Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 21 lutego 2026 13:31
  • Data zakończenia: 21 lutego 2026 13:48

Egzamin zdany!

Wynik: 24/40 punktów (60,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W wyniku działania strumienia wysoko ciśnieniowego dwutlenku węgla na rękę pracownika doszło do odmrożenia drugiego stopnia (zaczerwienienie skóry i pojawienie się pęcherzy). Jakie działania należy podjąć, udzielając pierwszej pomocy?

A. należy zdjąć biżuterię z palców poszkodowanego, rozgrzać dłoń i nałożyć jałowy opatrunek
B. należy podać leki przeciwbólowe i przetransportować poszkodowanego do szpitala
C. należy posmarować odmrożone miejsce tłustym kremem i przewieźć pracownika do domu
D. należy polać dłoń wodą utlenioną oraz wykonać opatrunek
Wszystkie inne odpowiedzi zawierają koncepcje, które mogą być niebezpieczne lub niewłaściwe w kontekście udzielania pierwszej pomocy w przypadku odmrożeń. Na przykład, stosowanie wody utlenionej do polewania odmrożonego miejsca nie jest zalecane, ponieważ może to prowadzić do podrażnienia tkanek i zwiększenia bólu. Woda utleniona jest skuteczna w oczyszczaniu ran, ale nie nadaje się do stosowania na uszkodzoną skórę, szczególnie w przypadkach oparzeń czy odmrożeń, gdzie skóra jest już osłabiona. Kolejnym błędem jest pomysł smarowania dłoni tłustym kremem. Tłuste substancje mogą zatkać pory skóry i spowodować dodatkowe podrażnienia, a także nie pozwalają na naturalne procesy regeneracyjne. Transportowanie poszkodowanego do domu to również niewłaściwe podejście. W sytuacjach medycznych zawsze należy dążyć do zapewnienia profesjonalnej pomocy w szpitalu, gdzie dostępne są odpowiednie środki i eksperci. Kluczowe jest, aby osoby udzielające pierwszej pomocy nie opierały się na intuicji, ale stosowały się do uznawanych standardów. W sytuacjach zagrożenia zdrowia i życia, jak odmrożenia, każda minuta może być decydująca.

Pytanie 2

Na podstawie danych katalogowych przetwornika różnicy ciśnień dobierz napięcie zasilania dla prądowego sygnału wyjściowego.

Zasilanie [VDC]
  • 15÷30 (sygn. wyj. 0÷10 V)
  • 10÷30 (sygn. wyj. 0÷5 V)
  • 5÷12 (sygn. wyj. 0÷3 V)
  • 10÷36 (sygn. wyj. 4÷20 mA)
Sygnały wyjściowe
  • 4÷20 mA
  • 0÷10 V, 0÷5 V, 1÷5 V
  • 0÷3 V (low-power)
  • Możliwe jest również wykonanie przetworników z dowolnym napięciowym sygnałem wyjściowym, mniejszym od 0÷10 V (np. 0÷4 V, 2÷8 V itp.)
A. 10÷30 VDC
B. 10÷36 VDC
C. 5÷12 VDC
D. 15÷30 VDC
Wybór napięcia zasilania 10÷36 VDC dla przetwornika różnicy ciśnień jest zgodny z jego wymaganiami technicznymi. Przetworniki ciśnienia z prądowym sygnałem wyjściowym 4-20 mA wymagają odpowiedniego zasilania, aby zapewnić poprawne funkcjonowanie i dokładność odczytów. Wartość napięcia zasilania powinna być zgodna z danymi katalogowymi, które wskazują, że zasilanie w zakresie 10÷36 VDC jest optymalne. Przykładem zastosowania takich przetworników są systemy automatyki przemysłowej, w których monitoruje się ciśnienie w procesach technologicznych. W takich przypadkach, nieodpowiednie napięcie zasilania mogłoby prowadzić do zniekształceń sygnałów wyjściowych, co z kolei wpływa na dokładność monitorowania i kontrolowania procesów. Ponadto, zgodnie z normami branżowymi, dostosowanie zasilania do wymagań urządzenia jest kluczowym aspektem zapewnienia niezawodności i trwałości systemów pomiarowych.

Pytanie 3

Elementy z komponentów przeznaczone do montażu urządzenia powinny być posegregowane na stanowisku roboczym według

A. wielkości
B. poziomu złożoności
C. kolejności montażu
D. kształtu
Twoja odpowiedź, która mówi o układaniu części według kolejności montażu, jest naprawdę trafna. Wiesz, to mega ważne, bo jak wszystko jest dobrze zorganizowane na stanowisku pracy, to cały proces idzie sprawniej. Jak masz części poukładane po kolei, to szybciej je znajdziesz i mniejsze ryzyko, że coś sknocisz. Na przykład, w produkcji często korzysta się z metod takich jak 'Just-in-Time', które pomagają w efektywnym dostępie do elementów, kiedy akurat ich potrzebujesz. Warto też pamiętać o dobrych praktykach jak 5S, które podkreślają jak ważny jest porządek. Jeśli narzędzia i części są ustawione według kolejności montażu, to nie tylko przyspiesza pracę, ale i sprawia, że praca jest bezpieczniejsza. Dobrze jest też używać wizualnych oznaczeń i instrukcji w pobliżu, bo to naprawdę pomaga utrzymać całość w porządku i zapewnia jakość oraz terminowość.

Pytanie 4

Na ilustracji przedstawiono sprzęgło

Ilustracja do pytania
A. pierścieniowe.
B. jednokierunkowe.
C. elastyczne palcowe.
D. elastyczne kłowe.
Wybór odpowiedzi związanych z innymi typami sprzęgieł wskazuje na pewne nieporozumienia dotyczące ich konstrukcji oraz funkcji. Sprzęgło elastyczne palcowe, które mogło być mylnie odczytane jako poprawna odpowiedź, różni się od kłowego tym, że nie wykorzystuje elementów w kształcie kłów, lecz palców, które nie są tak efektywne w kompensacji przemieszczeń. W porównaniu do elastycznych kłowych, sprzęgła palcowe mają ograniczone możliwości przenoszenia momentu obrotowego w sytuacjach wymagających dużych przemieszczeń. Podobnie, sprzęgła pierścieniowe, które są zazwyczaj stosowane w aplikacjach wymagających stałego połączenia, nie mają charakterystyki elastyczności potrzebnej do amortyzacji drgań i kompensacji przemieszczeń. Z kolei sprzęgła jednokierunkowe, które również byłyby niewłaściwym wyborem, nie pozwalają na swobodne przenoszenie momentu obrotowego w obie strony, co w wielu aplikacjach przemysłowych może prowadzić do nieefektywności i awarii systemu. Typowym błędem w zrozumieniu tych mechanizmów jest myślenie, że wszystkie sprzęgła elastyczne mają podobne funkcje, podczas gdy każdy typ ma swoje unikalne właściwości i zastosowania. Dlatego kluczowe jest zrozumienie specyfiki i przeznaczenia danego typu sprzęgła w kontekście wymagań danej aplikacji, co pozwala na efektywne i bezpieczne projektowanie systemów mechanicznych.

Pytanie 5

Jaki czujnik jest stosowany do pomiaru prędkości obrotowej wału silnika?

