Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 8 grudnia 2025 09:42
  • Data zakończenia: 8 grudnia 2025 10:25

Egzamin zdany!

Wynik: 32/40 punktów (80,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Ile gramów 80% kwasu mrówkowego trzeba zważyć, aby uzyskać 200 g 20% roztworu tego kwasu?

A. 80g
B. 200g
C. 20g
D. 50g
Aby obliczyć, ile gramów 80% kwasu mrówkowego należy użyć do przygotowania 200 g 20% roztworu, stosujemy zasadę zachowania masy oraz obliczenia dotyczące stężenia. Zacznijmy od ustalenia, ile czystego kwasu mrówkowego potrzebujemy w roztworze końcowym. 20% roztwór o masie 200 g zawiera 40 g czystego kwasu mrówkowego (20% z 200 g = 0,2 * 200 g). Teraz musimy ustalić, ile gramów 80% roztworu potrzeba, aby uzyskać te 40 g czystego kwasu. W 80% roztworze znajduje się 0,8 g czystego kwasu w 1 g roztworu. Dlatego, aby uzyskać 40 g czystego kwasu, musimy odważyć 50 g 80% roztworu (40 g / 0,8 = 50 g). To podejście jest zgodne z praktycznymi zasadami przygotowywania roztworów chemicznych, gdzie precyzyjne obliczenia mają kluczowe znaczenie dla uzyskania pożądanych stężeń. Takie umiejętności są niezbędne w chemii analitycznej oraz w laboratoriach, gdzie dokładność ma znaczenie dla wyników eksperymentów i analiz.

Pytanie 2

Błąd związany z odczytem poziomu cieczy w kolbie miarowej, spowodowany niewłaściwą pozycją oka w stosunku do skali, nazywany jest błędem

A. dokładności
B. paralaksy
C. instrumentalnym
D. losowym
Wybór 'paralaksy' to strzał w dziesiątkę! To dotyczy błędu w odczycie, który ma związek z tym, jak nasze oczy widzą coś z określonego kąta. Tak naprawdę paralaksa to ciekawe zjawisko optyczne – jakby obiekt wydaje się zmieniać, kiedy patrzymy na niego z różnych miejsc. W laboratorium, przy pomiarach cieczy w kolbie miarowej, bardzo ważne jest, żeby dobrze ustawić wzrok na menisku. Jak nie patrzymy z odpowiedniego poziomu, to możemy źle odczytać, ile płynu mamy. To jest kluczowe, zwłaszcza w chemii, gdzie dokładność to podstawa. No i jest kilka standardów, jak ISO 8655, które mówią, jak powinno się to robić, żeby wyniki były wiarygodne. Także pamiętaj, patrząc na menisk, rób to na wysokości oczu, żeby uniknąć błędów – to naprawdę robi różnicę.

Pytanie 3

Butle gazowe (czasy butli) napełnione wodorem są oznaczone kolorem

A. jasnozielonym
B. żółtym
C. niebieskim
D. czerwonym
Zrozumienie systemu oznaczania butli gazowych jest kluczowe dla bezpieczeństwa pracy z substancjami chemicznymi. Kolorystyka oznaczeń butli gazowych jest ściśle określona przez normy. Odpowiedzi sugerujące żółty, jasnozielony lub niebieski kolor są błędne, ponieważ nie odzwierciedlają one aktualnych praktyk w branży. Żółty kolor często kojarzony jest z gazami toksycznymi, a jasnozielony z gazami szlachetnymi, natomiast niebieski stosuje się zazwyczaj do azotu lub innych gazów obojętnych. Wybierając niepoprawne kolory, można narazić się na poważne konsekwencje, takie jak błędna identyfikacja gazu, co prowadzi do niebezpiecznych sytuacji. W przemyśle, gdzie obsługiwane są różne rodzaje gazów, znajomość i przestrzeganie norm dotyczących oznaczania butli gazowych jest niezbędne. Typowe błędy myślowe prowadzące do takich wniosków to ignorowanie standardów branżowych oraz brak świadomości na temat zagrożeń związanych z niewłaściwym oznaczeniem gazów. Warto pamiętać, że bezpieczeństwo w pracy z niebezpiecznymi substancjami chemicznymi opiera się na dokładnym przestrzeganiu procedur oraz systemów oznaczania, co bezpośrednio wpływa na zdrowie i życie pracowników oraz osób postronnych.

Pytanie 4

Na podstawie danych w tabeli wskaż, którego środka suszącego można użyć do osuszenia związku o wzorze (CH3)2CO

Środek suszącyStosowany do suszeniaNie nadaje się do suszenia
NaEter, węglowodory, aminy trzeciorzędoweChlorowcopochodne węglowodorów
CaCl₂Węglowodory, aceton, eter, gazy obojętneAlkohole, amoniak, aminy
Żel krzemionkowyW eksykatorzeHF
H₂SO₄Gazy obojętne i kwasoweZwiązki nienasycone, alkohole, substancje zasadowe
A. CaCl2
B. Na
C. żel krzemionkowy
D. H2SO4
Wybór CaCl2 jako środka suszącego do osuszenia acetonu (CH3)2CO jest poprawny, ponieważ jest to substancja, która skutecznie wiąże wodę dzięki swojej higroskopijności. Chlorek wapnia jest powszechnie stosowany do osuszania rozpuszczalników organicznych, w tym ketonów, co czyni go idealnym rozwiązaniem w przypadku acetonu. W praktyce, stosując CaCl2, można uzyskać wysoce czysty aceton, co jest istotne w wielu aplikacjach laboratoryjnych i przemysłowych, takich jak syntezy chemiczne czy preparatyka próbek. Dodatkowo, w kontekście dobrych praktyk laboratoryjnych, ważne jest, aby zawsze stosować odpowiednie metody osuszania, aby uniknąć zanieczyszczeń i uzyskać wiarygodne wyniki. Zgodnie ze standardami branżowymi, takie jak ISO 9001, dbanie o jakość materiałów i ich obróbkę jest kluczowe dla zapewnienia wysokiego poziomu produktów końcowych.

Pytanie 5

Na etykiecie kwasu siarkowego(VI) znajduje się zapis:
Określ gęstość kwasu siarkowego(VI).

KWAS SIARKOWY MIN. 95%
CZ.D.A.
H2SO4
M = 98,08 g/mol    1 l – 1,84 kg
A. 1,84 g/dm3
B. 0,184 g/cm3
C. 0,184 g/dm3
D. 1,84 g/cm3
Poprawna odpowiedź to 1,84 g/cm3, co wynika z bezpośredniego przeliczenia danych z etykiety kwasu siarkowego(VI). Etykieta informuje, że 1 litr kwasu waży 1,84 kg, co przelicza się na 1840 g. Gęstość substancji definiuje się jako stosunek masy do objętości. W tym przypadku, masa 1840 g umieszczona w objętości 1000 cm3 daje wynik 1,84 g/cm3. W praktyce gęstość kwasu siarkowego(VI) jest istotna w wielu zastosowaniach przemysłowych, zwłaszcza w chemii i procesach produkcyjnych. Dobrą praktyką jest zawsze zapoznanie się z danymi na etykietach substancji chemicznych, zwłaszcza gdy są one używane w laboratoriach lub w przemyśle, aby uniknąć błędnych obliczeń i zapewnić bezpieczeństwo pracy. Gęstość kwasu siarkowego(VI) ma także znaczenie przy obliczeniach dotyczących stężenia roztworów oraz w przypadku ich transportu i przechowywania.

