Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 7 grudnia 2025 21:59
  • Data zakończenia: 7 grudnia 2025 22:09

Egzamin zdany!

Wynik: 20/40 punktów (50,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jaką minimalną przestrzeń należy utrzymać (dla kabla o długości przekraczającej 35 m – nie odnosi się to do ostatnich 15 m) pomiędzy zasilaniem a nieekranowaną skrętką komputerową w konfiguracji bez separatora?

A. 20 mm
B. 100 mm
C. 50 mm
D. 200 mm
Wybór 50 mm, 100 mm lub 20 mm jako minimalnych odległości jest błędny, ponieważ te wartości nie spełniają wymagań dotyczących ochrony przed zakłóceniami elektromagnetycznymi. W praktyce, mniejsze odległości mogą prowadzić do poważnych problemów z jakością sygnału w sieciach komputerowych. Zbyt bliskie umiejscowienie przewodów zasilających i nieekranowanych kabli sieciowych stwarza ryzyko indukcji elektromagnetycznej, co może prowadzić do zakłóceń w przesyłanych danych, zwiększając liczbę błędów transmisji oraz powodując spadki wydajności. Typowym błędem myślowym jest przekonanie, że mniejsze odległości są wystarczające przy odpowiedniej jakości kabli – jednak jakość kabli nie jest jedynym czynnikiem, a wpływ zakłóceń elektromagnetycznych może być znaczny. Warto zaznaczyć, że różne normy branżowe, takie jak ANSI/TIA-568, jasno określają wymagania dotyczące odległości, które należy zachować, aby zapewnić niezawodność instalacji. Dlatego kluczowe jest przestrzeganie tych standardów, aby uniknąć potencjalnych problemów w przyszłości.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Jaki układ powinien być zastosowany, aby zestawić badane napięcie z napięciem odniesienia i w zależności od różnicy uzyskać na wyjściu układu sygnał logiczny 0 lub 1?

A. Komparator
B. Stabilizator
C. Demultiplekser
D. Multiplekser
Komparator to specjalistyczny układ elektroniczny, którego głównym zadaniem jest porównywanie dwóch napięć: badane napięcie oraz napięcie odniesienia. W przypadku, gdy napięcie badane jest większe od napięcia odniesienia, na wyjściu komparatora generowany jest sygnał logiczny 1, natomiast gdy jest mniejsze – sygnał logiczny 0. Komparatory są szeroko stosowane w różnorodnych aplikacjach, takich jak systemy automatyki, detektory poziomu, czy układy zabezpieczeń. Przykładowo, w aplikacjach zasilania, komparator może być używany do monitorowania napięcia akumulatora; jeśli napięcie spadnie poniżej ustalonego poziomu, układ może wyłączyć obciążenie, zapobiegając uszkodzeniu akumulatora. Z punktu widzenia standardów branżowych, komparatory powinny charakteryzować się niskim poziomem szumów oraz dużą szybkością przełączania, co zapewnia dokładność w działaniu. Warto również zwrócić uwagę na dobór odpowiednich napięć odniesienia, co może wpłynąć na stabilność i niezawodność komparatora w aplikacjach.

Pytanie 4

Podaj właściwą sekwencję przejścia sygnału satelitarnego do telewizora.

A. Odbiornik satelitarny, antena satelitarna, konwerter, odbiornik telewizyjny
B. Antena satelitarna, konwerter, odbiornik satelitarny, odbiornik telewizyjny
C. Konwerter, antena satelitarna, odbiornik satelitarny, odbiornik telewizyjny
D. Antena satelitarna, odbiornik satelitarny, konwerter, odbiornik telewizyjny
Prawidłowa kolejność drogi sygnału satelitarnego do odbiornika telewizyjnego to: antena satelitarna, konwerter, odbiornik satelitarny, odbiornik telewizyjny. Antena satelitarna, najczęściej w postaci czaszy, zbiera sygnał radiowy z satelity, który jest umieszczony na geostacjonarnej orbicie. Sygnał ten jest następnie kierowany do konwertera, który ma za zadanie przetworzyć sygnał na odpowiednią częstotliwość oraz wzmocnić go. Konwerter zamienia sygnał satelitarny na sygnał, który może być przetworzony przez odbiornik satelitarny. Odbiornik satelitarny dekoduje sygnał i przesyła go do odbiornika telewizyjnego, gdzie sygnał jest wyświetlany na ekranie. Warto zauważyć, że ta kolejność jest zgodna z zasadami instalacji systemów satelitarnych, które zalecają prawidłowe połączenia i konfiguracje w celu zapewnienia optymalnej jakości obrazu oraz dźwięku. Przykładem zastosowania tego procesu może być instalacja domowego systemu telewizyjnego, gdzie właściwa kolejność komponentów jest kluczowa dla prawidłowego odbioru sygnału.

Pytanie 5

Podczas instalacji wzmacniacza antenowego najpierw należy

A. zamontować urządzenie, uziemić, podłączyć przewody antenowe, a na końcu podłączyć zasilanie
B. najpierw podłączyć przewody antenowe, później włączyć zasilanie, uziemić i na końcu zamontować urządzenie
C. najpierw podłączyć zasilanie, uziemić, następnie podłączyć przewody antenowe, a na końcu zamontować urządzenie
D. uziemić urządzenie, następnie podłączyć przewody antenowe, włączyć zasilanie, a na końcu zamontować urządzenie
Poprawna odpowiedź polega na odpowiednim porządku prac przy montażu wzmacniacza antenowego. Proces ten powinien zaczynać się od zamontowania urządzenia, co zapewnia, że wszystkie elementy są prawidłowo zainstalowane i mają odpowiednie wsparcie mechaniczne. Następnie kluczowe jest uziemienie urządzenia, aby zminimalizować ryzyko uszkodzeń spowodowanych przepięciami czy wyładowaniami atmosferycznymi. Uziemienie jest istotnym krokiem w ochronie zarówno sprzętu, jak i osób korzystających z systemu. Po tym etapie powinno się podłączyć przewody antenowe, co jest niezbędne do prawidłowego funkcjonowania wzmacniacza, a na końcu można podłączyć zasilanie, co pozwoli na uruchomienie urządzenia. Taki porządek działań jest zgodny z dobrymi praktykami instalacyjnymi i zapewnia zarówno bezpieczeństwo, jak i skuteczność działania wzmacniacza. Przykładem zastosowania tych zasad może być instalacja anteny telewizyjnej, gdzie odpowiednia sekwencja zwiększa jakość odbioru sygnału.

Pytanie 6

Przed wymianą urządzenia w systemie elektronicznym, konieczne jest odłączenie przewodu zasilającego?