A. Mostek tensometryczny
B. Potencjometr obrotowy
C. Prądnica tachometryczna
D. Selsyn trygonometryczny
No więc, selesyn trygonometryczny, mostek tensometryczny i potencjometr obrotowy to elementy, które nie są do pomiaru prędkości obrotowej wału silnika. Selesyn trygonometryczny jest używany do przenoszenia informacji o położeniu, ale nie do pomiaru prędkości. Z kolei mostek tensometryczny służy do mierzenia odkształceń, co sprawia, że lepiej się nadaje do analizy sił czy obciążeń, a nie prędkości obrotowej. Potencjometr obrotowy znowu mierzy kąt obrotu, generując napięcie proporcjonalne do tego kąta, ale nie daje nam informacji o tym, jak szybko ten kąt się zmienia. Często w kontekście pomiaru prędkości pojawiają się błędne założenia co do tych urządzeń, co może prowadzić do kiepskiego projektowania systemów pomiarowych. Jak wybierasz czujniki do analizy prędkości obrotowej, ważne jest, żeby rozumieć, że prądnica tachometryczna daje najbardziej precyzyjne dane dzięki swojej konstrukcji i zasadzie działania, co czyni ją standardem w branży.

Pytanie 6

Silnik elektryczny generuje hałas z powodu kontaktu wentylatora z osłoną wentylacyjną. Aby obniżyć poziom hałasu, należy

A. wyprostować skrzywiony wentylator lub osłonę
B. wycentrować wirnik w stojanie
C. wymienić łożyska silnika
D. dokręcić śruby mocujące osłonę wentylatora
Wymiana łożysk silnika, wycentrowanie wirnika w stojanie i dokręcanie śrub mocujących osłonę wentylatora to pomysły, które mogą wydawać się OK, ale nie rozwiążą problemu ocierania się wentylatora o osłonę. Zazwyczaj wymiana łożysk jest potrzebna, jak zaczynają się inne objawy, jak wibracje, a niekoniecznie hałas z ocierania. Wycentrowanie wirnika też jest istotne, ale jeżeli wentylator już jest uszkodzony, to centracja to tylko plasterek na ranę. Dokręcanie śrub nie pomoże, jeśli wentylator jest krzywy, bo osłona nie zmieni jego pozycji. Ignorowanie rzeczywistych przyczyn hałasu, jak uszkodzenia, może prowadzić do większych problemów w przyszłości, o czym mówią zasady dotyczące konserwacji urządzeń. Dobrze jest robić regularne przeglądy i podejść do sprawy analitycznie, żeby skutecznie rozwiązywać problemy z hałasem w elektrycznych silnikach.

Pytanie 7

Uzwojenia silnika powinny być połączone w trójkąt. Który rysunek przedstawia tabliczkę zaciskową silnika z poprawnie połączonymi uzwojeniami?

Ilustracja do pytania
A. B.
B. C.
C. A.
D. D.
Rysunek C przedstawia poprawne połączenie uzwojeń silnika w konfiguracji trójkątnej, co jest niezbędne dla prawidłowego działania silnika trójfazowego. W tym układzie każde uzwojenie jest połączone z dwoma pozostałymi, co tworzy zamknięty obwód. To połączenie umożliwia równomierne rozłożenie obciążenia, co jest kluczowe dla efektywności pracy silnika oraz minimalizacji strat energii. Przykładowo, silniki połączone w trójkąt mogą pracować z większą mocą, co jest szczególnie istotne w zastosowaniach przemysłowych, gdzie wydajność i niezawodność są priorytetami. Dobre praktyki w zakresie instalacji silników elektrycznych wskazują na konieczność zachowania odpowiednich norm, takich jak IEC 60034, które regulują kwestie związane z projektowaniem i eksploatacją maszyn elektrycznych. Wiedza o połączeniach uzwojeń jest kluczowa dla techników i inżynierów, aby mogli optymalizować systemy napędowe, co prowadzi do zwiększenia efektywności energetycznej oraz redukcji kosztów operacyjnych.

Pytanie 8

Na rysunku przedstawiono

Ilustracja do pytania
A. układ antyprzepięciowy.
B. wyłącznik silnikowy.
C. zabezpieczenie przeciążeniowe.
D. przekaźnik czasowy.
Przykładem prawidłowej odpowiedzi jest przekaźnik czasowy, którego główną funkcją jest zarządzanie czasem w procesach automatyki. Urządzenie to umożliwia opóźnienie włączenia lub wyłączenia obwodów elektrycznych, co jest kluczowe w wielu aplikacjach przemysłowych. Przekaźniki czasowe znajdują zastosowanie w automatyzacji procesów, takich jak zarządzanie oświetleniem, wentylacją czy włączanie urządzeń w odpowiednich przedziałach czasowych. Dzięki regulowanym pokrętłom do ustawiania czasu, operatorzy mogą dostosować czas działania urządzenia do specyficznych potrzeb systemu. Standardy branżowe, takie jak IEC 60947-5-1, definiują wymagania dla takich urządzeń, co zapewnia ich niezawodność i bezpieczeństwo użytkowania. Znajomość i umiejętność prawidłowego używania przekaźników czasowych jest fundamentalna w projektowaniu układów automatyki, co pozwala na efektywne wykorzystanie zasobów i redukcję kosztów operacyjnych.

Pytanie 9

Które oprogramowanie należy zainstalować do tworzenia wizualizacji procesu przedstawionego na rysunku?

Ilustracja do pytania
A. CAM
B. SCADA
C. CAQ
D. CAD
Wybór CAM, CAD lub CAQ jako odpowiedzi na postawione pytanie wiąże się z nieporozumieniem co do funkcji i przeznaczenia tych systemów. CAM, czyli Computer-Aided Manufacturing, koncentruje się na procesach produkcyjnych, wspierając automatyzację wytwarzania, ale nie zajmuje się monitorowaniem ani wizualizowaniem procesów przemysłowych w czasie rzeczywistym. CAD, z kolei, to narzędzie do projektowania wspomagane komputerowo, które umożliwia tworzenie szczegółowych rysunków technicznych i modeli 3D, ale nie służy do zbierania danych z procesów ani ich analizy w kontekście operacyjnym. CAQ, czyli Computer-Aided Quality, wspiera procesy zapewnienia jakości, jednak nie ma zastosowania w kontekście wizualizacji procesów technologicznych. Wybór tych odpowiedzi może wynikać z mylnego założenia, że wszystkie programy komputerowe związane z przemysłem są równoważne. Kluczowe jest zrozumienie, że SCADA jest jedynym narzędziem skoncentrowanym na monitorowaniu i kontrolowaniu procesów w czasie rzeczywistym. Aby skutecznie zarządzać procesami przemysłowymi, niezbędne jest stosowanie dedykowanych narzędzi, które zapewniają odpowiednie funkcjonalności, zgodne z wymaganiami nowoczesnych systemów automatyki.

