Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 16 grudnia 2025 05:45
  • Data zakończenia: 16 grudnia 2025 05:47

Egzamin niezdany

Wynik: 2/40 punktów (5,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Podczas pomiaru rezystancji izolacji przewodów, jakie napięcie testowe jest zazwyczaj stosowane dla obwodów o napięciu znamionowym 230 V?

A. 230 V
B. 100 V
C. 750 V
D. 500 V
Pomiar rezystancji izolacji jest kluczowym krokiem w ocenie stanu technicznego instalacji elektrycznych. Dla obwodów o napięciu znamionowym 230 V zaleca się stosowanie napięcia testowego 500 V. Wybór tego napięcia wynika z norm i standardów, które nakładają wymogi dotyczące minimalnej wartości napięcia testowego, aby zapewnić wiarygodne wyniki pomiarów. Rozporządzenia takie jak PN-HD 60364-6:2016-07 wskazują, że dla obwodów o napięciu znamionowym do 500 V, napięcie testowe powinno wynosić 500 V. Zastosowanie wyższego napięcia testowego niż napięcie znamionowe jest konieczne, aby wykryć ewentualne uszkodzenia izolacji, które mogą pojawić się w warunkach rzeczywistej eksploatacji. Dzięki temu można zidentyfikować miejsca, gdzie izolacja może być osłabiona, co pozwala na podjęcie kroków naprawczych przed wystąpieniem awarii. To podejście jest powszechnie stosowane w branży, zapewniając bezpieczeństwo i niezawodność instalacji elektrycznej.

Pytanie 2

Jakie z poniższych warunków powinno być spełnione w instalacji mieszkalnej, aby zagwarantować minimalną ochronę przed porażeniem prądem elektrycznym?

A. Zrealizowanie instalacji elektrycznej przy użyciu przewodu o żyłach w formie linki
B. Wykorzystanie przewodów roboczych o właściwej wartości rezystancji izolacji
C. Podłączenie styków ochronnych gniazd do przewodu ochronnego systemu
D. Montowanie w instalacji wyłącznika różnicowoprądowego
Wykonanie instalacji elektrycznej przewodem o żyłach w postaci linki nie zapewnia podstawowej ochrony przed porażeniem prądem. Choć zastosowanie przewodów wielożyłowych może być korzystne w kontekście elastyczności i łatwości montażu, nie wpływa bezpośrednio na poziom ochrony przed porażeniem. Kluczowym czynnikiem w zabezpieczeniu przed prądem jest jakość izolacji oraz jej rezystancja, a nie sam rodzaj przewodu. Połączenie styków ochronnych gniazd z przewodem ochronnym sieci, mimo że jest istotne dla uziemienia, samo w sobie nie wystarczy, aby zapobiec porażeniu. Uziemienie działa jako zabezpieczenie, ale najsłabszym ogniwem w systemie mogą być właśnie przewody robocze, których izolacja nie jest odpowiednia. Zastosowanie wyłącznika różnicowoprądowego, chociaż bardzo ważne, również nie jest jedynym czynnikiem, który zapewnia bezpieczeństwo. Wyłączniki te działają w momencie wykrycia różnicy prądów, ale nie eliminują ryzyka wynikającego z nieodpowiedniej izolacji przewodów. Dlatego kluczowym elementem bezpieczeństwa jest monitorowanie stanu izolacji przewodów roboczych oraz ich odpowiednia specyfikacja, co powinno być standardem w każdej instalacji elektrycznej.

Pytanie 3

Najtrudniejsze okoliczności gaszenia łuku elektrycznego występują w obwodzie o charakterze

A. rezystancyjnym, przy przepływie prądu przemiennego
B. indukcyjnym, przy przepływie prądu sinusoidalnego
C. rezystancyjnym, przy przepływie prądu stałego
D. indukcyjnym, przy przepływie prądu stałego
W obwodach o charakterze indukcyjnym, szczególnie przy przepływie prądu stałego, występują trudności związane z gaszeniem łuku elektrycznego, ze względu na charakterystyki reaktancji indukcyjnej. Łuk elektryczny generowany w takich obwodach ma tendencję do utrzymywania się, ponieważ prąd stały nie zmienia kierunku i nie przechodzi przez zero, co jest kluczowym momentem ułatwiającym gaszenie łuku. W praktyce, w systemach elektroenergetycznych, takie zjawisko jest szczególnie istotne przy zabezpieczeniach, takich jak wyłączniki elektromagnetyczne, które muszą być odpowiednio zaprojektowane, aby skutecznie radzić sobie z długotrwałym łukiem. Dobry przykład zastosowania tej wiedzy można znaleźć w projektowaniu rozdzielnic elektrycznych, gdzie należy uwzględnić wpływ indukcyjności na dobór odpowiednich zabezpieczeń. W zgodzie z normami IEC oraz dobrymi praktykami inżynieryjnymi, ważne jest, aby inżynierowie projektując systemy elektryczne brali pod uwagę te zjawiska, co przekłada się na bezpieczeństwo i niezawodność obsługiwanych instalacji.

Pytanie 4

Przed dokonaniem pomiarów rezystancji izolacji w elektrycznej instalacji oświetleniowej należy odciąć zasilanie, zdemontować ochronniki przeciwprzepięciowe oraz

A. zamknąć łączniki instalacyjne i wkręcić źródła światła
B. otworzyć łączniki instalacyjne i wykręcić źródła światła
C. otworzyć łączniki instalacyjne i wkręcić źródła światła
D. zamknąć łączniki instalacyjne i wykręcić źródła światła

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zamknięcie łączników instalacyjnych oraz wykręcenie źródeł światła przed przeprowadzeniem pomiarów rezystancji izolacji jest kluczowym krokiem mającym na celu zapewnienie bezpieczeństwa oraz dokładności pomiarów. W przypadku otwartych łączników, istnieje ryzyko, że zwarcie może wystąpić, co może prowadzić do uszkodzeń urządzeń pomiarowych oraz stwarzać niebezpieczeństwo dla osoby wykonującej pomiar. Wykręcenie źródeł światła pozwala na minimalizację ryzyka wprowadzenia dodatkowych elementów do obwodu, które mogłyby zakłócić pomiar. Zgodnie z obowiązującymi normami, takimi jak PN-IEC 60364, zaleca się, aby przed przeprowadzeniem jakichkolwiek pomiarów elektrycznych najpierw odłączyć zasilanie oraz przygotować instalację w sposób gwarantujący bezpieczeństwo. Przykładowo, w przypadku instalacji oświetleniowej, wykręcenie źródeł światła nie tylko redukuje ryzyko, ale również umożliwia dokładniejsze pomiary rezystancji izolacji, co jest kluczowe dla oceny stanu technicznego instalacji i jej zgodności z obowiązującymi przepisami.

Pytanie 5

Aby przygotować instalację elektryczną oświetlenia do przeprowadzenia pomiarów rezystancji izolacji, konieczne jest odłączenie zasilania oraz

A. zamknąć łączniki instalacyjne i wykręcić żarówki
B. otworzyć łączniki instalacyjne i wykręcić żarówki
C. otworzyć łączniki instalacyjne i wkręcić żarówki
D. zamknąć łączniki instalacyjne i wkręcić żarówki

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zamknięcie łączników i wykręcenie żarówek to naprawdę kluczowy krok przy przygotowywaniu instalacji elektrycznej do pomiarów rezystancji izolacji. Robiąc to, unikasz ryzyka przypadkowego załączenia prądu, co mogłoby narobić sporych szkód w sprzęcie pomiarowym oraz stwarzać niebezpieczeństwo dla osoby przeprowadzającej pomiary. Normy, jak PN-IEC 60364, mówią, że izolację trzeba sprawdzać przy wyłączonym zasilaniu, żeby wszystko było bezpieczne i wyniki były wiarygodne. Wykręcenie źródeł światła zmniejsza ryzyko przewodzenia prądu lub nieprzyjemnych napięć, co jest szczególnie ważne w mocnych instalacjach. Takie praktyki stosuje się np. w obiektach komercyjnych, gdzie bezpieczeństwo ludzi jest na pierwszym miejscu. Dobre przygotowanie instalacji do badań to nie tylko spełnienie przepisów, ale też sposób na to, żeby system elektryczny działał długo i bezawaryjnie.

