Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 17 grudnia 2025 16:43
  • Data zakończenia: 17 grudnia 2025 16:55

Egzamin zdany!

Wynik: 36/40 punktów (90,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Na izolatorach wsporczych instaluje się przewody

A. uzbrojone
B. rdzeniowe
C. kabelkowe
D. szynowe
Odpowiedź szynowe jest prawidłowa, ponieważ przewody szynowe są wykorzystywane w systemach elektroenergetycznych do przesyłania energii elektrycznej pomiędzy różnymi elementami instalacji. Izolatory wsporcze są kluczowym elementem, który podtrzymuje przewody szynowe, zapewniając ich stabilność i bezpieczeństwo w różnych warunkach atmosferycznych. Przewody szynowe charakteryzują się dużą zdolnością do prowadzenia prądu oraz odpornością na obciążenia mechaniczne, co czyni je odpowiednimi do zastosowań w stacjach transformacyjnych i rozdzielniach. Przykładem ich zastosowania są instalacje w elektrowniach, gdzie przewody szynowe łączą transformatory z systemem dystrybucji energii. Zgodnie z normami branżowymi, stosowanie przewodów szynowych w połączeniu z odpowiednimi izolatorami jest uznawane za jedną z najlepszych praktyk w projektowaniu sieci elektroenergetycznych.

Pytanie 2

Którego silnika elektrycznego dotyczy przedstawiony schemat?

Ilustracja do pytania
A. Synchronicznego.
B. Bocznikowego prądu stałego.
C. Szeregowego prądu stałego.
D. Synchronizowanego.
Odpowiedzi, które wybrałeś, wskazują na pewne nieporozumienia dotyczące klasyfikacji silników elektrycznych. Silnik synchroniczny oraz synchronizowany to typy silników prądu przemiennego, które działają na zasadzie synchronizacji prędkości obrotowej wirnika z częstotliwością prądu zasilającego. Te silniki są często używane w aplikacjach, gdzie wymagana jest stała prędkość obrotowa, jednak nie mają one zastosowania w kontekście schematu, który pokazuje silnik prądu stałego. Silnik bocznikowy prądu stałego, z kolei, charakteryzuje się połączeniem równoległym uzwojenia wzbudzenia, co wpływa na zachowanie momentu obrotowego przy różnych prędkościach. Wybór jednego z tych typów silników do analizy schematu może prowadzić do błędnych wniosków, ponieważ ich zasady działania oraz zastosowania są odmienne od silnika szeregowego. Należy zwrócić uwagę na to, że nieprawidłowe identyfikowanie silników może prowadzić do wyboru niewłaściwych rozwiązań technologicznych w praktyce, co w konsekwencji może skutkować awariami lub zmniejszoną efektywnością systemów, w których są one wykorzystywane. Zrozumienie różnic pomiędzy tymi typami silników oraz ich właściwościami jest kluczowe dla skutecznego projektowania i eksploatacji urządzeń elektrycznych.

Pytanie 3

Który rodzaj pomiaru pokazany jest na rysunku?

Ilustracja do pytania
A. Impedancji zwarciowej.
B. Napięcia dotykowego.
C. Rezystancji izolacji stanowiska.
D. Ciągłości przewodów.
Pomiar rezystancji izolacji to naprawdę ważny element, jeśli chodzi o ocenę stanu instalacji elektrycznych. Bez tego nie da się mówić o bezpieczeństwie użytkowników, zwłaszcza w różnych warunkach. Na rysunku widzisz miernik rezystancji, który jest podłączony do badanego elementu i do ziemi. Taki sposób pomiaru pozwala ocenić jakość izolacji oraz wykryć ewentualne usterki. To ważne, bo niektóre problemy mogą prowadzić do groźnych sytuacji, jak na przykład porażenie prądem. W instalacjach przemysłowych regularne pomiary rezystancji izolacji to konieczność, żeby zapewnić, że wszystko działa jak należy, zgodnie z normami IEC 61557. Mierzenie z odpowiednim dociskiem elektrody, w tym przypadku 750 N, też jest kluczowe. Wartości rezystancji powinny być zgodne z normami, a przynajmniej 1 MΩ, żeby mieć pewność, że wszystko jest w porządku i bezpieczne. Znajomość tych parametrów i umiejętność ich analizy jest mega ważna dla każdego, kto zajmuje się elektryką.

