem.
Wybór odpowiedzi "Lepsza ochrona przed pyłem" jest prawidłowy, ponieważ obudowa IP 54 rzeczywiście oferuje podwyższoną ochronę przed pyłem w porównaniu do IP 44. Zgodnie z normą PN-EN 60529, oznaczenie IP (Ingress Protection) zawiera dwie cyfry, gdzie pierwsza dotyczy ochrony przed ciałami stałymi, a druga przed wodą. Obudowa IP 44 zapewnia ochronę przed obiektami stałymi o średnicy większej niż 1 mm oraz przed wodą rozpryskiwaną ze wszystkich kierunków. Natomiast IP 54 zapewnia podobną ochronę przed wodą, ale dodatkowo chroni przed ograniczonymi ilościami pyłu, co oznacza, że urządzenie jest zabezpieczone przed zanieczyszczeniami, które mogą wpływać na jego działanie. W praktyce oznacza to, że urządzenia w obudowie IP 54 mogą być stosowane w bardziej wymagających warunkach, gdzie występuje większe narażenie na zanieczyszczenia pyłowe, na przykład w zakładach przemysłowych czy halach produkcyjnych, gdzie pył może wpływać na funkcjonowanie sprzętu. Zastosowanie sensorów o wyższej klasie ochrony przyczynia się do zwiększenia niezawodności i trwałości urządzenia, co jest kluczowe w kontekście nowoczesnych systemów mechatronicznych.

Pytanie 18

Który z literowych identyfikatorów powinien być wykorzystany w poleceniu odnoszącym się do analogowych wyjść?

A. AI
B. SM
C. MW
D. AQ
Odpowiedzi, które wybrałeś, odzwierciedlają powszechnie występujące mylne rozumienia identyfikatorów literowych w kontekście wyjść analogowych. Na przykład, "AI" oznacza "Analog Input", czyli wejście analogowe, co jest zupełnie innym typem sygnału. W systemach automatyki, wejścia analogowe służą do przetwarzania sygnałów z czujników, a nie do generowania sygnałów wyjściowych. Ponadto, odpowiedź "MW" odnosi się do "Memory Word", co odnosi się do danych przechowywanych w pamięci, a nie do fizycznych sygnałów wyjściowych. Użycie tego identyfikatora w kontekście wyjść analogowych zdradza brak zrozumienia podstawowych zasad działania systemów sterowania. Ostatnia z odpowiedzi, "SM", oznacza „Special Memory”, co również nie ma zastosowania w kontekście wyjść analogowych. Zrozumienie różnicy pomiędzy tymi typami identyfikatorów jest kluczowe dla skutecznej pracy w automatyce. Typowym błędem myślowym jest zamiana pojęć związanych z wejściami i wyjściami, co prowadzi do nieporozumień i błędów w projektowaniu systemów. Wiedza na temat zastosowania odpowiednich identyfikatorów literowych w kontekście wyjść analogowych jest niezbędna dla każdego specjalisty zajmującego się automatyką, aby uniknąć nieporozumień i zapewnić prawidłowe działanie systemów.

Pytanie 19

Podczas szacowania czasu potrzebnego na realizację zadania, na początku uwzględnia się

A. ponadnormatywne przerwy w pracy
B. warunki przydzielania urlopu wypoczynkowego
C. innowacyjność metod pracy
D. normy czasochłonności wykonania zadania
Normy czasochłonności wykonania zadania są kluczowym elementem w procesie szacowania czasu realizacji zadań w projektach. W pierwszej kolejności uwzględnia się te normy, ponieważ zapewniają one obiektywne dane oparte na wcześniejszych doświadczeniach i analizach. Przykładowo, w branży produkcyjnej normy te mogą obejmować czas potrzebny na wykonanie konkretnej operacji, co pozwala na efektywne planowanie produkcji oraz alokację zasobów. W praktyce, korzystanie z norm czasochłonności umożliwia menedżerom projektów dokładniejsze prognozowanie terminów i lepsze zarządzanie ryzykiem. Warto również zaznaczyć, że normy te są zazwyczaj standaryzowane w danej branży, co pozwala na porównywanie wydajności między różnymi projektami i organizacjami, a tym samym na ciągłe doskonalenie procesów. Przykłady dobrych praktyk obejmują stosowanie norm czasochłonności w harmonogramowaniu zadań w metodzie Agile, gdzie szybkie i efektywne szacowanie czasu jest kluczowe dla sukcesu projektu.

Pytanie 20

Do czego służy magistrala danych w systemach mechatronicznych?