Pytanie 10

Demontaż połączenia kołkowego wykonuje się narzędziem przedstawionym na rysunku

Ilustracja do pytania
A. A.
B. D.
C. C.
D. B.
Wybór innego narzędzia niż przecinak wskazuje na brak zrozumienia procesu demontażu połączeń kołkowych. Narzędzia oznaczone jako A, B i C nie są przeznaczone do tego celu, co może prowadzić do nieefektywnego lub wręcz niebezpiecznego działania. Na przykład, zastosowanie narzędzia, które nie jest przystosowane do wybijania kołków, może skutkować uszkodzeniem zarówno kołka, jak i elementów, z którymi jest on połączony. Pracując z niewłaściwymi narzędziami, można również narazić się na kontuzje, zwłaszcza w sytuacjach, gdy wymagana jest precyzja. Warto zaznaczyć, że każdy typ połączenia kołkowego może wymagać innego podejścia i narzędzia, dlatego tak ważne jest, aby przed rozpoczęciem pracy dokładnie zapoznać się z wymaganiami technicznymi. Dobrze dobrana metoda demontażu, w tym użycie przecinaka, nie tylko ułatwia proces, ale również minimalizuje ryzyko uszkodzeń i zapewnia bezpieczeństwo pracy. Nieprawidłowe myślenie polegające na doborze narzędzia na zasadzie intuicji lub dostępności może prowadzić do nieefektywnych rezultatów, co w branżach technicznych jest szczególnie niepożądane.

Pytanie 11

Który przyrząd pomiarowy przedstawiony został na rysunku?

Ilustracja do pytania
A. Mikrometr zewnętrzny.
B. Suwmiarka cyfrowa.
C. Średnicówka mikrometryczna.
D. Głębokościomierz mikrometryczny.
Rozumienie funkcji i budowy przyrządów pomiarowych jest bardzo ważne, by uzyskać precyzyjne wyniki. Suwmiarka cyfrowa jest chyba najczęściej używana do pomiarów zewnętrznych, wewnętrznych i głębokości, ale jej dokładność w mierzeniu średnicy wewnętrznej nie jest tak dobra jak w przypadku średnicówki mikrometrycznej. Mikrometr zewnętrzny, mimo że też jest przydatny, głównie mierzy zewnętrzne wymiary i nie nadaje się do precyzyjnego pomiaru średnic. Głębokościomierz mikrometryczny służy do mierzenia głębokości otworów i nie da się nim zmierzyć średnicy. To dość powszechny błąd myślowy, bo niektóre przyrządy wydają się mieć podobne zastosowanie, ale w rzeczywistości różnią się w zakresie precyzji i przeznaczenia. Kluczowe jest zrozumienie, że każdy przyrząd ma swoje specyficzne zastosowania, a dobór odpowiedniego narzędzia jest niezbędny, żeby osiągnąć oczekiwane wyniki. Jeśli źle przypiszemy funkcje do przyrządów, to łatwo o błędy, co może prowadzić do produkcji wadliwych produktów i niezgodności z normami jakości, które są podstawą większości procesów inżynieryjnych.

Pytanie 12

Jaką czynność należy zrealizować w pierwszej kolejności, instalując oprogramowanie do programowania sterowników PLC?

A. Zweryfikować minimalne wymagania, które musi spełniać komputer, na którym oprogramowanie będzie instalowane
B. Przenieść z nośnika instalacyjnego wersję instalacyjną oprogramowania na dysk twardy komputera
C. Usunąć poprzednią wersję oprogramowania, które ma być zainstalowane
D. Zaktualizować system operacyjny komputera, na którym zainstalowane będzie oprogramowanie
Sprawdzenie minimalnych wymagań systemowych przed instalacją oprogramowania do programowania sterowników PLC jest kluczowym krokiem, który zapewnia prawidłowe działanie aplikacji. Minimalne wymagania mogą obejmować parametry takie jak procesor, pamięć RAM, dostępna przestrzeń na dysku oraz wersję systemu operacyjnego. Ignorowanie tych wymagań może prowadzić do problemów z wydajnością, a nawet do niemożności uruchomienia oprogramowania. Na przykład, jeśli oprogramowanie wymaga 4 GB RAM, a komputer ma tylko 2 GB, może to spowodować znaczące opóźnienia lub awarie. W branży automatyki standardem jest zawsze upewnienie się, że sprzęt spełnia wymagania, co pozwala na efektywne wykorzystanie oprogramowania. Dodatkowo, niektóre z oprogramowań mogą mieć specyficzne wymagania dotyczące kart graficznych lub złączy, co również warto zweryfikować przed instalacją. Taka praktyka nie tylko minimalizuje ryzyko problemów technicznych, ale również optymalizuje czas potrzebny na konfigurację i uruchomienie systemu.

Pytanie 13

Który z wymienionych elementów zabezpiecza łożysko przed wysunięciem z obudowy urządzenia przedstawionego na rysunku?

Ilustracja do pytania
A. Nakrętka koronowa.
B. Podkładka dystansująca.
C. Zawleczka zabezpieczająca.
D. Pierścień Segera.
Zawleczka zabezpieczająca, nakrętka koronowa i podkładka dystansująca to ciekawe elementy w mechanice, ale nie są najlepsze do trzymania łożysk na miejscu. Zawleczki najbardziej blokują ruch innych części, ale nie trzymają łożysk tak efektywnie. Nakrętki koronowe też są do mocowania, ale ich zadaniem nie jest ochrona łożysk. A podkładki dystansujące to coś, co utrzymuje odległości między elementami, co jest ważne, ale nie mają one właściwości do osadzania łożysk. Często ludzie zapominają, że każdy z tych elementów ma swoje konkretne funkcje, więc mogą się pomylić w wyborze. Przy wyborze komponentów w mechanice warto zwracać uwagę na ich specyfikację i przeznaczenie, a nie tylko na pierwsze wrażenie.

Pytanie 14

Na którym rysunku przedstawiono triak?

Ilustracja do pytania
A. C.
B. B.
C. A.
D. D.
Wybór odpowiedzi A, C lub D wskazuje na pewne nieporozumienia dotyczące charakterystyki różnych elementów elektronicznych. Odpowiedź A, sugerująca przekaźnik, odnosi się do komponentu, który działa na zasadzie mechanicznego przełączania obwodu elektrycznego. Przekaźniki, w przeciwieństwie do triaków, są bardziej odpowiednie do obwodów stałoprądowych. Ich zastosowanie w systemach prądu przemiennego jest ograniczone, zwłaszcza gdy chodzi o szybkie przełączanie, co jest możliwe dzięki triakom. Odpowiedź C, dioda, to komponent, który pozwala na przepływ prądu tylko w jednym kierunku i nie może być używana do regulacji mocy w obwodzie AC. Diody są istotne w prostownikach, ale nie spełniają funkcji triaków. Odpowiedź D, tranzystor, chociaż również jest elementem półprzewodnikowym, ma inne zastosowanie. Tranzystory są głównie wykorzystywane do wzmacniania sygnałów lub jako przełączniki w obwodach stałoprądowych. Wybór nieprawidłowej odpowiedzi może wynikać z mylnych skojarzeń między tymi komponentami a triakami. Zrozumienie różnic między tymi elementami oraz ich specyficznych funkcji jest kluczowe, aby właściwie wykorzystać je w różnych zastosowaniach elektronicznych. W kontekście inżynierii i elektroniki, znajomość roli i działania tych komponentów jest niezbędna do efektywnego projektowania i analizy obwodów elektronicznych.

Pytanie 15

Który miernik należy zastosować w układzie, którego schemat przedstawiono na rysunku, w celu pomiaru napięcia metodą bezpośrednią?