Pytanie 4

Do czynności związanych z oględzinami instalacji elektrycznej nie należy

A. sprawdzenie prawidłowości oznaczeń przewodów neutralnych oraz ochronnych
B. weryfikacja oznaczeń obwodów oraz zabezpieczeń
C. ocena dostępności urządzeń, co umożliwia ich wygodną obsługę oraz eksploatację
D. pomiar rezystancji uziemienia
Pomiar rezystancji uziemienia jest kluczowym procesem, który ma na celu zapewnienie odpowiedniej ochrony przed skutkami piorunów i zakłóceń elektrycznych. Uziemienie jest istotnym elementem w instalacjach elektrycznych, który chroni urządzenia oraz osoby przed niebezpieczeństwami związanymi z przepięciami oraz zwarciami. Odpowiednia rezystancja uziemienia powinna być zgodna z normami, takimi jak PN-IEC 60364, które zalecają, aby wartość rezystancji uziemienia nie przekraczała 10 Ω dla urządzeń w warunkach normalnych. W praktyce, pomiar ten może być przeprowadzany przy użyciu specjalistycznych urządzeń, takich jak mierniki rezystancji uziemienia, które pozwalają na szybkie i dokładne określenie wartości rezystancji. Właściwe wykonanie tego pomiaru jest niezbędne do zapewnienia bezpieczeństwa użytkowników oraz trwałości instalacji elektrycznej. Przykładowo, w budynkach użyteczności publicznej, takich jak szpitale czy szkoły, regularne pomiary rezystancji uziemienia są wymagane przynajmniej raz w roku w celu spełnienia norm bezpieczeństwa.

Pytanie 5

Jaki procent strumienia świetlnego jest kierowany w dół w oprawie oświetleniowej klasy V?

A. (90 ÷ 100) %
B. (0 ÷ 10) %
C. (40 ÷ 60) %
D. (60 ÷ 90) %
Odpowiedź (0 ÷ 10) % jest prawidłowa w kontekście opraw oświetleniowych V klasy, które charakteryzują się tym, że ich głównym celem jest minimalizowanie ilości światła skierowanego w dół. W oprawach tych stosowane są specjalne osłony i reflektory, które ograniczają emisję światła w kierunku podłogi, co jest zgodne z zasadami oświetlenia efektywnego i zrównoważonego. Przykładowo, w zastosowaniach komercyjnych, takich jak sklepy czy galerie, oprawy V klasy są wykorzystywane do tworzenia efektów świetlnych, które podkreślają produkty bez przytłaczania przestrzeni nadmiernym oświetleniem. Ta technologia pozwala na kontrolowanie rozkładu światła, co jest szczególnie ważne w miejscach, gdzie design wnętrza i estetyka odgrywają kluczową rolę. Warto również zauważyć, że w kontekście standardów, takich jak normy EN 12464-1 dotyczące oświetlenia miejsc pracy, oprawy te często stosowane są w celu zapewnienia odpowiednich warunków oświetleniowych, jednocześnie minimalizując rozproszenie światła w górę i zmniejszając efekt olśnienia.

Pytanie 6

Aby zrealizować instalację zasilającą dla urządzeń, które potrzebują do działania napięcia AC 230V, w rurkach podtynkowych w pomieszczeniu, gdzie temperatura osiąga 100 °C, należy zastosować przewody oznaczone symbolem

A. DY 100
B. DY 700
C. DYc 750
D. DYc 150
Przewody oznaczone symbolem DYc 750 są przeznaczone do pracy w warunkach wysokotemperaturowych, co czyni je odpowiednim wyborem do instalacji zasilającej w pomieszczeniach, gdzie temperatura może osiągnąć 100°C. Symbol "DY" wskazuje na przewody elastyczne, a litera "c" oznacza, że przewody te są odporne na działanie wysokich temperatur. W praktyce, przewody DYc 750 często stosuje się w instalacjach przemysłowych oraz w aplikacjach, gdzie istnieje ryzyko wystąpienia ekstremalnych warunków temperaturowych. Stosowanie odpowiednich przewodów jest kluczowe dla zapewnienia bezpieczeństwa oraz długoterminowej wydajności systemu zasilania. Przewody te są zgodne z normami PN-EN 50525, które określają wymagania dla przewodów elektrycznych, i powinny być używane w miejscach, gdzie są narażone na wysokie temperatury, aby zminimalizować ryzyko uszkodzeń oraz pożaru.

Pytanie 7

Który element osprzętu łączeniowego przedstawiono na rysunku?

Ilustracja do pytania
A. Szynę łączeniową.
B. Listwę zaciskową.
C. Listwę elektroinstalacyjną.
D. Szynę montażową.
Szyna łączeniowa, którą rozpoznałeś na zdjęciu, pełni istotną rolę w systemach elektroinstalacyjnych. Jest to komponent, który umożliwia efektywne połączenie i dystrybucję energii elektrycznej pomiędzy różnymi urządzeniami w rozdzielnicy. Dzięki zastosowaniu szyny łączeniowej, możliwe jest zminimalizowanie oporów elektrycznych i zredukowanie strat energii, co jest kluczowe w projektowaniu nowoczesnych instalacji elektrycznych. W praktyce, takie szyny są często stosowane w obiektach komercyjnych oraz przemysłowych, gdzie wymagane jest jednoczesne podłączenie wielu urządzeń, takich jak wyłączniki, bezpieczniki czy urządzenia automatyki. Ponadto, zgodnie z normami IEC 61439, szyny łączeniowe muszą spełniać określone wymagania dotyczące przewodności oraz odporności na przeciążenia. Dzięki temu, ich stosowanie podnosi nie tylko efektywność, ale również bezpieczeństwo całej instalacji elektrycznej.