A. Mocowania elementów mechanicznych
B. Przesyłania sygnałów między komponentami
C. Chłodzenia komponentów
D. Zasilania urządzeń
Magistrala danych to kluczowy element w systemach mechatronicznych, służący przede wszystkim do przesyłania sygnałów i danych pomiędzy różnymi komponentami systemu. W praktyce oznacza to, że magistrala umożliwia komunikację między sterownikami, czujnikami, siłownikami i innymi elementami systemu, co jest niezbędne do ich prawidłowego funkcjonowania. Dzięki temu możliwe jest realizowanie złożonych procesów automatyzacji, gdzie dane zbierane przez czujniki mogą być przetwarzane przez sterowniki i następnie używane do sterowania siłownikami. To podejście jest zgodne z międzynarodowymi standardami komunikacji w automatyce, takimi jak CAN (Controller Area Network) czy Modbus. Zastosowanie magistrali danych pozwala na redukcję okablowania i zwiększenie efektywności komunikacyjnej, co jest kluczowe dla nowoczesnych systemów produkcyjnych i robotyki. Warto zauważyć, że w systemach przemysłowych często wykorzystuje się protokoły magistrali danych, które zapewniają niezawodność i szybkość przesyłu informacji, co ma bezpośredni wpływ na jakość i precyzję procesów produkcyjnych.

Pytanie 21

Pomiar natężenia prądu zasilającego silnik przeprowadza się w celu ustalenia

A. poślizgu silnika
B. temperatury pracy silnika
C. obciążenia silnika
D. prędkości obrotowej silnika
Pomiar natężenia prądu zasilania silnika jest kluczowym elementem w ocenie obciążenia, które silnik musi pokonać w trakcie pracy. W praktyce, jeśli silnik napotyka na większy opór, na przykład przy rozpoczęciu pracy przy pełnym obciążeniu, natężenie prądu wzrasta, co skutkuje koniecznością dostarczenia większej mocy. Zrozumienie relacji między natężeniem prądu a obciążeniem silnika jest istotne, szczególnie w kontekście monitorowania wydajności i optymalizacji pracy maszyn. W standardach branżowych, takich jak IEC 60034 dotyczących silników elektrycznych, uwzględnia się pomiary prądowe jako część regularnych inspekcji. Gromadzenie takich danych pozwala na przewidywanie awarii i planowanie konserwacji, co przekłada się na dłuższą żywotność sprzętu oraz efektywność energetyczną. Prawidłowe pomiary natężenia prądu umożliwiają również dostosowanie parametrów pracy silnika do aktualnych potrzeb roboczych, co jest kluczowe w automatyzacji procesów przemysłowych.

Pytanie 22

Jak często należy wykonywać przeglądy techniczne w urządzeniach i systemach mechatronicznych?

A. Co dwa lata
B. Raz na pięć lat
C. Minimum raz do roku
D. Co trzy lata
Odpowiedź "Co najmniej raz w roku" jest zgodna z obowiązującymi przepisami prawa oraz najlepszymi praktykami w zarządzaniu urządzeniami i systemami mechatronicznymi. Regularne przeglądy techniczne, przeprowadzane co najmniej raz w roku, mają kluczowe znaczenie dla zapewnienia bezpieczeństwa użytkowników oraz niezawodności operacyjnej urządzeń. Takie przeglądy pozwalają na wczesne wykrycie potencjalnych usterek, co w konsekwencji minimalizuje ryzyko awarii. Przykładem może być systemy automatyki przemysłowej, w których regularne inspekcje komponentów, takich jak czujniki czy siłowniki, mogą zapobiec kosztownym przestojom produkcyjnym. Ponadto, zgodnie z normą PN-EN ISO 13849-1, regularne przeglądy są niezbędne do zapewnienia zgodności systemów z wymaganiami bezpieczeństwa. Wiedza na temat częstotliwości przeglądów jest kluczowa dla inżynierów i techników, którzy odpowiadają za operacyjną gotowość i bezpieczeństwo systemów mechatronicznych.

Pytanie 23

Kierunek obrotu wirnika silnika indukcyjnego trójfazowego można zmienić poprzez

A. zmianę częstotliwości napięcia zasilającego
B. zmianę kolejności faz w sieci zasilającej silnik
C. zmianę liczby par biegunów magnetycznych
D. szeregowe podłączenie dodatkowego rezystora do jednego z uzwojeń
Zmiana kolejności faz w silniku indukcyjnym trójfazowym jest kluczowym sposobem na zmianę kierunku obrotów wirnika. Każda z trzech faz dostarcza prąd o różnej różnicy faz, co generuje zmieniające się pole magnetyczne w stojanie. Te różnice faz prowadzą do obrotu pola magnetycznego, a tym samym również wirnika. Przykładowo, w zastosowaniach przemysłowych, kiedy silnik musi zmieniać kierunek obrotów w odpowiedzi na zmieniające się warunki pracy, zmiana kolejności zasilania jest najczęściej stosowaną metodą, ponieważ jest efektywna i prosta do zaimplementowania. Standardy branżowe, takie jak IEC 60034, również podkreślają tę metodę jako bezpieczną i efektywną w aplikacjach, gdzie wymagana jest dynamiczna kontrola kierunku obrotów. Dzięki zrozumieniu tej zasady, inżynierowie mogą lepiej projektować systemy napędowe i optymalizować je w zależności od wymagań aplikacji.

