Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 29 stycznia 2026 00:25
  • Data zakończenia: 29 stycznia 2026 00:47

Egzamin zdany!

Wynik: 23/40 punktów (57,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Aby zmierzyć natężenie prądu w układzie automatyki przemysłowej bez odłączania zasilania, należy użyć amperomierza

A. stacjonarny
B. wychyłowy
C. lampowy
D. cęgowy
Amperomierz cęgowy to narzędzie pomiarowe, które umożliwia pomiar natężenia prądu w obwodach elektrycznych bez konieczności ich przerywania. Działa na zasadzie pomiaru pola magnetycznego, które powstaje w wyniku przepływu prądu przez przewodniki. Często stosowany w instalacjach automatyki przemysłowej, gdzie niezawodność i bezpieczeństwo są kluczowe, amperomierz cęgowy pozwala na szybkie i bezpieczne pomiary w działających obwodach. Przykładem jego zastosowania może być monitorowanie prądu w silnikach elektrycznych lub w zasilaczach, gdzie nieprzerwane działanie systemu jest istotne. Praktyczne aspekty użycia cęgów pomiarowych obejmują również ich mobilność oraz łatwość w obsłudze, co jest zgodne z dobrą praktyką w branży elektroenergetycznej, polegającej na minimalizowaniu ryzyka w miejscu pracy. Cęgowe amperomierze są także zgodne z normami bezpieczeństwa, co czyni je preferowanym wyborem w wielu zastosowaniach przemysłowych oraz w diagnostyce instalacji elektrycznych.

Pytanie 2

Jak silne zachmurzenie wpływa na działanie odbiorników GPS?

A. Poprawia warunki funkcjonowania odbiornika.
B. Aktywuje filtr fal odbitych w odbiorniku.
C. Modyfikuje zakres częstotliwości filtra w.cz.
D. Pogarsza warunki pracy odbiornika.
Duże zachmurzenie ma negatywny wpływ na pracę odbiorników GPS, ponieważ sygnały satelitarne są osłabiane przez warstwy chmur oraz związane z nimi czynniki atmosferyczne. Gdy sygnał GPS przemieszcza się przez atmosferę, odbija się od cząsteczek wody w chmurach, co prowadzi do opóźnień i zniekształceń. Jak pokazują badania, w przypadku intensywnego zachmurzenia, zwłaszcza w chmurach deszczowych, jakość sygnału może ulec znacznemu pogorszeniu. Przykładem zastosowania tej wiedzy jest planowanie misji lotniczych lub morskich, gdzie precyzyjne wskazania GPS są kluczowe. Odbiorniki GPS mogą również korzystać z technik takich jak różnicowanie sygnału (DGPS), aby zwiększyć dokładność położenia pomimo zakłóceń spowodowanych atmosferą. W praktyce operatorzy powinni być świadomi, że w trudnych warunkach pogodowych, jak zachmurzenie, mogą wystąpić większe błędy w pomiarach, co powinno być uwzględnione w analizach ryzyka i podczas podejmowania decyzji operacyjnych. Ponadto, zgodnie z wytycznymi organizacji zajmujących się nawigacją satelitarną, istotne jest monitorowanie warunków atmosferycznych w celu optymalizacji pracy systemów GPS.

Pytanie 3

W jaki sposób można usunąć dane z pamięci EPROM, aby ponownie ją zaprogramować?

A. Umieszczając układ pamięci w promieniowaniu podczerwonym
B. Umieszczając układ pamięci w promieniowaniu ultrafioletowym
C. Podając odpowiedni sygnał logiczny na wejście Write Enable
D. Podając odpowiedni sygnał logiczny na wejście CLR
Odpowiedź 'Umieszczając układ pamięci w świetle ultrafioletowym' jest prawidłowa, ponieważ EPROM (Erasable Programmable Read-Only Memory) jest specjalnym rodzajem pamięci, która może być wielokrotnie programowana i kasowana. Proces kasowania EPROM polega na naświetlaniu go światłem ultrafioletowym, które powoduje, że zera logiczne, czyli zapamiętane wartości, są przywracane do stanu nieustalonego. W praktyce, układ EPROM umieszczany jest w dedykowanej lampie UV, która emituje promieniowanie o odpowiedniej długości fali, zazwyczaj około 254 nm. Po naświetleniu, cała zawartość pamięci jest usuwana, co umożliwia ponowne zaprogramowanie układu. Zastosowania EPROM są szerokie, obejmują między innymi pamięć w urządzeniach elektronicznych, sprzęcie pomiarowym oraz w systemach wbudowanych, gdzie konieczne jest czasowe przechowywanie danych, które mogą być później zmieniane. Standardowe praktyki branżowe nakazują stosowanie odpowiednich osłon podczas obsługi lamp UV oraz przestrzeganie procedur bezpieczeństwa, aby zminimalizować ryzyko uszkodzenia układu lub zranienia operatora.

Pytanie 4

Która metoda instalacji podstaw koryt kablowych jest niewłaściwa?

A. Mocowanie przy pomocy stalowych gwoździ
B. Mocowanie przy użyciu kołków rozporowych oraz wkrętów
C. Gipsowanie w bruzdach
D. Przyklejanie do podłoża
Mocowanie podstaw koryt kablowych na klej, kołki rozporowe, wkręty czy gwoździe to coś, co można spotkać w praktyce, ale nie zawsze to działa. Klejenie do podłoża niby szybkie i proste, ale nie zawsze ma wystarczającą moc, zwłaszcza gdy koryta są pod dużym obciążeniem albo drgania się zdarzają. Z czasem może to prowadzić do problemów z utrzymaniem koryta w miejscu, co może skończyć się jego uszkodzeniem. A jak trzeba będzie zdemontować instalację, to klej może sprawić, że ciężko będzie zdjąć koryto, co oznacza dodatkowe koszty i czas. Gdy mówimy o stalowych gwoździach, ryzykujemy, że nie dadzą one odpowiedniego wsparcia, zwłaszcza w twardych materiałach, bo mogą się złamać albo wypaść. Takie mocowania mogą też uszkodzić przewody, jeśli są za blisko punktów mocowania. Kołki rozporowe i wkręty to jedna z lepszych metod, ale musimy dobrze dobrać materiały i technikę, żeby uniknąć przesadnych obciążeń. Warto przy wyborze metody montażu myśleć nie tylko o łatwości, ale przede wszystkim o bezpieczeństwie i trwałości instalacji. To bardzo ważne, by mocowania były zgodne z normami branżowymi, bo to pozwoli nam uniknąć problemów w przyszłości.

Pytanie 5

Jakie urządzenia pomiarowe powinno się zastosować do pomiaru częstotliwości z wykorzystaniem krzywych Lissajous?

A. Generator i oscyloskop
B. Woltomierz oraz oscyloskop
C. Omomierz oraz amperomierz
D. Watomierz i amperomierz
Odpowiedź 'Generator i oscyloskop' jest prawidłowa, ponieważ do pomiaru częstotliwości za pomocą krzywych Lissajous niezbędne jest generowanie sygnałów oraz ich wizualizacja. Generator sygnałowy pozwala na wytworzenie dwóch różnych sygnałów, których częstotliwości można zmieniać. Oscyloskop z kolei umożliwia obserwację tych sygnałów w czasie rzeczywistym, na ekranie uzyskując charakterystyczny obraz krzywych Lissajous. Zmieniając częstotliwości sygnałów wytwarzanych przez generator, można zaobserwować, jak kształt krzywej na oscyloskopie zmienia się w zależności od stosunku częstotliwości obu sygnałów. Przykładowo, dla sygnałów o częstotliwości 1:2 otrzymamy elipsę, co może być użyteczne w praktyce do analizy stanów dynamicznych w obwodach elektronicznych. Stosowanie tych przyrządów jest standardem w laboratoriach elektroniki, co potwierdzają wytyczne dotyczące pomiarów elektronicznych.