Pytanie 8

Który łącznik oznaczono symbolem literowym P na schemacie montażowym zamieszczonym na rysunku?

Ilustracja do pytania
A. Krzyżowy.
B. Grupowy.
C. Świecznikowy.
D. Schodowy.
Łącznik oznaczony literą P na schemacie montażowym to łącznik krzyżowy, który odgrywa kluczową rolę w układzie sterowania oświetleniem z trzech miejsc. Umożliwia on przełączanie obwodu w sposób, który pozwala na włączanie i wyłączanie oświetlenia z różnych lokalizacji. Przykładowo, w długim korytarzu, gdzie znajdują się trzy punkty dostępu, użycie łączników krzyżowych w połączeniu z łącznikami schodowymi na końcach umożliwia wygodne zarządzanie oświetleniem. Standardy branżowe, takie jak PN-EN 60669-1, wskazują, że użycie łączników krzyżowych w instalacjach oświetleniowych znacząco zwiększa komfort użytkowania oraz efektywność energetyczną. W praktyce, jeśli zainstalujemy łącznik krzyżowy w odpowiednich miejscach, zyskamy pełną kontrolę nad oświetleniem, co jest szczególnie przydatne w większych przestrzeniach.

Pytanie 9

Na której ilustracji przedstawiono kabel typu YAKY?

Ilustracja do pytania
A. Na ilustracji 1.
B. Na ilustracji 4.
C. Na ilustracji 3.
D. Na ilustracji 2.
Kabel typu YAKY jest szczególnym rodzajem kabla elektroenergetycznego, który charakteryzuje się żyłami aluminiowymi oraz izolacją wykonaną z polichlorku winylu (PVC). Na ilustracji 4 widać kabel z żyłami aluminiowymi, co jest kluczową cechą tego typu kabla. Kabel YAKY jest powszechnie stosowany w instalacjach elektrycznych, gdzie wymagane są wysokie parametry przewodzenia prądu oraz odporność na warunki atmosferyczne. Dzięki zastosowaniu żył aluminiowych, kabel ten jest lżejszy i tańszy niż jego miedziane odpowiedniki, co czyni go popularnym wyborem w gospodarce energetycznej. W praktyce, kable YAKY są często używane w rozdzielniach, do zasilania budynków, a także w instalacjach przesyłowych. Warto również podkreślić, że standardy branżowe, takie jak PN-EN 50525, regulują parametry techniczne dla kabli tego typu, zapewniając ich bezpieczeństwo i efektywność w eksploatacji.

Pytanie 10

Na schematach instalacji elektrycznych symbol z rysunku oznacza

Ilustracja do pytania
A. wyzwalanie cieplne.
B. cewkę przekaźnika z opóźnionym odpadaniem.
C. wyzwalanie elektroniczne.
D. cewkę przekaźnika z opóźnionym działaniem.
Wyzwalanie cieplne, przedstawione na schemacie, jest kluczowym elementem w kontekście zabezpieczeń elektrycznych, które ma na celu ochronę przed przeciążeniem. Zgodnie z normą PN-EN 60617, symbol ten odnosi się do mechanizmu, który działa na zasadzie rozszerzalności cieplnej materiałów. Przykładem zastosowania wyzwalania cieplnego są wyłączniki nadprądowe, które automatycznie odłączają obwód, gdy prąd przekracza określony próg przez zbyt długi czas. Dzięki temu zapobiegają uszkodzeniu urządzeń oraz minimalizują ryzyko pożaru. Oprócz wyłączników nadprądowych, wyzwalanie cieplne stosowane jest również w przekaźnikach termicznych, które mogą być używane w silnikach elektrycznych do monitorowania temperatury i zapobiegania przegrzaniu. Zrozumienie działania tego mechanizmu jest fundamentem dla inżynierów pracujących nad projektowaniem systemów zabezpieczeń elektrycznych, co podkreśla znaczenie znajomości symboliki występującej w dokumentacji technicznej.

Pytanie 11

Jakie akcesoria, oprócz szczypiec, trzeba pobrać z magazynu, aby zasilić zamontowany plafon sufitowy, kiedy instalacja została wykonana przewodami YDYp?