Pytanie 24

Którego modułu funkcjonalnego powinno się użyć w programie, gdy konieczne jest zarejestrowanie momentu, w którym nastąpiło przerwanie sygnału na wejściu aktywującym timer?

A. TONR
B. TP
C. TOF
D. TON
Jeśli wybierzesz coś innego, takiego jak TOF (Timer Off Delay) czy TON (Timer On Delay), to nie będzie spełniało wymagań związanych z pamiętaniem czasu przerwania sygnału. Blok TOF działa w sytuacjach, gdzie trzeba opóźnić wyłączenie sygnału na podstawie czasu. Po zakończeniu sygnału wejściowego, TOF wprowadza opóźnienie przed jego wyłączeniem, a to w kontekście pamięci o czasie przerwania nie ma sensu. Z drugiej strony, blok TON zlicza czas, ale po ustaniu sygnału jego wartość nie jest zapamiętywana – po prostu się resetuje. To oznacza, że nie da się analizować czasu przerwania, co może skutkować utratą ważnych informacji o zdarzeniach w systemie. Często myli się te funkcje – trzeba zrozumieć, że tylko bloki retencyjne, jak TONR, mają tę potrzebną funkcjonalność. W automatyce przemysłowej, gdzie czas reakcji to kluczowa sprawa, użycie złych timerów może prowadzić do błędnych decyzji operacyjnych i obniżenia efektywności całego systemu.

Pytanie 25

Parametry takie jak powierzchnia membrany, temperatura operacyjna, typ napędu, maksymalne ciśnienie, skok oraz precyzja położenia są charakterystyczne dla

A. smarownicy pneumatycznej
B. siłownika pneumatycznego
C. silnika hydraulicznego
D. siłownika hydraulicznego
Odpowiedzi takie jak smarownica pneumatyczna, silnik hydrauliczny i siłownik hydrauliczny zawierają szereg nieporozumień, które wynikają z mylenia różnych technologii napędowych. Smarownica pneumatyczna jest urządzeniem stosowanym do wprowadzania smarów do systemów pneumatycznych, a nie do generowania ruchu, co czyni ją nieodpowiednią w kontekście parametru skoku czy dokładności położenia. Silnik hydrauliczny, chociaż wykorzystuje ciśnienie płynów do generowania ruchu, funkcjonuje na zupełnie innych zasadach niż siłowniki pneumatyczne. Jego budowa i charakterystyka pracy opierają się na płynach hydraulicznych, co oznacza, że maksymalne ciśnienie i temperatura pracy są zupełnie inne. Siłowniki hydrauliczne, podobnie jak silniki hydrauliczne, także operują na zasadzie wykorzystania cieczy pod ciśnieniem, co diametralnie różni się od zasad działania siłowników pneumatycznych, gdzie główną rolę odgrywa sprężone powietrze. Wybór technologii powinien być uzasadniony specyfiką aplikacji, ponieważ zarówno siłowniki hydrauliczne, jak i pneumatyczne mają swoje unikalne zalety i ograniczenia. Zrozumienie tych różnic jest kluczowe dla właściwego doboru komponentów w systemach automatyki przemysłowej.

Pytanie 26

Jakim symbolem literowym jest oznaczane na schemacie układu hydraulicznego przyłącze przewodu ciśnieniowego?

A. Symbolem T
B. Symbolem A
C. Symbolem B
D. Symbolem P
Odpowiedź "Symbolem P" jest poprawna, ponieważ w schematach układów hydraulicznych standardowe oznaczenia literowe mają kluczowe znaczenie dla prawidłowego montażu i serwisowania. Symbol P oznacza przyłącze przewodu tłocznego, co jest istotne, ponieważ to właśnie przez ten przewód płyn hydrauliczny jest dostarczany do systemu pod wysokim ciśnieniem. Oznaczenie to wywodzi się od angielskiego słowa "Pressure", co podkreśla jego związek z ciśnieniem. W praktyce, zrozumienie i poprawne odczytywanie tych symboli jest niezbędne, aby uniknąć błędów, które mogą prowadzić do awarii systemu hydraulicznego. Na przykład, nieprawidłowe podłączenie przewodów tłocznych może skutkować wyciekiem płynów, co z kolei wpłynie na efektywność układu oraz może prowadzić do kosztownych napraw. Dlatego znajomość standardów i dobrych praktyk dotyczących oznaczeń hydraulicznych jest kluczowa dla inżynierów i techników w tej dziedzinie, a symbol P stanowi fundament w rozumieniu schematów hydraulicznych.

Pytanie 27

Jakie polecenie w środowisku programowania sterowników PLC pozwala na przesłanie programu z urządzenia do komputera?