A. zanim rozpoczną się prace demontażowe
B. po zakończeniu montażu
C. po usunięciu starego urządzenia
D. w trakcie instalacji nowego sprzętu
Wybór odpowiedzi dotyczących montażu nowego urządzenia lub zakończenia prac montażowych jest błędny z perspektywy bezpieczeństwa i standardów branżowych. Montaż urządzenia nie powinien odbywać się w momencie, gdy zasilanie jest aktywne, ponieważ niesie to ryzyko porażenia prądem elektrycznym. Praca z aktywnymi instalacjami wymaga specjalistycznych umiejętności oraz zastosowania odpowiednich środków ochrony. Ponadto, podjęcie działań po zakończeniu montażu bez wcześniejszego odłączenia zasilania jest również nieodpowiednie, ponieważ w momencie testowania lub uruchamiania nowego urządzenia, każda niewłaściwie podłączona część może prowadzić do zwarcia lub uszkodzenia nowego sprzętu. W przypadku podejścia, które polega na wymontowaniu urządzenia przed odłączeniem zasilania, również istnieje ryzyko. Niekontrolowane usunięcie urządzenia z zasilania może skutkować niebezpiecznymi sytuacjami, takimi jak iskry czy uszkodzenia komponentów, które mogą być nieodwracalne. Dlatego też, niezależnie od sytuacji, zawsze należy stosować podejście, które zapewnia maksymalne bezpieczeństwo - co oznacza, że przed przystąpieniem do jakiejkolwiek pracy demontażowej, konieczne jest odłączenie zasilania zgodnie z zasadami BHP oraz standardami branżowymi.

Pytanie 7

Aby zlokalizować uszkodzenie tranzystora bipolarnego bez jego wylutowywania z płyty głównej systemu alarmowego, powinno się zmierzyć

A. rezystancję złącz pomiędzy B, E, C przy wyłączonym systemie
B. natężenie prądu kolektora tranzystora
C. napięcia pomiędzy końcówkami E, B, C przy włączonym systemie
D. rezystancję złącz pomiędzy B, E, C przy włączonym systemie
Pomiar rezystancji złącz pomiędzy końcówkami tranzystora przy wyłączonej centrali alarmowej może prowadzić do błędnych wniosków. W takim stanie tranzystor nie jest w stanie zrealizować swojej funkcji, a wyniki pomiaru mogą być nieadekwatne do rzeczywistych warunków pracy. Złącze B-E, które w normalnym stanie pracy powinno mieć określoną wartość napięcia, w stanie wyłączonym może wykazywać rezystancję, która nie oddaje rzeczywistej sytuacji. Dodatkowo, pomiar rezystancji przy włączonej centrali jest niebezpieczny dla sprzętu, ponieważ może prowadzić do zwarć lub uszkodzeń. W przypadku pomiaru natężenia prądu kolektora tranzystora, bez znajomości jego wartości szczytowych i charakterystyki pracy, również można uzyskać niewłaściwe informacje, co do stanu komponentu. Praktyka ta nie jest zgodna z znormalizowanymi metodami diagnostycznymi, które zalecają ocenę napięć w aktywnej pracy urządzenia. Ostatecznie, pomiar napięć daje pełniejszy obraz stanu tranzystora, co jest kluczowe w procesie naprawy i diagnostyki.

Pytanie 8

Na podstawie dołączonej dokumentacji technicznej monitorów LCD określ, jaki typ źródła światła zastosowano do podświetlania matrycy?

WyświetlaczTN-film TFT 17''PVA TFT 19''
Ilość kolorów16,77 mln16,77 mln
Przekątna, cale/cm17,0/43,2719/48,2
Rozmiar plamki0,264 mm0,294 mm
Jasność (typ)250 cd/m²250 cd/m²
Rodzaj podświetlenia2 CCFL2 CCFL
Kontrast1000:11500:1
Kąt widzenia CR 5:1/CR 10:1 (poziom/pion)176/170/160/160178/178/176/176
Czas reakcji matrycy5 ms20 ms
Częstotliwość pozioma31,5÷81,1 kHz30÷82 kHz
Częstotliwość pionowa56÷76 Hz56÷75 Hz
Pasmo przenoszenia25÷135 MHz25÷135 MHz
Optymalna rozdzielczość1280x10241280x1024
A. Lasery gazowe.
B. Lasery półprzewodnikowe.
C. Lampy fluorescencyjne.
D. Lampy halogenowe.
Lampy fluorescencyjne, a konkretniej te zimnokatodowe (CCFL), to popularny wybór do monitorów LCD, bo świetnie nadają się jako źródło podświetlenia. Dzięki swojej wysokiej efektywności i długiej żywotności są naprawdę dobrym rozwiązaniem, jeśli chodzi o sprzęty, które muszą być ciągle oświetlone. Te lampy działają na zasadzie wzbudzania gazu, co prowadzi do emisji światła przez zjawisko fluorescencji. W praktyce, CCFL dają równomierne podświetlenie, co zdecydowanie poprawia jakość obrazu. Oprócz monitorów, możesz je też spotkać w telewizorach LCD czy niektórych przenośnych urządzeniach. Dobrze jest wiedzieć, że stosowanie tych lamp jest zgodne z branżowymi normami dotyczącymi efektywności energetycznej i ochrony środowiska, co czyni je całkiem sensownym wyborem w dzisiejszych czasach.

Pytanie 9

Kabel UTP służący do połączenia komputera z gniazdem abonenckim nazywa się potocznie

A. pigtail
B. patchcord
C. łącznik
D. patch panel
Patchcord to kabel, który łączy urządzenia w sieci komputerowej, w tym przypadku komputer z gniazdem abonenckim. Jego główną funkcją jest zapewnienie połączenia między różnymi elementami infrastruktury sieciowej, co jest kluczowe dla prawidłowego funkcjonowania sieci. Patchcordy są powszechnie stosowane w biurach, centrach danych oraz w domowych sieciach lokalnych. Standardowe długości patchcordów wahają się od kilkudziesięciu centymetrów do kilku metrów, co pozwala na ich elastyczne wykorzystanie w różnych konfiguracjach sieciowych. Warto zaznaczyć, że patchcordy mogą być wykonane w różnych kategoriach, takich jak Cat5e, Cat6 czy Cat6a, co wpływa na ich przepustowość i maksymalną długość transmisji. W praktyce oznacza to, że wybór odpowiedniego patchcordu zależy od wymagań sieci, takich jak prędkość transferu danych i odległość. Oprócz tego, stosując patchcordy, należy pamiętać o zachowaniu odpowiedniej organizacji kabli, co jest zgodne z dobrymi praktykami branżowymi, w celu uniknięcia zakłóceń oraz zapewnienia estetyki instalacji.

Pytanie 10

Jakie dane identyfikuje czytnik biometryczny?

A. sygnał transpondera
B. kod kreskowy
C. zapis magnetyczny
D. linie papilarne
Czytnik biometryczny to takie fajne urządzenie, które potrafi sprawdzić, kim jesteś, na podstawie cech, które masz tylko Ty, jak na przykład linie papilarne. Gdy chodzi o te linie, to czytniki korzystają z różnych technologii, jak skanowanie optyczne, elektrostatyczne czy ultradźwiękowe, żeby złapać ten unikalny wzór z palca. Są one mega popularne w bankach, na lotniskach czy w smartfonach, bo są naprawdę skuteczne i zwiększają bezpieczeństwo. Jak rejestrujesz swoje linie papilarne, to po prostu przykładujesz palec, a system zapisuje ten wzór cyfrowo, żeby później móc go łatwo zweryfikować. Zresztą, to wszystko musi być zgodne z międzynarodowymi standardami, no bo bezpieczeństwo danych jest bardzo istotne. Ogólnie, używanie technologii biometrycznej nie tylko podnosi bezpieczeństwo, ale i sprawia, że korzystanie z systemów jest wygodniejsze, bo nie musisz pamiętać haseł czy nosić kart.