Pytanie 6

Jaką wkładkę topikową bezpiecznikową powinno się wykorzystać do ochrony silnika indukcyjnego przed skutkami zwarć?

A. WT-00 gF
B. WT/NHaM
C. WT/NH DC
D. WT-2gTr

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wkładka topikowa WT/NHaM została zaprojektowana specjalnie do ochrony silników indukcyjnych przed skutkami zwarć. Posiada ona właściwości, które pozwalają na szybkie odłączenie obwodu w przypadku wystąpienia zwarcia, co jest kluczowe dla ochrony zarówno samego silnika, jak i całej instalacji elektrycznej. Zastosowanie tej wkładki jest zgodne z normami IEC 60269, które definiują wymagania dotyczące wkładek bezpiecznikowych. W praktyce, wkładki WT/NHaM charakteryzują się niskimi wartościami prądu zwarciowego, co zapewnia ich efektywność w przypadku krótkotrwałych przeciążeń, typowych dla pracy silników. W przypadku, gdy w silniku dojdzie do zwarcia, wkładka ta reaguje w sposób błyskawiczny, co minimalizuje ryzyko uszkodzenia komponentów. Przykładem zastosowania może być przemysł, w którym silniki napędzają maszyny, a ich bezpieczne i niezawodne funkcjonowanie jest kluczowe dla ciągłości produkcji.

Pytanie 7

Jakie powinno być maksymalne natężenie prądu, które może zmierzyć amperomierz w instalacji zasilanej napięciem 230/400 V, o częstotliwości 50 Hz, obciążonej jednofazowym silnikiem elektrycznym o parametrach: P = 0,55 kW, η = 70%, cosα = 0,96?

A. 2 A
B. 3 A
C. 1 A
D. 4 A

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby obliczyć wymagany zakres pomiarowy amperomierza dla silnika elektrycznego o mocy 0,55 kW, sprawności η = 70% oraz współczynniku mocy cosα = 0,96, należy najpierw obliczyć prąd pobierany przez urządzenie. Wzór na moc elektryczną to P = U * I * cosα, gdzie P to moc, U to napięcie, I to natężenie prądu, a cosα to współczynnik mocy. Przyjmując napięcie 230 V, przekształcamy wzór: I = P / (U * cosα). Wartość mocy czynnej P wynosi 0,55 kW / 0,7 (sprawność) = 0,7857 kW. Po podstawieniu wartości do wzoru otrzymujemy I = 0,7857 kW / (230 V * 0,96) co daje około 3,5 A. W związku z tym, potrzebny jest amperomierz o zakresie pomiarowym co najmniej 4 A, co daje możliwość bezpiecznego pomiaru prądu, uwzględniając ewentualne przeciążenia. W praktyce, dla pomiarów w instalacjach elektrycznych, zaleca się wybór przyrządów o zakresie pomiarowym przynajmniej 20% wyższym niż maksymalne oczekiwane wartości, co zapewnia dokładność i bezpieczeństwo pomiaru.

Pytanie 8

Przy eksploatacji odbiornika, oznaczonego przedstawionym symbolem, przewód zasilający

Ilustracja do pytania
A. musi mieć żyły ekranowane.
B. powinien mieć żyłę PE.
C. musi mieć wtyczkę ze stykiem ochronnym.
D. nie musi mieć żyły PE.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "nie musi mieć żyły PE" jest poprawna, ponieważ urządzenia elektryczne oznaczone symbolem klasy ochronności II są zaprojektowane tak, aby nie wymagały połączenia z przewodem ochronnym PE (Protective Earth). Urządzenia te posiadają podwójną izolację lub izolację wzmocnioną, co eliminuje potrzebę stosowania uziemienia. Zastosowanie takich urządzeń jest powszechne w przypadku sprzętu, który może być narażony na kontakt z użytkownikiem, jak na przykład sprzęt AGD, narzędzia elektryczne czy lampy. W praktyce oznacza to, że nie musimy martwić się o dodatkowe podłączenia uziemiające, co zwiększa wygodę w użytkowaniu. Warto zatem zwrócić uwagę na oznaczenia na urządzeniach oraz stosować zalecenia w zakresie instalacji elektrycznych, aby zapewnić bezpieczeństwo ich eksploatacji. Przykładowo, w instalacjach domowych urządzenia klasy II mogą być stosowane bez obaw o pojawienie się niepożądanych efektów związanych z brakiem uziemienia.

Pytanie 9

Zatrzymanie pracy grzejnika skutkuje natychmiastowym działaniem zabezpieczenia nadprądowego. Co to sugeruje?

A. zwarcie przewodu ochronnego z obudową
B. zwarcie przewodu fazowego oraz neutralnego
C. uszkodzenie w grzałce
D. uszkodzenie w przewodzie fazowym

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłączenie grzejnika w sytuacji, gdy zabezpieczenie nadprądowe natychmiast się załącza, wskazuje na przerwę w grzałce. Taka przerwa w obwodzie grzewczym powoduje, że prąd nie może przepływać przez grzałkę, co skutkuje narastającym napięciem na niepodłączonym odcinku obwodu. W związku z tym, zabezpieczenie nadprądowe, które ma za zadanie chronić instalację przed przeciążeniem oraz zwarciem, rozłącza obwód. Praktycznym przykładem zastosowania tej wiedzy jest kontrola stanu technicznego grzejników oraz regularne przeglądy instalacji elektrycznej, które powinny być przeprowadzane zgodnie z normą PN-IEC 60364. Właściwe podejście do utrzymania instalacji elektrycznej oraz systematyczna diagnostyka pozwala na wczesne wykrywanie usterek i zapobiega poważniejszym awariom. Ponadto, świadomość dotycząca działania zabezpieczeń nadprądowych jest kluczowa w kontekście prawidłowego użytkowania urządzeń grzewczych oraz zapewnienia bezpieczeństwa użytkowników.

Pytanie 10

Z uwagi na ryzyko uszkodzenia izolacji uzwojeń, używanie bezpieczników w obwodzie przekładnika jest zabronione?

A. napięciowego po stronie pierwotnej
B. napięciowego po stronie wtórnej
C. prądowego po stronie wtórnej
D. prądowego po stronie pierwotnej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "prądowego po stronie wtórnej" jest prawidłowa, ponieważ zastosowanie bezpieczników w obwodzie przekładnika prądowego po stronie wtórnej może prowadzić do uszkodzenia izolacji uzwojeń. Przekładniki prądowe są wykorzystywane do pomiarów prądu oraz ochrony obwodów elektrycznych, a ich konstrukcja jest zaprojektowana tak, aby zachować integralność i dokładność pomiarów. Jeśli zastosujemy bezpiecznik po stronie wtórnej, w przypadku zwarcia lub nadmiernego prądu, może dojść do przerwania obwodu, co skutkuje powstaniem wysokiego napięcia, które może uszkodzić izolację. W praktyce, aby zapewnić bezpieczeństwo i niezawodność działania systemów pomiarowych, zaleca się stosowanie odpowiednich zabezpieczeń, takich jak układy ograniczające prąd, a także monitorowanie obwodów za pomocą przyrządów pomiarowych, które mogą dostarczyć informacji o stanie przekładnika. Przykładem może być stosowanie odpowiednich przekładników do systemów zabezpieczeń, które są zgodne z normami IEC 60044, co podkreśla bezpieczeństwo i wydajność tych urządzeń w aplikacjach przemysłowych.