A. Download
B. Single Read
C. Chart Status
D. Upload
Wybór odpowiedzi Download, Single Read lub Chart Status wskazuje na pewne nieporozumienia dotyczące funkcji w środowisku programowania PLC. Polecenie Download jest odwrotnością Upload i służy do przesyłania programu z komputera do sterownika, co może prowadzić do błędnych wniosków, że jest to proces, który pozwala na przekazanie danych z urządzenia. Analogicznie, Single Read to komenda, która pozwala na odczytanie pojedynczych danych z pamięci sterownika, ale nie ma związku z przesyłaniem programów. W efekcie, wybierając tę opcję, można pomylić się, sądząc, że polecenie to ma na celu przesyłanie danych, co jest niezgodne z jego rzeczywistą funkcjonalnością. Z kolei Chart Status to polecenie odnoszące się do monitorowania stanu wykresów lub procesów, ale nie ma związku z operacjami transferu danych między sterownikiem a komputerem. Wiele osób przy podejmowaniu decyzji w tej kwestii może kierować się intuicją lub wcześniejszym doświadczeniem z różnymi systemami, co może prowadzić do błędnych wyborów. Kluczowe jest zrozumienie, że każde z tych poleceń ma swoją specyfikę i zastosowanie, a nieprawidłowe ich rozumienie może prowadzić do poważnych błędów w praktyce inżynieryjnej.

Pytanie 28

Zespół odpowiedzialny za obsługę systemu mechtronicznego zauważył nagły spadek efektywności sprężarki tłokowej oraz to, że w czasie jej pracy powietrze wydostaje się z cylindra przez filtr ssawny do atmosfery. Jakie jest prawdopodobne źródło nieprawidłowego działania tego urządzenia?

A. Niewłaściwie ustawiony wyłącznik ciśnieniowy
B. Awaria zaworu zwrotnego ssącego
C. Wytarcie jednego z pierścieni uszczelniających tłok
D. Nieprawidłowy kierunek obrotów silnika
Uszkodzenie zaworu zwrotnego ssącego jest kluczowym czynnikiem wpływającym na wydajność sprężarki tłokowej. Zawór ten odpowiada za prawidłowy kierunek przepływu powietrza do cylindra, a jego uszkodzenie może skutkować wydmuchiwanie powietrza z cylindra zamiast jego zasysania. W praktyce, w przypadku uszkodzenia zaworu, sprężarka nie jest w stanie osiągnąć zadanego ciśnienia, co prowadzi do spadku wydajności. Przykładowo, w przemyśle, gdzie sprężarki tłokowe są wykorzystywane do zasilania narzędzi pneumatycznych, brak odpowiedniego ciśnienia może spowodować opóźnienia w produkcji oraz zwiększenie kosztów operacyjnych. Zgodnie z dobrą praktyką, regularna konserwacja i kontrola stanu zaworów zwrotnych, a także ich wymiana co określony czas, są niezbędne dla zapewnienia długotrwałego i efektywnego działania systemów pneumatycznych. Tego typu podejścia są zgodne z normami bezpieczeństwa i efektywności energetycznej, jakie powinny być przestrzegane w zakładach przemysłowych.

Pytanie 29

Które z instrukcji dotyczących obsługi frezarki jest niewłaściwe?

A. Śruby mocujące narzędzia oraz imadła maszynowe i dociski śrubowe należy dociskać ręcznie, unikając używania przedłużek do kluczy
B. W trakcie obróbki materiałów odpryskowych i pylących należy nosić okulary ochronne oraz półmaski przeciwpyłowe
C. Należy zakładać i stabilizować narzędzia w rękawicach roboczych
D. Należy chłodzić obrabiany element podczas obróbki za pomocą mokrych szmat
Chłodzenie obrabianego elementu podczas obróbki przy pomocy specjalnych płynów chłodzących jest kluczowym elementem zapewniającym prawidłowe działanie frezarki. Podczas intensywnej obróbki mechanicznej, temperatura narzędzia oraz obrabianego materiału może osiągnąć bardzo wysokie wartości, co prowadzi do ich uszkodzenia, zniekształceń, a nawet przyspieszonego zużywania się narzędzi. Użycie odpowiednich płynów chłodzących, które mają za zadanie nie tylko obniżenie temperatury, ale także usuwanie wiórów oraz zanieczyszczeń, jest zgodne z najlepszymi praktykami w branży. Warto pamiętać, że chłodzenie mokrymi szmatkami jest niewystarczające, ponieważ nie zapewnia odpowiedniej penetracji w obszary robocze, co może prowadzić do powstawania punktów przegrzewania. Aby uzyskać najlepsze rezultaty, należy stosować płyny chłodzące zgodne z normami ISO, które posiadają odpowiednie właściwości smarne i chłodzące oraz są bezpieczne dla zdrowia operatora.

Pytanie 30

Jakie ciśnienie powinno być zastosowane do przeprowadzenia testu szczelności systemu hydraulicznego?