Pytanie 11

Jaką topologię okablowania należy zastosować do zbudowania sieci komputerowej przedstawionej na schemacie?

Ilustracja do pytania
A. Pierścienia.
B. Liniową.
C. Magistrali.
D. Gwiazdy.
Topologia gwiazdy jest jedną z najpopularniejszych architektur sieciowych, szczególnie w zastosowaniach lokalnych, takich jak biura czy domowe sieci komputerowe. W tej konfiguracji każde urządzenie końcowe, takie jak komputery czy drukarki, jest połączone bezpośrednio z centralnym urządzeniem, którym zazwyczaj jest switch lub hub. Dzięki takiemu rozwiązaniu, w przypadku awarii jednego z kabli lub urządzeń końcowych, reszta sieci pozostaje nienauszona, co zwiększa jej niezawodność. Przykładowo, w sieciach Ethernet, standard IEEE 802.3 zaleca stosowanie topologii gwiazdy dla zwiększenia wydajności oraz łatwego zarządzania siecią. W przypadku potrzeby rozbudowy sieci, wystarczy dodać nowe urządzenia do centralnego switcha, co czyni tę topologię elastyczną i dostosowującą się do zmieniających się potrzeb użytkowników. W praktyce, topologia gwiazdy jest często stosowana w złożonych systemach, gdzie wydajność i bezpieczeństwo są kluczowe.

Pytanie 12

Aby przygotować przewód YLY do zamontowania w kostce zaciskowej, należy

A. odsłonięty z izolacji koniec przewodu umieścić bezpośrednio w kostce
B. odsłonięty z izolacji koniec posmarować pastą izolacyjną i umieścić w kostce
C. przewód włożyć do kostki bez usuwania izolacji oraz smarowania go pastą izolacyjną
D. na odsłonięty z izolacji koniec przewodu założyć końcówkę tulejkową i włożyć do kostki
Wprowadzenie do montażu przewodu YLY poprzez wkładanie go do kostki bez obierania izolacji lub smarowania go pastą izolacyjną jest niewłaściwe z kilku powodów. Przede wszystkim, pozostawienie izolacji na końcu przewodu skutkuje brakiem wystarczającego kontaktu elektrycznego. Izolacja może powodować, że prąd nie będzie mógł przepływać swobodnie, co prowadzi do oporu, a tym samym do nadmiernego nagrzewania się przewodu oraz potencjalnych zagrożeń pożarowych. W przypadku smarowania pastą izolacyjną, należy zauważyć, że taka praktyka nie poprawia jakości połączeń elektrycznych, a w niektórych sytuacjach może wręcz zaszkodzić, jeśli pasta nie będzie odpowiednia do zastosowania w instalacjach elektrycznych. Ponadto, wkładanie gołego końca przewodu do kostki bez odpowiedniego zacisku z użyciem tulejki zwiększa ryzyko luźnych połączeń, co jest niebezpieczne. Ważnym aspektem jest także, że nieprzestrzeganie dobrych praktyk przy przygotowywaniu przewodów może prowadzić do awarii instalacji, zwiększając koszty eksploatacji i konserwacji. W kontekście standardów branżowych, każda instalacja elektryczna powinna być wykonana zgodnie z zasadami bezpieczeństwa i najlepszymi praktykami, a nieodpowiednie podejście do montażu przewodów może skutkować poważnymi konsekwencjami. Dlatego zawsze kluczowe jest stosowanie się do wszystkich procedur związanych z przygotowaniem i montażem przewodów.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Odbiornik satelitarny, który pozwala na nagrywanie innego programu niż ten aktualnie oglądany, to model

A. TWIN
B. COMBO
C. DUO
D. FTA
Odpowiedzi DUO, FTA i COMBO są błędne z różnych powodów. Tuner DUO, mimo że często mylony z modelem TWIN, zazwyczaj odnosi się do odbiorników, które mogą obsługiwać dwa źródła sygnału, ale niekoniecznie pozwalają na równoczesne nagrywanie i odbieranie dwóch różnych programów. FTA (Free To Air) odnosi się do odbiorników telewizyjnych, które mogą odbierać darmowe sygnały satelitarne, ale nie mają wbudowanej funkcji nagrywania. Takie urządzenia są ograniczone w możliwościach, ponieważ nie mogą zapisywać programów na dysku twardym. Z kolei COMBO to urządzenie, które łączy funkcje tunera satelitarnego i telewizyjnego, jednak niekoniecznie oferuje podwójne nagrywanie. Wybór takiego tunera może prowadzić do frustracji w użytkowaniu, ponieważ ogranicza możliwość jednoczesnego odbioru i nagrywania, co jest kluczowe dla wielu użytkowników. Zrozumienie tych różnic jest istotne, aby uniknąć zakupów, które nie spełniają oczekiwań, oraz by dobrze dostosować urządzenie do indywidualnych potrzeb użytkownika. Warto zwrócić uwagę na specyfikacje techniczne i funkcjonalności, które są dostosowane do współczesnych standardów telewizyjnych oraz potrzeb użytkowników.

Pytanie 15

Który rodzaj kondensatora wymaga zachowania polaryzacji w trakcie wymiany?

A. Foliowy
B. Ceramiczny
C. Powietrzny
D. Elektrolityczny
Kondensatory elektrolityczne są elementami elektronicznymi, które charakteryzują się wyraźnie określoną polaryzacją. Oznacza to, że przy ich wymianie niezwykle istotne jest, aby zachować odpowiednią orientację biegunów, czyli podłączyć je w odpowiedni sposób do obwodu. W przeciwnym razie, mogą one ulec uszkodzeniu poprzez zwarcie, co może prowadzić do wydzielania się szkodliwych substancji i w konsekwencji do niebezpieczeństwa, takiego jak zwarcia i pożary. Elektryczna polaryzacja kondensatorów elektrolitycznych wynika z ich konstrukcji, w której jeden z biegunów, zwykle oznaczony jako „+”, jest anodem, a biegun ujemny jest katodem. W praktyce, stosowanie kondensatorów elektrolitycznych jest powszechne w zasilaczach, filtrach oraz w układach audio, gdzie wymagane są dużej pojemności wartości. Zgodnie z dobrymi praktykami, podczas wymiany kondensatora elektrolitycznego powinno się zawsze używać elementów o takich samych parametrach elektrycznych, w tym napięciu roboczym i pojemności, aby zapewnić stabilność i bezpieczeństwo działania całego układu.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Wdrożenie kompleksowego pakietu programowo-usługowego, składającego się z programów radiowych i telewizyjnych, odbieranych za pośrednictwem satelity oraz naziemnie, a także wprowadzanych lokalnie, jest zadaniem

A. głównej stacji czołowej
B. regionalnej stacji czołowej
C. magistrali optycznej
D. węzła optycznego
Regionalna stacja czołowa, magistrala optyczna oraz węzeł optyczny to pojęcia związane z różnymi aspektami infrastruktury telekomunikacyjnej, które mogą wprowadzać pewne zamieszanie w kontekście nadawania programów radiowych i telewizyjnych. Regionalna stacja czołowa często odpowiada za dystrybucję sygnałów do lokalnych odbiorców w danym regionie, jednak nie zajmuje się bezpośrednio wprowadzaniem treści na rynek. Jej rola jest bardziej związana z lokalizacją i dostosowaniem sygnału niż z centralnym zarządzaniem programami. Magistrala optyczna to termin, który odnosi się do systemów przesyłowych opartych na włóknach optycznych, gdzie transport danych odbywa się z dużą prędkością. Choć jest to kluczowa technologia w komunikacji, nie ma zastosowania w zakresie wprowadzania programów do emisji. Węzeł optyczny pełni funkcję switcha w sieciach, ale również nie jest odpowiedni do bezpośredniego zarządzania treściami. Typowym błędem myślowym jest mylenie pojęć związanych z infrastrukturą telekomunikacyjną z rolą nadawczą. Zrozumienie różnicy między tymi elementami jest kluczowe dla właściwej identyfikacji funkcji głównej stacji czołowej, która centralizuje i kontroluje proces dystrybucji mediów.