Ilustracja do pytania
A. Watomierz.
B. Woltomierz.
C. Omomierz.
D. Amperomierz.
Omomierz, watomierz i amperomierz to urządzenia pomiarowe, które pełnią różne funkcje, których zastosowanie w kontekście pomiaru napięcia jest niewłaściwe. Omomierz służy do pomiaru rezystancji, co jest zupełnie innym rodzajem pomiaru niż pomiar napięcia. Użytkownicy mogą błędnie myśleć, że pomiar rezystancji może dostarczyć informacji o napięciu w obwodzie, co jest nieprawidłowe. Z kolei watomierz, który mierzy moc elektryczną, również nie odpowiada na pytanie o pomiar napięcia. Mimo że moc jest funkcją napięcia i natężenia prądu, nie jest to narzędzie do bezpośredniego pomiaru napięcia. Amperomierz, z drugiej strony, mierzy natężenie prądu w obwodzie, co także nie odpowiada na pytanie o napięcie. Często pojawia się mylne przekonanie, że jedno narzędzie pomiarowe może zastąpić inne, jednak każdy przyrząd pomiarowy jest zaprojektowany do specyficznych pomiarów, które odpowiadają jego zasadzie działania. Właściwe zrozumienie funkcji tych urządzeń jest kluczowe dla prawidłowego przeprowadzania pomiarów oraz interpretacji wyników, co ma fundamentalne znaczenie w szerokim zakresie dziedzin inżynieryjnych i technologicznych.

Pytanie 16

Którego narzędzia należy użyć do demontażu bezpiecznika z urządzenia, którego fragment przedstawiono na rysunku?

Ilustracja do pytania
A. Pęsety.
B. Odsysacza.
C. Klucza imbusowego.
D. Lutownicy transformatorowej.
Prawidłowa odpowiedź to pęseta, ponieważ jest to narzędzie zaprojektowane do pracy z małymi i delikatnymi komponentami elektronicznymi, takimi jak bezpieczniki. Umożliwia precyzyjne chwycenie i wyciągnięcie elementu bez ryzyka uszkodzenia okolicznych części urządzenia. Przykładem zastosowania pęsety jest demontaż bezpiecznika w momencie, gdy konieczna jest jego wymiana z powodu przepalenia. Pęsety są szeroko stosowane w elektronice, zwłaszcza na etapie montażu i demontażu obwodów drukowanych, gdzie przestrzeń robocza jest ograniczona, a elementy są małe. Zgodnie ze standardami inżynieryjnymi, użycie odpowiednich narzędzi, takich jak pęsety, zwiększa dokładność i bezpieczeństwo operacji. Ponadto, pęseta pozwala na uniknięcie kontaktu palców z innymi elementami wrażliwymi na uszkodzenia, co jest istotne w kontekście zachowania integralności urządzenia. Warto też dodać, że stosowanie pęsety jest zgodne z najlepszymi praktykami w zakresie serwisowania urządzeń elektronicznych, co podkreśla znaczenie znajomości odpowiednich narzędzi w tej dziedzinie.

Pytanie 17

Przyłącze T zaworu hydraulicznego przedstawionego na rysunku należy podłączyć do

Ilustracja do pytania
A. zbiornika oleju.
B. pompy.
C. siłownika jednostronnego działania.
D. siłownika dwustronnego działania.
Wybór miejsca do podłączenia przyłącza T w zaworze hydraulicznym to sprawa, która może wprowadzić w niezłe kłopoty. Kiedy mówimy o siłownikach jednostronnego działania, to pamiętaj, że działają one tylko w jednym kierunku. Ich cykl roboczy wymaga, żeby olej wracał do zbiornika, a jak podłączysz przyłącze T do takiego siłownika, może dojść do zablokowania obiegu oleju. No i wtedy robi się niebezpiecznie, bo ciśnienie idzie w górę i system może nie wytrzymać. Jeśli chodzi o pompę, to też nie jest dobre miejsce na odprowadzanie oleju – ona ma za zadanie zasysać go z zbiornika. Podłączenie T do pompy? O nie, to może zaszkodzić całym systemowi. A siłownik dwustronnego działania, choć ma ruch w dwóch kierunkach, również potrzebuje odpowiedniego odprowadzania oleju, więc jego podłączenie do T też nie jest najlepszym pomysłem. Często takie błędy wynikają z braku wiedzy na temat działania hydrauliki, dlatego warto się z tym zapoznać, żeby uniknąć takich problemów.

Pytanie 18

Jakie napięcie wyjściowe dostarcza przetwornik ciśnienia, jeśli jego zakres napięcia wynosi od 0 V do 10 V dla ciśnienia w przedziale 0 kPa ... 600 kPa, a ciśnienie wynosi 450 kPa, przy założeniu liniowej charakterystyki przetwornika?

A. 3,0 V
B. 4,5 V
C. 7,5 V
D. 10,0 V
Odpowiedź 7,5 V jest prawidłowa, ponieważ przetwornik ciśnienia ma liniową charakterystykę wyjścia w zakresie od 0 V do 10 V dla ciśnienia od 0 kPa do 600 kPa. Aby obliczyć napięcie wyjściowe dla ciśnienia 450 kPa, należy zastosować proporcję. Wzór na obliczenie napięcia wyjściowego (V_out) w zależności od ciśnienia (P) jest następujący: V_out = (P / 600 kPa) * 10 V. Podstawiając wartość ciśnienia 450 kPa, otrzymujemy V_out = (450 / 600) * 10 V = 7,5 V. Tego typu przetworniki są powszechnie stosowane w systemach automatyki przemysłowej, gdzie ważne jest monitorowanie ciśnienia, na przykład w układach hydraulicznych czy pneumatycznych. W praktyce, wiedza ta jest niezbędna do prawidłowej konfiguracji systemów pomiarowych i zapewnienia ich właściwego działania. Przestrzeganie standardów branżowych, takich jak ISO 9001, podkreśla znaczenie precyzyjnych pomiarów ciśnienia w celu zapewnienia jakości i bezpieczeństwa procesów przemysłowych.

Pytanie 19

Na którym rysunku przedstawiono symbol zaworu trójdrogowego dwupołożeniowego 3/2 normalnie otwartego.

Ilustracja do pytania
A. D.
B. B.
C. A.
D. C.
Zawór trójdrogowy dwupołożeniowy 3/2 normalnie otwarty jest kluczowym elementem w automatyce pneumatycznej i hydraulicznej. W odróżnieniu od zaworów normalnie zamkniętych, zawór ten umożliwia przepływ medium w stanie spoczynku, co jest istotne w wielu aplikacjach. Na rysunku D przedstawiono schemat, który jednoznacznie ukazuje, że w pozycji spoczynkowej medium może swobodnie przepływać z portu 1 do portu 2. W praktyce, stosowanie zaworów normalnie otwartych jest powszechne w systemach, gdzie zachowanie funkcjonalności w przypadku braku zasilania jest kluczowe, na przykład w układach awaryjnych. Warto również zauważyć, że dobór odpowiednich zaworów powinien być zgodny z normami EN ISO 4414, które regulują zasady bezpieczeństwa w instalacjach pneumatycznych. Dodatkowo, w kontekście projektowania układów sterowania, zrozumienie działania zaworów trójdrogowych 3/2 NO jest niezbędne dla efektywnego tworzenia schematów elektrycznych oraz pneumatycznych, co zwiększa niezawodność i bezpieczeństwo systemów automatyki.