Pytanie 11

W instalacji trójfazowej natężenie prądu obciążenia przewodów fazowych Ib wynosi 21 A, a maksymalne dopuszczalne obciążenie tych przewodów Id to 30 A. Który z wymienionych wyłączników nadprądowych powinien być użyty do ochrony tej instalacji?

A. B20
B. B10
C. B25
D. B16

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Dobra decyzja z tym wyłącznikiem B25! Wybierając go, postawiłeś na coś, co naprawdę pasuje do wartości prądu obciążenia, która wynosi 21 A. Z tego, co wiemy, wyłącznik powinien mieć wyższą wartość nominalną niż maksymalny prąd roboczy, ale nie może też za bardzo przekraczać obciążalności przewodów. Tu mamy 30 A dla przewodów, więc 25 A dla wyłącznika to świetny wybór. Dzięki temu nie tylko chronisz instalację przed przeciążeniem, ale też zmniejszasz ryzyko uszkodzenia przewodów. Gdybyś wybrał wyłącznik o wyższej wartości, mogłoby to prowadzić do niebezpiecznych sytuacji, w których obciążenia mogą przekraczać to, co jest dozwolone. Generalnie, wyłączniki B25 są dosyć popularne w instalacjach trójfazowych i dobrze się sprawdzają, bo utrzymują wartość prądu na odpowiednim poziomie. Ważne, żeby nie przekraczać 80% tej wartości nominalnej, co w twoim przypadku jest akurat spełnione.

Pytanie 12

Jakie urządzenie służy do pomiaru obrotów wału silnika?

A. Induktor
B. Anemometr
C. Przekładnik napięciowy
D. Prądnica tachometryczna

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prądnica tachometryczna to urządzenie, które służy do pomiaru prędkości obrotowej wału silnika poprzez generowanie napięcia elektrycznego proporcjonalnego do szybkości obrotu. Działa na zasadzie indukcji elektromagnetycznej, co oznacza, że obracający się wał silnika powoduje zmiany w strumieniu magnetycznym, co z kolei generuje napięcie. Jest to kluczowe w aplikacjach, gdzie precyzyjny pomiar prędkości obrotowej jest niezbędny, na przykład w automatyce przemysłowej, napędach elektrycznych oraz inżynierii mechanicznej. Użycie prądnicy tachometrycznej pozwala na ciągłe monitorowanie prędkości, co jest istotne dla zapewnienia optymalnego przebiegu procesów, jak również dla ochrony urządzeń przed przeciążeniem. W standardach przemysłowych, takich jak ISO 9001, zaleca się stosowanie takich rozwiązań dla zwiększenia niezawodności i efektywności operacyjnej.

Pytanie 13

Jakie oznaczenie będzie miał przewód – alternatywa dla przewodu OW 4×2,5 mm2 zasilającego przenośny trójfazowy silnik indukcyjny używany w warsztacie ślusarskim?

A. H03V2V2-F 3X2,5
B. H03V2V2H2-F 3X2,5
C. H07RR-F 4G2,5
D. H07VV-U 4G2,5

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź H07RR-F 4G2,5 jest poprawna, ponieważ to oznaczenie odnosi się do elastycznego przewodu gumowego, który jest szczególnie przystosowany do zasilania urządzeń elektrycznych w warunkach przemysłowych, takich jak przenośne silniki indukcyjne. Przewód ten charakteryzuje się wysoką odpornością na działanie olejów, chemikaliów oraz mechanicznych uszkodzeń, co czyni go idealnym wyborem do użycia w warsztatach, gdzie występuje ryzyko uszkodzeń. Oznaczenie 4G2,5 wskazuje na to, że przewód składa się z czterech żył, z czego trzy mają przekrój 2,5 mm², co zapewnia odpowiednią wydajność prądową dla silników o mocy do około 7,5 kW w układzie trójfazowym. Ponadto, zgodnie ze standardami IEC, przewody takie jak H07RR-F spełniają wymagania dotyczące bezpieczeństwa i niezawodności, co jest niezbędne w środowisku pracy. W praktyce używając tego przewodu, można mieć pewność, że zapewnia on właściwe parametry zasilania oraz bezpieczeństwo użytkowania urządzeń elektrycznych.

Pytanie 14

Jakim środkiem ochrony przeciwporażeniowej zapewnia się bezpieczeństwo przed dotykiem pośrednim?

A. Instalowania osłon i barier
B. Izolowania części czynnych
C. Umieszczenia elementów z napięciem poza zasięgiem ręki
D. Samoczynnego szybkiego wyłączenia napięcia

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "Samoczynnego szybkiego wyłączenia napięcia" jest prawidłowa, ponieważ stanowi kluczowy element zabezpieczeń w instalacjach elektrycznych, mający na celu ochronę przed dotykiem pośrednim. Dotyk pośredni występuje, gdy osoba styka się z przewodzącymi elementami, które nie są bezpośrednio pod napięciem, ale stają się naładowane wskutek awarii izolacji. Samoczynne szybkie wyłączenie napięcia zapewnia, że w momencie wykrycia nieprawidłowości, np. zwarcia z przewodem ziemnym, nastąpi automatyczne odcięcie zasilania w sposób najszybszy możliwy, minimalizując ryzyko porażenia. Praktyczne zastosowanie tej metody można zauważyć w systemach ochrony, takich jak wyłączniki różnicowoprądowe (RCD), które są zgodne z normami PN-EN 61008 i PN-EN 61009. Ich działanie opiera się na ciągłej kontroli prądu różnicowego i błyskawicznej reakcji na jego wzrost, co skutecznie chroni użytkowników przed skutkami porażenia prądem. Dodatkowo, szybkie wyłączenie napięcia należy do najlepszych praktyk w projektowaniu instalacji elektrycznych, co podkreślają różne wytyczne oraz normy ochrony przeciwporażeniowej.

Pytanie 15

Aby zweryfikować poprawność funkcjonowania wyłączników różnicowoprądowych, zmierzono ich różnicowe prądy zadziałania i wyniki umieszczono w poniższej tabeli. Który z wyłączników spełnia kryterium prądu zadziałania IA = (0,5÷1,00) IN?

WyłącznikWynik pomiaru różnicowego prądu zadziałania I&Dₑₗₜₐ;
P302 25-10-AC30 mA
P202 25-30-AC25 mA
P304 40-30-AC40 mA
P304 40-100-AC40 mA
A. P302 25-10-AC
B. P304 40-100-AC
C. P304 40-30-AC
D. P202 25-30-AC

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłącznik różnicowoprądowy P202 25-30-AC jest poprawnym wyborem, ponieważ jego zmierzony prąd zadziałania wynosi 25 mA, co plasuje go w przedziale od 15 mA do 30 mA, zgodnym z wymaganiami prądu zadziałania IA = (0,5÷1,00) IN. Zgodnie z normą PN-EN 61008, wyłączniki różnicowoprądowe muszą działać w określonym zakresie prądów zadziałania, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników oraz ochrony instalacji elektrycznych. Przykładem praktycznego zastosowania tego wyłącznika jest jego instalacja w budynkach mieszkalnych, gdzie chroni przed porażeniem prądem elektrycznym w przypadku uszkodzenia izolacji. Odpowiedni dobór wyłącznika do wartości znamionowych instalacji jest kluczowy, aby zapewnić skuteczną ochronę i minimalizować ryzyko uszkodzeń, a P202 25-30-AC spełnia te normy, co czyni go odpowiednim wyborem.