Pytanie 18

Aby zakończyć instalację telewizyjną wykonaną przy użyciu kabla koncentrycznego, konieczne jest zastosowanie rezystora o oporności

A. 75 Ω
B. 300 Ω
C. 50 Ω
D. 500 Ω
Właściwa odpowiedź to 75 Ω, ponieważ większość systemów telewizyjnych, w tym anteny i odbiorniki, zostało zaprojektowanych do pracy z impedancją 75 Ω. Stosowanie rezystora o tej wartości na zakończeniu linii koncentrycznej jest kluczowe dla zapewnienia odpowiedniego dopasowania impedancji, co minimalizuje straty sygnału oraz odbicia. W praktyce, jeśli zakończenie linii nie będzie zgodne z impedancją, część sygnału może zostać odbita, co prowadzi do zakłóceń w odbiorze i obniżenia jakości sygnału wideo i audio. W standardach telekomunikacyjnych, takich jak normy DVB-T i DVB-S, impedancja 75 Ω jest powszechnie stosowana, co potwierdza jej znaczenie w branży. Przykładem zastosowania rezystora 75 Ω w praktyce jest montaż gniazdek antenowych oraz zakończeń kabli w instalacjach domowych, gdzie kluczowe jest zachowanie wysokiej jakości sygnału. Dodatkowo, w profesjonalnych aplikacjach telewizyjnych, takich jak systemy telewizji przemysłowej czy transmisje na żywo, wykorzystanie odpowiednich rezystorów końcowych jest niezbędne do utrzymania integralności sygnału.

Pytanie 19

Przełącznik satelitarny pozwala na podłączenie

A. dwóch transponderów do jednej anteny satelitarnej
B. jednego konwertera do dwóch tunerów
C. jednego transpondera do dwóch anten satelitarnych
D. dwóch konwerterów do jednego tunera
Wybór opcji, która sugeruje podłączenie dwóch transponderów do jednej anteny satelitarnej, jest błędny. Transpondery są komponentami znajdującymi się bezpośrednio na satelitach, które odbierają sygnały radiowe z Ziemi i przesyłają je z powrotem. Antena satelitarna nie może obsługiwać dwóch transponderów jednocześnie, ponieważ transpondery działają na różnych częstotliwościach i mają swoje unikalne parametry sygnałowe. Podobna pomyłka występuje w przypadku opcji, która mówi o podłączeniu jednego konwertera do dwóch tunerów. Tuner to urządzenie, które odbiera sygnał od konwertera, a jeden konwerter jest w stanie obsługiwać tylko jeden tuner w danym momencie, chyba że użyje się specjalnych rozwiązań, jak multiswitch. Z kolei możliwość podłączenia jednego transpondera do dwóch anten satelitarnych jest technicznie nieosiągalna, ponieważ transponder nie wysyła sygnału w sposób, który pozwalałby na jednoczesne odbieranie przez różne anteny. Kluczowe jest zrozumienie, że każdy komponent w systemie satelitarnym ma swoje specyficzne zadania i ograniczenia, a ich błędne zestawienie może prowadzić do degradacji jakości sygnału lub całkowitej jego utraty. Takie pomyłki mogą wynikać z niepełnego zrozumienia funkcji poszczególnych elementów systemu satelitarnego.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Na którym zdjęciu pokazane zostały szczypce do cięcia przewodów, drutów i opasek?

Ilustracja do pytania
A. B.
B. A.
C. D.
D. C.
Odpowiedź D. to strzał w dziesiątkę! Szczypce boczne, które widzisz na obrazku, są naprawdę fajnym narzędziem, zwłaszcza w elektronice. Używa się ich do precyzyjnego cięcia kabli i drutów, a ich krótkie ostrza dają świetną kontrolę nad cięciem. Długie uchwyty pozwalają na użycie większej siły, co jest super ważne, jak masz twardsze materiały do obróbki. W większości sytuacji przy montażu komponentów elektronicznych musimy dobrze przyciąć przewody, żeby wszystko ładnie wyglądało i działało jak należy. Wiadomo, że używanie odpowiednich narzędzi w pracy to nie tylko kwestia efektywności, ale też bezpieczeństwa. Dlatego szczypce boczne są tu idealnym wyborem, bo pozwalają uniknąć uszkodzenia innych elementów.

Pytanie 22

Zerwanie (uszkodzenie) w torze sygnału kanału zwrotnego wzmacniacza dystrybucyjnego w sieci kablowej wpłynie na abonenta korzystającego z internetu za pośrednictwem modemu kablowego

A. szybsze ładowanie się stron WWW
B. wolniejsze ładowanie się stron WWW
C. brak otwierania się stron WWW
D. brak różnicy w ładowaniu się stron WWW
Jak uszkodzisz tor sygnałowy w kanale zwrotnym wzmacniacza w sieci kablowej, to w sumie nie działa przesyłanie danych z modemu kablowego do różnych urządzeń od dostawcy. Ten kanał zwrotny to kluczowy element, bo dzięki niemu możesz wysyłać różne prośby, na przykład otwieranie stron czy korzystanie z aplikacji online. Gdy tor jest uszkodzony, modem nie wysyła pakietów danych, i strony po prostu się nie otwierają. W praktyce, jak tylko coś się popsuje, trzeba to szybko naprawić, żeby internet działał jak należy. Dobrze jest regularnie sprawdzać stan infrastruktury i robić testy sygnału, bo to naprawdę zmniejsza ryzyko awarii. Standardy branżowe mówią, że sygnał w sieci kablowej powinien być stabilny, żeby użytkownicy mogli bezproblemowo korzystać z internetu.