A. Lutownicę, wiertarkę, ściągacz izolacji
B. Nóż monterski, wiertarkę, ściągacz izolacji
C. Ściągacz izolacji, nóż monterski, wkrętak
D. Wiertarkę, lutownicę, wkrętak
Odpowiedź, która wskazuje na konieczność użycia ściągacza izolacji, noża monterskiego i wkrętaka, jest prawidłowa, ponieważ te narzędzia są kluczowe w procesie podłączania plafonu sufitowego do instalacji elektrycznej. Ściągacz izolacji pozwala na dokładne usunięcie izolacji z końców przewodów YDYp, co jest niezbędne do ich prawidłowego połączenia. Nóż monterski jest przydatny do precyzyjnego cięcia przewodów oraz do ogólnych prac związanych z instalacją. Wkrętak natomiast jest podstawowym narzędziem do mocowania plafonu do sufitu, co wymaga użycia odpowiednich śrub. W kontekście praktyki instalacyjnej, ważne jest, aby przestrzegać standardów BHP oraz zasad dotyczących instalacji elektrycznych, co zwiększa bezpieczeństwo i funkcjonalność wykonanej pracy. Dobre praktyki obejmują również upewnienie się, że zasilanie jest wyłączone przed przystąpieniem do jakichkolwiek prac elektrycznych, co minimalizuje ryzyko porażenia prądem.

Pytanie 12

Ile maksymalnie jednofazowych gniazd wtykowych o napięciu 230 V można zainstalować w pomieszczeniach mieszkalnych zasilanych z jednego obwodu?

A. 13 szt.
B. 10 szt.
C. 3 szt.
D. 6 szt.
Maksymalna zalecana liczba jednofazowych gniazd wtykowych o napięciu 230 V w pomieszczeniach mieszkalnych, zasilanych z jednego obwodu, wynosi 10 sztuk. Jest to zgodne z polskimi normami budowlanymi oraz standardami ochrony przeciwpożarowej. W praktyce oznacza to, że na jednym obwodzie elektrycznym możemy bezpiecznie podłączyć do 10 gniazd, co umożliwia równomierne rozłożenie obciążenia elektrycznego. Przy projektowaniu instalacji elektrycznej konieczne jest uwzględnienie nie tylko liczby gniazd, ale także ich przewidywanego obciążenia. W sytuacji, kiedy przez gniazda będą podłączane urządzenia o dużym poborze mocy, jak np. odkurzacze czy grzejniki, warto ograniczyć liczbę gniazd na obwodzie do mniejszej wartości, aby uniknąć przeciążenia. Dla obwodów o większej liczbie gniazd wtykowych można zastosować dodatkowe zabezpieczenia, takie jak wyłączniki różnicowoprądowe, co zapewnia dodatkową ochronę użytkowników. Dobra praktyka obejmuje również regularne sprawdzanie stanu technicznego instalacji oraz wymianę zużytych komponentów, co zwiększa bezpieczeństwo użytkowania.

Pytanie 13

Na podstawie przedstawionego schematu ideowego, określ jaki błąd popełniono przy montażu instalacji elektrycznej podtynkowej ułożonej w rurach.

Ilustracja do pytania
A. W rury wciągnięto niewłaściwą liczbę przewodów.
B. Błędnie połączono przewody instalacji do zacisków żyrandola.
C. W instalacji nieprawidłowo połączono przewód ochronny.
D. Zastosowano niewłaściwy typ łącznika instalacyjnego.
Zastosowanie niewłaściwego typu łącznika instalacyjnego w przedstawionej instalacji elektrycznej jest istotnym błędem, który może prowadzić do nieprawidłowego działania obwodu. W przypadku, gdy łącznik jest podłączony w sposób, który uniemożliwia jego prawidłowe funkcjonowanie, obwód pozostaje zamknięty, co skutkuje ciągłym świeceniem żarówek. Zgodnie z normami PN-IEC 60364, łączniki powinny być dobierane w zależności od specyfikacji instalacji oraz jej przeznaczenia. W praktyce oznacza to, że przy montażu instalacji elektrycznej musimy upewnić się, że wybrany łącznik jest zgodny z wymaganiami technicznymi oraz typem instalacji. Na przykład, w przypadku obwodów oświetleniowych, należy zastosować łączniki, które umożliwiają włączanie i wyłączanie obwodu w sposób, który nie wprowadza zamkniętego układu. Wybór odpowiednich komponentów ma kluczowe znaczenie dla bezpieczeństwa i efektywności pracy instalacji, dlatego warto korzystać z produktów renomowanych producentów, które spełniają odpowiednie normy i standardy branżowe.

Pytanie 14

Który z podanych symboli oznacza urządzenie, którym należy zastąpić element instalacji elektrycznej przedstawiony na rysunku?

Ilustracja do pytania
A. S 191 B20
B. FAZ B10/1
C. SM 320 230-2z
D. CF16-25/2/003
Odpowiedź "S 191 B20" jest poprawna, ponieważ idealnie odpowiada charakterystyce urządzenia widocznego na zdjęciu. Na rysunku przedstawiono aparat nadprądowy z oznaczeniem "L 20A", co wskazuje, że mamy do czynienia z wyłącznikiem automatycznym o charakterystyce B i prądzie znamionowym 20A. W kontekście stosowania w instalacjach elektrycznych, wyłączniki automatyczne o charakterystyce B są powszechnie używane do ochrony obwodów z urządzeniami elektrycznymi, które nie mają dużych prądów rozruchowych. Przykładem zastosowania wyłączników B20 są obwody oświetleniowe, gniazdka elektryczne oraz obwody z małymi silnikami. Ważne jest, aby dobierać urządzenia zabezpieczające zgodnie z ich oznaczeniem, co pomaga uniknąć przeciążeń oraz zapewnia bezpieczeństwo użytkowników. Zgodnie z normą PN-EN 60898, wyłączniki te oferują niezawodne zabezpieczenie przed skutkami zjawisk takich jak zwarcia czy przeciążenia, co czyni je niezbędnym elementem każdej instalacji elektrycznej.