Pytanie 16

Jaką charakterystykę powinien mieć wyłącznik instalacyjny nadprądowy, aby zapewnić, że nie wystąpi przypadkowe zadziałanie zabezpieczenia podczas uruchamiania urządzenia o dużym momencie rozruchowym?

A. Charakterystykę Z
B. Charakterystykę D
C. Charakterystykę B
D. Charakterystykę C

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłącznik nadprądowy z charakterystyką D to całkiem fajna opcja, zwłaszcza jeśli pracujesz z urządzeniami, które mają duży pobór prądu, jak na przykład silniki. Wiesz, różni się on trochę od charakterystyk B i C, które nie pozwalają na takie chwilowe przeszalenie prądu. A w przypadku silników, to może być naprawdę ważne, bo w momencie startu potrafią pobierać nawet 5-7 razy więcej prądu niż w normalnych warunkach. Taki wyłącznik D pomoże uniknąć niepotrzebnych wyłączeń, co jest kluczowe w przemyśle, gdzie maszyny muszą działać bez przerwy. Dobrze jest też pamiętać o normach, jak IEC 60947-2, bo wskazują one, jak ważne jest dobranie odpowiedniej charakterystyki do konkretnego obciążenia. Dzięki temu możesz być pewny, że wszystko będzie działać sprawnie i bezpiecznie.

Pytanie 17

Który z wymienionych bezpieczników powinien być użyty, aby chronić przed skutkami zwarć trójfazowego silnika klatkowego o prądzie znamionowym In = 12 A, jeśli jego prąd rozruchowy Ir = 5×In, a współczynnik rozruchu α = 3?

A. aM 16A
B. aM 20A
C. gF 35A
D. gR 20A

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź aM 20A jest poprawna, ponieważ bezpiecznik typu aM charakteryzuje się dużą zdolnością do wytrzymywania krótkotrwałych prądów rozruchowych, co jest istotne w przypadku silnika klatkowego. W obliczeniach ustalamy prąd rozruchowy I<sub>r</sub> jako pięciokrotność prądu znamionowego: I<sub>r</sub> = 5 × I<sub>n</sub> = 5 × 12 A = 60 A. Przy współczynniku rozruchu α równym 3, maksymalny prąd, który może wystąpić podczas rozruchu wynosi: I<sub>max</sub> = I<sub>r</sub> × α = 60 A × 3 = 180 A. Zastosowanie bezpiecznika aM 20A zapewnia odpowiednią ochronę, ponieważ jego charakterystyka pozwala na wytrzymanie krótkotrwałych prądów rozruchowych bez przepalania, a jednocześnie skutecznie zabezpiecza przed długotrwałym przeciążeniem. Takie rozwiązanie jest zgodne z normami IEC 60269 oraz NEC, które określają zasady wyboru zabezpieczeń dla silników elektrycznych. W praktyce, stosowanie bezpieczników typu aM jest powszechne w instalacjach przemysłowych, gdzie silniki są narażone na duże prądy rozruchowe.

Pytanie 18

Włączenie grzejnika skutkuje natychmiastowym działaniem zabezpieczenia nadprądowego. Co to oznacza?

A. zwarcie między przewodem fazowym a neutralnym
B. uszkodzenie w przewodzie fazowym
C. uszkodzenie w grzałce
D. zwarcie przewodu ochronnego z obudową

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zadziałanie zabezpieczenia nadprądowego przy załączeniu grzejnika wskazuje na wystąpienie zwarcia w obwodzie. W przypadku zwarcia przewodu fazowego do neutralnego, prąd przepływający przez obwód gwałtownie wzrasta, co przekracza dopuszczalne wartości dla zabezpieczeń nadprądowych, powodując ich natychmiastowe wyłączenie. Tego rodzaju sytuacje mogą wystąpić w przypadku uszkodzenia instalacji elektrycznej, co może skutkować niebezpiecznymi warunkami pracy urządzeń elektrycznych. Przykładem zastosowania tej wiedzy w praktyce jest regularna kontrola stanu instalacji elektrycznych, w tym grzejników, aby zminimalizować ryzyko zwarć. Standardy branżowe, jak PN-IEC 60364, nakładają obowiązek przeprowadzania okresowych przeglądów oraz stosowania odpowiednich zabezpieczeń, co ma na celu zapewnienie bezpieczeństwa użytkowników oraz utrzymanie sprawności systemów elektrycznych.

Pytanie 19

Jakiego z wymienionych przyrządów należy użyć wraz z watomierzem, aby obliczyć współczynnik mocy urządzenia elektrycznego zasilanego prądem sinusoidalnym?

A. Częstościomierza
B. Woltomierza
C. Waromierza
D. Amperomierza

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Waromierz jest urządzeniem, które bezpośrednio umożliwia pomiar mocy czynnej w obwodach prądu sinusoidalnego. Współczynnik mocy, oznaczany jako cos φ, to miara efektywności, z jaką dane urządzenie elektryczne wykorzystuje moc. Jest on zdefiniowany jako stosunek mocy czynnej (wata) do mocy pozornej (woltampery). Aby precyzyjnie obliczyć współczynnik mocy, konieczne jest równoczesne stosowanie watomierza i waromierza. Waromierz mierzy różnicę fazy pomiędzy prądem a napięciem, co jest kluczowe dla określenia, jak efektywnie energia elektryczna jest konwertowana na pracę. W praktyce, użycie waromierza w połączeniu z watomierzem pozwala na właściwe określenie strat energii, co jest istotne w przypadku aplikacji przemysłowych oraz w systemach zasilania, gdzie efektywność energetyczna ma kluczowe znaczenie. Zgodnie z normami IEC 61000 oraz ANSI C12, stosowanie waromierza w obliczeniach związanych z mocą jest standardową praktyką inżynieryjną.

Pytanie 20

Jakie prace są dozwolone w instalacjach elektrycznych, które nie są wyłączone spod napięcia w sieci TN?

A. Wymiana wkładek bezpiecznikowych.
B. Zamiana gniazdek.
C. Dokręcanie przewodów w złączach.
D. Wykonywanie pomiaru rezystancji izolacji instalacji.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wymiana wkładek bezpiecznikowych w instalacjach elektrycznych niewyłączonych spod napięcia w układzie sieciowym TN jest dozwolona, ponieważ ta czynność nie wiąże się z bezpośrednim narażeniem pracownika na kontakt z elementami pod napięciem. Wkładki bezpiecznikowe są elementami, które można wymieniać bez rozłączania obwodu, co jest zgodne z zasadami bezpieczeństwa określonymi w normach PN-IEC 60364. W praktyce, wymiana wkładek bezpiecznikowych jest powszechnie stosowaną procedurą, która może być przeprowadzana przez przeszkolonych pracowników elektrycznych, co pozwala na kontynuowanie pracy urządzeń w przypadku awarii. W kontekście dobrych praktyk, istotne jest, aby personel posiadał odpowiednie kwalifikacje oraz znał zasady BHP, co zapewnia bezpieczeństwo podczas takich operacji. Zastosowanie odpowiednich narzędzi oraz przestrzeganie procedur operacyjnych pozwala na zminimalizowanie ryzyka i zapewnienie ciągłości zasilania w instalacjach elektrycznych.

Pytanie 21

Silnik prądu stałego w układzie szeregowym dysponuje parametrami: PN = 8 kW, UN = 440 V, IN = 20 A, Rt = 0,5 ? (całkowita rezystancja twornika), RW = 0,5 ? (rezystancja wzbudzenia). Jaką wartość powinna mieć całkowita rezystancja rozrusznika, jeśli prąd rozruchowy silnika ma wynosić dwa razy więcej niż prąd znamionowy?