Pytanie 23

W trakcie regularnej inspekcji instalacji telewizyjnej należy zwrócić uwagę na

A. jakość sygnału w gniazdku
B. usytuowanie gniazd
C. położenie anteny
D. metodę ułożenia przewodów
Podczas rozważania, co należy sprawdzić podczas okresowej kontroli instalacji TV, można natknąć się na różne koncepcje, które niekoniecznie są kluczowe dla jakości odbioru. Na przykład, umiejscowienie anteny, mimo że istotne, nie jest przedmiotem analizy w kontekście okresowej kontroli, ponieważ zakłada się, iż antena została poprawnie zainstalowana na etapie montażu. W przypadku lokalizacji gniazd, również należy zauważyć, że ich umiejscowienie powinno być określone już na etapie projektowania instalacji. Ponadto, sposób ułożenia kabli, choć ważny dla estetyki i bezpieczeństwa, nie ma bezpośredniego wpływu na jakość sygnału. W rzeczywistości, niepoprawna analiza takiej sytuacji może prowadzić do błędnych wniosków, które nie rozwiążą problemów związanych z odbiorem telewizyjnym. Kluczowym elementem jest bowiem poziom sygnału, który jest bezpośrednio związany z jakością odbioru. Skupienie się na umiejscowieniu anteny, gniazd czy kabli bez zbadania poziomu sygnału może prowadzić do zignorowania podstawowego problemu, jakim jest nieodpowiednia moc sygnału. Tego typu myślenie może skutkować nieefektywnym podejściem do problematyki instalacji telewizyjnych, co w konsekwencji nie przynosi oczekiwanych rezultatów w postaci wysokiej jakości odbioru.

Pytanie 24

Które elementy mocujące należy zastosować do montażu obudowy natynkowej centralki alarmowej do ściany wykonanej z betonu?

Ilustracja do pytania
A. A.
B. D.
C. C.
D. B.
Podczas montażu obudowy natynkowej centralki alarmowej do betonowej ściany, wybór niewłaściwych elementów mocujących może prowadzić do poważnych problemów z stabilnością i trwałością instalacji. Użycie materiałów nieprzystosowanych do betonu, jak np. kołki do materiałów lekkich, może skutkować ich niewłaściwym osadzeniem. Tego rodzaju elementy często nie mają wystarczającej siły mocującej, a ich stosowanie może kończyć się wypadnięciem obudowy, co z kolei stwarza ryzyko uszkodzenia urządzenia oraz obniża bezpieczeństwo całego systemu alarmowego. Ponadto, niektóre błędne odpowiedzi mogą sugerować użycie taśm samoprzylepnych lub innych nietrwałych rozwiązań, co jest absolutnie niewłaściwe w kontekście montażu elektronicznych urządzeń zabezpieczających. Użytkownicy często błędnie zakładają, że mocowanie na taśmę będzie wystarczające, co prowadzi do zaniedbania wymogów stabilności i bezpieczeństwa. W każdej sytuacji, zwłaszcza gdy mamy do czynienia z urządzeniami, które muszą funkcjonować w różnych warunkach, wybór materiałów mocujących powinien być zgodny z ich przeznaczeniem oraz wymogami technicznymi, co podkreśla znaczenie praktycznej wiedzy w obszarze montażu.

Pytanie 25

W tabeli przedstawiono wybrane dane techniczne regulatora. Który czujnik można podłączyć bezpośrednio do wejścia tego urządzenia?

Napięcie zasilające230 V AC; 50 Hz
Wejście pomiarowePt100/Pt500/Pt1000
Rezystancja przewodów pomiarowychmaksymalnie 20 Ω w każdym przewodzie
Wyjścia przekaźnikowe2 styki zwierne; 2 A/250 V AC (cosφ=1)
Interfejs komunikacyjnyRS485
Szybkość transmisji1 200 b/s ÷ 115 200 b/s
Pamięć danychEEPROM
A. Natężenia oświetlenia.
B. Przepływu.
C. Temperatury.
D. Ciśnienia atmosferycznego.
Czujnik temperatury jest właściwym wyborem do podłączenia do wejścia regulatora, ponieważ jego konstrukcja i specyfikacja techniczna są zoptymalizowane do pracy z czujnikami temperatury typu Pt100, Pt500 oraz Pt1000. Czujniki te są powszechnie stosowane w różnych branżach przemysłowych i laboratoriach ze względu na swoją wysoką dokładność oraz stabilność pomiarów. Przykładowo, czujnik Pt100 jest standardowym rozwiązaniem w automatyce przemysłowej, które znajduje zastosowanie w systemach monitorowania temperatury w procesach produkcyjnych. Warto zaznaczyć, że zgodność z tymi czujnikami oznacza, iż regulator może skutecznie przetwarzać sygnały dostarczane przez czujniki i podejmować odpowiednie działania, takie jak kontrola ogrzewania lub chłodzenia. Dodatkowo, stosowanie czujników temperatury w systemach regulacji jest zgodne z najlepszymi praktykami w dziedzinie automatyki, co zapewnia niezawodność i efektywność procesów przemysłowych.

Pytanie 26

Jakie z wymienionych urządzeń znajduje zastosowanie w systemach zarządzania dostępem oraz zabezpieczeniach?

A. Centrala abonencka
B. Skaner portów
C. Zamek elektroniczny
D. Stacja czołowa
Centrala abonencka odnosi się do systemów telekomunikacyjnych i nie ma zastosowania w kontekście kontroli dostępu. Jej rolą jest zarządzanie połączeniami telefonicznymi, co jest zupełnie inną dziedziną. Z kolei stacja czołowa, stosowana w systemach telewizyjnych lub radiowych, również nie ma związku z zabezpieczeniami fizycznymi ani kontrolą dostępu. Jej funkcja sprowadza się do przetwarzania sygnałów, a nie do zarządzania uprawnieniami dostępu do obiektów. Skaner portów jest urządzeniem stosowanym w sieciach komputerowych do monitorowania aktywności portów sieciowych. Jego głównym celem jest identyfikacja otwartych portów na urządzeniach, co ma zastosowanie w zakresie bezpieczeństwa sieci, ale nie w fizycznym kontrolowaniu dostępu do pomieszczeń. Typowe błędy myślowe prowadzące do takich wniosków często wynikają z nieznajomości kontekstu zastosowania poszczególnych technologii oraz ich funkcji. Warto pamiętać, że skuteczna kontrola dostępu wymaga nie tylko odpowiednich urządzeń, ale także zrozumienia ich roli w szerszym systemie zabezpieczeń, co stanowi istotny aspekt w budowaniu bezpiecznego środowiska.

Pytanie 27

Podczas zdejmowania charakterystyki pasma przenoszenia filtrów wyniki zanotowano w poniższej tabeli. Jakiego rodzaju filtr był badany, jeżeli napięcie wejściowe wynosiło 2 V?

Uwyj=2 V
f1 Hz10 Hz100 Hz1 kHz10 kHz100 kHz1 MHz
Uwyj0,1 V0,2 V0,2 V1,5 V1,9 V2 V2 V
A. Środkowoprzepustowy.
B. Górnoprzepustowy.
C. Dolnoprzepustowy.
D. Środkowozaporowy.
Wybór odpowiedzi innej niż "Górnoprzepustowy" może wynikać z nieporozumień dotyczących podstawowych zasad działania filtrów. Odpowiedzi sugerujące filtry dolnoprzepustowe, środkowozaporowe czy środkowoprzepustowe opierają się na błędnym zrozumieniu tego, jak te filtry działają na sygnały elektryczne. Filtry dolnoprzepustowe, na przykład, są zaprojektowane do przepuszczania sygnałów o niskich częstotliwościach i tłumienia tych wysokich, co jest odwrotnością tego, co zaobserwowano w podanych danych. W praktyce, może to prowadzić do zawyżenia wartości sygnałów niskoczęstotliwościowych w zastosowaniach audio lub komunikacyjnych. Środkowozaporowe filtry z kolei mają na celu eliminację sygnałów w określonym przedziale częstotliwości, co także nie odpowiada opisanym wynikom, gdzie wysokie częstotliwości były przepuszczane. Natomiast filtry środkowoprzepustowe pozwalają na przepuszczanie sygnałów w określonym zakresie częstotliwości, co również nie pasuje do analizowanych danych. Kluczowym błędem jest zatem nieprawidłowe przypisanie funkcji filtrów do obserwowanych efektów, co prowadzi do mylnych wniosków. Aby poprawnie zrozumieć działanie filtrów, warto zaznajomić się z ich charakterystykami częstotliwościowymi oraz zastosowaniem w praktyce, co jest kluczowe w inżynierii elektronicznej.