Pytanie 15

W przypadku układu elektrycznego, w którym z jednego punktu zasilane są przynajmniej dwie wewnętrzne linie zasilające, konieczne jest zastosowanie

A. złącze
B. przyłącze
C. rozdzielnicę główną
D. instalacje odbiorcze
Złącze jest kluczowym elementem w instalacjach elektrycznych, gdyż umożliwia efektywne połączenie różnych linii zasilających w jednym punkcie. W przypadku, gdy jedna linia zasilająca rozdziela się na co najmniej dwie, złącze pozwala na zorganizowane i bezpieczne zarządzanie tymi połączeniami. Przykładowo, w budynkach mieszkalnych złącze jest często wykorzystywane do podłączenia linii zasilających do różnych sekcji obwodów, takich jak oświetlenie i gniazdka. Stosowanie złącz zgodnych z normami PN-IEC 60947-1, zapewnia, że instalacja będzie bezpieczna i zgodna z dobrymi praktykami branżowymi. Złącza powinny być również odpowiednio oznakowane i dostosowane do przewodów, co zwiększa bezpieczeństwo oraz ułatwia ewentualną konserwację lub modernizację instalacji. Warto podkreślić, że dobór odpowiednich złącz zgodnych z wymaganiami technicznymi znacznie redukuje ryzyko awarii oraz poprawia efektywność energetyczną całego systemu.

Pytanie 16

W jaki sposób należy ułożyć przewody w instalacji elektrycznej, jeśli na jej planie znajduje się symbol przedstawiony na rysunku?

Ilustracja do pytania
A. W kanałach przypodłogowych.
B. Pod tynkiem.
C. Na tynku.
D. W listwach elektroinstalacyjnych.
Odpowiedź "Pod tynkiem" jest poprawna, ponieważ zgodnie z normami instalacji elektrycznych, przewody powinny być ułożone w sposób, który zapewnia ich odpowiednie zabezpieczenie oraz estetykę. Układanie przewodów pod tynkiem to standardowa praktyka, która minimalizuje ryzyko uszkodzeń mechanicznych i wpływu warunków atmosferycznych, co jest kluczowe dla długowieczności instalacji. Przewody umieszczone w ścianach są mniej narażone na uszkodzenia spowodowane codziennym użytkowaniem pomieszczeń. Dodatkowo, lokalizowanie przewodów pod tynkiem pozwala na łatwiejsze ich maskowanie i dostosowanie do estetyki wnętrza, co jest istotne w projektach budowlanych. Warto również zauważyć, że układanie przewodów pod tynkiem musi być zgodne z obowiązującymi normami, takimi jak PN-IEC 60364, które regulują sposób wykonania instalacji elektrycznych. W praktyce, przed rozpoczęciem pracy, warto wykonać szczegółowy plan instalacji, który uwzględnia rozmieszczenie gniazdek, włączników i innych elementów instalacji, aby uniknąć późniejszych problemów związanych z dostępem do przewodów i ich konserwacją.

Pytanie 17

Który z urządzeń elektrycznych, zainstalowany w obwodzie systemu zasilania elektrycznego kuchenki trójfazowej, jest w stanie zidentyfikować przerwę w ciągłości przewodów jednej z faz?

A. Stycznik elektromagnetyczny
B. Czujnik zaniku fazy
C. Odgromnik
D. Przekaźnik priorytetowy
Czujnik zaniku fazy to urządzenie, którego głównym zadaniem jest monitorowanie i wykrywanie ewentualnych przerw w zasilaniu w poszczególnych fazach obwodu elektrycznego. W kontekście kuchenek trójfazowych, które wymagają stabilnego zasilania z trzech faz, czujnik ten odgrywa kluczową rolę w zapewnieniu bezpieczeństwa oraz sprawnego funkcjonowania urządzenia. Gdy zachodzi przerwa w jednej z faz, czujnik natychmiast wykrywa ten stan i może zainicjować odpowiednie działania, takie jak odłączenie urządzenia od zasilania, co zapobiega jego uszkodzeniu. Przykładowo, w kuchniach przemysłowych, gdzie kuchenki trójfazowe są wykorzystywane na dużą skalę, zastosowanie czujników zaniku fazy jest standardem, co wpływa na zwiększenie niezawodności i bezpieczeństwa operacji. Zgodnie z normami branżowymi, takie jak PN-EN 61439, zaleca się stosowanie czujników do monitorowania ciągłości zasilania w instalacjach elektrycznych, co w praktyce przekłada się na wyższą efektywność i minimalizację ryzyka awarii.