A. 21 ?
B. 10 ?
C. 22 ?
D. 11 ?

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby obliczyć całkowitą wartość rezystancji rozrusznika, należy najpierw zrozumieć, że przy rozruchu silnika prąd osiąga wartość dwukrotnie wyższą niż prąd znamionowy. W tym przypadku prąd rozruchowy wynosi 2 * I_N = 2 * 20 A = 40 A. Całkowita rezystancja układu, która pozwoli na osiągnięcie tego prądu przy napięciu znamionowym, może być obliczona za pomocą prawa Ohma: R = U / I. Podstawiając dane: R = 440 V / 40 A = 11 ?. Następnie, uwzględniając rezystancje twornika (R_t = 0,5 ?) oraz rezystancję wzbudzenia (R_W = 0,5 ?), możemy obliczyć całkowitą rezystancję rozrusznika jako: R_rozrusznika = R - (R_t + R_W) = 11 ? - 1 ? = 10 ?. Takie wyliczenie jest kluczowe przy projektowaniu obwodów rozruchowych i zapewnia, że silnik będzie uruchamiany w sposób bezpieczny i efektywny. W praktyce, prawidłowe dobranie rezystancji rozrusznika może znacznie wydłużyć żywotność sprzętu oraz zminimalizować ryzyko uszkodzeń.

Pytanie 22

Na wartość impedancji pętli zwarcia w systemie sieciowym TN-C mają wpływ

A. rodzaj zamontowanych ochronników przeciwprzepięciowych
B. wytrzymałość napięciowa izolacji przewodów
C. pole przekroju poprzecznego żył przewodów
D. liczba zamontowanych ochronników przeciwprzepięciowych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wartość impedancji pętli zwarcia w układzie sieciowym TN-C jest ściśle związana z polem przekroju poprzecznego żył przewodów. Pole to wpływa na opór przewodzenia prądu, co z kolei ma istotne znaczenie dla działania zabezpieczeń w przypadku zwarcia. Przewody o większym przekroju charakteryzują się mniejszym oporem, co pozwala na szybsze zadziałanie zabezpieczeń, takich jak wyłączniki nadprądowe. W praktyce oznacza to, że zwiększenie przekroju przewodów w instalacji elektrycznej może poprawić bezpieczeństwo, zmniejszając ryzyko uszkodzenia urządzeń oraz zapewniając lepszą ochronę osób. W Polskich Normach i europejskich standardach, takich jak PN-HD 60364-5-54, podkreśla się znaczenie odpowiedniego doboru przekrojów przewodów w kontekście ich zastosowania, zwłaszcza w instalacjach narażonych na zwarcia. Dlatego kluczowe jest, aby projektanci instalacji elektrycznych zwracali uwagę na te aspekty, aby zapewnić optymalną funkcjonalność oraz bezpieczeństwo systemów elektrycznych.

Pytanie 23

Podczas serwisowania urządzenia wymieniono uszkodzony silnik bocznikowy prądu stałego. W trakcie próbnego uruchamiania silnika zauważono, że jego prędkość obrotowa jest wyższa od wartości nominalnej. Co może być przyczyną tego zjawiska?

A. Uszkodzenie w połączeniu uzwojenia twornika z zasilaczem
B. Brak obciążenia na silniku
C. Uszkodzenie w połączeniu uzwojenia bocznikowego z zasilaczem
D. Zwarcie w obwodzie wzbudzenia silnika

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Brak połączenia w uzwojeniu bocznikowym z zasilaniem to spory problem, bo prowadzi to do niskiego wzbudzenia silnika, a przez to nie możemy kontrolować jego prędkości obrotowej. W silnikach bocznikowych to właśnie prąd wzbudzenia jest mega ważny, żeby prędkość była stabilna. Jak coś jest nie tak z połączeniem, prąd wzbudzenia spada, a to może sprawić, że silnik zacznie kręcić się szybciej niż powinien. Warto o tym pamiętać i regularnie sprawdzać połączenia elektryczne w układach napędowych, żeby uniknąć nieprzyjemnych sytuacji. Są różne normy, na przykład IEC 60034, które podkreślają, jak ważne jest poprawne wzbudzenie dla bezpieczeństwa i efektywności działania silnika. A jak ktoś modernizuje silnik lub wymienia jego części, to dobrze jest użyć odpowiednich narzędzi do diagnozowania, żeby mieć pewność, że wszystko działa jak należy i żeby silnik się nie rozbiegał.

Pytanie 24

Jakie będą konsekwencje zasilenia silnika asynchronicznego, którego znamionowa częstotliwość napięcia stojana wynosi 50 Hz, z sieci o częstotliwości 60 Hz?

A. Uszkodzenie wirnika silnika
B. Nawrót wirnika silnika
C. Zmniejszenie prędkości obrotowej wirnika silnika
D. Zwiększenie prędkości obrotowej wirnika silnika

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zwiększenie prędkości obrotowej wirnika silnika asynchronicznego zasilanego napięciem o częstotliwości 60 Hz w porównaniu do znamionowej częstotliwości 50 Hz jest wynikiem zjawiska zwanego poślizgiem. W przypadku silników asynchronicznych prędkość obrotowa wirnika jest zawsze niższa od prędkości synchronicznej, która zależy od częstotliwości zasilania oraz liczby par biegunów. Wzór na prędkość synchroniczną jest następujący: n_s = (120 * f) / P, gdzie n_s to prędkość synchroniczna w obrotach na minutę (RPM), f to częstotliwość zasilania w hercach, a P to liczba par biegunów. W przypadku zasilania 60 Hz, prędkość synchroniczna wzrośnie, co skutkuje wzrostem prędkości obrotowej wirnika. Praktycznie, dla silnika z dwiema parami biegunów zasilanego z sieci 50 Hz, prędkość będzie wynosić 1200 RPM, natomiast przy 60 Hz wzrośnie do 1440 RPM. Takie zjawisko może być wykorzystywane w aplikacjach, gdzie wymagana jest większa prędkość obrotowa, jednak należy pamiętać o możliwych konsekwencjach, takich jak zwiększone straty cieplne i ryzyko uszkodzenia silnika. W przemyśle standardem jest dostosowywanie zasilania do znamionowych parametrów silnika w celu zapewnienia jego długowieczności i efektywności.

Pytanie 25

Jakim kolorem należy oznaczać nieizolowany przewód uziemiający punkt gwiazdowy transformatora SN/nn, który zasilają sieć TN-C, gdy jest wykonany w formie taśmy?

A. Żółto-zielony
B. Jasnoniebieski
C. Czarny
D. Zielony

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Barwa żółto-zielona jest standardowym oznaczeniem przewodów uziemiających oraz przewodów ochronnych w systemach elektroenergetycznych. Zgodnie z normą PN-EN 60446, która reguluje oznaczenia kolorystyczne przewodów elektrycznych, żółto-zielony kolor jednoznacznie wskazuje na przewody uziemiające, co ma na celu zwiększenie bezpieczeństwa użytkowników oraz minimalizację ryzyka błędów związanych z nieprawidłowym podłączeniem przewodów. W przypadku punktu gwiazdowego transformatora SN/nn, zastosowanie przewodu uziemiającego w barwie żółto-zielonej jest kluczowe dla zapewnienia skutecznej ochrony przed porażeniem elektrycznym oraz dla prawidłowego funkcjonowania systemów zabezpieczeń. Praktyczne zastosowanie tej wiedzy obejmuje nie tylko instalacje elektryczne w budynkach, ale także w infrastrukturze przemysłowej, gdzie bezpieczeństwo urządzeń i ludzi jest priorytetem. Warto pamiętać, że stosowanie właściwych barw przewodów jest istotnym elementem bezpieczeństwa, a ich niewłaściwe oznaczenie może prowadzić do poważnych konsekwencji.