Pytanie 6

Eliminacja substancji organicznych z próbki poprzez jej spalenie nazywa się

A. roztworzenie
B. ekstrakcja do fazy stałej
C. mineralizacja sucha
D. mineralizacja mokra
Mineralizacja sucha to proces, w którym substancje organiczne w próbce ulegają całkowitemu spaleniu w wysokotemperaturowym piecu, co prowadzi do ich przekształcenia na minerały oraz gazy, takie jak dwutlenek węgla i woda. Metoda ta jest powszechnie stosowana w laboratoriach analitycznych do oznaczania zawartości węgla organicznego w glebie, osadach czy próbkach biologicznych. Proces mineralizacji suchej zapewnia pełne utlenienie materiału organicznego, co umożliwia dokładne pomiary pozostałych składników mineralnych. Przykładem zastosowania tej metody może być analiza gleby w kontekście oceny jej jakości oraz możliwości rolniczych, gdzie istotne jest określenie zawartości substancji organicznych. Mineralizacja sucha jest zgodna z normami ISO, co podkreśla jej znaczenie w standardowych procedurach analitycznych. Wiedza na temat tej techniki jest kluczowa dla specjalistów zajmujących się analizą chemiczną, geologiczną, czy ochroną środowiska, ponieważ pozwala na uzyskanie rzetelnych danych o składzie próbek.

Pytanie 7

W celu uzyskania 500 g mieszaniny oziębiającej o temperaturze -18oC należy zmieszać

Tabela. Mieszaniny oziębiające
Temperatura
mieszaniny [°C]
Skład mieszaninyStosunek
masowy
-2Woda + chlorek amonu10 : 3
-15Woda + rodanek amonu10 : 13
-18Lód + chlorek amonu10 : 3
-21Lód + chlorek sodu3 : 1
-22Lód + chlorek amonu + azotan(V) amonu25 : 5 : 11
-25Lód + azotan(V) amonu1 : 1
A. 384,6 g wody i 115,4 g chlorku amonu.
B. 384,6 g lodu i 115,4 g chlorku amonu.
C. 250,0 g wody i 250,0 g rodanku amonu.
D. 375,0 g lodu i 125,0 g chlorku sodu.
Aby uzyskać mieszaninę oziębiającą o temperaturze -18°C, kluczowe jest zrozumienie zasad termodynamiki i reakcji chemicznych zachodzących podczas mieszania substancji. W przypadku lodu i chlorku amonu, lód służy jako substancja o niskiej temperaturze, a chlorek amonu działa jako solwat, który wpływa na obniżenie temperatury roztworu. Stosunek masowy 10:3, w którym należy zmieszać te dwie substancje, zapewnia optymalne warunki do osiągnięcia pożądanej temperatury. Z przeprowadzonych obliczeń wynika, że mieszanka 384,6 g lodu i 115,4 g chlorku amonu pozwala uzyskać 500 g mieszaniny o odpowiedniej temperaturze. Praktyczne zastosowanie tej wiedzy można znaleźć w wielu dziedzinach, takich jak chłodnictwo i przemysł spożywczy, gdzie kontrola temperatury jest kluczowa. Stosowanie odpowiednich proporcji substancji chemicznych jest zgodne z najlepszymi praktykami w laboratoriach chemicznych oraz przemyśle, co pozwala na skuteczne i bezpieczne uzyskiwanie pożądanych efektów.

Pytanie 8

Z partii materiału należy pobrać ogólną próbkę w ilości odpowiadającej promilowi całej partii. Na podstawie podanej informacji określ, ile pierwotnych próbek, każda ważąca 10 g, trzeba pobrać z partii cukru o masie 0,5 t, aby uzyskać reprezentatywną próbkę ogólną?

A. 5
B. 10
C. 100
D. 50
Aby uzyskać reprezentatywną próbkę ogólną z partii cukru o masie 0,5 t (czyli 500 kg), należy zastosować zasadę pobierania próbek o odpowiedniej masie. Zgodnie z normami i wytycznymi, w przypadku materiałów takich jak cukier, zaleca się, aby próbka ogólna stanowiła co najmniej 0,1% całkowitej masy partii. W przypadku 500 kg, 0,1% wynosi 0,5 kg, co odpowiada 500 g. Jeśli każda próbka pierwotna ma masę 10 g, to aby uzyskać 500 g, potrzebujemy 50 próbek (500 g / 10 g = 50). Takie podejście zapewnia, że próbka ogólna będzie odzwierciedlać rzeczywistą homogeniczność partii, co jest kluczowe w kontekście zapewnienia jakości i zgodności z normami bezpieczeństwa żywności. W praktyce, odpowiednie pobieranie próbek ma kluczowe znaczenie w procesach kontroli jakości, analizy i certyfikacji produktów spożywczych.

Pytanie 9

Aby przygotować mianowany roztwór KMnO4, należy odważyć wysuszone Na2C2O4 o masie zbliżonej do 250 mg, z dokładnością wynoszącą 1 mg. Jaką masę powinna mieć prawidłowo przygotowana odważka?

A. 2,510 g
B. 0,025 g
C. 0,215 g
D. 0,251 g
Odważka Na2C2O4, którą przygotowałeś, powinna mieć masę około 250 mg, a dokładnie to 0,251 g. Przygotowywanie roztworów o ścisłych stężeniach wymaga naprawdę dokładnej pracy w laboratorium oraz świadomości, jakie mają masy molowe substancji. W tym przypadku Na2C2O4, czyli sól sodowa kwasu szczawiowego, ma masę molową około 90 g/mol. Dlatego 0,251 g to w przybliżeniu 2,79 mmol. Kluczowe jest, żeby podczas miareczkowania, gdzie KMnO4 działa jako czynnik utleniający, mieć taką dokładność. Gdy precyzyjnie odważysz reagenty, zwiększasz pewność i powtarzalność wyników. W laboratoriach chemicznych używa się wag analitycznych, żeby uzyskać wyniki, które odpowiadają rzeczywistości. Dzięki temu można przeprowadzać dalsze analizy chemiczne i poprawnie interpretować wyniki.

Pytanie 10

Użycie płuczek jest konieczne w trakcie procesu

A. oczyszczania gazów
B. krystalizacji
C. flotacji
D. destylacji
Płuczkami, czyli urządzeniami stosowanymi do oczyszczania gazów, posługujemy się w celu usunięcia zanieczyszczeń oraz toksycznych substancji z gazów odpadowych. W procesie tym gaz przepływa przez ciecz, najczęściej wodę lub roztwory chemiczne, które absorbują zanieczyszczenia. Przykładem zastosowania płuczek jest przemysł chemiczny, gdzie gazy powstałe w wyniku reakcji chemicznych często zawierają szkodliwe dla środowiska substancje. Płuczki są zgodne z normami ochrony środowiska, takimi jak dyrektywy unijne dotyczące emisji gazów do atmosfery. Dzięki zastosowaniu nowoczesnych technologii płuczek, można osiągnąć wysoką efektywność oczyszczania, co przyczynia się do zmniejszenia emisji zanieczyszczeń i ochrony zdrowia publicznego. W praktyce płuczkami można również oczyszczać gazy przemysłowe, co jest kluczowe w kontekście zrównoważonego rozwoju i odpowiedzialności ekologicznej przedsiębiorstw.

Pytanie 11

W jakim stosunku objętościowym należy połączyć roztwór o stężeniu 5 mol/dm3 z wodą destylowaną, aby uzyskać roztwór o stężeniu 3 mol/dm3?