Pytanie 18

W jakiej z poniższych sytuacji poślizg silnika indukcyjnego będzie najmniejszy?

A. Silnik działa w nominalnych warunkach zasilania oraz obciążenia
B. Silnik będzie pracować na biegu jałowym
C. Podczas zasilania silnika jego wirnik będzie stał
D. Silnik będzie zasilany prądem w kierunku przeciwnym
Analizując pozostałe opcje, warto zauważyć, że zasilenie silnika przeciwprądem prowadzi do sytuacji, w której wirnik nie ma możliwości obrotów, co generuje maksymalny poślizg. W takim przypadku wirnik staje się właściwie statyczny, a energia nie jest efektywnie przetwarzana. Sytuacja ta nie tylko powoduje straty, ale również może prowadzić do uszkodzeń silnika. Z kolei, gdy wirnik silnika jest całkowicie nieruchomy, co ma miejsce w przypadku, gdy silnik jest zasilany bez obciążenia lub niesprawny, poślizg osiąga wartość maksymalną, ponieważ nie ma żadnego ruchu, co prowadzi do nieefektywnego wykorzystania energii. Praca silnika na biegu jałowym może sprawiać wrażenie podobnej do sytuacji z wirnikiem nieruchomym, jednakże w przypadku biegu jałowego wirnik wykonuje pewne obroty, co obniża poślizg. Wreszcie, praca silnika w znamionowych warunkach zasilania i obciążenia również nie zapewnia minimalnego poślizgu, ponieważ obciążenie wprowadza różnice prędkości wynikające z oporu mechanicznego oraz charakterystyki samego silnika. Ważne jest, aby zrozumieć, że optymalizacja pracy silników indukcyjnych, w tym zmniejszenie poślizgu, jest kluczowym elementem w kontekście efektywności energetycznej oraz długowieczności urządzeń.

Pytanie 19

Jaki przewód na schemacie montażowym instalacji elektrycznej oznacza się symbolem przedstawionym na rysunku?

Ilustracja do pytania
A. Ochronny.
B. Neutralny.
C. Uziemiający.
D. Wyrównawczy.
Odpowiedź "Ochronny" jest prawidłowa, ponieważ symbol przedstawiony na rysunku odnosi się do przewodu ochronnego PE (Protective Earth). Przewód ten jest kluczowym elementem instalacji elektrycznej, mającym na celu zabezpieczenie użytkowników przed porażeniem prądem elektrycznym. W sytuacji awaryjnej, przewód ochronny odprowadza niebezpieczne napięcie do ziemi, co znacząco zmniejsza ryzyko porażenia. W standardach, takich jak Polska Norma PN-IEC 60445:2017, przewód ten powinien być jednoznacznie oznaczony w schematach montażowych, co ułatwia identyfikację i prawidłowy montaż instalacji. Przykładowo, w przypadku uszkodzenia izolacji urządzenia elektrycznego, prawidłowe podłączenie przewodu ochronnego zapewnia, że prąd nie przepłynie przez ciało użytkownika, lecz zostanie skierowany do ziemi. Dzięki temu, stosowanie przewodów ochronnych zgodnie z normami jest fundamentem bezpieczeństwa w każdej instalacji elektrycznej.

Pytanie 20

Do którego typu źródeł światła zalicza się lampę przedstawioną na rysunku?

Ilustracja do pytania
A. Rtęciowych.
B. Indukcyjnych.
C. Żarowych.
D. Elektroluminescencyjnych.
Lampa przedstawiona na rysunku to lampa LED, która należy do grupy źródeł światła elektroluminescencyjnych. Emituje ona światło dzięki procesowi elektroluminescencji, gdzie prąd elektryczny przepływa przez półprzewodnikowe diody, powodując emisję fotonów. W przeciwieństwie do lamp żarowych, które generują światło poprzez podgrzewanie włókna, lampy LED są znacznie bardziej energooszczędne i mają dłuższą żywotność. Zastosowanie diod LED w oświetleniu wnętrz, ulic, a także w elektronice użytkowej, przyczynia się do zmniejszenia zużycia energii i emisji dwutlenku węgla. Zgodnie z normami, lampy LED są preferowane w nowoczesnych rozwiązaniach oświetleniowych ze względu na ich wysoką efektywność energetyczną i niski poziom ciepła generowanego podczas pracy. Dobre praktyki w zakresie oświetlenia wskazują na coraz szersze wykorzystanie technologii LED w różnych sektorach, od komercyjnych po domowe, co czyni je kluczowym elementem zrównoważonego rozwoju w branży oświetleniowej.