Pytanie 26

Zamieszczone w tabeli wyniki pomiarów rezystancji izolacji uzwojeń trójfazowego silnika asynchronicznego o napięciu Un = 400 V i prądzie In = 20 A świadczą o uszkodzeniu izolacji

UzwojenieRezystancja izolacji między uzwojeniem a obudową
U1-U24 000
V1-V26 000
W1-W28 000
A. uzwojeń U1-U2 i W1-W2.
B. uzwojenia U1-U2.
C. uzwojenia V1-V2.
D. uzwojeń U1-U2 i V1-V2.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź dotycząca uzwojenia U1-U2 jest poprawna, ponieważ pomiar rezystancji izolacji wykazuje, że wartość ta wynosi 4000 kΩ, co jest najniższą wartością spośród wszystkich analizowanych uzwojeń. W kontekście norm dotyczących izolacji w silnikach asynchronicznych, taka rezystancja jest nieprzystosowana do bezpiecznego użytkowania. Zgodnie z normami, rezystancja izolacji powinna być jak najwyższa, aby zminimalizować ryzyko przebicia izolacji i zapewnić właściwe działanie silnika. W praktyce, w przypadku stwierdzenia niskiej rezystancji, konieczne jest przeprowadzenie dodatkowych badań, w tym testów wytrzymałościowych lub wymiany uszkodzonego uzwojenia. Przykładowo, w silnikach przemysłowych często stosuje się procedury rutynowej konserwacji, które obejmują regularne pomiary rezystancji izolacji, aby zapewnić, że silnik działa w optymalnych warunkach. Zrozumienie tych zasad jest kluczowe dla każdego inżyniera zajmującego się eksploatacją i utrzymaniem maszyn, co pozwala unikać kosztownych przestojów oraz awarii.

Pytanie 27

W instalacji elektrycznej obwodu gniazd w przedpokoju wykorzystano przewód YDYt 3×2,5 mm². Podczas wiercenia w murze pracownik przypadkowo przeciął przewód, uszkadzając jego dwie żyły. Jak należy prawidłowo usunąć tę usterkę?

A. Wyciągnąć jedynie uszkodzone żyły, zastępując je przewodem jednodrutowym.
B. Rozkuć tynk w miejscu uszkodzenia, zamontować dodatkową puszkę i w niej połączyć żyły.
C. Rozkuć tynk w miejscu uszkodzenia, połączyć przewody, zaizolować taśmą, a następnie zatynkować ścianę.
D. Prowadzić nowy przewód pomiędzy najbliższymi puszkami, stosując pilota.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór odpowiedzi polegającej na rozkuwaniu tynku w miejscu uszkodzenia, zamontowaniu dodatkowej puszki oraz połączeniu żył jest najbardziej zalecanym sposobem naprawy uszkodzonego przewodu elektrycznego. Tego rodzaju działania są zgodne z obowiązującymi normami oraz najlepszymi praktykami w branży elektrycznej. W sytuacji, gdy przewód został uszkodzony, niezbędne jest zapewnienie odpowiednich warunków do naprawy, co może wiązać się z otwarciem ściany. Instalując dodatkową puszkę, zwiększamy bezpieczeństwo i ułatwiamy przyszłe prace serwisowe. Połączenie żył w puszce umożliwia także zastosowanie złączek, co jest rekomendowane w przypadku napraw elektrycznych. Dzięki temu połączenia są bardziej trwałe i estetyczne, a ryzyko ich przypadkowego usunięcia bądź zwarcia zostaje zminimalizowane. Takie podejście jest zgodne z europejskimi normami instalacji elektrycznych, które nakładają obowiązek używania osprzętu instalacyjnego w celu zwiększenia bezpieczeństwa użytkowania instalacji elektrycznych. W praktyce, zastosowanie dodatkowej puszki stanowi również zabezpieczenie przed przyszłymi uszkodzeniami mechanicznymi. Już na etapie projektowania, warto uwzględnić takie rozwiązania, by minimalizować ryzyko nieprzewidzianych awarii.

Pytanie 28

Ile maksymalnie gniazd wtykowych można zainstalować w jednym obwodzie w instalacjach elektrycznych w budynkach mieszkalnych?

A. 6
B. 4
C. 10
D. 12

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 10 gniazd wtyczkowych na jedno gniazdo obwodowe jest zgodna z normami oraz praktykami stosowanymi w instalacjach elektrycznych. Zgodnie z Polskimi Normami, a także wytycznymi zawartymi w normach europejskich, maksymalna liczba gniazd wtyczkowych, które można podłączyć do jednego obwodu, powinna wynosić 10. To ograniczenie wynika z konieczności zapewnienia bezpieczeństwa użytkowników oraz ochrony instalacji przed przeciążeniem. Zbyt duża liczba gniazd wtyczkowych podłączonych do jednego obwodu może prowadzić do przegrzewania się przewodów, a co za tym idzie, do ryzyka pożaru. Przykładem może być sytuacja, w której użytkownik podłącza wiele urządzeń o dużym poborze mocy, takich jak czajniki, mikrofalówki czy komputery, co może przekroczyć dopuszczalny prąd obwodu. Dlatego ważne jest przestrzeganie zasad bezpieczeństwa oraz odpowiednie projektowanie instalacji elektrycznych, aby uniknąć niebezpieczeństw związanych z przeciążeniem.

Pytanie 29

W systemach z stycznikami kategorii użytkowania DC-6 mogą być wykorzystywane

A. żarówki
B. świetlówki
C. lampy sodowe
D. lampy rtęciowe

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór żarówek jako odpowiedzi na to pytanie jest uzasadniony ze względu na ich zastosowanie w układach ze stycznikami o kategorii użytkowania DC-6. Kategoria ta jest przeznaczona do pracy z obwodami prądu stałego, które są w stanie obsłużyć normalne obciążenia, w tym żarówki. Żarówki charakteryzują się dość prostą charakterystyką obciążeniową, co sprawia, że są odpowiednie do zastosowań w instalacjach elektrycznych, gdzie mogą być włączane i wyłączane za pomocą styczników. Przykładem praktycznego zastosowania mogą być oświetlenie w halach produkcyjnych, gdzie styczniki sterują włączaniem i wyłączaniem grup żarówek w zależności od potrzeb. Warto również zauważyć, że żarówki, w przeciwieństwie do innych typów lamp, takich jak świetlówki, wymagają prostszych układów sterujących, co czyni je bardziej elastycznymi w zastosowaniach przemysłowych. Dla zachowania zgodności z normami bezpieczeństwa i efektywności energetycznej, ważne jest, aby dobierać odpowiednie styczniki oraz obwody zabezpieczające, co również wpływa na niezawodność całego układu oświetleniowego.

Pytanie 30

Jakiego typu zakłócenie zabezpieczają samodzielnie wkładki topikowe typu aM w przypadku przewodów zasilających urządzenia odbiorcze?