Pytanie 28

Jakie dodatkowe funkcje może pełnić rejestrator w systemach nadzoru?

A. Zasilanie kamer za pomocą BNC
B. Sterowanie dodatkowymi źródłami światła dla kamer
C. Rozpoznawanie twarzy
D. Kontrola kamer z obrotnicą PTZ
Wielu użytkowników może mylnie sądzić, że rejestrator w systemach monitoringu pełni funkcje takie jak zasilanie kamer przez BNC, sterowanie dodatkowym oświetleniem kamer lub wykrywanie twarzy. Zasilanie kamer przez BNC nie jest możliwe, ponieważ ten typ złącza służy głównie do przesyłania sygnału wideo, a nie do zasilania. Kamery zazwyczaj są zasilane przez osobne złącza, takie jak złącze DC lub PoE (Power over Ethernet), co jest standardową praktyką w branży, zapewniającą odpowiednią moc bezprzewodowego przesyłania danych i zasilania. Jeśli chodzi o sterowanie oświetleniem, wiele kamer wyposażonych jest w funkcje nocnego widzenia, które automatycznie dostosowują się do warunków oświetleniowych, co czyni dodatkowe oświetlenie niepotrzebnym. Wykrywanie twarzy jest zaawansowaną funkcją, która zazwyczaj zależy od algorytmów w kamerach, a nie od rejestratora. Źle zrozumiane funkcje rejestratora mogą prowadzić do nieefektywnego wykorzystania systemów monitoringu, dlatego ważne jest, aby operatorzy posiadali rzetelną wiedzę na temat możliwości oraz ograniczeń sprzętu, którego używają.

Pytanie 29

Aby zmierzyć natężenie prądu w układzie automatyki przemysłowej bez odłączania zasilania, należy użyć amperomierza

A. stacjonarny
B. lampowy
C. wychyłowy
D. cęgowy
Amperomierz cęgowy to narzędzie pomiarowe, które umożliwia pomiar natężenia prądu w obwodach elektrycznych bez konieczności ich przerywania. Działa na zasadzie pomiaru pola magnetycznego, które powstaje w wyniku przepływu prądu przez przewodniki. Często stosowany w instalacjach automatyki przemysłowej, gdzie niezawodność i bezpieczeństwo są kluczowe, amperomierz cęgowy pozwala na szybkie i bezpieczne pomiary w działających obwodach. Przykładem jego zastosowania może być monitorowanie prądu w silnikach elektrycznych lub w zasilaczach, gdzie nieprzerwane działanie systemu jest istotne. Praktyczne aspekty użycia cęgów pomiarowych obejmują również ich mobilność oraz łatwość w obsłudze, co jest zgodne z dobrą praktyką w branży elektroenergetycznej, polegającej na minimalizowaniu ryzyka w miejscu pracy. Cęgowe amperomierze są także zgodne z normami bezpieczeństwa, co czyni je preferowanym wyborem w wielu zastosowaniach przemysłowych oraz w diagnostyce instalacji elektrycznych.

Pytanie 30

Czego nie uwzględnia się w dokumentacji dotyczącej montażu elektronicznego?

A. współrzędnych podzespołów (pick&place)
B. pełnej listy materiałowej (BOM)
C. dokumentacji techniczno-ruchowej (DTR)
D. zestawu rysunków montażowych (odnoszących się do wszystkich faz produkcji)
Dokumentacja techniczno-ruchowa (DTR) nie jest częścią dokumentacji montażu elektronicznego, ponieważ skupia się na eksploatacji i konserwacji urządzeń, a nie na ich produkcji czy montażu. DTR zawiera informacje dotyczące charakterystyki technicznej, działania oraz instrukcje serwisowe, co jest kluczowe w późniejszych fazach użytkowania sprzętu. W kontekście montażu elektronicznego, dokumentacja ta nie jest używana do procesów wytwarzania, co sprawia, że nie zalicza się do podstawowych materiałów niezbędnych na etapie produkcji. Przykład zastosowania to wprowadzenie procedur serwisowych dla urządzenia po jego zmontowaniu; DTR może być wykorzystywana przez techników serwisowych, którzy muszą znać specyfikacje oraz procedury konserwacji, ale nie jest bezpośrednio używana podczas samego montażu. Zgodnie z praktykami branżowymi, dokumentacja montażowa powinna zawierać rysunki montażowe, współrzędne elementów oraz listy materiałów, co jest zgodne z normami IPC (Institute for Printed Circuits) i innymi standardami branżowymi.

Pytanie 31

Które z podanych elementów układów elektrycznych mogą być sprzęgnięte magnetycznie?

A. Cewki
B. Diody
C. Rezystory
D. Tranzystory
Cewki są elementami obwodów elektrycznych, które mogą być sprzężone magnetycznie dzięki zjawisku indukcji elektromagnetycznej. Gdy przez cewkę przepływa prąd, wytwarza ona pole magnetyczne. Jeśli w pobliżu znajduje się druga cewka, to zmiana prądu w pierwszej cewce może indukować prąd w drugiej. To zjawisko jest szeroko wykorzystywane w transformatorach, które są kluczowymi urządzeniami w systemach zasilania. Transformator składa się z dwóch cewek na wspólnym rdzeniu magnetycznym i umożliwia zmianę napięcia prądu przemiennego. Ponadto, sprzężenie magnetyczne jest podstawą działania silników elektrycznych, które przekształcają energię elektryczną w mechaniczną, a także w indukcyjnych elementach elektronicznych wykorzystywanych w różnych aplikacjach, takich jak filtry czy oscylatory. Dobre praktyki w projektowaniu obwodów elektrycznych uwzględniają odpowiednią separację i proporcje cewek, aby zminimalizować straty energii oraz zapewnić optymalne działanie systemu.