Pytanie 20

Jakim skrótem literowym określa się język drabinkowy?

A. IL
B. LD
C. STL
D. FBD
Niestety, wybrane przez Ciebie odpowiedzi są błędne. Każdy z tych skrótów odnosi się do innego języka programowania w automatyce. FBD, czyli Function Block Diagram, to taki graficzny język, który pozwala na łączenie bloków funkcyjnych w łatwy sposób. Różni się on od LD, bo bardziej nadaje się do złożonych procesów, a nie do prostych układów. Z kolei IL, czyli Instruction List, to już bardziej techniczny język, przypominający kod maszynowy. Może być mylący dla tych, którzy wolą bardziej wizualne podejście. STL, czyli Structured Text, to tekstowy język, który jest bardziej podobny do typowych języków programowania, ale dla kogoś, kto nie ma doświadczenia w programowaniu tekstowym, może być dość trudny. Przez pomyłkę w wyborze skrótów możesz popełnić błąd przy projektowaniu systemu. Ważne, żeby zrozumieć, że te języki mają swoje specyficzne zastosowania i trzeba je dobierać odpowiednio do wymagań projektu.

Pytanie 21

Który z zaworów pozwala na przepływ czynnika roboczego tylko w jednym kierunku?

A. Zwrotny
B. Rozdzielający
C. Przelotowy
D. Odcinający
Zawór zwrotny jest kluczowym elementem w systemach hydraulicznych i pneumatycznych, który umożliwia przepływ czynnika roboczego tylko w jednym, określonym kierunku. Działa on na zasadzie automatycznego zamykania, gdy ciśnienie w przeciwnym kierunku przekracza określony poziom. Dzięki temu zapobiega to cofaniu się płynów, co jest szczególnie ważne w układach, gdzie nieprzerwany przepływ w jednym kierunku jest krytyczny dla działania systemu. Przykładem zastosowania zaworu zwrotnego mogą być systemy hydrauliczne w maszynach budowlanych, gdzie konieczne jest, aby olej hydrauliczny nie wracał do zbiornika, gdy siłownik jest pod obciążeniem. Zawory zwrotne są również stosowane w instalacjach wodociągowych, aby zapobiegać cofaniu się wody, co mogłoby prowadzić do zanieczyszczenia systemu. W praktyce, dobór odpowiedniego zaworu zwrotnego powinien być zgodny z normą PN-EN ISO 4414, która definiuje zasady użytkowania urządzeń pneumatycznych, oraz z normą PN-EN 982, dotyczącą systemów hydraulicznych. Zrozumienie działania zaworów zwrotnych i ich zastosowania jest kluczowe dla inżynierów i techników pracujących w dziedzinach hydrauliki i pneumatyki.

Pytanie 22

Który z poniższych czujników jest elementem serwomechanizmu sterującego ruchem ramienia robota?

A. Enkoder
B. Pirometr
C. Przepływomierz powietrza
D. Mostek tensometryczny
Wybór pirometru, mostka tensometrycznego lub przepływomierza powietrza jako elementów serwomechanizmu ramienia robota opiera się na niewłaściwym zrozumieniu funkcji i zastosowania tych urządzeń. Pirometr jest instrumentem służącym do pomiaru temperatury obiektów na podstawie promieniowania cieplnego, co nie ma związku z kontrolowaniem ruchu mechanicznego. W kontekście robotyki pirometr mógłby być użyty jedynie do monitorowania temperatury elementów, ale nie wpływa na precyzję ruchu ramienia robota. Mostek tensometryczny jest urządzeniem stosowanym do pomiaru odkształceń, czyli zmiany kształtu materiału pod wpływem obciążenia. Choć mógłby teoretycznie wspierać pomiar sił działających na ramię robota, nie bezpośrednio kontroluje jego ruchów. Z kolei przepływomierz powietrza jest używany do mierzenia ilości przepływającego powietrza, co ma zastosowanie głównie w systemach wentylacyjnych lub hydraulicznych, ale nie w kontekście precyzyjnego sterowania ruchem w systemach serwomechanicznych. Powszechnym błędem w analizie zastosowań jest utożsamianie różnych rodzajów czujników i urządzeń pomiarowych z ich funkcjami bez zrozumienia, jakie właściwości są rzeczywiście istotne dla danego zastosowania. W robotyce, kluczowym aspektem jest nie tylko pomiar, ale także efektywne przetwarzanie i wykorzystanie tych danych do precyzyjnego sterowania, co czyni enkodery niezastąpionym elementem w systemach serwomechanicznych.

Pytanie 23

W jaki sposób należy podłączyć przewody do złącz przedstawionych na fotografii?

Ilustracja do pytania
A. Za pomocą klejenia.
B. Za pomocą lutowania.
C. Wtykowo bez użycia narzędzi.
D. Poprzez skręcenie kluczem oczkowym.
Dobra robota, odpowiedź "Wtykowo bez użycia narzędzi" jest właściwa. Złącza, które widzisz na zdjęciu, są śrubowe, a to oznacza, że możesz podłączyć przewody w dość prosty sposób, po prostu je wsuwając. Włożenie odizolowanego końca przewodu do otworu w złączu i przykręcenie śruby nie wymaga żadnych narzędzi, co jest sporym ułatwieniem. W praktyce dzięki temu łatwiej wymienia się przewody i robi konserwację, bez obaw o uszkodzenie złącza. Pamiętaj tylko, że ważne jest, żeby zachować odpowiednią kolejność i sposób podłączania – solidne połączenie to podstawa, żeby nie było problemów z przewodnością. Połączenia wtykowe są też estetyczne i zwiększają bezpieczeństwo, dlatego są tak popularne w różnych zastosowaniach.

Pytanie 24

W barach są skalowane

A. przepływomierze
B. wiskozymetry
C. manometry
D. prędkościomierze
Manometry to urządzenia pomiarowe, które służą do określania ciśnienia w różnych systemach. W kontekście barów, manometry są szczególnie ważne w kontrolowaniu ciśnienia gazów i cieczy, co jest kluczowe w wielu procesach przemysłowych oraz w instalacjach hydraulicznych i pneumatycznych. Przykładowo, w przemyśle gazowym manometry umożliwiają monitorowanie ciśnienia w zbiornikach, co jest niezbędne dla zapewnienia bezpieczeństwa i efektywności systemu. W praktyce, manometry są również używane w medycynie, na przykład do pomiaru ciśnienia krwi, co ilustruje ich wszechstronność. Standardy branżowe, takie jak ISO 5171, określają parametry, które manometry muszą spełniać, aby zapewnić wiarygodność i dokładność pomiarów. Ponadto, manometry różnią się rodzajem zastosowanego medium, mogą być stosowane w warunkach wysokotemperaturowych lub w środowiskach agresywnych chemicznie, co dodatkowo podkreśla ich znaczenie w szerokiej gamie aplikacji.