Pytanie 6

Do jakiego złącza podłącza się sygnał: wizji zespolony, kolor R, kolor G, kolor B, luminancji i chrominancji oraz sygnał audio kanału lewego i prawego?

A. JACK
B. EUROSCART
C. S-VHS
D. DIN 5
Odpowiedź EUROSCART jest poprawna, ponieważ to złącze zostało zaprojektowane z myślą o przesyłaniu sygnałów wideo oraz audio w zintegrowanej formie. Złącze to obsługuje wiele formatów sygnałowych, w tym zespolony sygnał wizji, kolory RGB (czerwony, zielony, niebieski), a także luminancję i chrominancję. Dzięki temu, EUROSCART jest często stosowane w sprzęcie audio-wideo, takim jak telewizory, odtwarzacze DVD oraz konsole do gier. Złącze EUROSCART zapewnia także przesyłanie sygnału audio dla lewego i prawego kanału, co czyni je wszechstronnym rozwiązaniem w domowych systemach multimedialnych. W praktyce, korzystając z EUROSCART, użytkownicy mogą podłączyć różne urządzenia, co ułatwia konfigurację sprzętu i zwiększa jego funkcjonalność. Warto również zauważyć, że złącze to spełnia odpowiednie normy branżowe, co gwarantuje wysoką jakość przesyłanego sygnału oraz zgodność z różnymi urządzeniami.

Pytanie 7

Aby stworzyć niewidoczną dla ludzkiego oka barierę świetlną, należy zastosować

A. zestaw składający się z diody LED emitującej światło podczerwone oraz fotodiody
B. transoptor
C. zestaw składający się z diody LED emitującej światło widzialne oraz fotodiody
D. fototranzystor
Zestaw złożony z diody LED emitującej światło podczerwone i fotodiody jest idealnym rozwiązaniem do tworzenia niewidocznych dla oka ludzkiego barier świetlnych. Dioda LED podczerwonego emituje fale świetlne, które są niewidoczne dla ludzkiego oka, co pozwala na instalowanie systemów detekcji bez zauważalnych elementów. Fotodioda działa jako detektor, rejestrując światło podczerwone tylko wtedy, gdy obiekt zakłóca ten wiązkę. Takie rozwiązania są szeroko stosowane w systemach alarmowych, automatyce domowej oraz w przemyśle do wykrywania obecności ludzi lub przedmiotów. Zastosowanie podczerwieni zwiększa niezawodność systemu, minimalizując ryzyko fałszywych alarmów wywołanych przez światło dzienne. Dodatkowo, standardy dotyczące bezpieczeństwa i efektywności energetycznej wymagają użycia takich technologii w nowoczesnych instalacjach, co czyni tę metodę zgodną z dobrymi praktykami branżowymi.

Pytanie 8

Czym jest multiplekser w kontekście układów kombinacyjnych?

A. liczenie oraz przechowywanie impulsów
B. przekazywanie sygnału cyfrowego "1 z n" wybranego adresem na wyjście
C. sterowanie wskaźnikiem 7-segmentowym
D. konwersja kodu pierścieniowego "1 z n" na sygnał wyjściowy
Multiplekser to taki ważny element w układach cyfrowych. Jego głównym zadaniem jest przekazywanie jednego sygnału spośród wielu wejść na wyjście. Dzięki sygnałom sterującym możemy wybrać, który sygnał chcemy wysłać. Przykładowo, w systemach komunikacyjnych, gdy mamy różne źródła danych, multipleksery pomagają zarządzać tymi sygnałami. To pozwala na lepsze wykorzystanie pasma i zwiększenie przepustowości. W telekomunikacji czy przetwarzaniu sygnałów, multipleksery są kluczowe do multiplexingu, czyli łączenia kilku sygnałów w jeden. Warto też wiedzieć, że są różne typy multiplekserów, jak MUX 2:1, MUX 4:1 czy MUX 8:1, które różnią się liczbą wejść i zastosowaniem.

Pytanie 9

Umieszczony na urządzeniach elektrycznych piktogram ostrzega serwisanta przed

Ilustracja do pytania
A. piorunem.
B. porażeniem.
C. zapyleniem.
D. poparzeniem.
Odpowiedź "porażeniem" jest trafna, bo ten piktogram na urządzeniach elektrycznych rzeczywiście ostrzega przed ryzykiem porażenia prądem. W branży elektrotechnicznej mamy ogólne standardy bezpieczeństwa i ten symbol to jedno z podstawowych przypomnień, żeby uważać, gdy pracujemy z urządzeniami na prąd. Takie oznaczenia są bardzo ważne, bo chronią użytkowników i serwisantów przed niebezpieczeństwami, które mogą się zdarzyć, gdy coś jest używane niewłaściwie lub jest uszkodzone. Moim zdaniem, każdy, kto pracuje z elektryką, powinien nie tylko widzieć te znaki, ale też rozumieć, co one oznaczają. Na przykład, w przemyśle, serwisanci muszą nosić odpowiednie środki ochrony i trzymać się zasad bezpieczeństwa, żeby minimalizować ryzyko porażenia.

Pytanie 10

Użycie akumulatora żelowego w ekstremalnie niskich temperaturach prowadzi do

A. konieczności podwyższenia prądu ładowania
B. obniżenia pojemności akumulatora
C. konieczności obniżenia napięcia ładowania
D. wzrostu pojemności akumulatora
Użytkowanie akumulatora żelowego w bardzo niskich temperaturach prowadzi do zmniejszenia jego pojemności ze względu na zwiększony opór wewnętrzny, który występuje w wyniku niskich temperatur. W takich warunkach, chemiczne reakcje zachodzące w elektrolitach są spowolnione, co skutkuje obniżeniem zdolności akumulatora do przekazywania energii. Na przykład, w temperaturach poniżej -10°C, akumulatory żelowe mogą tracić nawet 30% swojej nominalnej pojemności. Z tego powodu, w praktyce, akumulatory te powinny być używane w warunkach, które zapewniają im optymalne temperatury pracy, zazwyczaj w zakresie 0°C do 40°C. W przypadku zastosowań w bardzo zimnym klimacie, warto rozważyć użycie akumulatorów przystosowanych do takich warunków, albo zainwestować w systemy ogrzewania akumulatorów, które pomogą utrzymać odpowiednią temperaturę operacyjną, co jest zgodne z rekomendacjami wielu producentów akumulatorów oraz standardami branżowymi.

Pytanie 11

W systemach zabezpieczeń najbardziej podatna na przeciągi w strzeżonym pomieszczeniu jest

A. czujka wibracyjna
B. akustyczna czujka stłuczenia szyby
C. czujka magnetyczna
D. pasywna czujka podczerwieni
Czujka wibracyjna, czujka magnetyczna oraz akustyczna czujka stłuczenia szyby to technologie, które działają w zupełnie inny sposób niż pasywna czujka podczerwieni. Czujka wibracyjna jest zaprojektowana do wykrywania wibracji, najczęściej związanych z próbą włamania przez usunięcie lub uszkodzenie obiektu, co czyni ją mniej wrażliwą na zmiany w przepływie powietrza. Jej detekcja opiera się na wykrywaniu drgań, a nie na temperaturze, przez co jest mniej podatna na zakłócenia związane z przeciągami. Czujka magnetyczna działa na zasadzie detekcji otwarcia drzwi lub okien, z wykorzystaniem magnesów. Jej skuteczność nie jest w żaden sposób uzależniona od warunków atmosferycznych, jak przeciągi, ponieważ reaguje tylko na fizyczne przemieszczanie się elementów. Akustyczna czujka stłuczenia szyby detekuje dźwięki związane z rozbiciem szkła, co również czyni ją niezależną od warunków w pomieszczeniu. Typowe błędy myślowe prowadzące do takich niepoprawnych wniosków mogą obejmować mylenie funkcji i zastosowań różnych czujek, a także brak zrozumienia mechanizmów ich działania. W kontekście bezpieczeństwa, kluczowe jest odpowiednie dobranie technologii detekcji do specyfikacji chronionego obszaru oraz potencjalnych zagrożeń, co powinno być wykonane zgodnie z procedurami oceny ryzyka oraz standardami branżowymi.