A. Przed przepięciem i przeciążeniem
B. Wyłącznie przed przeciążeniem
C. Wyłącznie przed zwarciem
D. Przed zwarciem i przeciążeniem

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wkładki topikowe typu aM są zaprojektowane z myślą o ochronie przed zwarciem, co oznacza, że ich głównym zadaniem jest przerwanie obwodu w momencie, gdy prąd przekracza ustalone wartości, co może prowadzić do niebezpiecznych sytuacji. W przypadku zwarcia, prąd może gwałtownie wzrosnąć, co skutkuje dużym ryzykiem uszkodzenia instalacji oraz odbiorników. Zastosowanie wkładek topikowych aM jest zgodne z normami PN-EN 60269, które określają wymagania dla zabezpieczeń w obwodach elektrycznych. Warto pamiętać, że wkładki te nie chronią bezpośrednio przed przeciążeniem, które jest spowodowane długotrwałym przepływem prądu przekraczającym nominalne wartości, lecz jest regulowane przez inne mechanizmy zabezpieczające. Przykładem zastosowania wkładek aM jest ich użycie w obwodach zasilających silniki elektryczne, gdzie ochrona przed zwarciami jest kluczowa dla uniknięcia poważnych uszkodzeń.

Pytanie 31

Jaką czynność powinno się wykonać w trakcie oględzin urządzenia napędowego z silnikiem pierścieniowym podczas jego pracy?

A. Ocena stanu pierścieni ślizgowych
B. Sprawdzenie poziomu drgań
C. Sprawdzenie połączeń elementów urządzenia
D. Ocena stanu szczotek i szczotkotrzymaczy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Sprawdzenie poziomu drgań jest kluczowym elementem oceny stanu technicznego urządzenia napędowego z silnikiem pierścieniowym. Drgania mogą być wskaźnikiem wielu problemów, takich jak niewyważenie wirnika, luzy w łożyskach czy nieprawidłowe ustawienie osi. Monitorowanie drgań podczas pracy urządzenia pozwala na wczesne wykrycie tych problemów i podjęcie działań naprawczych, co może znacznie wydłużyć żywotność maszyny. W praktyce, stosuje się różne metody pomiaru drgań, w tym analizatory drgań, które mogą dostarczyć szczegółowych informacji na temat amplitudy, częstotliwości oraz charakterystyki drgań. Zgodnie z normami ISO 10816, ocena drgań powinna być wykonywana regularnie, a wyniki należy porównywać z wartościami granicznymi, aby określić stan techniczny urządzenia. Dobra praktyka w branży mechanicznej zaleca prowadzenie dokumentacji pomiarów, co umożliwia śledzenie zmian w czasie i diagnozowanie potencjalnych usterek.

Pytanie 32

W jakim celu stosuje się kompensację mocy biernej w instalacjach przemysłowych?

A. Zmniejszenia prędkości obrotowej silników
B. Zwiększenia częstotliwości prądu
C. Zwiększenia napięcia znamionowego
D. Zmniejszenia strat energii i poprawy współczynnika mocy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kompensacja mocy biernej jest kluczowym zagadnieniem w kontekście instalacji przemysłowych, ponieważ wpływa bezpośrednio na efektywność energetyczną systemu. Moc bierna to ta część zużywanej energii elektrycznej, która nie wykonuje użytecznej pracy, ale jest niezbędna do podtrzymania pola elektromagnetycznego w urządzeniach takich jak transformatory i silniki indukcyjne. Zastosowanie kompensacji mocy biernej, zazwyczaj za pomocą baterii kondensatorów, prowadzi do poprawy współczynnika mocy, co oznacza, że więcej dostarczonej energii jest wykorzystywane na pracę użyteczną. Dzięki temu zmniejszają się straty energii w systemie, co przekłada się na niższe rachunki za energię i zmniejszenie obciążenia sieci energetycznej. Co więcej, poprawa współczynnika mocy może również prowadzić do zmniejszenia opłat za moc bierną, które są często naliczane przez dostawców energii jako kara za niską efektywność energetyczną. Dlatego kompensacja mocy biernej jest nie tylko korzystna z punktu widzenia efektywności, ale również może przynieść wymierne korzyści finansowe dla przedsiębiorstw.

Pytanie 33

Układ pokazany na rysunku stosowany jest do pomiarów

Ilustracja do pytania
A. rezystancji izolacji.
B. rezystancji uziomu.
C. impedancji pętli zwarcia.
D. prądu upływu.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Rezystancja uziomu jest kluczowym parametrem w zapewnieniu bezpieczeństwa instalacji elektrycznych. Układ zaprezentowany na rysunku to metoda Wennera, która jest powszechnie stosowana do pomiaru tej rezystancji. Metoda ta wykorzystuje cztery elektrody, które są umieszczone w równych odstępach w glebie. Dwie z nich, zwane elektrodami prądowymi, służą do wprowadzania prądu do ziemi, a dwie pozostałe, elektrodami pomiarowymi, do pomiaru spadku napięcia. Dzięki temu możliwe jest obliczenie rezystancji uziomu przy użyciu znanej zależności, według której: R = U/I, gdzie R to rezystancja, U to spadek napięcia, a I to prąd. Pomiar rezystancji uziomu jest kluczowy dla zabezpieczenia systemów elektrycznych przed zagrożeniami związanymi z porażeniem prądem, co jest szczególnie istotne w kontekście norm i standardów, takich jak PN-EN 60364, które regulują wymagania dotyczące instalacji elektrycznych. W praktyce, wyniki uzyskane z pomiarów rezystancji uziomu powinny być regularnie monitorowane i porównywane z wartościami referencyjnymi, co pozwala na wczesne wykrywanie potencjalnych problemów z instalacją.

Pytanie 34

Który z poniższych pomiarów potwierdza ciągłość przewodu ochronnego w układzie TN-S?

A. Prądu upływu w przewodzie ochronnym
B. Rezystancji uziomu
C. Impedancji pętli zwarcia
D. Rezystancji izolacji przewodu ochronnego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź dotycząca impedancji pętli zwarcia jest poprawna, ponieważ jest to kluczowy parametr w ocenie ciągłości przewodu ochronnego w systemie TN-S. W systemach ochrony przeciwporażeniowej, takich jak TN-S, impedancja pętli zwarcia odgrywa istotną rolę w zapewnieniu skutecznej i szybkiej reakcji zabezpieczeń na zwarcie. Wysoka jakość przewodu ochronnego wymaga, aby jego impedancja była odpowiednio niska, co pozwala na szybkie załączenie wyłącznika nadprądowego w przypadku wystąpienia zwarcia. Praktyczne zastosowanie tego pomiaru można zobaczyć w trakcie testów instalacji elektrycznych, gdzie zmierzone wartości impedancji pętli zwarcia są porównywane z wymaganiami standardów, takich jak PN-IEC 60364, które wskazują na maksymalne wartości impedancji, aby zapewnić bezpieczeństwo użytkowników. Odpowiednia analiza impedancji pętli zwarcia jest także niezbędna w procesie odbioru instalacji elektrycznych oraz w regularnych przeglądach technicznych, co wpływa na długotrwałe i bezpieczne użytkowanie instalacji elektrycznej.

Pytanie 35

Jakie znaczenie ma klasa izolacji (np. kl. B) na tabliczce znamionowej silnika elektrycznego?

A. Minimalną temperaturę pracy uzwojeń
B. Minimalne napięcie zasilania
C. Maksymalną temperaturę pracy uzwojeń
D. Maksymalne napięcie zasilania

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Klasa izolacji silnika elektrycznego odnosi się do maksymalnej temperatury, jaką może osiągnąć uzwojenie silnika podczas normalnej pracy, bez ryzyka uszkodzenia izolacji. Klasa B oznacza, że maksymalna temperatura pracy uzwojeń nie powinna przekraczać 130°C. Użycie silnika z odpowiednią klasą izolacji jest kluczowe w aplikacjach przemysłowych, gdzie silniki są narażone na różne warunki termiczne. Przykładowo, w przypadku silników pracujących w przemyśle metalurgicznym, gdzie temperatura otoczenia może być wysoka, klasa izolacji B zapewnia, że silnik zachowa swoje właściwości elektryczne i mechaniczne. Ważne jest, aby dobierać silniki zgodnie z wymaganiami aplikacji, a także monitorować ich temperaturę pracy, aby uniknąć przegrzania, które mogłoby prowadzić do awarii. Dobre praktyki branżowe przewidują regularne przeglądy i pomiary temperatury, co przyczynia się do wydłużenia żywotności silników oraz zwiększenia efektywności energetycznej urządzeń.