A. 5:3
B. 3:5
C. 2:3
D. 3:2
Aby obliczyć stosunek objętościowy roztworu o stężeniu 5 mol/dm³ do wody destylowanej, który pozwoli uzyskać roztwór o stężeniu 3 mol/dm³, możemy zastosować zasadę rozcieńczania. Z definicji stężenia molowego wynika, że ilość moli substancji rozpuszczonej w danej objętości roztworu jest kluczowa. Z równania: C1V1 = C2V2, gdzie C1 to stężenie początkowe (5 mol/dm³), C2 to stężenie końcowe (3 mol/dm³), a V1 i V2 to odpowiednie objętości roztworów, możemy przekształcić wzór, aby znaleźć stosunek objętości V1 (roztwór 5 mol/dm³) do V2 (woda destylowana). Przekształcając wzory, otrzymujemy stosunek V1:V2 równy 3:2. Taki sposób przygotowania roztworu jest standardowo stosowany w laboratoriach chemicznych oraz w przemyśle, gdzie precyzyjne stężenia roztworów mają kluczowe znaczenie w procesach chemicznych i biologicznych. Przykładem może być przygotowanie buforów czy roztworów do analiz spektroskopowych.

Pytanie 12

Piktogram ukazujący czaszkę oraz skrzyżowane kości piszczelowe jest typowy dla substancji o działaniu

A. toksycznym dla skóry
B. korodującym na metale
C. narkotycznym
D. żrącym dla skóry
Piktogram przedstawiający czaszkę i skrzyżowane piszczele jest powszechnie stosowany do oznaczania substancji, które mają działanie toksyczne na skórę. Oznaczenie to informuje użytkowników o ryzyku, jakie niesie ze sobą kontakt danego związku chemicznego z ciałem. Substancje toksyczne mogą powodować poważne uszkodzenia, a w niektórych przypadkach nawet prowadzić do śmierci, jeśli nie zostaną odpowiednio zabezpieczone. Przykłady substancji, które mogą być oznaczone tym piktogramem, to niektóre pestycydy, rozpuszczalniki organiczne czy chemikalia wykorzystywane w laboratoriach. Zgodnie z obowiązującymi standardami, takimi jak GHS (Globalnie Zharmonizowany System Klasyfikacji i Oznakowania Chemikaliów), prawidłowe oznaczenie substancji jest kluczowym elementem zapewnienia bezpieczeństwa w miejscu pracy oraz w codziennym użytkowaniu chemikaliów. Właściwe zrozumienie i respektowanie tych oznaczeń jest niezbędne do minimalizacji ryzyka zatrucia lub poparzeń chemicznych.

Pytanie 13

Najskuteczniejszą techniką separacji ketonu oraz kwasu karboksylowego obecnych w roztworze benzenowym jest

A. zatężenie i krystalizacja
B. ekstrakcja chloroformem
C. destylacja z parą wodną
D. ekstrakcja roztworem zasady
Ekstrakcja chloroformem nie jest skuteczna w rozdziale ketonu i kwasu karboksylowego, ponieważ oba te związki są organiczne i mogą się dobrze rozpuszczać w chloroformie. W praktyce, podczas ekstrakcji, nie zachodzi wystarczająca separacja tych substancji, co prowadzi do trudności w ich dalszej analizie i oczyszczaniu. W przypadku destylacji z parą wodną, metoda ta działa najlepiej dla substancji lotnych, a kwasy karboksylowe często są mniej lotne, co ogranicza jej zastosowanie w tym kontekście. Z kolei zatężenie i krystalizacja są bardziej odpowiednie dla czystych substancji, a nie dla mieszanin, których składniki wykazują złożoną interakcję. Często zdarza się, że studenci błędnie zakładają, że wszystkie metody rozdzielania substancji organicznych są uniwersalne, co prowadzi do niewłaściwych wyborów w laboratoriach. Kluczowe jest zrozumienie chemicznych interakcji pomiędzy substancjami, co jest podstawą efektywnego rozdziału i oczyszczania związków organicznych.

Pytanie 14

Jakie jest stężenie roztworu HNO3, który powstał w wyniku połączenia 50 cm3 roztworu HNO3 o stężeniu 0,2 mol/dm3 oraz 25 cm3 roztworu HNO3 o stężeniu 0,5 mol/dm3?

A. 0,003 mol/dm3
B. 0,0003 mol/dm3
C. 0,03 mol/dm3
D. 0,3 mol/dm3
Aby dowiedzieć się, jakie stężenie będzie miała mieszanka roztworów HNO3, najlepiej zacząć od obliczenia, ile moli kwasu azotowego mamy w każdym z roztworów. W pierwszym roztworze z objętością 50 cm³ i stężeniem 0,2 mol/dm³ wychodzi, że mamy 0,01 mol: 0,2 mol/dm³ * 0,050 dm³ = 0,01 mol. W drugim roztworze, przy 25 cm³ i stężeniu 0,5 mol/dm³, obliczamy to jako 0,0125 mol: 0,5 mol/dm³ * 0,025 dm³ = 0,0125 mol. Jak to dodamy, to razem dostajemy 0,0225 mol. A całkowita objętość po zmieszaniu to 75 cm³, czyli 0,075 dm³. Z tego obliczamy stężenie końcowe: C = n/V, czyli 0,0225 mol / 0,075 dm³ = 0,3 mol/dm³. To, jakie stężenie otrzymasz, jest naprawdę ważne w laboratoriach, bo dokładne przygotowywanie roztworów pozwala uzyskać powtarzalne wyniki. W chemii, jak i w przemyśle, musisz znać te stężenia, żeby mieć pewność, że wszystko idzie zgodnie z planem.

Pytanie 15

Z uwagi na bezpieczeństwo pracy, ciecze żrące powinny być podgrzewane w łaźniach

A. piaskowych
B. powietrznych
C. olejowych
D. wodnych
Ogrzewanie cieczy żrących na łaźniach piaskowych to dobra opcja, bo piasek świetnie izoluje i rozprowadza ciepło. Dzięki temu mamy stabilne warunki, co jest bardzo ważne, zwłaszcza przy substancjach, które mogą się 'dziwnie' zachowywać, gdy temperatura szybko się zmienia. W praktyce użycie łaźni piaskowych zmniejsza ryzyko przegrzewania, co jest super istotne, bo może prowadzić do różnych nieprzyjemnych sytuacji, jak dekompozycja czy toksyczne opary. Piasek nie tylko grzeje, ale i chroni operatora. W laboratoriach chemicznych oraz w różnych branżach, gdzie obsługuje się cieczy żrące, przestrzeganie zasad BHP i stosowanie odpowiednich metod ogrzewania jest kluczowe, aby zapewnić bezpieczne warunki pracy i ochronić zdrowie. To są sprawy, które powinny być zawsze na pierwszym miejscu, a dokumenty branżowe mocno to podkreślają.

Pytanie 16

W wyniku analizy sitowej próbki stałej otrzymano frakcję o średnicy ziaren 12 – 30 mm. Jaką masę powinna mieć prawidłowo pobrana próbka pierwotna?