A. Ciśnieniu testowemu 6 bar
B. Mniejszym od maksymalnego ciśnienia, które występuje w trakcie pracy o 50%
C. Maksymalnym ciśnieniu, które występuje w trakcie pracy
D. Większym o 10% od ciśnienia roboczego
Wybór ciśnienia próbnego na poziomie 6 bar jest niewłaściwy, ponieważ nie uwzględnia specyfiki konkretnego układu hydraulicznego. Takie podejście może prowadzić do błędnych wniosków dotyczących szczelności, zwłaszcza w aplikacjach, gdzie standardowe ciśnienie robocze przekracza tę wartość. Bezwzględne poleganie na wartości ciśnienia próbnego, które nie jest oparte na maksymalnym ciśnieniu roboczym, może prowadzić do zjawiska, w którym układ wydaje się sprawny, mimo że nie jest w stanie wytrzymać rzeczywistych warunków pracy. Odpowiedź sugerująca zwiększenie ciśnienia o 10% może wydawać się logiczna, jednak nie zapewnia żadnej gwarancji, że układ będzie w stanie poradzić sobie z maksymalnym ciśnieniem, które występuje w czasie eksploatacji. Ponadto, maksymalne ciśnienie robocze ma kluczowe znaczenie dla oceny integralności układów hydraulicznych, co jest zgodne z najlepszymi praktykami w branży. Ustalanie próbnej wartości ciśnienia mniejszej o 50% od maksymalnego ciśnienia roboczego jest również błędne, ponieważ nie daje pełnego obrazu potencjalnych problemów z nieszczelnościami, które mogą wystąpić w rzeczywistych warunkach pracy. W związku z tym, niewłaściwe dobranie ciśnienia próbnego może prowadzić do niezgodności z normami bezpieczeństwa oraz niebezpiecznych sytuacji w trakcie użytkowania układów hydraulicznych.

Pytanie 31

Aby ocenić jakość aktualnych połączeń elektrycznych w systemie mechatronicznym, należy najpierw przeprowadzić pomiar

A. spadku napięcia na komponentach
B. rezystancji izolacji pomiędzy obudową urządzenia a przewodem zasilającym
C. mocy pobieranej przez urządzenie
D. ciągłości połączeń
Pomiar ciągłości połączeń jest kluczowym krokiem w ocenie jakości połączeń elektrycznych w urządzeniu mechatronicznym. Gwarantuje on, że prąd może swobodnie przepływać przez wszystkie połączenia, co jest niezbędne do prawidłowego działania urządzenia. W praktyce, pomiar ten wykonuje się za pomocą multimetru, który wskazuje, czy obwód jest zamknięty, co bezpośrednio przekłada się na niezawodność systemów elektrycznych. W przypadku wykrycia przerwy, można zidentyfikować i naprawić problem, co jest zgodne z dobrą praktyką inżynieryjną. W branży mechatronicznej, gdzie urządzenia są często narażone na wibracje i zmiany temperatury, regularne sprawdzanie ciągłości połączeń jest kluczowe dla utrzymania wysokiej jakości i bezpieczeństwa systemów. Warto także zauważyć, że zgodnie z normami IEC 60364, ocena ciągłości połączeń jest integralną częścią kontroli jakości instalacji elektrycznych, co potwierdza jej znaczenie w codziennej praktyce inżynieryjnej.

Pytanie 32

W urządzeniu mechatronicznym zastosowano pasek zębaty jako mechanizm przenoszenia napędu. W trakcie regularnej inspekcji tego paska należy przede wszystkim ocenić stopień jego zużycia oraz

A. temperaturę
B. naprężenie
C. smarowanie
D. bicie osiowe
Wybór odpowiedzi dotyczącej temperatury, smarowania czy bicia osiowego na pierwszy rzut oka może się wydawać uzasadniony, jednak nie mają one bezpośredniego wpływu na podstawową funkcję paska zębatego w procesie przenoszenia napędu. Przykładowo, sprawdzanie temperatury może być istotne w kontekście ogólnego stanu urządzenia, ale nie jest kluczowym parametrem w kontekście efektywności działania paska zębatego. Wysoka temperatura może prowadzić do degradacji materiałów, jednak nie powinno się na niej koncentrować podczas bezpośredniej kontroli paska. Smarowanie jest bardziej związane z elementami ruchomymi, takimi jak łożyska, a nie z samym paskiem zębatym, który nie wymaga smarowania, ponieważ jego działanie opiera się na mechanicznym zazębieniu zębatek. Bicie osiowe, choć ważne w kontekście precyzyjnych i skomplikowanych systemów mechanicznych, również nie jest kluczowym parametrem w zarządzaniu paskiem zębatym, który powinien być kontrolowany w kontekście jego naprężenia. Zrozumienie, które parametry są priorytetowe w kontekście pracy paska zębatego, jest kluczowe dla jego efektywnej konserwacji i minimalizowania ryzyka nieprawidłowości w działaniu systemu przeniesienia napędu.