Pytanie 36

Na wyjściu układu zasilacza przedstawionego na schemacie zaobserwowano przebieg napięcia pokazany na rysunku. Oznacza to, że

Ilustracja do pytania
A. uszkodzona jest dioda, a kondensator jest sprawny.
B. układ pracuje prawidłowo.
C. uszkodzona jest dioda i kondensator.
D. dioda jest sprawna, a uszkodzony jest kondensator.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Dioda w prostowniku jednopołówkowym pełni kluczową rolę, pozwalając prądowi przepływać tylko w jednym kierunku. W przedstawionym schemacie, przebieg napięcia na wyjściu układu wskazuje na prawidłowe działanie diody, ponieważ prąd przepływa tylko w jednej połówce cyklu. Jednakże, jeżeli obserwujemy pulsujące napięcie, zamiast wygładzonego napięcia stałego, sugeruje to uszkodzenie kondensatora, który powinien pełnić funkcję filtrowania. Kondensator w układzie zasilacza jest odpowiedzialny za redukcję tętnień napięcia i wygładzanie szczytów. Praktyczne zastosowanie tego układu można zauważyć w zasilaczach do urządzeń elektronicznych, gdzie stabilne napięcie jest kluczowe dla poprawnego działania. W przypadkach, gdy kondensator jest uszkodzony, może to prowadzić do wahań napięcia, co może uszkodzić podłączone urządzenia. Dobrą praktyką jest regularne monitorowanie stanu kondensatorów w układach zasilających, aby zapewnić ich niezawodność oraz wydajność.

Pytanie 37

Która z poniższych czynności nie jest częścią badań eksploatacyjnych silnika elektrycznego?

A. Przeprowadzenie próbnego rozruchu urządzenia
B. Weryfikacja stanu ochrony przeciwporażeniowej
C. Pomiar rezystancji uzwojeń stojana
D. Pomiar napięcia zasilającego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar napięcia zasilania nie należy do badań eksploatacyjnych silnika elektrycznego, ponieważ jest to czynność raczej związana z kontrolą źródła zasilania, a nie diagnostyką samego silnika. W kontekście eksploatacji silników elektrycznych, kluczowe jest zrozumienie, że badania eksploatacyjne koncentrują się na ocenie stanu technicznego komponentów silnika, takich jak uzwojenia, izolacja czy mechanika. Pomiar rezystancji uzwojeń stojana oraz sprawdzenie stanu ochrony przeciwporażeniowej są kluczowe dla bezpieczeństwa i efektywności pracy silnika. Rozruch próbny urządzenia jest niezbędny do oceny jego działania w rzeczywistych warunkach. Przykładowo, w przemyśle, regularne badania eksploatacyjne pozwalają na wczesne wykrycie potencjalnych awarii, co zmniejsza ryzyko przestojów i zwiększa efektywność operacyjną.

Pytanie 38

Kontrolę instalacji elektrycznej, znajdującej się w miejscach o podwyższonej wilgotności (75-100%), pod kątem efektywności zabezpieczeń przeciwporażeniowych należy przeprowadzać nie rzadziej niż co

A. 4 lata
B. 1 rok
C. 3 lata
D. 2 lata

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zgodnie z polskimi normami oraz przepisami związanymi z instalacjami elektrycznymi w pomieszczeniach wilgotnych, inspekcje i kontrole instalacji powinny być przeprowadzane nie rzadziej niż co 1 rok. Wilgoć w takich pomieszczeniach może znacząco wpływać na bezpieczeństwo użytkowników, prowadząc do zwiększonego ryzyka porażenia prądem. Regularne kontrole pozwalają na wczesne wykrycie potencjalnych usterek oraz degradacji materiałów izolacyjnych, co jest kluczowe dla zapewnienia skutecznej ochrony przeciwporażeniowej. Przykładowo, w łazienkach, które są klasyfikowane jako pomieszczenia wilgotne, należy regularnie sprawdzać stan gniazdek, włączników oraz przewodów elektrycznych. Warto pamiętać, że nieprzestrzeganie tych zasad może prowadzić do poważnych wypadków, dlatego organizacje i osoby odpowiedzialne za instalacje muszą stosować się do takich wytycznych, aby zapewnić bezpieczeństwo użytkowników.

Pytanie 39

Podczas wymiany uszkodzonego przewodu PEN w instalacji o napięciu do 1 kV, która jest trwale zamontowana, należy pamiętać, aby nowy przewód miał przekrój co najmniej

A. 16 mm2 Cu lub 10 mm2 Al
B. 10 mm2 Cu lub 10 mm2 Al
C. 16 mm2 Cu lub 16 mm2 Al
D. 10 mm2 Cu lub 16 mm2 Al

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór odpowiedzi 10 mm2 Cu lub 16 mm2 Al jako minimalnego przekroju przewodu PEN w instalacji do 1 kV jest zgodny z obowiązującymi standardami oraz najlepszymi praktykami w zakresie instalacji elektrycznych. Przewód PEN, który łączy funkcje przewodu neutralnego i ochronnego, odgrywa kluczową rolę w zapewnieniu bezpieczeństwa instalacji. W przypadku zastosowania przewodów miedzianych, minimalny przekrój 10 mm2 jest zgodny z normą PN-IEC 60364, która określa wymagania dla instalacji elektrycznych. Przewody aluminiowe muszą mieć większy przekrój, 16 mm2, ze względu na niższą przewodność elektryczną w porównaniu do miedzi. W praktyce, zastosowanie przewodu o odpowiednim przekroju zapewnia właściwe odprowadzanie prądu oraz minimalizuje ryzyko przegrzewania się przewodów, co z kolei zmniejsza ryzyko wystąpienia awarii instalacji. Dodatkowo, dobranie odpowiedniego przekroju przewodów wpływa na efektywność energetyczną instalacji oraz na jej długowieczność.

Pytanie 40

Wyznacz rezystancję przewodu LgY o powierzchni przekroju 10 mm2 i długości 1 km, mając informację, że rezystywność miedzi wynosi 1,72∙10-8 Ω∙m?

A. 172 Ω
B. 1,72 Ω
C. 17,2 Ω
D. 1 720 Ω

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Obliczenie rezystancji przewodu LgY 10 mm² o długości 1 km można przeprowadzić korzystając ze wzoru: R = ρ * (L / A), gdzie R to rezystancja, ρ to rezystywność materiału, L to długość przewodu, a A to jego przekrój poprzeczny. W przypadku miedzi rezystywność wynosi 1,72∙10^-8 Ω∙m. Wprowadźmy zatem wartości do wzoru: R = 1,72∙10^-8 * (1000 / 10 * 10^-6) = 1,72 Ω. To pokazuje, że przy długości przewodu 1 km i przekroju 10 mm², rezystancja wynosi 1,72 Ω. W praktyce, taką wartość rezystancji należy uwzględniać w obliczeniach dotyczących systemów elektrycznych, aby zapewnić odpowiednią wydajność i minimalizować straty energii. W branży elektroenergetycznej standardowe wartości rezystancji są kluczowe w doborze przewodów oraz ocenie ich zdolności do przewodzenia prądu, co ma istotne znaczenie dla bezpieczeństwa i efektywności instalacji.