Tabela. Wielkość próbki pierwotnej w zależności od wielkości ziarna
Średnica ziaren lub kawałków [mm]do 11 - 1011 - 50ponad 50
Pierwotna próbka (minimum) [g]10020010002500
A. 2500 g
B. 200 g
C. 1000 g
D. 100 g
Odpowiedź '1000 g' jest prawidłowa, ponieważ zgodnie z normami analizy sitowej, dla ziaren o średnicy od 11 do 50 mm minimalna masa próbki pierwotnej powinna wynosić 1000 g. W przypadku analizy sitowej, w której badana jest frakcja ziaren, odpowiednia masa próbki jest kluczowa dla uzyskania wiarygodnych wyników. Zbyt mała próbka może prowadzić do błędnych wyników, zniekształcając charakterystykę frakcji ziarna. W praktyce, przy analizach takich jak ocena uziarnienia materiałów budowlanych czy surowców mineralnych, stosowanie się do odpowiednich standardów jest istotne dla zapewnienia jakości wyników. Przykładowo, w laboratoriach stosuje się normy PN-EN ISO 17892 dla gruntów, które również wskazują na konieczność stosowania odpowiednich mas próbki w zależności od rodzaju analizowanego materiału. Dlatego, jeśli analizowana frakcja mieści się w określonym przedziale średnic ziaren, należy zawsze upewnić się, że masa próbki odpowiada wymaganiom, aby uniknąć błędów w analizie.

Pytanie 17

Aby uniknąć trwałego połączenia szlifowanych części sprzętu laboratoryjnego, co należy zrobić?

A. przed połączeniem wypłukać szlify acetonem
B. dokładnie oczyścić i osuszyć sprzęt
C. przed połączeniem nałożyć na szlify wazelinę
D. przed połączeniem nałożyć na szlify glicerynę
Właściwe nasmarowanie szlifów wazeliną przed ich połączeniem jest kluczowym krokiem w zapobieganiu trwałemu łączeniu się elementów aparatury laboratoryjnej. Wazelina, jako substancja o właściwościach smarujących, tworzy cienką warstwę, która nie tylko ułatwia proces montażu, ale także minimalizuje ryzyko uszkodzenia szlifów podczas demontażu. To podejście jest zgodne z praktykami stosowanymi w laboratoriach chemicznych oraz w inżynierii, gdzie precyzja i niezawodność połączeń mają kluczowe znaczenie. Na przykład, w sytuacjach, gdy aparatura jest często demontowana w celu czyszczenia lub konserwacji, wazelina zapewnia, że nie dojdzie do zatarcia się szlifów. Warto również zauważyć, że stosowanie odpowiednich smarów jest standardem w wielu procedurach laboratoryjnych, co podkreśla znaczenie tej praktyki dla zachowania integralności aparatury.

Pytanie 18

Do szklanych narzędzi laboratoryjnych wielomiarowych używanych w analizach ilościowych należy

A. kolba stożkowa
B. pipeta Mohra
C. zlewka
D. cylinder z podziałką
Cylinder z podziałką jest jednym z kluczowych elementów sprzętu laboratoryjnego wykorzystywanego w analizie ilościowej, ze względu na swoją zdolność do precyzyjnego pomiaru objętości cieczy. Oferuje on wyraźne podziały, które pozwalają na dokładne odczytanie objętości, co jest niezbędne w wielu eksperymentach chemicznych i biologicznych. Użycie cylindra z podziałką jest standardem w laboratoriach, gdzie wymagana jest wysoka dokładność i powtarzalność pomiarów. Przykładowo, w analizie stężenia roztworu chemicznego, cylinder umożliwia odmierzenie dokładnej ilości reagentów, co jest kluczowe dla uzyskania wiarygodnych wyników. W praktyce laboratoryjnej, zgodnie z normami ISO, korzystanie z odpowiednich narzędzi pomiarowych, takich jak cylinder z podziałką, jest wymogiem, który zapewnia jakość i rzetelność wyników badań. Ponadto, cylinder z podziałką jest łatwy w użyciu i czyszczeniu, co czyni go praktycznym wyborem w codziennej pracy laboratoryjnej.

Pytanie 19

Wybór lokalizacji do poboru próbek wody z rzeki nie jest uzależniony od

A. usytuowania źródeł zanieczyszczeń
B. celu oraz zakresu badań
C. rodzaju pojemników do ich przechowywania
D. usytuowania dopływów
Wybór miejsca pobierania próbek wody z rzeki jest kluczowym elementem badań jakości wody, a rodzaj naczyń do ich przechowywania nie ma wpływu na lokalizację ich pobierania. Istotne jest, aby miejsce poboru było reprezentatywne dla badanego obszaru i odpowiadało celom oraz zakresowi badań. Na przykład, jeśli celem jest ocena wpływu zanieczyszczeń przemysłowych, należy wybierać miejsca w pobliżu źródeł tych zanieczyszczeń. Z kolei lokalizacja dopływów może wskazywać na różne warunki hydrologiczne i chemiczne wody. Zarówno standardy ISO, jak i normy krajowe dotyczące monitorowania jakości wody podkreślają znaczenie odpowiedniego doboru punktów poboru. Przechowywanie próbek w odpowiednich naczyniach, takich jak butelki szklane lub plastikowe, ma z kolei na celu zapewnienie, że próbki nie ulegną zanieczyszczeniu ani degradacji w czasie transportu do laboratorium. Dlatego rodzaj naczyń jest istotny, ale nie wpływa na wybór miejsca ich pobierania.

Pytanie 20

Na podstawie danych zawartych w tabeli wskaż, które opakowania zawierają produkt zgodny ze specyfikacją.

WŁAŚCIWOŚCINORMA KLASY A
wg specyfikacji produktu
OPAKOWANIE
123
POSTAĆBezbarwna ciecz, bez zanieczyszczeń.
Dopuszcza się niebieskawе zabаrwienie
i obecność skrystalizowanego osadu
Bezbarwna ciecz
Zawartość ługu sodowego
(NaOH), min, % masy
46,046,546,848,0
Węglan sodu (Na₂CO₃),
nie więcej niż, % masy
0,40,30,30,2
Chlorek sodu (NaCl),
nie więcej niż, % masy
0,0200,0150,0140,011
Chloran sodu (NaClO₃),
nie więcej niż, % masy
0,0070,0060,0050,002
Siarczan sodu (Na₂SO₄),
nie więcej niż, % masy
0,0400,0380,0350,029
Zawartość żelaza (Fe₂O₃),
max, WT. PPM
15151510
A. Żadne.
B. Wszystkie.
C. Tylko 3.
D. Tylko 1 i 2.
Wybranie odpowiedzi mówiącej, że żadne opakowania nie są zgodne z normami, to typowy błąd. Może się to brać stąd, że nie widzisz wszystkich ważnych szczegółów w danych. Wydaje mi się, że to trochę przez brak zrozumienia specyfikacji produktu i norm dotyczących jakości opakowań. Czasem ludzie mają tendencję do uogólniania, co prowadzi do błędnych wniosków. Pamiętaj, że każde opakowanie trzeba przeanalizować dokładnie, a stwierdzenie, że nic nie spełnia norm, jest po prostu nietrafione. Gdy mówisz, że tylko niektóre są zgodne, to znaczy, że mogłeś nie uwzględnić wszystkich parametrów z specyfikacji. Każde opakowanie powinno się oceniać z osobna, a złe oceny mogą mieć poważne konsekwencje, jak wprowadzenie wadliwych produktów na rynek, co może skutkować stratami lub zepsuciem reputacji firmy. Dlatego ważne jest, by oceniający też byli dobrze poinformowani i trzymali się standardów, żeby uniknąć takich sytuacji.

Pytanie 21

Z 250 g benzenu (M = 78 g/mol) uzyskano 350 g nitrobenzenu (M = 123 g/mol). Jaka jest wydajność reakcji nitrowania?