Pytanie 12

Na środku wyświetlacza odbiornika OTV pojawia się bardzo jasna pozioma linia, podczas gdy reszta ekranu jest ciemna. Gdzie doszło do awarii w odbiorniku?

A. W bloku odchylania poziomego
B. We wzmacniaczu p.cz. różnicowej fonii
C. W dekoderze kolorów
D. W bloku odchylania pionowego
Chociaż odpowiedzi dotyczące bloku odchylania poziomego, wzmacniacza p.cz. różnicowej fonii oraz dekodera kolorów mogą wydawać się logiczne, każda z nich ma zasadnicze braki w kontekście diagnozowania problemu opisanego w pytaniu. Blok odchylania poziomego odpowiada za kontrolowanie ruchu elektronów w poziomie. Problemy w tym obszarze prowadzą do zniekształceń poziomych, takich jak zniekształcenia obrazu, a nie do pojawienia się jasnej linii poziomej. Wzmacniacz p.cz. różnicowej fonii ma na celu przetwarzanie sygnałów audio, co nie ma wpływu na wyświetlanie obrazu. Usterka w tym bloku skutkuje problemami z dźwiękiem, a nie z obrazu. Z kolei dekoder kolorów jest odpowiedzialny za separację i przetwarzanie sygnałów kolorów. Usterki w tym obszarze mogą prowadzić do problemów z kolorami, ale nie stworzą jasnej, poziomej linii na ekranie. Kluczowym błędem myślowym w takich przypadkach jest mylenie funkcji różnych bloków i ich wpływu na wyjście obrazu. Właściwe zrozumienie architektury i funkcji różnych komponentów telewizora jest niezbędne do efektywnej diagnostyki i naprawy. Dlatego ważne jest, aby podczas rozwiązywania problemów z telewizorami zwracać uwagę na konkretne symptomy i ich powiązania z odpowiednimi obszarami funkcjonalnymi urządzenia.

Pytanie 13

Wzrost efektywnej pojemności torów przesyłowych dla kabla UTP wskazuje na

A. uszkodzenie izolacji
B. zbyt dużą rezystancję pętli
C. przerwanie jednej z żył
D. błędne podłączenie kabla
Zwiększenie pojemności skutecznej torów transmisyjnych w kablu UTP wskazuje na problemy z izolacją, co może prowadzić do zakłóceń w przesyłanym sygnale. Uszkodzenie izolacji pozwala na infiltrację wilgoci oraz innych zanieczyszczeń, co z kolei może prowadzić do zwiększonej pojemności w obwodach. W praktyce, taka sytuacja może skutkować pogorszeniem jakości sygnału, co jest szczególnie istotne w aplikacjach wymagających wysokiej wydajności, takich jak sieci Ethernet. Standardy takie jak IEEE 802.3, definiujące zasady działania sieci lokalnych, wymagają, aby kable UTP były w pełni sprawne, aby zapewnić odpowiednie prędkości transmisji. Dlatego w przypadku stwierdzenia wzrostu pojemności, kluczowe jest przeprowadzenie dokładnej analizy izolacji kabla oraz jego stanu technicznego, co może obejmować testy za pomocą specjalistycznych narzędzi, takich jak reflektometry. Regularne monitorowanie stanu kabli i ich izolacji jest zalecane zgodnie z normami branżowymi, aby zapobiegać awariom i zapewnić stabilność sieci.

Pytanie 14

Zamiana uszkodzonego tranzystora w końcowej fazie przetwornicy napięcia wymaga

A. usunęcia kondensatora filtrującego
B. zwarcia wejścia układu
C. odłączenia układu od zasilania
D. podłączenia obciążenia sztucznego
Odłączenie układu od zasilania przed przystąpieniem do wymiany uszkodzonego tranzystora stopnia końcowego przetwornicy napięcia jest kluczowym krokiem zapewniającym bezpieczeństwo oraz ochronę sprzętu. Przed rozpoczęciem jakichkolwiek prac serwisowych, zawsze należy zidentyfikować źródło zasilania i je odłączyć, aby uniknąć porażenia prądem oraz uszkodzenia komponentów. Dobre praktyki inżynieryjne w elektronice nakazują stosowanie takich protokołów, aby zapewnić, że wszelkie potencjalnie niebezpieczne napięcia są wyeliminowane. W przypadku przetwornic napięcia, które często operują przy wysokich napięciach i prądach, jest to szczególnie istotne. Po odłączeniu zasilania, można bezpiecznie wymontować uszkodzony tranzystor, a następnie zainstalować nowy, mając pewność, że nie ma ryzyka dla technika ani dla innych elementów układu. Należy również pamiętać o odpowiednim wyładowaniu wszelkich kondensatorów, które mogą przechowywać ładunek elektryczny, co również jest częścią standardowych procedur konserwacyjnych.

Pytanie 15

Przedstawiony na fotografii interfejs umożliwiający przesyłanie sygnałów np.: video, RGB, nazywamy

Ilustracja do pytania
A. EURO SCART
B. S-Video
C. HDMI
D. DVI-A
Odpowiedź EURO SCART jest prawidłowa, ponieważ złącze to zostało zaprojektowane do przesyłania zarówno sygnału wideo, jak i audio. Interfejs EURO SCART obsługuje różne formaty sygnałów, w tym RGB, co czyni go wszechstronnym rozwiązaniem w kontekście połączeń między urządzeniami audio-wideo, takimi jak telewizory, odtwarzacze DVD, czy dekodery. EURO SCART zapewnia lepszą jakość obrazu w porównaniu do starszych rozwiązań, takich jak S-Video czy Composite Video. W praktyce, złącze to jest często stosowane w domowych systemach rozrywki, gdzie użytkownicy łączą różne urządzenia za pomocą jednego kabla, co upraszcza konfigurację. Zgodnie z normami branżowymi, EURO SCART stał się standardem w Europie, a jego popularność wynika z łatwości użytkowania i wszechstronności. Z tego powodu jest on często wykorzystywany w instalacjach multimedialnych, zarówno w domach, jak i w zastosowaniach profesjonalnych.

Pytanie 16

Jakie czynności należy wykonać, aby udzielić pierwszej pomocy osobie, która została porażona prądem elektrycznym i jest nieprzytomna?

A. Położenie jej na brzuchu i odchylenie głowy w bok
B. Przeniesienie jej na świeżym powietrzu i częściowe rozebranie
C. Położenie jej w pozycji na boku przy równoczesnym poluzowaniu ubrania
D. Położenie jej na plecach i poluzowanie odzieży na szyi
Ułożenie osoby porażonej prądem elektrycznym w pozycji na boku jest kluczowe, ponieważ ta pozycja, znana jako pozycja bezpieczna, zapobiega aspiracji treści pokarmowych oraz umożliwia swobodne oddychanie. Rozluźnienie ubrania wokół szyi pomoże zminimalizować ewentualne duszenie lub ucisk na drogi oddechowe. Ważne jest, aby nie przemieszczać osoby, chyba że istnieje bezpośrednie zagrożenie dla jej życia, takie jak pożar czy dalsze porażenie prądem. W sytuacji takiej, priorytetem jest zapewnienie bezpieczeństwa osobie poszkodowanej oraz wezwanie służb ratunkowych. Postępowanie według tych zasad jest zgodne z wytycznymi organizacji zajmujących się pierwszą pomocą, takich jak Europejska Rada Resuscytacji. Dodatkowo, warto znać techniki resuscytacyjne, aby móc szybko zareagować, gdyby osoba straciła przytomność lub nie oddychała. Wyjątkowo istotne jest także monitorowanie stanu poszkodowanego do momentu przybycia służb medycznych.