Pytanie 32

Oznaczenie YLY 3×6 mm2 odnosi się do przewodu

A. 3-żyłowego, z żyłami aluminiowymi w izolacji polwinitowej oraz powłoce polwinitowej
B. 6-żyłowego, z żyłami miedzianymi w izolacji polietylenowej oraz powłoce polietylenowej
C. 6-żyłowego, z żyłami aluminiowymi w izolacji polietylenowej oraz powłoce polietylenowej
D. 3-żyłowego, z żyłami miedzianymi w izolacji polwinitowej oraz powłoce polwinitowej
Odpowiedź wskazująca na przewód 3-żyłowy, o żyłach miedzianych w izolacji polwinitowej i powłoce polwinitowej, jest poprawna, ponieważ oznaczenie YLY 3×6 mm² jednoznacznie wskazuje na cechy techniczne tego przewodu. Przewody te są powszechnie stosowane w instalacjach elektrycznych i charakteryzują się dobrą elastycznością oraz odpornością na czynniki mechaniczne. Użycie miedzi jako materiału przewodzącego zapewnia doskonałe właściwości przewodzenia prądu, co jest istotne w kontekście wydajności energetycznej instalacji. Izolacja polwinitowa zapewnia odpowiednią odporność na temperaturę oraz chemikalia, co czyni ten typ przewodu idealnym do zastosowań zarówno wewnętrznych, jak i zewnętrznych, gdzie może być narażony na niekorzystne warunki atmosferyczne. Dodatkowo, zgodnie z normami IEC 60228 oraz PN-HD 60364, zastosowanie przewodów miedzianych w instalacjach elektrycznych znacznie podnosi bezpieczeństwo operacyjne oraz efektywność systemów energetycznych. W praktyce, przewody YLY 3×6 mm² są często stosowane w domowych instalacjach oświetleniowych oraz do zasilania urządzeń elektrycznych o średnim poborze mocy.

Pytanie 33

Do podłączenia elementów systemu alarmowego używa się kabla

A. OMY
B. UTP
C. YTKSY
D. YTDY
Wybór niewłaściwego przewodu do systemu alarmowego może prowadzić do poważnych problemów z bezpieczeństwem. Przewód OMY, choć popularny w innych zastosowaniach, nie jest przeznaczony do pracy w systemach alarmowych ze względu na brak odpowiedniego ekranowania, co czyni go bardziej podatnym na zakłócenia. Użycie tego przewodu w instalacjach alarmowych może prowadzić do fałszywych alarmów, które są efektem interferencji sygnałów z innych urządzeń. Z kolei przewód UTP, mimo że szeroko wykorzystywany w sieciach komputerowych, nie jest przystosowany do pracy w systemach alarmowych, ponieważ jego budowa nie zapewnia odpowiedniego ekranowania i ochrony przed zakłóceniami. W kontekście systemów zabezpieczeń, wybór UTP może skutkować obniżoną jakością sygnału, co jest niebezpieczne w przypadku systemów monitorujących. Przewód YTKSY, choć posiada pewne zalety, takich jak elastyczność i łatwość w instalacji, nie zapewnia odpowiedniego poziomu ochrony, co jest kluczowe w zastosowaniach alarmowych. Wybierając przewody do systemu alarmowego, istotne jest przestrzeganie norm branżowych, które podkreślają konieczność używania przewodów o wysokiej odporności na zakłócenia, takich jak YTDY. Ignorowanie tych standardów prowadzi do typowych błędów, które mogą zagrażać bezpieczeństwu obiektów. Dlatego przy projektowaniu systemów alarmowych należy szczegółowo analizować właściwości przewodów oraz ich zgodność ze specyfikacjami branżowymi.

Pytanie 34

Jaką funkcję pełni urządzenie zaznaczone na rysunku numerem 1?

Ilustracja do pytania
A. Selektora wyboru standardu fonii odbieranego kanału telewizyjnego.
B. Selektora wyboru kanału telewizyjnego odbieranego przez zestaw.
C. Koncentratora fali elektromagnetycznej zestawu.
D. Wzmacniacza pierwszej pośredniej częstotliwości satelitarnej.
Wybór jednej z innych odpowiedzi na pytanie o funkcję urządzenia, które zaznaczyłeś na rysunku 1, pokazuje, że mogłeś się pomylić w zrozumieniu, jak działają systemy satelitarne. Na przykład, selektor kanałów telewizyjnych nie pełni tej samej funkcji co konwerter LNB. Selektor tylko wybiera kanał z sygnału, który już został odebrany przez tuner telewizyjny, a konwerter LNB działa zupełnie na początku, odbierając sygnał satelitarny. Z drugiej strony, myśl, że urządzenie jest koncentratorem fal elektromagnetycznych, jest błędna, bo konwerter nie skupia fal, ale je przetwarza, co jest inną funkcją. A wzmacniacz pierwszej pośredniej częstotliwości satelitarnej robi coś innego, bo wzmacnia sygnał już po jego odebraniu, a nie konwertuje. Ważne jest, żeby umieć odróżnić te funkcje, bo jeśli źle zrozumiesz rolę poszczególnych elementów, to może być problem z odbiorem sygnału i jego jakością. Musisz zrozumieć, że LNB to kluczowy element, który przekształca i wzmacnia sygnał na samym początku, co jest niezbędne dla prawidłowego działania całego systemu.

Pytanie 35

Aby podłączyć czujkę kontaktronową w trybie NC do systemu alarmowego, należy użyć przewodu o co najmniej

A. czteroparowym UTP z dwoma rezystorami
B. czterożyłowym z jednym rezystorem
C. dwużyłowym bez rezystorów
D. sześciożyłowym z dwoma rezystorami
Wszystkie niepoprawne odpowiedzi opierają się na błędnych założeniach dotyczących wymagań dotyczących przewodów do czujek kontaktronowych w konfiguracji NC. Na przykład zastosowanie sześciożyłowego przewodu z dwoma rezystorami może wynikać z mylnego przekonania, że czujki wymagają bardziej złożonego okablowania i dodatkowych elementów dla zapewnienia poprawnego działania. W rzeczywistości, czujki kontaktronowe działają na zasadzie bezpośredniego zamykania obwodu, a dodatkowe rezystory nie są potrzebne. Podobnie, czterożyłowy przewód z jednym rezystorem sugeruje, że użytkownik myli się co do podstawowych zasad działania czujek. Rezystory są często stosowane w bardziej skomplikowanych systemach, które wymagają monitorowania stanu obwodów, a nie w prostych konfiguracjach NC. Zastosowanie dwużyłowego bez rezystorów jest zgodne z najlepszymi praktykami branżowymi, które uwzględniają efektywność kosztową i prostotę instalacji. Kolejnym błędnym podejściem jest pomysł użycia czteroparowego UTP z dwoma rezystorami, co sugeruje, że użytkownik nie rozumie, że czujki kontaktronowe nie wymagają skomplikowanego okablowania. W praktyce, im prostsze połączenie, tym lepiej dla niezawodności systemu alarmowego. Na koniec, zaburzony związek między liczbą żył a funkcjonalnością czujki może prowadzić do mylnych wniosków dotyczących wymagań instalacyjnych, co jest częstym błędem wśród osób nieposiadających odpowiedniego doświadczenia w dziedzinie elektroniki zabezpieczeń.

Pytanie 36

Który z protokołów przesyłania danych umożliwia transmisję różnicową sygnałów?