A. 83,5%
B. 88,8%
C. 93,4%
D. 77,7%
Wydajność reakcji nitrowania obliczamy, porównując masę uzyskanego produktu z maksymalną masą, którą moglibyśmy otrzymać, bazując na ilości reagenta. W przypadku benzenu, z jego masy molowej (M = 78 g/mol) możemy obliczyć, ile moli benzenu mamy w 250 g: 250 g / 78 g/mol = 3,21 mol. Reakcja nitrowania benzenu do nitrobenzenu produkuje jeden mol nitrobenzenu na każdy mol benzenu. Dlatego teoretycznie moglibyśmy otrzymać 3,21 mol nitrobenzenu, co przekłada się na masę: 3,21 mol * 123 g/mol = 394,83 g nitrobenzenu. Jednak w praktyce uzyskaliśmy tylko 350 g. Aby obliczyć wydajność, stosujemy wzór: (masa uzyskana / masa teoretyczna) * 100%. W naszym przypadku wydajność wynosi (350 g / 394,83 g) * 100% = 88,8%. Taka analiza i obliczenia są kluczowe w przemyśle chemicznym, ponieważ pozwalają na ocenę skuteczności procesów oraz optymalizację wykorzystania surowców, co jest zgodne z najlepszymi praktykami w zakresie zarządzania produkcją chemiczną.

Pytanie 22

Jakie urządzenie wykorzystuje się do określania lepkości płynów?

A. piknometr
B. wiskozymetr
C. areometr
D. kolorymetr
Wiskozymetr to całkiem fajne urządzenie, które mierzy lepkość cieczy. Lepkość to taki parametr, który mówi nam, jak bardzo ciecz jest 'gęsta' w swoim zachowaniu, co jest istotne w różnych dziedzinach jak chemia, inżynieria materiałowa czy technologie procesów. Lepkość ma ogromne znaczenie, szczególnie gdy myślimy o tym, jak ciecz przepływa przez rury lub jak jest używana w przemyśle i laboratoriach. Wiskozymetry dzielą się na różne typy – mamy na przykład wiskozymetry dynamiczne, które badają lepkość przy różnych prędkościach, albo kinematyczne, które skupiają się na czasie przepływu cieczy przez określoną objętość. Warto wspomnieć, że w przemyśle spożywczym, kontrolowanie lepkości soków czy sosów jest mega ważne, żeby uzyskać dobrą konsystencję i jakość. Dodatkowo, istnieją standardy, jak na przykład ASTM D445, które określają, jak mierzyć lepkość, dzięki czemu wyniki są spójne i wiarygodne w różnych laboratoriach.

Pytanie 23

Próbka wzorcowa to próbka

A. otrzymana w wyniku zmieszania próbek jednostkowych
B. przeznaczona w całości do jednego oznaczenia
C. o dokładnie znanym składzie
D. przygotowana z próbki laboratoryjnej przez jej zmniejszenie
Próbka wzorcowa to próbka o dokładnie znanym składzie, co czyni ją kluczowym elementem w procesach analitycznych. W analizie chemicznej i badaniach laboratoryjnych próbki wzorcowe są niezbędne do kalibracji instrumentów pomiarowych, a także do walidacji metod analitycznych. Przykładem może być stosowanie standardów w technikach spektroskopowych, gdzie próbki wzorcowe pozwalają na uzyskanie precyzyjnych wyników pomiarów. Zgodnie z normami ISO, próbki wzorcowe powinny być przygotowane z najwyższą starannością, aby zminimalizować błędy pomiarowe. W praktyce, ich zastosowanie obejmuje również monitorowanie jakości procesu produkcyjnego, co pozwala na wykrywanie potencjalnych nieprawidłowości. Stosowanie próbki wzorcowej jest również zgodne z dobrymi praktykami laboratoryjnymi (GLP), które podkreślają znaczenie znanego składu prób w zapewnieniu wiarygodności wyników i umożliwieniu ich porównywalności. Dlatego też, rozwiązując problemy analityczne, znajomość i umiejętność wykorzystania próbek wzorcowych jest niezbędna dla każdego specjalisty w dziedzinie analizy chemicznej i biologicznej.

Pytanie 24

Część partii pobrana w sposób jednorazowy z jednego źródła towaru zapakowanego lub z jednego opakowania jednostkowego określana jest mianem próbki

A. pierwotnej
B. ogólnej
C. analitycznej
D. średniej laboratoryjnej
Wybór innych odpowiedzi może wynikać z nieporozumienia dotyczącego terminologii używanej w analizach prób. Odpowiedź 'ogólnej' sugeruje, że próbka jest reprezentatywna dla całej partii, ale nie odnosi się do konkretnego kontekstu pobierania próbek. W rzeczywistości próbki ogólne są zbierane z różnych miejsc w partii, co może prowadzić do niejednorodności wyników, co jest niezgodne z praktykami pobierania próbek. Z kolei 'średnia laboratoryjna' odnosi się do próbek, które są mieszane z różnych prób pierwotnych, co nie jest właściwym terminem dla pojedynczej próbki pobranej z jednego miejsca. W praktyce średnia laboratoryjna jest używana do uzyskiwania wyników z kilku próbek, co znacznie różni się od pojęcia próbki pierwotnej. Odpowiedź 'analitycznej' może prowadzić do mylnego przekonania, że próbka odnosi się do etapu analizy, kiedy w rzeczywistości próbka analityczna odnosi się do materiału, który jest wykorzystywany do przeprowadzenia analizy, ale może być przygotowywany na podstawie prób pierwotnych. Te błędne koncepcje mogą prowadzić do niewłaściwej interpretacji wyników badań oraz do niskiej jakości danych, co jest istotnym zagrożeniem w kontekście akredytacji laboratoriów i zapewnienia jakości w przemyśle.

Pytanie 25

Oblicz stężenie molowe 250 cm3 roztworu NaOH, w którym znajduje się 0,5 g substancji. Masa molowa NaOH wynosi 40 g/mol

A. 0,50 mol/dm3
B. 0,01 mol/dm3
C. 0,05 mol/dm3
D. 0,10 mol/dm3
Aby obliczyć stężenie molowe roztworu NaOH, należy najpierw obliczyć liczbę moli NaOH w 0,5 g substancji. Masa molowa NaOH wynosi 40 g/mol, co oznacza, że 1 mol NaOH waży 40 g. Liczba moli można obliczyć ze wzoru: liczba moli = masa (g) / masa molowa (g/mol). Dla 0,5 g NaOH obliczenia będą wyglądały następująco: 0,5 g / 40 g/mol = 0,0125 mol. Następnie przeliczamy objętość roztworu z cm³ na dm³, co daje 250 cm³ = 0,25 dm³. Stężenie molowe obliczamy, dzieląc liczbę moli przez objętość roztworu w dm³: 0,0125 mol / 0,25 dm³ = 0,05 mol/dm³. Zrozumienie tych obliczeń jest kluczowe w chemii analitycznej, gdzie precyzyjne przygotowywanie roztworów o określonym stężeniu jest niezbędne w eksperymentach i analizach. W praktyce, takie umiejętności są szczególnie ważne w laboratoriach chemicznych, gdzie dokładność i powtarzalność wyników mają kluczowe znaczenie.