Pytanie 17

Zwiększenie histerezy w regulatorze dwustawnym w systemie regulacji

A. spowoduje przesunięcie wykresu w górę o wartość pętli histerezy
B. spowoduje powiększenie amplitudy zmian sygnału kontrolowanego
C. nie wpłynie na kształt sygnału
D. spowoduje zmniejszenie amplitudy zmian sygnału kontrolowanego
Nieprawidłowe podejście do analizy histerezy w regulatorze dwustawowym wiąże się z błędnym zrozumieniem samej jej natury oraz efektów, jakie wywołuje w układzie regulacji. Odpowiedzi sugerujące, że zwiększenie histerezy nie wpłynie na przebieg sygnału lub spowoduje jego przesunięcie, są mylące. Histereza nie jest jedynie parametrem statycznym, lecz dynamicznie wpływa na zachowanie systemu. Wartości histerezy definiują progi, w których następuje zmiana stanu wyjściowego, co oznacza, że każda zmiana tych wartości ma bezpośredni wpływ na reakcję sygnału. Zwiększenie histerezy prowadzi do zmiany zakresu, w jakim sygnał może fluktuować przed osiągnięciem nowego stanu stabilnego, co w praktyce przekłada się na większe amplitudy zmian. Ponadto, koncepcje mówiące o przesunięciu przebiegu w górę o szerokość histerezy ignorują fakt, że histereza nie jest przesunięciem, a raczej różnicą pomiędzy dwoma stanami. To może prowadzić do błędnych interpretacji podczas projektowania systemów regulacji, gdzie kluczowe jest zrozumienie, że histereza pozwala na redukcję niepożądanych oscylacji i stabilizację odpowiedzi systemu. Ignorowanie aspektu dynamicznego histerezy w kontekście regulacji może skutkować zbyt dużymi fluktuacjami w sygnale sterowanym, co jest szczególnie problematyczne w procesach wymagających precyzyjnego nadzoru, takich jak kontrola temperatury czy ciśnienia w systemach przemysłowych.

Pytanie 18

Jak należy przeprowadzać kontrolę układów scalonych w uszkodzonym telewizorze?

A. poddając je sztucznemu schłodzeniu i obserwując obraz na ekranie
B. poddając je sztucznemu podgrzaniu i obserwując obraz na ekranie
C. porównując napięcia oraz oscylogramy na poszczególnych wyprowadzeniach z informacjami zawartymi w instrukcji serwisowej przy załączonym telewizorze
D. porównując napięcia oraz oscylogramy na poszczególnych wyprowadzeniach z informacjami zawartymi w instrukcji serwisowej przy wyłączonym telewizorze
Użycie sztucznego podgrzewania lub schładzania układów scalonych oraz obserwacja obrazu na ekranie nie jest efektywną ani standardową metodą diagnostyki uszkodzeń. Takie podejścia mogą prowadzić do błędnych wniosków, ponieważ zmiany temperatury mogą wprowadzać sztuczne efekty, które niekoniecznie odzwierciedlają rzeczywisty stan układu w warunkach operacyjnych. Na przykład, podgrzewanie komponentów może chwilowo poprawić ich działanie, co prowadzi do mylnego wrażenia, że układ jest sprawny, podczas gdy w rzeczywistości problemy wynikają z uszkodzenia połączeń lub wadliwej konstrukcji. Z kolei techniki oparte na porównywaniu wyników przy wyłączonym odbiorniku nie dostarczają informacji o dynamice sygnałów w czasie rzeczywistym, co jest kluczowe w diagnostyce elektronicznej. Właściwym podejściem jest zrozumienie, że układy scalone muszą być analizowane w warunkach, w których działają, co jest zgodne z dobrą praktyką branżową. Stosowanie nieodpowiednich metod diagnostycznych może prowadzić do kosztownych błędów, takich jak wymiana sprawnych komponentów lub ignorowanie ukrytych usterek. Właściwe metody diagnostyki uwzględniają pomiar napięć i oscylogramów w rzeczywistych warunkach pracy, co jest kluczowe dla skutecznej naprawy.

Pytanie 19

Stabilizator o symbolu LM7812 charakteryzuje się

A. nieregulowanym dodatnim napięciem na wyjściu
B. nieregulowanym ujemnym napięciem na wyjściu
C. regulowanym dodatnim napięciem na wyjściu
D. regulowanym ujemnym napięciem na wyjściu
Wybór odpowiedzi dotyczącej regulowanego napięcia wyjściowego wskazuje na nieporozumienie w zrozumieniu funkcji stabilizatorów. Stabilizatory, takie jak LM7812, zostały zaprojektowane z myślą o dostarczaniu stałego napięcia, a nie regulowanego, co oznacza, że nie są przeznaczone do zmiany napięcia wyjściowego w zależności od potrzeb użytkownika. Typowe błędy myślowe prowadzące do takich wniosków mogą wynikać z pomylenia stabilizatora napięcia z regulatorem, który może dostosować wyjście do zmieniających się warunków obciążenia. Odpowiedź o nieregulowanym ujemnym napięciu jest również błędna, ponieważ LM7812 dostarcza napięcia dodatniego. Stabilizatory ujemne, takie jak LM7912, mają zastosowanie w sytuacjach wymagających zasilania ujemnego, jednak LM7812 nie jest ich odpowiednikiem. Niezrozumienie różnic między stabilizatorami dodatnimi i ujemnymi oraz ich regulowalnymi i nieregulowalnymi wersjami może prowadzić do nieprawidłowego doboru komponentów w projektach elektronicznych, co z kolei wpływa na nieprawidłowe działanie całego układu. Dlatego tak ważne jest, aby rozumieć specyfikacje i zastosowania poszczególnych stabilizatorów, co z pewnością przyczyni się do efektywniejszego projektowania i realizacji systemów elektronicznych.

Pytanie 20

Kiedy urządzenie elektroniczne nie wykazuje żadnych oznak funkcjonowania, od czego powinno się zacząć diagnostykę uszkodzenia?

A. systemu masy
B. obwodów wyjściowych
C. układu zasilania
D. obwodów wejściowych
Układ zasilania jest kluczowym elementem w każdym urządzeniu elektronicznym. To właśnie ten układ dostarcza energię niezbędną do działania pozostałych komponentów. W przypadku braku oznak funkcjonowania urządzenia, pierwszym krokiem w diagnostyce powinno być sprawdzenie źródła zasilania. Może to obejmować weryfikację, czy urządzenie jest podłączone do sieci, czy nie ma uszkodzeń w kablu zasilającym oraz czy wtyczka i gniazdo są sprawne. Wykorzystując multimetr, można zmierzyć napięcie na wyjściu zasilacza, aby upewnić się, że dostarczane napięcie jest zgodne z wymaganiami urządzenia. Dobrym standardem jest również ocena, czy w przypadku urządzeń zasilanych bateryjnie nie doszło do rozładowania ogniw. Przykładowo, w przypadku laptopów, często pierwszy objaw problemu z zasilaniem to brak reakcji po naciśnięciu przycisku zasilania, co wymaga sprawdzenia zarówno zasilacza, jak i stanu baterii. Powinno to być zgodne z najlepszymi praktykami diagnostyki, które zalecają systematyczne podejście do analizy problemów zasilania.