Pytanie 25

Do spawania metali za pomocą łuku elektrycznego wykorzystuje się zasilacz o

A. niskim napięciu i małym prądzie
B. niskim napięciu i dużym prądzie
C. wysokim napięciu i dużym prądzie
D. wysokim napięciu i małym prądzie
Rozumienie, jakie parametry prądu są właściwe do spawania metali, to mega ważna sprawa, jeśli chcesz dobrze wykonywać swoją robotę. Odpowiedzi, które sugerują niskie napięcie i mały prąd, są zwykle błędne, bo mały prąd po prostu nie da rady stopić materiału. Efekt? Możesz mieć niepełne spoiny i kłopoty z całą konstrukcją. A z wysokim napięciem i dużym prądem to już w ogóle trzeba uważać, bo można przegrzać materiał, co wprowadzi deformacje i pogorszy właściwości mechaniczne. Czasem są też problemy przy wysokim napięciu i małym prądzie, bo nie uzyskasz wystarczającej temperatury do skutecznego spawania. Niestety, dużo ludzi myśli, że wyższe napięcie zawsze jest lepsze, ale tak nie jest. Różne metody spawania wymagają różnych ustawień, które powinny być dostosowane do konkretnych warunków i materiałów. To jest zgodne z najlepszymi praktykami w branży, takimi jak normy AWS czy ISO. Dobrze dobrane parametry prądowe są kluczem do osiągnięcia jakości spoiny i jej długowieczności, co w przemyśle ma ogromne znaczenie.

Pytanie 26

Jakie czynności nie są wykonywane w trakcie dopasowywania komponentów podczas montażu systemów mechatronicznych?

A. Docieranie
B. Spawanie
C. Skrobanie
D. Rozwiercanie
Ważne jest, aby zrozumieć, że procesy takie jak skrobanie, rozwiercanie i docieranie są istotnymi operacjami w zakresie dopasowywania elementów w montażu urządzeń mechatronicznych. Skrobanie jest techniką, która polega na ręcznym lub mechanicznym usuwaniu materiału z powierzchni elementów w celu uzyskania precyzyjnego dopasowania. Często stosowane jest w przypadku, gdy tolerancje montażowe są krytyczne, a standardowe procesy obróbcze nie zapewniają wymaganej dokładności. Rozwiercanie z kolei polega na powiększaniu średnicy otworów, co również umożliwia lepsze dopasowanie elementów, zwłaszcza w przypadku osadzania tulei czy łożysk. Docieranie to proces, który ma na celu wygładzenie powierzchni i osiągnięcie wysokiej precyzji wymiarowej, co jest szczególnie istotne w kontekście współpracy ruchomych elementów w maszynach. Nieprawidłowe zrozumienie tych procesów może prowadzić do błędnych wniosków. Na przykład, można błędnie założyć, że spawanie, jako proces łączenia, także wpływa na dopasowanie, jednak w rzeczywistości jest to operacja, która skutkuje zmianą stanu materiałów i ich lokalizacją, co może wprowadzać błędy w precyzyjnym montażu. Wiedza o tym, jakie operacje są wykorzystywane do dopasowywania w mechatronice, jest kluczowa dla projektowania niezawodnych i funkcjonalnych systemów.

Pytanie 27

Element oznaczony cyfrą 1

Ilustracja do pytania
A. ogranicza wartość natężenia prądu w układzie.
B. likwiduje zjawisko stroboskopowe.
C. skraca czas zapłonu świetlówki.
D. poprawia współczynnik mocy świetlówki.
Odpowiedź "ogranicza wartość natężenia prądu w układzie" jest prawidłowa, ponieważ element oznaczony cyfrą 1 to rezystor, który spełnia kluczową rolę w obwodach elektrycznych. Rezystor wprowadza opór, co wpływa na natężenie prądu zgodnie z prawem Ohma, które opisuje zależność między napięciem, prądem i oporem: I = U/R. W praktyce oznacza to, że przy stałym napięciu, zwiększenie wartości rezystora prowadzi do zmniejszenia natężenia prądu. Dzięki temu, stosowanie rezystorów pozwala na precyzyjne zarządzanie prądami w obwodach, co jest kluczowe w projektowaniu układów elektronicznych oraz w aplikacjach, takich jak zasilacze, układy cyfrowe czy analogowe. W branży stosuje się różne typy rezystorów, w tym stałe, zmienne, a także specjalistyczne, na przykład rezystory o dużej mocy, które muszą spełniać normy dotyczące odprowadzania ciepła. Zrozumienie funkcji rezystorów jest niezbędne do projektowania bezpiecznych i efektywnych układów elektrycznych.

Pytanie 28

Zespół elementów przedstawiony na rysunku pełni funkcję

Ilustracja do pytania
A. filtra.
B. powielacza napięcia.
C. stabilizatora napięcia.
D. prostownika.
Prostowniki są kluczowymi elementami w układach elektronicznych, które przekształcają prąd przemienny (AC) na prąd stały (DC). W przedstawionym schemacie mamy do czynienia z mostkiem prostowniczym, który składa się z czterech diod, co pozwala na wyprostowanie obu połówek sygnału AC. Dzięki temu uzyskujemy stabilny prąd stały, który może być użyty do zasilania różnych urządzeń elektronicznych. Prostowniki są wykorzystywane w zasilaczach, ładowarkach oraz w systemach zasilania energią odnawialną, takich jak panele słoneczne. Dobrze zaprojektowane układy prostownicze uwzględniają także aspekty związane z filtracją, aby zminimalizować tętnienia w prądzie stałym, co jest zgodne z najlepszymi praktykami w dziedzinie inżynierii elektrycznej. Prostowniki są fundamentalnym elementem w konwersji energii elektrycznej i ich zrozumienie jest niezbędne dla każdego inżyniera elektryka.

Pytanie 29

Określ liczbę wejść i wyjść binarnych przedstawionego na rysunku sterownika PLC zastosowanego w urządzeniu mechatronicznym.

Ilustracja do pytania
A. 5 wejść i 3 wyjścia.
B. 5 wejść i 4 wyjścia.
C. 6 wejść i 3 wyjścia.
D. 6 wejść i 4 wyjścia.
Poprawna odpowiedź to 6 wejść i 4 wyjścia, co zostało potwierdzone przez analizę zdjęcia sterownika PLC. W kontekście zastosowań przemysłowych, liczba wejść i wyjść binarnych ma kluczowe znaczenie dla efektywności i elastyczności systemu automatyki. W przypadku tego konkretnego sterownika, 6 wejść pozwala na podłączenie różnorodnych czujników, takich jak czujniki temperatury, ciśnienia czy detektory obecności, co zwiększa możliwości zbierania danych o stanie systemu. Z kolei 4 wyjścia mogą być używane do sterowania elementami wykonawczymi, takimi jak siłowniki, zawory czy przełączniki. W praktyce oznacza to, że taki sterownik może obsługiwać bardziej złożone procesy, co jest zgodne z najlepszymi praktykami w inżynierii systemów mechatronicznych. Warto również zauważyć, że zgodnie z normami IEC 61131-3 dotyczącymi programowania PLC, dostosowanie liczby wejść i wyjść do specyfikacji projektu jest kluczowym elementem w procesie projektowania systemów automatyki.

Pytanie 30

Której końcówki należy użyć do montażu elementów za pomocą śrub torx?