Pytanie 26

Nie należy używać gorącej wody do mycia

A. zlewki
B. szkiełka zegarkowego
C. kolby miarowej
D. kolby stożkowej
Kolba miarowa jest szklanym naczyniem laboratoryjnym, które służy do dokładnego pomiaru objętości cieczy. Z uwagi na jej konstrukcję, nagłe zmiany temperatury mogą prowadzić do uszkodzeń, takich jak pęknięcia czy odkształcenia. Gorąca woda może powodować, że szkło stanie się bardziej podatne na stres termiczny, co jest niebezpieczne, zwłaszcza w przypadku kolb miarowych, które są projektowane z myślą o precyzyjnych pomiarach. W standardach laboratoryjnych, takich jak normy ISO, zaleca się, aby naczynia wykonane ze szkła boro-krzemowego, wykorzystywane w laboratoriach, nie były narażane na nagłe zmiany temperatury. Dobrą praktyką jest mycie ich w letniej wodzie z detergentem, a następnie dokładne płukanie w wodzie destylowanej, aby zminimalizować ryzyko uszkodzenia i zapewnić dokładność pomiarów. Przy odpowiedniej konserwacji, kolby miarowe mogą służyć przez wiele lat, jednak ich właściwe użytkowanie jest kluczowe dla utrzymania ich funkcjonalności.

Pytanie 27

Wskaż jaka zawartość chlorków w próbce wody pozwala na wykorzystanie tej wody do produkcji betonu zgodnie z normą PN-EN 1008.

Wymagania dotyczące zawartości chlorków w wodzie do produkcji betonu według normy PN-EN 1008
substancjadopuszczalna wartość w mg/dm3
chlorki1000
A. 1000 g/m3
B. 1000 g/dm3
C. 10 g/dm3
D. 107 mg/m3
Wybierając odpowiedzi, takie jak 1000 g/dm3 czy 10 g/dm3, można zauważyć pewne nieporozumienia dotyczące jednostek i norm. Odpowiedź 1000 g/dm3 jest zdecydowanie zbyt wysoka, ponieważ oznaczałaby, że woda zawiera 1000 gramów chlorków na każdy litr, co jest równoważne stężeniu 1 kg/dm3. Tego rodzaju stężenie jest nierealistyczne w kontekście wody pitnej czy technologicznej, a także przekracza wszelkie normy dotyczące jakości wody. Z kolei 10 g/dm3, chociaż teoretycznie dopuszczalne, również jest niewłaściwe, ponieważ w kontekście normy PN-EN 1008, odpowiednia wartość wynosi 1000 mg/dm3, co odpowiada 1 g/dm3. W tym przypadku istnieje nieporozumienie związane z konwersją jednostek, które są kluczowe w inżynierii budowlanej. Wybór 107 mg/m3 również wykazuje zrozumienie problemu, ale nie odnosi się do normy, w której wartość dla chlorków jest znacznie wyższa. Stąd wynika, że często błędy w odpowiedziach są efektem niepewności co do prawidłowego przeliczenia jednostek oraz niezrozumienia znaczenia norm, które mają na celu zapewnienie bezpieczeństwa i trwałości konstrukcji. Każdy inżynier budowlany powinien być dobrze zaznajomiony z odpowiednimi normami oraz umieć prawidłowo interpretować wyniki badań, co jest niezbędne do podejmowania właściwych decyzji technologicznych.

Pytanie 28

Jakie jest stężenie roztworu NaOH, który zawiera 4 g wodorotlenku sodu w 1 dm3 (masa molowa NaOH = 40 g/mol)?

A. 0,01 mol/dm3
B. 0,001 mol/dm3
C. 0,1 mol/dm3
D. 1 mol/dm3
Stężenie roztworu NaOH wyliczamy dzieląc liczbę moli substancji przez objętość roztworu w decymetrach sześciennych. W przypadku 4 g wodorotlenku sodu, najpierw musimy policzyć, ile mamy moli, korzystając z masy molowej NaOH, która to wynosi 40 g/mol. To wygląda tak: 4 g podzielone przez 40 g/mol daje nam 0,1 mola. A ponieważ nasze objętość roztworu wynosi 1 dm³, stężenie okaże się 0,1 mol / 1 dm³, co daje 0,1 mol/dm³. Te obliczenia są super ważne w laboratoriach chemicznych, bo precyzyjne przygotowywanie roztworów jest kluczowe dla dobrej jakości wyników eksperymentów. W praktyce stężenie roztworu oddziałuje na reakcje chemiczne, ich tempo i efektywność, więc rozumienie tych zasad leży u podstaw chemii analitycznej i w różnych aplikacjach przemysłowych, jak synteza chemiczna czy proces oczyszczania.

Pytanie 29

Do filtracji osadów drobnokrystalicznych wykorzystuje się filtry

A. sztywne, o najmniejszych porach
B. elastyczne, o najmniejszych porach
C. elastyczne, o największych porach
D. sztywne, o największych porach
Sączki twarde o najmniejszych porach są optymalnym wyborem do sączenia osadów drobnokrystalicznych, ponieważ ich struktura zapewnia skuteczne oddzielanie cząstek stałych od cieczy. Twardość materiału sączka pozwala na zachowanie stabilności mechanicznej podczas procesu filtracji, co jest kluczowe w wielu zastosowaniach laboratoryjnych i przemysłowych. Przykładowo, w laboratoriach chemicznych, gdzie często stosowane są różne metody analityczne, takie jak chromatografia czy spektroskopia, twarde sączki umożliwiają precyzyjne oczyszczanie próbek, eliminując drobne zanieczyszczenia, co wpływa na dokładność uzyskiwanych wyników. Dodatkowo, stosowanie sączków o najmniejszych porach jest zgodne z normami filtracji, które wymagają wykorzystania materiałów o odpowiednich właściwościach mechanicznych i chemicznych, aby zapewnić wysoką efektywność procesu oczyszczania i minimalizację straty substancji. W praktyce, sączki te są wykorzystywane w różnych branżach, w tym w farmacji, biotechnologii oraz przemysłach spożywczym, gdzie czystość produktu finalnego jest absolutnie kluczowa.

Pytanie 30

Którą z poniższych czynności należy wykonać, aby zapewnić wysoką dokładność pomiaru masy substancji podczas przygotowywania próbki do analizy chemicznej?

A. Pominąć etap ważenia przy sporządzaniu roztworu.
B. Wystarczy ważyć substancję na zwykłej wadze kuchennej.
C. Użyć linijki do określenia objętości substancji.
D. Zastosować wagę analityczną o dokładności do 0,1 mg.
Dokładność pomiaru masy substancji chemicznych ma kluczowe znaczenie w analizie laboratoryjnej. Użycie wagi analitycznej o dokładności do 0,1 mg jest standardem wszędzie tam, gdzie wymagane są precyzyjne oznaczenia ilościowe. Wagi analityczne mają specjalną konstrukcję – są zamknięte w osłonie przeciwwiatrowej, mają bardzo czułe mechanizmy i są regularnie kalibrowane, co minimalizuje wpływ czynników zewnętrznych takich jak drgania czy ruchy powietrza. Tak wysoka dokładność pozwala na ważenie nawet niewielkich ilości substancji, co jest często niezbędne przy pracy z odczynnikami o wysokiej aktywności lub kosztownych standardach. W praktyce zawodowej takie podejście pozwala uniknąć błędów systematycznych, które mogłyby zafałszować wyniki analizy i doprowadzić do nieprawidłowych wniosków. Stosowanie wag analitycznych jest opisane w normach branżowych i podręcznikach dla laborantów. Moim zdaniem, bez tej dokładności nie da się mówić o profesjonalnym przygotowaniu próbek. Warto też pamiętać, że nawet drobne różnice masy mogą mieć duże znaczenie przy przygotowywaniu roztworów wzorcowych czy analitycznych, dlatego nie ma tu miejsca na półśrodki.