Pytanie 21

Które urządzenie opisują parametry zamieszczone na przedstawionej tabliczce znamionowej?

Ilustracja do pytania
A. Generator fali prostokątnej.
B. Wzmacniacz akustyczny.
C. Regulator napięcia zmiennego.
D. Zasilacz prądu stałego.
Poprawna odpowiedź to zasilacz prądu stałego, ponieważ parametry przedstawione na tabliczce znamionowej wskazują, że urządzenie przekształca napięcie przemienne (AC) w napięcie stałe (DC). Zakres napięcia wejściowego od 100 do 240V~ jest standardowy dla urządzeń zasilających, co oznacza, że zasilacz może być używany w różnych krajach z różnymi napięciami sieciowymi. Wyjściowe napięcie 12V DC oraz moc 15W są typowe dla zasilaczy przeznaczonych do zasilania urządzeń elektronicznych, takich jak routery, kamery czy różnego rodzaju czujniki. W praktyce, zastosowanie zasilaczy prądu stałego jest niezwykle szerokie w elektronice użytkowej, gdzie wiele urządzeń wymaga stabilnego napięcia stałego do prawidłowego działania. Warto również zauważyć, że zasilacze te są często projektowane zgodnie z międzynarodowymi standardami, co zapewnia ich bezpieczeństwo i efektywność energetyczną.

Pytanie 22

Na którym zdjęciu pokazane zostały szczypce do cięcia przewodów, drutów i opasek?

Ilustracja do pytania
A. A.
B. C.
C. D.
D. B.
Odpowiedź D. to strzał w dziesiątkę! Szczypce boczne, które widzisz na obrazku, są naprawdę fajnym narzędziem, zwłaszcza w elektronice. Używa się ich do precyzyjnego cięcia kabli i drutów, a ich krótkie ostrza dają świetną kontrolę nad cięciem. Długie uchwyty pozwalają na użycie większej siły, co jest super ważne, jak masz twardsze materiały do obróbki. W większości sytuacji przy montażu komponentów elektronicznych musimy dobrze przyciąć przewody, żeby wszystko ładnie wyglądało i działało jak należy. Wiadomo, że używanie odpowiednich narzędzi w pracy to nie tylko kwestia efektywności, ale też bezpieczeństwa. Dlatego szczypce boczne są tu idealnym wyborem, bo pozwalają uniknąć uszkodzenia innych elementów.

Pytanie 23

W trakcie serwisowania systemu alarmowego nie kontroluje się

A. faktury zakupu
B. ustawienia czujek ruchu
C. stanu akumulatora
D. linii sabotażowych
Faktura zakupu nie jest elementem, który należy sprawdzać podczas rutynowej konserwacji instalacji alarmowej. Głównym celem konserwacji jest zapewnienie prawidłowego funkcjonowania systemu, co obejmuje kontrolę komponentów takich jak akumulatory, linie sabotażowe oraz ustawienia czujek ruchu. Stan akumulatora jest kluczowy, ponieważ jego awaria może prowadzić do całkowitego wyłączenia systemu alarmowego. Linie sabotażowe powinny być regularnie testowane, aby upewnić się, że nie zostały uszkodzone lub zneutralizowane, co mogłoby umożliwić intruzji. Ustawienia czujek ruchu również wymagają okresowej weryfikacji, aby zapewnić, że są właściwie skalibrowane do otoczenia i skutecznie reagują na ruch. Standardy branżowe, takie jak normy ISO oraz wytyczne producentów sprzętu, podkreślają znaczenie tych elementów w utrzymaniu sprawności systemów zabezpieczeń. W sytuacji awaryjnej, wiedza o stanie technicznym tych komponentów może być kluczowa w szybkim przywróceniu funkcjonalności systemu.

Pytanie 24

Które urządzenie wchodzące w skład instalacji odbiornika satelitarnego przedstawiono na rysunku?

Ilustracja do pytania
A. Tuner.
B. Expander.
C. Transponder.
D. Konwerter.
Wybór konwertera, expandera czy transpondera jako odpowiedzi na pytanie o urządzenie wchodzące w skład instalacji odbiornika satelitarnego jest błędny, ponieważ każde z tych urządzeń pełni inną funkcję w systemie. Konwerter znajduje się na antenie satelitarnej i odpowiada za przetwarzanie sygnału satelitarnego na sygnał, który może być zrozumiany przez tuner; jednak sam w sobie nie jest urządzeniem odbierającym i przetwarzającym sygnał telewizyjny. Expander, choć może być używany w różnych kontekstach technologicznych, nie jest terminem powszechnie stosowanym w kontekście systemów satelitarnych, co może prowadzić do nieporozumień. Transponder z kolei jest elementem satelity, który odbiera sygnały z Ziemi, wzmacnia je i retransmituje, co również nie jest tożsame z odbiorem sygnału w domowej instalacji. Kluczowym błędem myślowym jest mylenie roli tych urządzeń - konwerter i transponder są elementami systemu, które wspierają tuner, ale to właśnie tuner jest odpowiedzialny za ostateczny odbiór i dekodowanie sygnału telewizyjnego. Aby zrozumieć pełny proces odbioru sygnału satelitarnego, ważne jest, aby zdawać sobie sprawę z różnic pomiędzy tymi urządzeniami i ich funkcjami w ekosystemie telekomunikacyjnym.

Pytanie 25

Przy regulacji głośności w urządzeniach akustycznych charakterystyczne trzaski mogą świadczyć o uszkodzeniu

A. zasilacza
B. wzmacniacza mocy
C. głośnika
D. potencjometru
Zasilacz, wzmacniacz mocy i głośnik to kluczowe komponenty systemu audio, ale ich uszkodzenia nie są bezpośrednio związane z charakterystycznymi trzaskami podczas regulacji głośności. Zasilacz, odpowiedzialny za dostarczenie energii do całego systemu, może powodować problemy z zasilaniem, takie jak szumy lub brak mocy, jednak trzaski nie są typowym objawem jego uszkodzenia. Z kolei wzmacniacz mocy, który zwiększa sygnał audio, może generować różne problemy dźwiękowe, ale zwykle są one spowodowane przesterowaniem lub innymi problemami z sygnałem wejściowym, a nie bezpośrednio z regulacją głośności. Głośnik natomiast jest ostatnim elementem w łańcuchu sygnałowym, który przekształca sygnał elektryczny na fale dźwiękowe. Uszkodzenie głośnika skutkuje typowo zniekształceniami dźwięku, a nie trzaskami w trakcie regulacji. Odpowiedzi wskazujące na te komponenty mogą wynikać z mylnego zrozumienia funkcji każdego z tych elementów oraz ich wzajemnych interakcji w systemie audio. Kluczowe jest zrozumienie, że trzaski podczas regulacji głośności są specyficznym objawem problemów z mechanizmem regulacji, a nie z innymi, bardziej złożonymi elementami systemu akustycznego. W praktyce, aby uniknąć takich błędów, warto poszerzać wiedzę na temat działania i diagnostyki sprzętu audio, co pozwoli na właściwą identyfikację problemów i ich skuteczne rozwiązanie.

Pytanie 26

Jakiego koloru powinien być przewód ochronny PE w elektrycznej instalacji zasilającej urządzenia elektroniczne?