Ilustracja do pytania
A. C.
B. A.
C. B.
D. D.
Końcówka B jest właściwym wyborem do montażu elementów za pomocą śrub Torx ze względu na jej specyficzny kształt, który idealnie pasuje do gwiazdkowego profilu śrub Torx. Śruby te są szeroko stosowane w przemyśle motoryzacyjnym, elektronice oraz w meblarstwie, gdzie zapewniają lepsze trzymanie i odporność na poślizg w porównaniu do tradycyjnych śrub z łbem płaskim czy krzyżowym. Użycie odpowiedniej końcówki jest kluczowe dla uniknięcia uszkodzeń zarówno samej śruby, jak i narzędzia. W praktyce, końcówki Torx oznaczone są literami i numerami, co ułatwia ich rozpoznanie. Warto również zwrócić uwagę na to, że stosowanie nieodpowiednich końcówek może prowadzić do uszkodzenia śruby, co w konsekwencji może wymusić wymianę całego elementu. Z tego powodu, w branży inżynieryjnej oraz produkcyjnej, stosowanie właściwych narzędzi jest zgodne z najlepszymi praktykami i normami jakości, co przyczynia się do zwiększenia wydajności oraz bezpieczeństwa pracy.

Pytanie 31

W trakcie użytkowania urządzenia mechatronicznego pracownik doznał porażenia prądem, lecz po chwili odzyskał oddech. Co należy zrobić?

A. rozpocząć wykonywanie sztucznego oddychania i kontynuować przez około 30 minut
B. ustawić go w pozycji bocznej ustalonej
C. położyć go na plecach z uniesionymi nogami
D. przystąpić do pośredniego masażu serca
Ułożenie osoby w pozycji bocznej ustalonej (PBU) jest kluczowym działaniem w przypadku osób po porażeniu prądem, które odzyskały oddech. Ta pozycja ma na celu zapewnienie swobodnego przepływu powietrza oraz zapobiegnięcie zadławieniu się, co jest szczególnie ważne, gdy pacjent jest nieprzytomny lub osłabiony. W PBU pacjent leży na boku, co pozwala na swobodne wydostawanie się wydzielin z jamy ustnej i zapobiega aspiracji. Wytyczne dotyczące pierwszej pomocy, takie jak te zawarte w standardach Europejskiego Ruchu na Rzecz Bezpieczeństwa (ERS), podkreślają znaczenie stosowania PBU w przypadkach utraty przytomności. Przykładem zastosowania jest sytuacja, gdy osoba po porażeniu prądem odzyskuje świadomość, ale nie jest w stanie samodzielnie kontrolować swoich dróg oddechowych. W takich przypadkach, szybka reakcja i odpowiednie ułożenie mogą uratować życie, dlatego znajomość tego działania jest niezbędna dla każdego, kto może być świadkiem takiego zdarzenia.

Pytanie 32

Który przyrząd pozwoli przed podłączeniem silnika trójfazowego do napięcia zasilającego na określenie kierunku obrotów wirnika?

Ilustracja do pytania
A. D.
B. A.
C. B.
D. C.
Falownik, będący przyrządem widocznym na zdjęciu A, jest kluczowym elementem w systemach automatyki, szczególnie w kontekście zarządzania silnikami trójfazowymi. Jego główną funkcją jest regulacja zarówno prędkości, jak i kierunku obrotów silnika poprzez zmianę częstotliwości zasilania. Dzięki zastosowaniu falownika, operator ma możliwość przed podłączeniem silnika do zasilania określić kierunek obrotów wirnika, co jest istotne w kontekście bezpieczeństwa oraz efektywności pracy maszyn. W praktyce, falowniki są powszechnie wykorzystywane w różnorodnych aplikacjach, od prostych systemów napędowych po skomplikowane linie produkcyjne. Zgodnie z normami IEC 61800, falowniki powinny być wykorzystywane z uwzględnieniem odpowiednich parametrów technicznych, co zapewnia ich niezawodność i długotrwałe działanie. W związku z tym, zrozumienie roli falowników oraz umiejętność ich stosowania w praktyce jest niezwykle ważne dla każdego specjalisty zajmującego się automatyką i mechatroniką.

Pytanie 33

Falownik to urządzenie przetwarzające moc, które konwertuje prąd

A. trój fazowy na prąd jednofazowy
B. zmienny o regulowanej częstotliwości na prąd zmienny 50 Hz
C. zmienny o częstotliwości 50 Hz na prąd stały
D. stały na prąd zmienny o regulowanej częstotliwości
Falownik jest kluczowym urządzeniem w systemach zasilania, które przekształca prąd stały (DC) na prąd zmienny (AC) o regulowanej częstotliwości. Ta funkcjonalność jest istotna w wielu zastosowaniach, w tym w napędach silników elektrycznych, gdzie regulacja prędkości i momentu obrotowego jest niezbędna do efektywnego działania. Falowniki są szeroko stosowane w przemyśle, na przykład w systemach HVAC (ogrzewanie, wentylacja, klimatyzacja), które wymagają elastycznej regulacji wydajności. Dzięki zastosowaniu falowników, użytkownicy mogą oszczędzać energię, co jest zgodne z zasadami zrównoważonego rozwoju oraz standardami efektywności energetycznej, takimi jak normy IEC 61800. Współczesne falowniki często wyposażone są w zaawansowane funkcje, takie jak kontrola wektora, co pozwala na osiąganie wysokiej precyzji w regulacji parametrów pracy. W praktyce, przekształcenie DC na AC umożliwia zasilanie różnych urządzeń zasilanych prądem zmiennym, co czyni falowniki niezbędnymi w nowoczesnych systemach automatyki oraz robotyki.

Pytanie 34

Na rysunku przedstawiono połączenie uzwojeń silnika na tabliczce zaciskowej w

Ilustracja do pytania
A. gwiazdę.
B. trójkąt.
C. podwójną gwiazdę.
D. zygzak.
Odpowiedź "trójkąt" jest jak najbardziej na miejscu! To dlatego, że w tej konfiguracji uzwojeń silnika końce łączą się w sposób, który zamyka obwód, co pozwala silnikowi asynchronicznemu działać sprawnie. Na tabliczce zaciskowej mamy oznaczenia U1, V1, W1 dla końców uzwojeń, a U2, V2, W2 to ich początki. Połączenie w trójkąt wygląda tak, że łączymy U1 z W2, V1 z U2 i W1 z V2. Dzięki temu silnik działa na pełnej mocy i obciążenie faz jest równomierne. Warto pamiętać, żeby przy podłączaniu silników stosować się do standardów, takich jak IEC, bo to naprawdę ma znaczenie w różnych aplikacjach. Wiedza o połączeniach silników jest niezbędna, gdy chodzi o instalacje, diagnostykę czy konserwację elektryki.

Pytanie 35

Którą metodę łączenia materiałów przedstawiono na rysunku?

Ilustracja do pytania
A. Lutowanie.
B. Klejenie.
C. Spawanie.
D. Zgrzewanie.
Lutowanie jest procesem, który polega na łączeniu metali z wykorzystaniem dodatkowego materiału, zwanego lutem, o niższej temperaturze topnienia niż metale łączone. Na zdjęciu widoczne są przewody elektryczne, których połączenie zostało wykonane w tej technice. Lutowanie jest powszechnie stosowane w elektronice do łączenia elementów w obwodach elektronicznych, ponieważ zapewnia silne i trwałe połączenia. W praktyce lutowanie wykorzystuje się nie tylko w elektronice, ale również w wielu innych branżach, takich jak motoryzacja czy przemysł maszynowy. Standardy branżowe, takie jak IPC-A-610 dotyczące akceptowalności montażu elektronicznego, podkreślają znaczenie jakości połączeń lutowanych. Właściwe techniki lutowania, takie jak stosowanie odpowiednich lutów i technik grzewczych, są kluczowe dla zapewnienia niezawodności i bezpieczeństwa w aplikacjach. Ponadto, lutowanie może być stosowane do naprawy i konserwacji urządzeń, co czyni go niezwykle wartościową umiejętnością w wielu zawodach technicznych.