Pytanie 31

Jaki jest błąd względny pomiaru na wadze o precyzji 0,1 g dla próbki o wadze 1 g?

A. 1%
B. 0,1%
C. 100%
D. 10%
Błąd względny ważenia określa stosunek błędu pomiaru do wartości mierzonej, wyrażony w procentach. W przypadku wagi o dokładności 0,1 g, oznacza to, że maksymalny błąd pomiaru przy ważeniu próbki o masie 1 g wynosi 0,1 g. Aby obliczyć błąd względny, stosujemy wzór: (błąd pomiaru / wartość mierzona) * 100%. Wstawiając dane: (0,1 g / 1 g) * 100% = 10%. Taki błąd względny jest szczególnie istotny w laboratoriach, gdzie precyzyjność pomiarów jest kluczowa, na przykład w analizach chemicznych, gdzie nawet niewielkie odchylenia mogą prowadzić do błędnych wyników. W praktyce, znajomość błędu względnego pozwala ocenić jakość pomiaru oraz dostosować metodykę ważenia do wymogów analizy. Przy wyborze wagi, warto zwrócić uwagę na jej dokładność oraz na to, w jaki sposób błąd względny wpływa na wyniki końcowe, co jest kluczowe w kontekście standardów jakości, takich jak ISO 17025.

Pytanie 32

Z analizy wykresu wynika, że substancją o najniższej rozpuszczalności w wodzie w temperaturze 100°C jest

A. sól kamienna
B. cukier
C. saletra potasowa
D. siarczan(VI) miedzi(II)
Sól kamienna, czyli chlorek sodu (NaCl), to dość ciekawa substancja, bo ma niską rozpuszczalność w wodzie w porównaniu do takich rzeczy jak cukier czy siarczan(VI) miedzi(II). Z moich doświadczeń wynika, że w temperaturze 100°C sól kamienna rozpuszcza się w ilości około 357 g/l, co jest znacznie mniej niż cukier, który może rozpuścić się do 2000 g/l. Sól kamienna ma wiele zastosowań, od kuchni po przemysł chemiczny. Ważne jest, żeby wiedzieć, że jej słaba rozpuszczalność jest istotna dla procesów, gdzie muszę mieć kontrolę nad stężeniem, na przykład przy tworzeniu roztworów do analiz chemicznych. Dodatkowo, w kontekście ochrony środowiska, warto pamiętać, że za dużo NaCl w wodach gruntowych może zasalać ekosystemy, co nie jest dobre. W sumie, zrozumienie tych właściwości jest kluczowe dla inżynierów chemicznych i technologów, którzy muszą projektować procesy i oceniać ich wpływ na środowisko.

Pytanie 33

Odpady z rozpuszczalników organicznych, takich jak benzen czy aceton, zawierające co najmniej 80% danego rozpuszczalnika, należy

A. zniszczyć poprzez zastosowanie odpowiednich procesów.
B. połączyć z ziemią okrzemkową i przekazać do utylizacji.
C. poddać recyklingowi w celu odzyskania rozpuszczalnika.
D. odprowadzać bezpośrednio do kanalizacji.
Odpady z rozpuszczalników organicznych, takich jak benzen czy aceton, które mają przynajmniej 80% tego rozpuszczalnika, powinny być poddawane recyklingowi. To naprawdę zgodne z zasadami zrównoważonego rozwoju i tego, jak powinniśmy zarządzać odpadami. Recykling pozwala nam na ich ponowne wykorzystanie w przemysłowych procesach, dzięki czemu zmniejszamy ilość śmieci i ograniczamy potrzebę pozyskiwania nowych surowców. W praktyce chodzi o różne metody, jak destylacja, które pomagają odzyskać czysty rozpuszczalnik. Na przykład w przemyśle lakierniczym często korzysta się z takich procesów, co jest korzystne, bo zmniejsza koszty i wpływ na środowisko. Pamiętaj, że zgodnie z prawem, te odpady są klasyfikowane jako niebezpieczne, więc dobre zarządzanie nimi i ich recykling są naprawdę kluczowe dla zdrowia ludzi i ochrony naszej planety.

Pytanie 34

Jaką substancję wskaźnikową należy zastosować do ustalenia miana roztworu wodorotlenku sodu w reakcji z kwasem solnym, według przedstawionej procedury, która polega na odmierzeniu 25 cm3 roztworu HCl o stężeniu 0,20 mol/dm3 do kolby stożkowej, dodaniu 50 cm3 wody destylowanej, 2 kropli wskaźnika oraz miareczkowaniu roztworem NaOH do momentu zmiany koloru z czerwonego na żółty?

A. chromianu(VI) potasu
B. fenoloftaleiny
C. skrobi
D. oranżu metylowego
Fenoloftaleina jest wskaźnikiem, którego zmiana koloru zachodzi w wyższym zakresie pH, co czyni ją nieodpowiednią do miareczkowania kwasu solnego w obecności wodorotlenku sodu. Fenoloftaleina zmienia barwę z bezbarwnej na różową w zakresie pH 8,2 – 10,0, co oznacza, że nie jest w stanie sygnalizować punktu końcowego reakcja kwasu z zasadą, ponieważ reakcja neutralizacji między HCl a NaOH kończy się w znacznie niższym pH. Wybierając wskaźnik, istotne jest, aby zrozumieć zarówno chemiczne właściwości substancji, jak i zakres pH, w którym zachodzą reakcje. Błędem jest również wybór chromianu(VI) potasu jako wskaźnika – substancja ta nie jest wskaźnikiem pH, a raczej reagentem stosowanym w innych reakcjach chemicznych, co może prowadzić do mylnych wniosków, jeśli chodzi o jego zastosowanie w kontekście miareczkowania. Stosowanie skrobi jako wskaźnika także mija się z celem, ponieważ skrobia reaguje z jodkiem, co nie ma związku z miareczkowaniem kwasów i zasad. Te błędne odpowiedzi odzwierciedlają typowe nieporozumienia dotyczące podstawowych zasad analizy chemicznej, gdzie odpowiedni dobór wskaźników jest kluczowy dla uzyskania precyzyjnych wyników.

Pytanie 35

Pobieranie próbek wody z zbiornika wodnego, który zasila system wodociągowy, powinno odbywać się

A. na powierzchni wody, w centralnej części zbiornika
B. w najgłębszym punkcie, z którego czerpana jest woda
C. w miejscu oraz na głębokości, gdzie następuje czerpanie wody
D. na powierzchni wody, w pobliżu brzegu zbiornika
Zbieranie próbek wody na powierzchni zbiornika, zarówno przy brzegu, jak i na środku, jest nieodpowiednie, ponieważ nie odzwierciedla rzeczywistych warunków wody, która jest później używana w systemie wodociągowym. Pobieranie próbek wyłącznie z powierzchni może prowadzić do fałszywego obrazu jakości wody, ponieważ może ignorować zanieczyszczenia znajdujące się w niższych warstwach, które mogą być znacznie gorszej jakości. Na przykład, substancje chemiczne mogą osiadać na dnie zbiornika lub występować w niższych warstwach wody, a ich obecność nie będzie wykryta podczas pobierania próbek z powierzchni. Dodatkowo, zasysanie wody z najgłębszego miejsca zbiornika może wydawać się logiczne, jednak nie zawsze odpowiada to rzeczywistemu miejscu poboru, które może znajdować się w innym punkcie zbiornika na określonej głębokości. Warto również zauważyć, że zanieczyszczenia mogą różnić się w różnych częściach zbiornika, a ich analiza wymaga dokładnego określenia warunków, w których woda jest pobierana. Dlatego kluczowe jest, aby próbki były pobierane w miejscu i na głębokości, w której odbywa się rzeczywisty pobór wody, co zapewnia reprezentatywność wyników i zgodność z obowiązującymi standardami jakości wody.