A. Czerwony.
B. Czarny.
C. Żółto-zielony.
D. Jasnoniebieski.
Przewód ochronny PE (Protection Earth) w instalacjach elektrycznych zasilających urządzenia elektroniczne powinien mieć kolor żółto-zielony. Taki kolor jest zgodny z międzynarodowymi standardami, w tym normą IEC 60446, która określa oznaczenia kolorów przewodów elektrycznych. Żółto-zielony przewód pełni kluczową rolę w zapewnieniu bezpieczeństwa, ponieważ jego zadaniem jest odprowadzenie prądu doziemnego w przypadku awarii, co minimalizuje ryzyko porażenia prądem elektrycznym. Przykładem zastosowania przewodu PE może być podłączanie urządzeń, takich jak komputery, drukarki czy serwery, gdzie zapewnienie odpowiedniego uziemienia chroni nie tylko użytkowników, ale również sam sprzęt przed uszkodzeniami. Nieprzestrzeganie tych norm może prowadzić do poważnych zagrożeń, takich jak zwarcia czy pożary, dlatego istotne jest stosowanie się do wytycznych branżowych w zakresie instalacji elektrycznych.

Pytanie 27

Dwóch techników w czasie 5 godzin instaluje system wideofonowy dla 10 lokatorów. Koszt zakupu materiałów wynosi 2 000 zł. Jaki jest koszt instalacji dla jednego lokatora, jeżeli stawka roboczogodziny jednego pracownika to 50 zł, a całość obciążona jest 22% VAT?

A. 250 zł
B. 200 zł
C. 305 zł
D. 350 zł
Koszt instalacji wideofonowej dla pojedynczego lokatora można obliczyć tylko wtedy, gdy weźmiemy pod uwagę wszystkie istotne elementy składające się na całkowity wydatek. Wiele osób popełnia błąd, pomijając istotne koszty, takie jak wynagrodzenie monterów, co prowadzi do nieprecyzyjnych obliczeń. Jeśli ktoś przyjmuje tylko koszt materiałów wynoszący 2000 zł i dzieli go przez liczbę lokatorów, otrzymuje 200 zł na lokatora, co nie uwzględnia kosztów robocizny ani podatku VAT. Taki sposób myślenia jest powierzchowny i nieodpowiedzialny, ponieważ w praktyce całkowity koszt instalacji musi zawierać zarówno wynagrodzenie pracowników, jak i dodatkowe opłaty. Inna powszechna pomyłka to nieuwzględnienie podatku VAT w obliczeniach. W przypadku instalacji, które podlegają opodatkowaniu, pominięcie tej kwestii może prowadzić do znacznych różnic w finalnych kosztach dla klientów. Ponadto, zrozumienie podstaw prawnych związanych z kosztami robocizny i materiałów jest kluczowe dla prawidłowego kalkulowania wydatków w branży. Dlatego ważne jest, aby zawsze kalkulować całkowity koszt usługi, co odpowiada standardom praktyki w branży budowlanej, aby uniknąć nieporozumień i zapewnić przejrzystość w relacjach z klientami.

Pytanie 28

Kiedy po zainstalowaniu domofonu i podłączeniu zasilania w słuchawce słychać pisk lub rozmowa jest niewyraźna, powinno się

A. zwiększyć poziom głośności w unifonie
B. dostosować poziom głośności w zasilaczu
C. zwiększyć napięcie zasilania elektrozaczepu
D. dostosować napięcie w kasecie rozmownej
Regulacja głośności w zasilaczu to bardzo ważny krok, jeśli chcesz, żeby domofon działał prawidłowo. Zasilacz nie tylko daje prąd do urządzenia, ale też wpływa na to, jak dźwięk brzmi. Jak w słuchawce słychać pisk albo rozmowa jest niewyraźna, to znaczy, że coś nie tak z ustawieniem głośności. W praktyce, zasilacze domofonowe często mają potencjometr, który pozwala na dostosowanie dźwięku. Jak zasilacz jest dobrze ustawiony, to powinno być wszystko ładnie słychać. Warto też pamiętać, żeby czasami sprawdzić te ustawienia, bo to wpływa na komfort użytkowania. Jeśli głośność jest za niska, to rzeczywiście można mieć problemy z odbiorem, a to psuje całą zabawę z domofonu.

Pytanie 29

Jaka jest prawidłowa kolejność wlutowywania elementów elektronicznych na płytkę obwodu drukowanego przedstawionego na rysunku podczas montażu przewlekanego?

Ilustracja do pytania
A. Kondensatory elektrolityczne, kondensatory ceramiczne, rezystory, układ scalony.
B. Rezystory, kondensatory ceramiczne, kondensatory elektrolityczne, układ scalony.
C. Układ scalony, kondensatory elektrolityczne, kondensatory ceramiczne, rezystory.
D. Rezystory, układ scalony, kondensatory ceramiczne, kondensatory elektrolityczne.
Niepoprawne odpowiedzi wynikały z niepełnego zrozumienia zasad montażu elementów elektronicznych na płytkach drukowanych. Montowanie kondensatorów elektrolitycznych przed rezystorami lub innymi elementami, które są mniej wrażliwe na temperaturę, jest niewłaściwe. Kondensatory elektrolityczne są bardziej podatne na uszkodzenia termiczne, co czyni je niewłaściwymi do wlutowywania na początku procesu. Dla układów scalonych, ich wrażliwość na wysokie temperatury oznacza, że powinny być montowane jako ostatnie, aby uniknąć uszkodzeń, co również nie zostało uwzględnione w niektórych odpowiedziach. W praktyce, niewłaściwa kolejność montażu może prowadzić do uszkodzenia komponentów oraz obniżenia niezawodności i trwałości całego obwodu. Należy również zwrócić uwagę na zagadnienia związane z zarządzaniem ciepłem podczas lutowania - elementy o różnych właściwościach termicznych wymagają odpowiedniego podejścia, aby zminimalizować ryzyko ich uszkodzenia. Nieprzestrzeganie tej zasady jest powszechnym błędem, który często wynika z braku doświadczenia lub niedostosowania się do ustalonych standardów w inżynierii elektronicznej.

Pytanie 30

Z analizy schematu poniższego układu elektronicznego wynika, że wzrost napięcia +Uvar spowoduje

Ilustracja do pytania
A. pojawienie się składowej stałej napięcia na wyjściu układu.
B. wzrost amplitudy sygnału wyjściowego przy częstotliwości fr.
C. przesunięcie charakterystyki częstotliwościowej w lewo (nowa częstotliwość rezonansowa będzie mniejsza od fr).
D. przesunięcie charakterystyki częstotliwościowej w prawo (nowa częstotliwość rezonansowa będzie większa od fr).
Analizując błędne odpowiedzi, można zauważyć kilka powszechnych nieporozumień dotyczących zachowania układów elektronicznych. Odpowiedź wskazująca na wzrost amplitudy sygnału wyjściowego przy częstotliwości fr ignoruje fakt, że wzrost napięcia wpływa na pojemność diody warikapowej, co prowadzi do zmiany częstotliwości rezonansowej, a nie jedynie do zmiany amplitudy sygnału. Inną nieprawidłowością jest założenie, że charakterystyka częstotliwościowa przesunie się w lewo, co sugerowałoby, że częstotliwość rezonansowa zmaleje. W rzeczywistości, zgodnie z zasadami fizyki, zmniejszenie pojemności prowadzi do wzrostu częstotliwości rezonansowej. Przesunięcie charakterystyki w prawo jest zatem poprawne. Ponadto, twierdzenie o pojawieniu się składowej stałej napięcia na wyjściu układu nie uwzględnia dynamiki sygnałów zmiennych w czasie typowych dla obwodów rezonansowych. W przypadku obwodów LC, zmiany napięcia wpływają na charakterystykę, ale nie prowadzą do stałej składowej, co jest zrozumiałe w kontekście teorii obwodów. Zrozumienie mechanizmów działania diod warikapowych i obwodów rezonansowych jest kluczowe dla inżynierów zajmujących się elektroniką, aby unikać tych typowych błędów myślowych.