A. RS-232
B. RS-485
C. GPIB
D. I2C
Wybór RS-232, GPIB czy I2C jako standardów przesyłania danych, które miałyby umożliwić transmisję różnicową sygnałów, jest błędny z kilku powodów. RS-232 jest najstarszym standardem komunikacji szeregowej, który przesyła dane w sposób jednostronny, wykorzystywany głównie do połączeń krótkodystansowych. Jego konstrukcja, oparta na pojedynczym przewodzie z masą, czyni go narażonym na zakłócenia, co sprawia, że nie nadaje się do zastosowań wymagających dużej integracji w trudnych warunkach. GPIB, znany również jako IEEE 488, jest standardem komunikacji równoległej, który obsługuje wiele urządzeń, ale również nie stosuje różnicowej transmisji, co ogranicza jego zastosowanie do krótkich połączeń w środowisku laboratoryjnym. Z kolei I2C to protokół komunikacji szeregowej przeznaczony do krótkich dystansów, wykorzystywany w aplikacjach takich jak komunikacja z czujnikami czy sterownikami. I2C może przesyłać dane w dwóch liniach, ale również nie korzysta z różnicowego przesyłania sygnałów, co czyni go niewłaściwym w kontekście omawianego pytania. Typowe błędy w analizie tych standardów polegają na myleniu różnych technik przesyłania z ich możliwościami w zakresie eliminacji zakłóceń i długości połączeń. Przy wyborze odpowiedniego protokołu komunikacji kluczowe jest zrozumienie ich właściwości i ograniczeń, co pozwala na efektywne projektowanie systemów z uwzględnieniem ich przeznaczenia.

Pytanie 37

Jaką funkcję pełni przewód przedstawiony na rysunku?

Ilustracja do pytania
A. Przesyła sygnały video.
B. Przesyła sygnały audio.
C. Łączy elementy zestawów AV.
D. Łączy drukarkę z komputerem.
Rozważając błędne odpowiedzi, można zauważyć, że niektóre z nich wskazują na mylne zrozumienie funkcji przewodu S-Video. Odpowiedź sugerująca łączenie drukarki z komputerem jest mylna, ponieważ S-Video nie jest stosowane w komunikacji między komputerami a drukarkami; wykorzystywane są do tego inne standardy, takie jak USB lub równoległe. Podobnie, przesył sygnałów audio jest funkcją zarezerwowaną dla kabli audio, takich jak RCA czy jack 3.5 mm, a nie dla S-Video, który specjalizuje się w transmisji sygnału wideo. W przypadku łączenia elementów zestawów AV, chociaż S-Video może być częścią takiego systemu, nie jest to jego główną funkcją. Główne zastosowanie S-Video to przesyłanie wysokiej jakości obrazu, a nie łączenie różnych komponentów audio-wizualnych w sposób, w jaki sugerują inne odpowiedzi. Zrozumienie różnorodności kabli oraz ich specyfikacji technicznych jest kluczowe dla prawidłowego doboru sprzętu i zapewnienia optymalnej jakości sygnału. Typowe błędy myślowe obejmują pomijanie istotnych różnic między typami złączy i ich przeznaczeniem oraz mylenie ich funkcji ze względu na podobieństwo w wyglądzie złącz.

Pytanie 38

Do montażu wtyków kompresyjnych typu F w instalacjach telewizyjnych służy przyrząd przedstawiony na rysunku

Ilustracja do pytania
A. A.
B. D.
C. C.
D. B.
Odpowiedź B jest prawidłowa, ponieważ narzędzie to jest dedykowaną zaciskarką do wtyków kompresyjnych typu F, która znajduje zastosowanie w instalacjach telewizyjnych. Wtyki kompresyjne pozwalają na uzyskanie wysokiej jakości połączeń, co jest kluczowe dla prawidłowego przesyłania sygnału telewizyjnego. Zaciskarka umożliwia precyzyjne i solidne zaciśnięcie wtyku na kablu, co zapobiega utracie sygnału oraz minimalizuje ryzyko jego zakłóceń. Dobre praktyki branżowe wskazują, że właściwe zaciśnięcie wtyku jest niezbędne dla zapewnienia długoterminowej niezawodności instalacji. Dodatkowo, podczas montażu warto pamiętać o doborze odpowiednich narzędzi oraz materiałów, gdyż jakość użytych komponentów ma bezpośredni wpływ na efektywność systemu telewizyjnego. Warto również znać standardy dotyczące instalacji kablowych, takie jak norma IEC 61169, które regulują wymagania dotyczące wtyków i złączek, co zapewnia spójność i jakość rozwiązań używanych w branży.

Pytanie 39

Jaką wartość ma częstotliwość prądu zmiennego, jeśli jego okres wynosi 0,001 s?

A. 10 kHz
B. 1 kHz
C. 100 kHz
D. 0,1 kHz
Częstotliwość prądu zmiennego, tak jak w przypadku tego pytania, jest ściśle związana z pojęciem okresu, jednakże niepoprawne odpowiedzi mogą wynikać z nieporozumienia dotyczącego tego, jak te dwie wielkości są powiązane. Odpowiedzi 10 kHz, 0,1 kHz i 100 kHz powstają w wyniku błędnych obliczeń lub błędnego zrozumienia zasady odwrotności. Na przykład, wybierając odpowiedź 10 kHz, można pomyśleć, że wystarczająco mały okres (0,0001 s) mógłby odpowiadać tej częstotliwości, co jest jednak błędne. Takie błędne myślenie często wynika z niepełnego zrozumienia proporcji między okresem a częstotliwością. Podobnie, 0,1 kHz sugeruje, że okres mógłby wynosić 10 s, co jest całkowicie niezgodne z podanym okresem 0,001 s. Częstotliwość 100 kHz również błędnie zakłada, że krótki okres w sekundach (0,00001 s) jest poprawny, co z kolei jest niezgodne z zadanym okresem. Te pomyłki mogą prowadzić do problemów w praktycznych zastosowaniach, takich jak projektowanie układów elektronicznych, gdzie błędna częstotliwość może skutkować niewłaściwym działaniem urządzenia. Kluczowe jest, aby zrozumieć, że w inżynierii elektrycznej, poprawne obliczenia są podstawą skutecznego projektowania i optymalizacji systemów, a znajomość relacji między okresem a częstotliwością jest fundamentalnym krokiem w każdej analizie sygnału.

Pytanie 40

Poziomy jasny pas na ekranie odbiornika telewizyjnego wskazuje na uszkodzenie układu

Ilustracja do pytania
A. odchylania poziomego.
B. wysokiego napięcia.
C. odchylania pionowego.
D. synchronizacji.
Poziomy jasny pas na ekranie telewizyjnym wskazuje na uszkodzenie układu odchylania pionowego, co jest kluczowym elementem w konstrukcji każdego odbiornika. Układ ten odpowiedzialny jest za prawidłowe kierowanie wiązki elektronów w pionie, a jego dysfunkcje mogą prowadzić do zakłóceń w wyświetlanym obrazie. W praktyce, uszkodzenia mogą być spowodowane różnymi czynnikami, takimi jak uszkodzenie podzespołów elektronicznych, zimne luty czy zanieczyszczenia na płytkach. W branży często spotyka się ten problem, zwłaszcza w starszych modelach telewizorów CRT, gdzie stałe obciążenie układu odchylania pionowego może prowadzić do awarii. Standardy naprawcze, takie jak ISO 9001, kładą nacisk na diagnostykę i systematyczne podejście do rozwiązywania problemów, co obejmuje także analizę uszkodzeń układów odchylania. Odpowiednia diagnostyka, poprzez oscyloskopię i analizę sygnałów, może pomóc w szybkiej identyfikacji źródła problemu.