Pytanie 33

Gdy sprzęt komputerowy jest w trakcie pożaru i podłączony do zasilania, nie wolno go gasić

A. kocem gaśniczym
B. gaśnicą proszkową
C. gaśnicą śniegową
D. pianą
Nieprawidłowe odpowiedzi bazują na nieporozumieniach dotyczących właściwości środków gaśniczych oraz ich zastosowania w kontekście sprzętu komputerowego. Zastosowanie koca gaśniczego w celu stłumienia ognia w sytuacji, gdy sprzęt jest podłączony do zasilania, jest nieodpowiednie, ponieważ koc gaśniczy nie jest w stanie skutecznie odciąć dostępu tlenu do ognia w sposób, który zapobiega jego rozprzestrzenieniu, zwłaszcza w przypadku intensywnego ognia. Gaśnice proszkowe, chociaż skuteczne w wielu zastosowaniach, w przypadku sprzętu komputerowego mogą przynieść więcej szkód niż korzyści, ponieważ proszek gaśniczy może uszkodzić delikatne podzespoły elektroniczne oraz spowodować trudności w późniejszej konserwacji sprzętu. Również gaśnice śniegowe, które działają poprzez wypieranie tlenu, nie są zalecane w przypadku sprzętu komputerowego z uwagi na ryzyko uszkodzenia komponentów wrażliwych na zmiany temperatury. W praktyce, nieznajomość odpowiednich środków gaśniczych oraz ich właściwego zastosowania prowadzi do błędnych decyzji w sytuacjach awaryjnych, co może skutkować poważnymi konsekwencjami zarówno materialnymi, jak i zdrowotnymi. Dlatego kluczowe jest, aby wszyscy użytkownicy sprzętu elektronicznego byli świadomi, jakie metody gaszenia są stosowne w obliczu pożaru i w jaki sposób można skutecznie zareagować, by uniknąć niebezpieczeństwa.

Pytanie 34

Do zobrazowania relacji między elementami i zespołami projektowanej maszyny wykorzystuje się rysunek

A. częściowy
B. zespołowy
C. rzutowy
D. złożeniowy
Rysunek złożeniowy jest kluczowym elementem dokumentacji technicznej projektowanej maszyny, ponieważ przedstawia wszystkie komponenty oraz ich wzajemne usytuowanie w jednym, kompleksowym widoku. Dzięki temu inżynierowie i technicy mogą łatwo zrozumieć, jak poszczególne elementy współpracują ze sobą, co jest niezwykle istotne podczas procesu montażu oraz serwisowania maszyny. Na etapie projektowania, rysunki złożeniowe pozwalają na szybkie identyfikowanie potencjalnych problemów związanych z kolizjami elementów oraz optymalizację przestrzenną. Zgodnie z normami ISO dotyczącymi rysunku technicznego, rysunki złożeniowe powinny być jasne, czytelne i zawierać wszystkie niezbędne informacje, takie jak numery katalogowe części, materiały i wymiary. Przykładem zastosowania rysunku złożeniowego może być projektowanie skomplikowanych maszyn, takich jak obrabiarki czy urządzenia automatyki przemysłowej, gdzie zrozumienie interakcji pomiędzy komponentami jest kluczowe dla efektywności i bezpieczeństwa całego systemu.

Pytanie 35

Wskaż właściwy sposób odniesienia do zmiennej 64-bitowej w pamięci markerów sterownika PLC, której pierwsze osiem bitów ma adres w systemie dziesiętnym 14?

A. MW14
B. MD14
C. ML14
D. MB14
Podczas analizy niepoprawnych odpowiedzi, warto zwrócić uwagę na różnice między typami zmiennych oraz ich odpowiednimi prefiksami. MD14, oznaczające zmienną 32-bitową, jest błędne, ponieważ zmienna 64-bitowa wymaga innego adresowania. Programowanie w środowisku PLC wymaga zrozumienia, że zmienne 32-bitowe są stosowane do przechowywania danych mniejszych niż długość 64 bitów. Wybierając MD14, użytkownik sugeruje, że zmienna zajmuje jedynie połowę dostępnej przestrzeni pamięci, co prowadzi do niewłaściwego wykorzystania zasobów. Z kolei MW14, odnoszące się do zmiennych 16-bitowych, również nie pasuje do kontekstu 64-bitowego przechowywania. Przyjęcie takiego oznaczenia zafałszowuje rzeczywistość pamięci, ponieważ 16 bity to zdecydowanie za mało dla zmiennej, która potrzebuje 64 bitów pamięci. MB14, z kolei, wiąże się z 8-bitowymi zmiennymi i jest zupełnie nieadekwatne dla złożoności zmiennej 64-bitowej. Zrozumienie, jakie prefiksy są używane dla różnych typów zmiennych, jest podstawą programowania w PLC. Stosowanie niewłaściwych prefiksów może prowadzić nie tylko do błędów w adresowaniu, ale także do poważnych problemów z wydajnością i stabilnością całego systemu. Dlatego kluczowe jest, aby programiści PLC byli dobrze zaznajomieni z tymi zasadami oraz ich praktycznym zastosowaniem w codziennej pracy.