Pytanie 31

Aby zabezpieczyć pracowników przed podwyższonym promieniowaniem fal elektromagnetycznych, wykorzystuje się

A. fartuchy ochronne
B. chodniki izolacyjne
C. ekrany z uziemieniem
D. kaski ochronne
Zastosowanie fartuchów roboczych, chodników izolacyjnych oraz kasków ochronnych w kontekście ochrony przed falami elektromagnetycznymi jest niewłaściwe, ponieważ te środki nie są zaprojektowane w celu redukcji promieniowania elektromagnetycznego. Fartuchy robocze mają na celu ochronę przed substancjami chemicznymi, ciepłem lub mechanicznymi uszkodzeniami, lecz nie oferują skutecznej ochrony przed falami elektromagnetycznymi. Chodniki izolacyjne, choć mogą być używane do ochrony przed porażeniem elektrycznym, nie działają jako bariera dla promieniowania elektromagnetycznego i nie eliminują jego szkodliwego wpływu. Kaski ochronne z kolei są przystosowane do ochrony głowy przed uderzeniami i nie mają właściwości związanych z osłoną przed promieniowaniem elektromagnetycznym. Typowym błędem myślowym jest zakładanie, że wszystkie środki ochrony osobistej mogą być stosowane w każdym kontekście, co prowadzi do błędnych wniosków. W rzeczywistości, aby skutecznie chronić pracowników przed promieniowaniem elektromagnetycznym, konieczne jest zastosowanie specjalistycznych rozwiązań, takich jak ekrany z uziemieniem, które są dostosowane do specyficznych zagrożeń. Właściwe zrozumienie i zastosowanie odpowiednich środków ochrony jest kluczowe dla zapewnienia bezpieczeństwa w miejscu pracy.

Pytanie 32

Kabel UTP służący do połączenia komputera z gniazdem abonenckim nazywa się potocznie

A. pigtail
B. łącznik
C. patch panel
D. patchcord
Wybór innych terminów zamiast patchcordu odzwierciedla powszechne nieporozumienia w terminologii sieciowej. Pigtail to krótki kabel, który najczęściej jest używany do łączenia światłowodów, a jego zastosowanie w kontekście kabli miedzianych jest błędne. Pigtail ma swoje miejsce w instalacjach światłowodowych, gdzie służy do zakończenia włókna światłowodowego w złączach, lecz nie pełni roli łącznika między komputerem a gniazdem abonenckim w sieciach miedzianych. Patch panel to komponent, który grupuje i organizuje kable sieciowe w centralnym punkcie, umożliwiając łatwe zarządzanie połączeniami, ale nie jest to kabel, a raczej element infrastruktury, który wspiera organizację sieci. Łącznik, z kolei, jest terminem ogólnym, który nie odnosi się do konkretnego akcesorium stosowanego w połączeniach sieciowych; w kontekście sieci komputerowych najczęściej mówimy o urządzeniach, takich jak switche czy routery, które zarządzają ruchem danych. Użycie tych terminów w miejsce patchcordu może prowadzić do błędnej interpretacji, a tym samym do nieefektywnego zarządzania siecią oraz problemów z jej konfiguracją i wydajnością. W kontekście budowy sieci warto posługiwać się precyzyjną terminologią, aby unikać zamieszania i zapewnić skuteczne korzystanie z zasobów sieciowych.

Pytanie 33

Który z protokołów przesyłania danych umożliwia transmisję różnicową sygnałów?

A. RS-232
B. RS-485
C. I2C
D. GPIB
Wybór RS-232, GPIB czy I2C jako standardów przesyłania danych, które miałyby umożliwić transmisję różnicową sygnałów, jest błędny z kilku powodów. RS-232 jest najstarszym standardem komunikacji szeregowej, który przesyła dane w sposób jednostronny, wykorzystywany głównie do połączeń krótkodystansowych. Jego konstrukcja, oparta na pojedynczym przewodzie z masą, czyni go narażonym na zakłócenia, co sprawia, że nie nadaje się do zastosowań wymagających dużej integracji w trudnych warunkach. GPIB, znany również jako IEEE 488, jest standardem komunikacji równoległej, który obsługuje wiele urządzeń, ale również nie stosuje różnicowej transmisji, co ogranicza jego zastosowanie do krótkich połączeń w środowisku laboratoryjnym. Z kolei I2C to protokół komunikacji szeregowej przeznaczony do krótkich dystansów, wykorzystywany w aplikacjach takich jak komunikacja z czujnikami czy sterownikami. I2C może przesyłać dane w dwóch liniach, ale również nie korzysta z różnicowego przesyłania sygnałów, co czyni go niewłaściwym w kontekście omawianego pytania. Typowe błędy w analizie tych standardów polegają na myleniu różnych technik przesyłania z ich możliwościami w zakresie eliminacji zakłóceń i długości połączeń. Przy wyborze odpowiedniego protokołu komunikacji kluczowe jest zrozumienie ich właściwości i ograniczeń, co pozwala na efektywne projektowanie systemów z uwzględnieniem ich przeznaczenia.

Pytanie 34

Jaką rolę w systemie monitoringu pełni UPS?

A. Zarządza pracą
B. Gwarantuje zasilanie
C. Nadzoruje działanie
D. Rejestruje obraz
Wybierając odpowiedzi, które sugerują, że UPS rejestruje obraz, kontroluje działanie lub steruje pracą, należy zrozumieć, jaką rolę pełni ten system w infrastrukturze monitoringu. Rejestracja obrazu to zadanie przypisane rejestratorom wideo (NVR lub DVR), które są odpowiedzialne za przechwytywanie i przechowywanie materiału wideo z kamer. Kontrolowanie działania to raczej funkcja systemów zarządzania, które monitorują i zarządzają operacjami w sieci, podczas gdy sterowanie pracą odnosi się do systemów automatyzacji, które mogą zarządzać funkcjami innych urządzeń. Zrozumienie różnicy pomiędzy tymi funkcjami jest kluczowe dla efektywnego projektowania systemów monitoringu. Typowym błędem jest mylenie zadań różnych komponentów systemu; każdy element pełni określoną rolę, która nie powinna być mylona z innymi funkcjami. UPS jest narzędziem zabezpieczającym, które zapewnia zasilanie, a nie aktywnie uczestniczy w rejestracji czy zarządzaniu pracą systemu, co może prowadzić do nieporozumień w kontekście jego zastosowania w systemach zabezpieczeń.

Pytanie 35

Czego nie uwzględnia się w dokumentacji dotyczącej montażu elektronicznego?

A. współrzędnych podzespołów (pick&place)
B. zestawu rysunków montażowych (odnoszących się do wszystkich faz produkcji)
C. pełnej listy materiałowej (BOM)
D. dokumentacji techniczno-ruchowej (DTR)
Dokumentacja techniczno-ruchowa (DTR) nie jest częścią dokumentacji montażu elektronicznego, ponieważ skupia się na eksploatacji i konserwacji urządzeń, a nie na ich produkcji czy montażu. DTR zawiera informacje dotyczące charakterystyki technicznej, działania oraz instrukcje serwisowe, co jest kluczowe w późniejszych fazach użytkowania sprzętu. W kontekście montażu elektronicznego, dokumentacja ta nie jest używana do procesów wytwarzania, co sprawia, że nie zalicza się do podstawowych materiałów niezbędnych na etapie produkcji. Przykład zastosowania to wprowadzenie procedur serwisowych dla urządzenia po jego zmontowaniu; DTR może być wykorzystywana przez techników serwisowych, którzy muszą znać specyfikacje oraz procedury konserwacji, ale nie jest bezpośrednio używana podczas samego montażu. Zgodnie z praktykami branżowymi, dokumentacja montażowa powinna zawierać rysunki montażowe, współrzędne elementów oraz listy materiałów, co jest zgodne z normami IPC (Institute for Printed Circuits) i innymi standardami branżowymi.