Pytanie 21

Podczas sprawdzania samoczynnego wyłączenia zasilania jako metody ochrony przeciwporażeniowej w sieciach TN-S, realizowanego poprzez nadprądowy wyłącznik instalacyjny, oprócz pomiaru impedancji pętli zwarcia, należy dla danego wyłącznika ustalić

A. czas zadziałania wyzwalacza zwarciowego
B. próg zadziałania wyzwalacza przeciążeniowego
C. wartość prądu wyłączającego
D. zwarciową zdolność łączeniową
Wartość prądu wyłączającego jest kluczowa w kontekście samoczynnego wyłączenia zasilania, ponieważ określa poziom prądu, przy którym nadprądowy wyłącznik instalacyjny zareaguje i odłączy obwód. W sieciach TN-S, które charakteryzują się oddzieleniem systemu uziemienia od neutralnego, ważne jest, aby wartość ta była odpowiednio dobrana do warunków ochrony przeciwporażeniowej. Standardy takie jak PN-EN 60947-2 wskazują, że wyłącznik musi działać w określonym czasie, aby zapewnić bezpieczeństwo użytkowników. Przykładowo, dla prądu wyłączającego o wartości 30 mA w obwodach ochronnych, wyłącznik powinien zadziałać w czasie nieprzekraczającym 0,2 sekundy. Oprócz tego, dobór wartości prądu wyłączającego ma również praktyczne zastosowanie w projektowaniu instalacji, gdyż zbyt wysoka wartość może prowadzić do ryzyka porażenia prądem, a zbyt niska do niepotrzebnych wyłączeń. Z tego względu, analiza warunków pracy wyłącznika oraz jego parametrów jest niezbędna dla zapewnienia ochrony użytkowników i minimalizacji ryzyka awarii.

Pytanie 22

Trasując położenie osprzętu instalacji w pomieszczeniu mieszkalnym na podstawie schematu, którego fragment przedstawiono na rysunku, należy

Ilustracja do pytania
A. uwzględnić zalecenia inwestora dotyczące wysokości umieszczania wyłącznika i gniazd w pomieszczeniu.
B. gniazda umieszczać w odległości co najmniej 50 cm od krawędzi drzwi i okien.
C. wyłącznik i gniazda umieszczać na wysokości co najmniej 100 cm od podłoża.
D. gniazda umieszczać tylko w strefie przypodłogowej.
Wybór odpowiedzi uwzględniającej zalecenia inwestora dotyczące wysokości umieszczania wyłącznika i gniazd w pomieszczeniu jest prawidłowy, ponieważ zgodnie z polskimi normami oraz najlepszymi praktykami w branży elektrycznej, projektowanie instalacji elektrycznych powinno uwzględniać preferencje użytkowników. Wysokość montażu osprzętu może wpływać na komfort użytkowania, dlatego istotne jest, aby dostosować ją do indywidualnych potrzeb mieszkańców. Na przykład, w pomieszczeniach, gdzie osoby o różnym wzroście korzystają z gniazd czy wyłączników, ich optymalne umiejscowienie może znacznie poprawić funkcjonalność przestrzeni. Należy również pamiętać, że wszelkie zalecenia inwestora muszą być zgodne z przepisami bezpieczeństwa, co oznacza, że powinny one być weryfikowane pod kątem zgodności z normami np. PN-IEC 60364. Uwzględnienie takich wskazówek nie tylko poprawia ergonomię, ale także zwiększa bezpieczeństwo użytkowania instalacji elektrycznej.

Pytanie 23

Który łącznik elektryczny ma dwa przyciski oraz trzy terminale?

A. Krzyżowy
B. Świecznikowy
C. Dwubiegunowy
D. Schodowy
Świecznikowy łącznik instalacyjny jest odpowiednim rozwiązaniem w sytuacjach, gdy chcemy sterować jednym źródłem światła z dwóch miejsc, co jest typowe w korytarzach, schodach czy dużych pomieszczeniach. Posiada on dwa klawisze i trzy zaciski elektryczne, co pozwala na realizację funkcji przełączania obwodu. Dzięki zastosowaniu tego typu łącznika, użytkownik ma możliwość włączania i wyłączania oświetlenia z dwóch różnych lokalizacji, co znacząco zwiększa komfort użytkowania. W praktyce, łącznik świecznikowy jest często wykorzystywany w instalacjach domowych, w których architektura wnętrza wymaga takiej funkcjonalności. Dobrą praktyką jest stosowanie łączników zgodnych z normami elektrycznymi, co zwiększa bezpieczeństwo i niezawodność instalacji. Warto również zauważyć, że w przypadku modernizacji instalacji elektrycznej, wybór łącznika świecznikowego może być kluczowy dla poprawy ergonomii użytkowania oświetlenia.