Pytanie 36

Która z liter adresowych zastosowanych w poniższej instrukcji programowania obrabiarki oznacza szybkość posuwu?

CNC N120 G31 X50 Z-30 D-2 F3 Q3
A. G
B. N
C. F
D. Q
Wybór litery 'F' jako oznaczenia szybkości posuwu w programowaniu obrabiarek CNC jest poprawny, ponieważ jest to standardowo stosowane oznaczenie w wielu językach programowania tych urządzeń. Szybkość posuwu, czyli prędkość, z jaką narzędzie porusza się w obrabianym materiale, ma kluczowe znaczenie dla jakości oraz efektywności obróbki. Zbyt niska prędkość posuwu może prowadzić do nieefektywnej obróbki, a zbyt wysoka może powodować przegrzewanie materiału oraz zużycie narzędzi. Przykładowo, w kodzie G, zapis 'F3' wskazuje, że narzędzie porusza się z prędkością 3 mm/min, co pozwala na precyzyjne stworzenie detalu zgodnie z wymogami technologicznymi. Warto zaznaczyć, że dobór właściwej szybkości posuwu zależy od rodzaju materiału, geometrii narzędzia oraz parametrów obrabiarki, co podkreśla znaczenie znajomości tych aspektów dla operatora CNC. Używanie litery 'F' do oznaczania tej wartości jest powszechne w branży i należy do najlepszych praktyk. Właściwe ustawienie szybkości posuwu ma również wpływ na żywotność narzędzi oraz jakość powierzchni obrabianego detalu, dlatego tak istotne jest, aby operatorzy CNC byli dobrze zaznajomieni z tymi parametrami.

Pytanie 37

Którego symbolu graficznego należy użyć, aby przedstawić na schemacie układu cyfrowego bramkę logiczną, której wyjście Y=1 tylko wtedy, gdy A ≠ B?

Ilustracja do pytania
A. D.
B. C.
C. B.
D. A.
Wybór innej opcji niż D wskazuje na nieporozumienie dotyczące podstawowych zasad działania bramek logicznych. Bramki OR, NOR i NAND mają różne funkcje logiczne, które nie odpowiadają wymaganiu Y=1 w przypadku, gdy A i B są różne. Działanie bramki OR, na przykład, skutkuje wyjściem równym 1, gdy przynajmniej jedno z wejść jest równe 1, co nie spełnia warunku dotyczącego różności wartości wejściowych. Podobnie, bramka NAND zwraca 0 tylko wtedy, gdy oba wejścia są równe 1, co z kolei nie zaspokaja wymagań zadania. Ta nieprawidłowa interpretacja może wynikać z typowego błędu myślowego, polegającego na uogólnieniu funkcji logicznych bez dokładnego rozpatrzenia ich specyfiki. Ważne jest, aby zrozumieć różnice pomiędzy typami bramek oraz ich zastosowaniami w projektowaniu układów cyfrowych. Niezrozumienie tych koncepcji może prowadzić do błędnych wyborów przy projektowaniu układów lub analizowaniu algorytmów, co w praktyce przekłada się na wydajność oraz funkcjonalność systemów. Dlatego kluczowe jest, aby przy wyborze odpowiednich symboli graficznych kierować się ich rzeczywistym działaniem oraz zastosowaniem w kontekście rozwiązywanych problemów.

Pytanie 38

Jakiego typu wyjście powinien mieć sterownik PLC, aby w systemie sterowania wykorzystującym ten sterownik możliwa była modulacja szerokości impulsu – PWM?

A. Analogowe prądowe
B. Analogowe napięciowe
C. Binarne tranzystorowe
D. Binarne przekaźnikowe
Wybór niewłaściwego typu wyjścia w kontekście modulacji szerokości impulsu (PWM) wynika często z niepełnego zrozumienia zasad działania różnych typów wyjść w sterownikach PLC. Wyjścia binarne przekaźnikowe, mimo że są popularne w wielu zastosowaniach, mają ograniczenia w kontekście szybkości przełączania i precyzji kontroli czasu trwania impulsu. Przekaźniki mechaniczne mogą wolno reagować na sygnały, co powoduje problemy z generowaniem prawidłowego sygnału PWM, który wymaga bardzo szybkich zmian stanu. Z kolei wyjścia analogowe prądowe i napięciowe, mimo że mogą wykorzystywać sygnały analogowe do regulacji, nie są przeznaczone do generowania sygnałów PWM, które bazują na cyklicznych zmianach stanu „włączony-wyłączony”. Typowe błędy myślowe prowadzą do mylenia sygnałów analogowych z cyfrowymi. PWM jest techniką cyfrową, co oznacza, że wymaga wyjść, które mogą włączanie i wyłączanie w odpowiednich odstępach czasu, co jest możliwe tylko w przypadku wyjść binarnych tranzystorowych. W praktyce, zrozumienie tych różnic jest kluczowe dla prawidłowego projektowania systemów automatyki, a ignorowanie tych zasad może prowadzić do nieefektywności w działaniu układu oraz trudności w jego dalszej diagnostyce i serwisowaniu.