Pytanie 36

Na zdjęciu widać fragment panela krosowniczego. Dla której kategorii panela krosowniczego i według którego standardu została wykonana instalacja sieci komputerowej?

Ilustracja do pytania
A. Kategorii 5, standardu T568A
B. Kategorii 5, standardu T568B
C. Kategorii 6, standardu T568B
D. Kategorii 6, standardu T568A
Wybór odpowiedzi związanej z kategorią 6 i standardem T568A jest nieprawidłowy, ponieważ kategoria 6 (Cat 6) jest przeznaczona do wyższych prędkości transmisji danych, sięgających do 10 Gbps, jednak w kontekście pytania nie jest to standardowe zastosowanie w instalacjach, które wymagają wyboru T568A. Kategoria 5, mimo że jest starsza i ograniczona do 100 Mbps, jest nadal powszechnie wykorzystywana w różnych środowiskach biurowych i domowych. Wybór standardu T568A zamiast T568B nie uwzględnia faktu, że T568B jest bardziej zgodny z istniejącymi instalacjami, a także lepiej wspiera większość urządzeń sieciowych. Często błędne rozumienie tych standardów wynika z nieznajomości różnic w układzie żył oraz wpływu na wydajność sieci. Przy projektowaniu i implementacji sieci komputerowych ważne jest, aby dobrać odpowiednią kategorię kabli oraz standard, aby zapewnić nie tylko sprawność działania, ale także przyszłą skalowalność sieci. Dlatego kluczowe jest, aby technicy i administratorzy sieci posiadali solidną wiedzę na temat norm oraz praktyk związanych z okablowaniem, aby uniknąć problemów wynikających z nieodpowiednich wyborów technologicznych.

Pytanie 37

Jakie jest zadanie konwertera satelitarnego?

A. regulacja napięcia w obwodzie antenowym
B. przesyłanie sygnału z odbiornika satelitarnego do satelity
C. dopasowywanie reaktancji anteny satelitarnej
D. przekazywanie sygnału z satelity do odbiornika satelitarnego
Konwerter satelitarny odgrywa kluczową rolę w systemach telekomunikacyjnych, umożliwiając efektywne przesyłanie sygnałów z satelitów do odbiorników satelitarnych. Jego główną funkcją jest odbieranie sygnałów radiowych emitowanych przez satelity geostacjonarne, ich konwersja na niższe częstotliwości i przesyłanie ich do odbiornika. Dzięki temu możliwe jest korzystanie z różnych usług, takich jak telewizja satelitarna, internet satelitarny czy telekomunikacja. Przykładem zastosowania konwertera jest system dostarczania sygnału telewizyjnego do domów, gdzie konwerter umieszczony na antenie zbiera sygnał z satelity, a następnie przetworzony sygnał jest przesyłany do dekodera w telewizorze. Zgodnie z najlepszymi praktykami w branży, konwertery powinny być dostosowane do specyfikacji LNB (Low Noise Block), aby zminimalizować szumy i zapewnić optymalną jakość sygnału. Dodatkowo, konwertery muszą być zgodne z normami ITU i ETSI, co gwarantuje ich interoperacyjność w globalnych systemach satelitarnych.

Pytanie 38

Aby zrealizować instalację anteny TV na zewnątrz budynku, należy użyć przewodu antenowego w osłonie

A. z PVC o impedancji 50 Ω
B. z PE o impedancji 50 Ω
C. z PE o impedancji 75 Ω
D. z PVC o impedancji 75 Ω
Odpowiedzi z impedancją 50 Ω są niewłaściwe w kontekście instalacji antenowej telewizji, ponieważ ta wartość nie jest standardem dla większości systemów odbioru telewizyjnego. Przewody o impedancji 50 Ω są powszechnie stosowane w aplikacjach radiowych, takich jak radiokomunikacja czy anteny do systemów WLAN. Zastosowanie takich przewodów w systemach telewizyjnych prowadzi do nieefektywnego odbioru sygnału, co może skutkować zniekształceniami obrazu czy brakiem sygnału. Ponadto, wybór przewodu o materiałach PVC jest również niewłaściwy dla instalacji zewnętrznych, ponieważ PVC nie oferuje tak wysokiej odporności na działanie promieni UV oraz wilgoci jak PE. Użytkowanie przewodu z PVC w trudnych warunkach atmosferycznych może prowadzić do szybkiego uszkodzenia izolacji, co negatywnie wpływa na jakość sygnału. Ważne jest, aby podczas planowania instalacji antenowej kierować się zasadami inżynierii i obowiązującymi normami, aby uniknąć typowych błędów, takich jak stosowanie niewłaściwych materiałów i impedancji, co prowadzi do nieoptymalnych wyników odbioru.

Pytanie 39

Przedstawiony interfejs umożliwiający przesyłanie sygnałów: video, RGB, S-Video nazywa się

Ilustracja do pytania
A. HDMI
B. DVI-A
C. S-Video
D. EURO SCART
Odpowiedź EURO SCART jest prawidłowa, ponieważ ten interfejs jest zaprojektowany do przesyłania sygnałów audio i video, w tym RGB oraz S-Video, co czyni go wszechstronnym rozwiązaniem w systemach multimedialnych. EURO SCART, znany także jako SCART, to złącze, które stało się standardem w Europie, umożliwiającym łatwe podłączanie różnych urządzeń, takich jak odtwarzacze DVD, telewizory i konsole do gier. W odróżnieniu od innych typów złącz, EURO SCART pozwala na jednoczesne przesyłanie sygnałów wideo oraz audio, co znacząco upraszcza konfigurację sprzętu. Dzięki szerokiemu wykorzystaniu w branży telewizyjnej i audio-wideo, SCART zyskał popularność jako wspólne złącze, co ułatwia integrację różnych urządzeń. Warto również zauważyć, że pomimo pojawienia się nowoczesnych standardów, takich jak HDMI, SCART wciąż jest używane w wielu starszych systemach, co czyni je istotnym elementem w kontekście retro technologii i urządzeń analogowych.

Pytanie 40

W oscyloskopie dwukanałowym do wejścia CH-B podłączono sygnał o znanej częstotliwości, natomiast do wejścia CH-A sygnał do analizy. W jaki sposób powinien być ustawiony oscyloskop, aby za pomocą krzywych Lissajous oszacować przybliżoną częstotliwość sygnału do badania?

A. ADD
B. X - Y
C. DUAL
D. SINGLE
Wybór trybu X - Y w oscyloskopie dwukanałowym jest kluczowy dla analizy sygnałów za pomocą krzywych Lissajous. W tym trybie sygnał z kanału CH-A jest przedstawiany na osi Y, a sygnał z kanału CH-B na osi X, co pozwala na bezpośrednie porównanie obu sygnałów. Krzywe Lissajous są wykorzystywane do wizualizacji relacji częstotliwości i fazy między dwoma sygnałami. Jeżeli częstotliwości obu sygnałów są zbliżone, na ekranie oscyloskopu pojawi się charakterystyczny kształt krzywej, którego geometria pozwala na określenie stosunku częstotliwości sygnałów. Na przykład, jeśli sygnał badany w CH-A ma częstotliwość 2 razy większą niż sygnał w CH-B, to na oscyloskopie zobaczymy kształt przypominający elipsę. To podejście jest powszechnie stosowane w praktyce inżynieryjnej, szczególnie w dziedzinach takich jak telekomunikacja i elektronika, gdzie precyzyjna analiza sygnałów jest niezbędna. Poprawna interpretacja krzywych Lissajous wymaga znajomości relacji między częstotliwościami oraz umiejętności ich analizy, co jest istotnym aspektem pracy z oscyloskopem.