Pytanie 36

Jakie jest zastosowanie przedstawionego na ilustracji elementu?

Ilustracja do pytania
A. Zamiana prądu przemiennego na prąd stały.
B. Filtrowanie zakłóceń napięcia sieciowego.
C. Zamiana prądu stałego na prąd przemienny.
D. Obniżanie napięcia sieciowego.
Element przedstawiony na ilustracji to mostek prostowniczy, który odgrywa kluczową rolę w przetwarzaniu energii elektrycznej. Jego głównym zastosowaniem jest zamiana prądu przemiennego (AC) na prąd stały (DC). Mostek prostowniczy składa się z czterech diod ułożonych w taki sposób, aby umożliwić przepływ prądu w jednym kierunku, co prowadzi do wyprostowania sygnału. W praktyce, mostki prostownicze są szeroko stosowane w zasilaczach, które zasilają różne urządzenia elektroniczne. Na przykład, w komputerach czy telewizorach mostki prostownicze są niezbędne do konwersji napięcia z sieci energetycznej na odpowiednie wartości potrzebne do pracy podzespołów. Dzięki zastosowaniu mostka prostowniczego, można osiągnąć stabilne i niezawodne źródło prądu stałego, co jest zgodne z najlepszymi praktykami projektowania zasilaczy. Warto również wspomnieć, że mostki prostownicze wykorzystuje się w systemach fotowoltaicznych, gdzie energia słoneczna, generująca prąd stały, jest przetwarzana na prąd zmienny do użytku w domach lub wprowadzania do sieci energetycznej.

Pytanie 37

Czujnik Pt 100 pokazany na ilustracji służy do pomiaru

A. temperatury powietrza
B. objętości cieczy
C. ciśnienia cieczy
D. napięcia elektrycznego
Podczas analizy dostępnych odpowiedzi warto zauważyć, że czujnik Pt 100 jest nieodpowiedni do pomiaru napięcia elektrycznego, ciśnienia cieczy ani objętości cieczy. Czujnik napięcia opiera się na zupełnie innych zasadach działania, gdzie wykorzystuje się różnice potencjałów elektrycznych, a nie zmiany oporności materiału. W przypadku ciśnienia cieczy, pomiary odbywają się zazwyczaj za pomocą manometrów lub czujników piezorezystancyjnych, które reagują na siłę wywieraną przez ciecz na przetwornik. Z kolei pomiar objętości cieczy zazwyczaj przeprowadza się przy użyciu przepływomierzy, które mierzą ilość cieczy przepływającej przez określony punkt w jednostce czasu, a nie poprzez analizę oporności materiału. Zrozumienie fundamentalnych właściwości czujników pomiarowych jest kluczowe, ponieważ różne typy czujników są projektowane do specyficznych zastosowań, które wymagają unikalnych cech. Wybór nieodpowiednich czujników do danego zadania prowadzi do błędnych wyników pomiarów i może skutkować poważnymi konsekwencjami w systemach, gdzie precyzja jest kluczowa, jak w medycynie czy przemyśle chemicznym. Dlatego istotne jest, aby przy wyborze odpowiednich czujników kierować się ich zasadą działania oraz przeznaczeniem, co jest zgodne z dobrymi praktykami w zakresie inżynierii pomiarowej.

Pytanie 38

Wskaż jednostkę głównego parametru prądnicy tachometrycznej (stałej prądnicy)?

A. V/(obr./min)
B. Hz
C. V
D. obr./min
Odpowiedź V/(obr./min) jest poprawna, ponieważ jednostka ta odzwierciedla zależność napięcia wyjściowego prądnicy tachometrycznej od prędkości obrotowej. Prądnice tachometryczne to urządzenia, które przekształcają ruch obrotowy w sygnał elektryczny, a ich zastosowanie jest kluczowe w systemach automatyki i kontroli procesów. Wartość wyjściowa, mierzona w woltach, jest proporcjonalna do prędkości obrotowej wyrażonej w obrotach na minutę. Dlatego stosunek V/(obr./min) idealnie charakteryzuje tę zależność. Na przykład, w aplikacjach takich jak regulacja prędkości silników elektrycznych, prądnice tachometryczne dostarczają istotnych informacji o prędkości obrotowej, co pozwala na precyzyjne sterowanie i monitorowanie systemów. W branży inżynieryjnej wykorzystuje się standardy, takie jak ISO 9001, które zapewniają jakość i niezawodność urządzeń pomiarowych, w tym prądnic tachometrycznych.

Pytanie 39

Cyfrą 3 na ilustracji oznaczono

Ilustracja do pytania
A. łożysko.
B. uszczelkę.
C. tłok.
D. korpus.
Korpus, oznaczony cyfrą 3 na ilustracji, to kluczowy element wielu urządzeń mechanicznych, pełniący funkcję szkieletu lub obudowy. Stanowi on podstawową strukturę, na której montowane są inne komponenty, takie jak tłoki, łożyska, czy uszczelki. W kontekście inżynierii mechanicznej, korpus jest projektowany tak, aby wytrzymywał różne obciążenia oraz napięcia, co czyni go niezbędnym w zachowaniu integralności całego systemu. Na przykład, w silniku spalinowym korpus jest odpowiedzialny za utrzymanie właściwej geometrii wszystkich wewnętrznych części, co wpływa na efektywność pracy silnika. Korpus jest również kluczowy w kontekście standardów jakości, takich jak ISO 9001, które podkreślają znaczenie solidnej konstrukcji w procesie produkcji. Dobre praktyki inżynieryjne sugerują, że każdy korpus powinien być odpowiednio testowany na wytrzymałość i odporność na czynniki zewnętrzne, co zapewnia długotrwałe i niezawodne działanie urządzenia.

Pytanie 40

Jakie napięcie wyjściowe przetwornika ciśnienia będzie przy wartościach ciśnienia wynoszących 450 kPa, jeśli jego napięcie wyjściowe mieści się w zakresie od 0 V do 10 V dla ciśnienia od 0 kPa do 600 kPa przy liniowej charakterystyce?

A. 10,0 V
B. 3,0 V
C. 7,5 V
D. 4,5 V
Odpowiedź 7,5 V to dobra odpowiedź. Przetwornik ciśnienia działa liniowo, co znaczy, że napięcie na wyjściu rośnie proporcjonalnie do ciśnienia. Zaczynając od 0 kPa do 600 kPa, napięcia wahają się od 0 do 10 V. Możemy łatwo policzyć napięcie dla 450 kPa. To 75% całego zakresu, bo 450 kPa podzielone przez 600 kPa daje 0,75. Jak to pomnożymy przez 10 V, dostajemy 7,5 V. W inżynierii, zwłaszcza w automatyce, takie dokładne pomiary ciśnienia są naprawdę ważne. Liniowe przetworniki są wszędzie tam, gdzie trzeba mieć precyzyjne dane. Oczywiście warto regularnie kalibrować te urządzenia, bo to zapewnia ich prawidłowe działanie i eliminuje błędy w pomiarach.