Pytanie 39

Na podstawie fragmentu instrukcji serwisowej wskaż prawdopodobną przyczynę nieprawidłowej pracy urządzenia, jeżeli na jego wyświetlaczu wyświetla się kod błędu E5.

KODY BŁĘDÓW
NrKod błęduProblem
1.E1Usterka czujnika temperatury pomieszczenia
2.E2Usterka czujnika temperatury wymiennika zewn.
3.E3Usterka czujnika temperatury wymiennika wewn.
4.E4Usterka silnika jednostki wewnętrznej lub problem
z sygnałem zwrotnym
5.E5Brak komunikacji między jednostkami wewn. i zewn.
6.F0Usterka silnika prądu stałego wentylatora jednostki zewn.
7.F1Uszkodzenie modułu IPM
8.F2Uszkodzenie modułu PFC
9.F3Problem ze sprężarką
10.F4Błąd czujnika temperatury przegrzania
11.F5Zabezpieczenie temperatury głowicy sprężarki
12.F6Błąd czujnika temperatury otoczenia jednostki zewn.
13.F7Zabezpieczenie przed zbyt wysokim lub za niskim na-
pięciem zasilania
14.F8Błąd komunikacji modułów jednostki zewnętrznej
15.F9Błąd pamięci EEPROM jednostki zewnętrznej
16.FABłąd czujnika temperatury ssania
(uszkodzenie zaworu 4 drogowego)
A. Problem ze sprężarką.
B. Błąd czujnika temperatury ssania.
C. Brak komunikacji między jednostkami.
D. Uszkodzenie modułu IPM.
Kod błędu E5, oznaczający 'Brak komunikacji między jednostkami wewn. i zewn.', wskazuje na istotny problem w systemach HVAC, gdzie współpraca i wymiana informacji między jednostkami są kluczowe dla prawidłowego funkcjonowania. W przypadku, gdy urządzenie nie może nawiązać komunikacji, może to prowadzić do braku synchronizacji w działaniu systemu, a tym samym do nieefektywnej pracy lub całkowitego zatrzymania. W praktyce, przed podjęciem dalszych kroków diagnostycznych, warto najpierw sprawdzić połączenia kablowe oraz zasilanie jednostek, co jest zgodne z dobrymi praktykami serwisowymi. W przypadku potwierdzenia braku komunikacji, zastosowanie narzędzi do testowania sygnałów komunikacyjnych (np. oscyloskopy) może pomóc w zdiagnozowaniu, czy problem leży w uszkodzeniu kabla, czy w jednym z modułów sterujących. Działania te są niezbędne, aby zapewnić działanie systemu na najwyższym poziomie efektywności oraz minimalizować ryzyko awarii w przyszłości.

Pytanie 40

Jakie z poniższych działań może być realizowane podczas eksploatacji pompy hydroforowej?

A. Smarowanie elementów poruszających się
B. Usuwanie osłon w trakcie funkcjonowania urządzenia
C. Kilka razy włączenie pompy w celu eliminacji powietrza z wirnika
D. Czyszczenie elementów poruszających się
Smarowanie części będących w ruchu oraz czyszczenie ich wydają się być czynnościami właściwymi, niemniej jednak nie są zalecanymi działaniami podczas pracy pompy hydroforowej. Smarowanie komponentów mechanicznych pompy powinno odbywać się jedynie w czasie, gdy urządzenie jest wyłączone, aby uniknąć ryzyka kontaminacji smarem, który mógłby zakłócić efektywność działania i prowadzić do awarii. Obecność smaru może także przyciągać zanieczyszczenia, co w dłuższym okresie mogłoby doprowadzić do uszkodzeń. Czyszczenie części będących w ruchu w trakcie ich pracy jest niebezpieczne, ponieważ może prowadzić do urazów osobistych oraz uszkodzenia samego urządzenia. Ponadto, zdejmowanie osłon podczas pracy urządzenia jest absolutnie niewskazane. Osłony te mają na celu ochronę operatora oraz zabezpieczenie elementów mechanicznych przed uszkodzeniami. Każda z tych czynności, wykonywana w czasie pracy pompy hydroforowej, może prowadzić do niebezpiecznych sytuacji oraz awarii urządzenia. Właściwa konserwacja i obsługa pompy hydroforowej powinny opierać się na ścisłym przestrzeganiu instrukcji producenta, które zazwyczaj podkreślają znaczenie bezpieczeństwa oraz minimalizowania ryzyk związanych z eksploatacją urządzenia.