Pytanie 36

Jaka minimalna pojemność powinna mieć miarka, aby jednorazowo zmierzyć 60,0 cm3 wody?

A. 250 cm3
B. 50 cm3
C. 25 cm3
D. 100 cm3
Żeby dobrze odpowiedzieć na to pytanie, warto zrozumieć, jak to jest z pomiarem objętości cieczy. Cylinder miarowy powinien mieć pojemność, która jest większa lub równa tej, którą chcemy zmierzyć, czyli w tym przypadku 60,0 cm³. Najlepiej użyć cylindra o pojemności 100 cm³. Dlaczego? Bo to zapewnia dokładność pomiaru i daje odpowiednią przestrzeń na ewentualne błędy oraz na nabieranie cieczy. W laboratoriach chemicznych to dosyć istotne, bo źle dobrana pojemność może prowadzić do przelania albo niedokładnych pomiarów. Takie rzeczy lepiej omijać, żeby mieć pewność, że pracujemy zgodnie z dobrymi praktykami. Dlatego wybór cylindra 100 cm³ to nie tylko spełnienie wymogów, ale i zadbanie o bezpieczeństwo i dokładność podczas eksperymentów.

Pytanie 37

Jaką objętość w warunkach standardowych zajmie 1,7 g amoniaku (masa molowa amoniaku wynosi 17 g/mol)?

A. 22,4 dm3
B. 2,24 dm3
C. 4,48 dm3
D. 11,2 dm3
Aby obliczyć objętość amoniaku w warunkach normalnych (0°C i 1013 hPa), należy skorzystać z prawa gazu idealnego. Masa molowa amoniaku (NH₃) wynosi 17 g/mol, co oznacza, że 1,7 g amoniaku odpowiada 0,1 mola (1,7 g / 17 g/mol = 0,1 mol). W warunkach normalnych 1 mol gazu zajmuje objętość 22,4 dm³. Zatem, aby obliczyć objętość 0,1 mola, należy pomnożyć liczbę moli przez objętość 1 mola: 0,1 mol × 22,4 dm³/mol = 2,24 dm³. Tego rodzaju obliczenia są kluczowe w chemii, zwłaszcza w kontekście reakcji gazowych oraz w przemyśle chemicznym, gdzie znajomość objętości gazów jest niezbędna do odpowiedniego bilansowania reakcji chemicznych. Ponadto, zrozumienie tych zasad pomaga w praktycznych zastosowaniach, takich jak określenie ilości reagentów w syntezach chemicznych oraz w analizach procesów technologicznych.

Pytanie 38

Próbka, którą analizujemy, to bardzo rozcieńczony wodny roztwór soli nieorganicznych, który ma być poddany analizie. Proces, który można zastosować do zagęszczenia tego roztworu, to

A. destylacji
B. krystalizacji
C. sublimacji
D. ekstrakcji
Ekstrakcja to technika, która polega na wydobywaniu substancji z jednego medium do innego, zwykle wykorzystując różnice w rozpuszczalności. Choć jest to proces użyteczny w analizie chemicznej, nie jest on skuteczny dla zatężania roztworów soli. Nie pomaga on w uzyskaniu większego stężenia roztworu, co jest kluczowe w tym kontekście. Sublimacja to proces, w którym substancja przechodzi ze stanu stałego bezpośrednio w gazowy. Ta metoda jest stosowana do oddzielania substancji, które łatwo sublimują, ale nie ma zastosowania w zatężaniu roztworów wodnych. Krystalizacja polega na wytrącaniu substancji w postaci kryształów, co może prowadzić do uzyskania czystszych substancji, jednak nie jest to proces, który efektywnie redukuje objętość roztworu. Typowym błędem myślowym przy wyborze tych metod jest mylenie procesu separacji z procesem zatężania. Należy pamiętać, że skuteczne zatężanie wymaga zastosowania metod, które pozwalają na usunięcie rozpuszczalnika, co jest charakterystyczne dla destylacji. W związku z tym, odpowiednie zrozumienie i zastosowanie metod separacji lub zatężania jest kluczowe w pracy laboratoryjnej.

Pytanie 39

Aby przygotować 150 g roztworu jodku potasu o stężeniu 10% (m/m), konieczne jest użycie
(zakładając, że gęstość wody wynosi 1 g/cm3)

A. 10 g KI oraz 140 g wody destylowanej
B. 15 g KI oraz 145 g wody destylowanej
C. 10 g KI oraz 150 cm3 wody destylowanej
D. 15 g KI oraz 135 cm3 wody destylowanej
Stężenie 10% (m/m) oznacza, że na każde 100 g roztworu przypada 10 g substancji czynnej, czyli jodku potasu (KI). Aby przygotować 150 g roztworu, musimy obliczyć masę KI: 150 g x 10% = 15 g. Pozostała masa roztworu to woda, która będzie stanowić 135 g (150 g - 15 g). Woda ma gęstość 1 g/cm³, co oznacza, że 135 g wody to 135 cm³. Ta odpowiedź jest zgodna z zasadami przygotowywania roztworów, które wymagają zachowania proporcji masowych dla określonego stężenia. Przykładem zastosowania tego procesu może być przygotowanie roztworu do badań chemicznych, gdzie precyzyjne stężenie reagentów jest kluczowe dla uzyskania wiarygodnych wyników. Ponadto, zgodnie z dobrą praktyką laboratoryjną, zawsze warto sprawdzić obliczenia i użyć wagi analitycznej oraz menzurki, aby zapewnić dokładność pomiarów.

Pytanie 40

Jakie procesy towarzyszy efekt egzotermiczny?

A. rozcieńczanie stężonego roztworu tiosiarczanu(VI) sodu
B. rozpuszczanie jodku potasu w wodzie
C. rozcieńczanie stężonego roztworu kwasu siarkowego(VI)
D. rozpuszczanie azotanu(V) amonu w wodzie
Rozcieńczanie stężonego roztworu kwasu siarkowego(VI) to całkiem ciekawy proces. Robi się to w sposób egzotermiczny, co w praktyce oznacza, że wydziela się sporo ciepła. Jak się doda kwas do wody, to następuje silna reakcja, przez co temperatura roztworu może znacząco wzrosnąć. Dlatego zawsze warto pamiętać, żeby najpierw wrzucić kwas do wody, a nie odwrotnie – to może uratować nas przed nieprzyjemnymi oparzeniami i innymi niebezpieczeństwami. No i nie zapominaj o środkach ochrony osobistej – lepiej być przezornym, niż później żałować. Ta wiedza, moim zdaniem, jest kluczowa nie tylko w laboratoriach, ale i w różnych procesach przemysłowych. Gdy nie przestrzegamy zasad bezpieczeństwa, konsekwencje mogą być naprawdę poważne. Rozumienie, jak działają reakcje egzotermiczne, jest też ważne, szczególnie jeśli chodzi o projektowanie systemów chłodzenia w przemyśle chemicznym czy farmaceutycznym, bo kontrola temperatury ma tu ogromne znaczenie dla jakości produktów.