Pytanie 24

Na rysunku przedstawiono sposób podłączenia podtynkowego

Ilustracja do pytania
A. łącznika świecznikowego.
B. gniazda antenowego.
C. gniazda komputerowego.
D. łącznika grupowego.
Gniazdo komputerowe, które znajduje się na zdjęciu, jest przedstawione w formie złącza RJ45. To standardowe gniazdo wykorzystywane w instalacjach sieciowych, które obsługuje przewody Ethernet. Jego charakterystyczną cechą jest obecność ośmiu pinów, które umożliwiają podłączenie odpowiednich kabli, co zapewnia stabilne połączenie sieciowe. Gniazda RJ45 są powszechnie stosowane w biurach, szkołach i innych miejscach, gdzie wymagana jest szybka wymiana danych. Warto również zaznaczyć, że zgodnie z normą TIA/EIA-568, gniazda te są kluczowe dla budowy infrastruktury sieciowej, a ich poprawne podłączenie gwarantuje wysoką jakość sygnału oraz minimalizację zakłóceń. Wiedza na temat gniazd komputerowych oraz ich zastosowania w praktyce jest niezbędna dla każdego, kto zajmuje się budową lub serwisowaniem sieci komputerowych.

Pytanie 25

W jakiej jednostce miary określa się moment obrotowy, który należy zastosować przy dokręcaniu śrub w urządzeniach elektrycznych?

A. Pa
B. kg
C. kgˑm2
D. Nˑm
Moment siły, znany również jako moment obrotowy, jest miarą siły, która powoduje obrót ciała wokół osi. Jednostką momentu siły w międzynarodowym układzie jednostek SI jest niutonometr (N·m). W kontekście dokręcania zacisków śrubowych aparatów elektrycznych, używanie odpowiedniego momentu siły jest kluczowe, aby zapewnić prawidłowe i bezpieczne połączenie elektryczne. Zbyt mały moment może prowadzić do luzów, co z kolei może skutkować przerwaniem kontaktu elektrycznego, a zbyt duży moment może spowodować uszkodzenie śrub lub elementów, które są łączone. W praktyce, producenci sprzętu często podają zalecany moment dokręcania w instrukcjach obsługi, co może być wzorem do naśladowania w codziennym użytkowaniu. Stosowanie momentu siły w N·m jest również zgodne z normami branżowymi, co podkreśla jego znaczenie w zapewnieniu bezpieczeństwa i niezawodności w instalacjach elektrycznych.

Pytanie 26

Który symbol graficzny oznacza na planie instalacji elektrycznej sposób prowadzenia przewodów przedstawiony na zdjęciu?

Ilustracja do pytania
A. D.
B. B.
C. A.
D. C.
Wybór innej odpowiedzi niż C może być spowodowany nieporozumieniem, jeśli chodzi o oznaczenia w instalacjach elektrycznych. Ważne jest, żeby zrozumieć, że każdy symbol na planie ma swoje konkretne znaczenie, które powinno być zgodne z normami. Wiele osób myśli, że inne symbole są podobne do tego samego sposobu prowadzenia przewodów, ale to nie zawsze prawda. Na przykład, jeśli ktoś wybierze symbol A, to może pomyśleć, że oznacza to coś analogicznego do kanału kablowego, ale w rzeczywistości chodzi o instalacje powierzchniowe i to inna sprawa. Takie błędy zdarzają się najczęściej, bo brakuje znajomości standardów rysunku technicznego i jest problem z interpretacją symboli. W projektowaniu instalacji elektrycznych granie na tych zasadach jest kluczowe, by mieć dobrą wiedzę teoretyczną i praktyczną o oznaczeniach. Często ludzie upraszczają sprawy i nie biorą pod uwagę kontekstu, w jakim instalacja jest realizowana. Zrozumienie symboli graficznych jest istotne dla bezpieczeństwa i efektywności projektowania instalacji elektrycznych.

Pytanie 27

Na podstawie przedstawionego schematu połączeń określ, kiedy nastąpi zadziałanie wyłącznika różnicowoprądowego?

Ilustracja do pytania
A. Po załączeniu wyłącznika w obwodzie łazienki i podłączeniu odbiornika.
B. Po załączeniu wyłącznika w obwodzie gniazd pokoi i podłączeniu odbiornika.
C. Po załączeniu wyłącznika w obwodzie gniazd pokoi.
D. Po załączeniu wyłącznika w obwodzie łazienki.
Wyłącznik różnicowoprądowy (RCD) ma kluczową rolę w zapewnieniu bezpieczeństwa w obwodach elektrycznych, szczególnie w obszarach o dużym ryzyku, jak łazienki czy kuchnie. Prawidłowa odpowiedź wskazuje, że wyłącznik zadziała po załączeniu wyłącznika w obwodzie gniazd pokoi i podłączeniu odbiornika. RCD działa na zasadzie pomiaru różnicy prądów, które przepływają przez przewody fazowy i neutralny. Gdy różnica przekracza określony próg (najczęściej 30 mA), wyłącznik natychmiast przerywa obwód, co zapobiega porażeniu prądem. Na schemacie widać, że przewody fazowe są zamienione miejscami, co zwiększa ryzyko wystąpienia upływu prądu, zwłaszcza przy podłączeniu odbiornika. Zastosowanie RCD jest zgodne z normami, takimi jak PN-EN 61008, które regulują zasady zabezpieczeń w instalacjach elektrycznych. Dlatego kluczowe jest, by każdy użytkownik instalacji elektrycznej miał świadomość, jak ważne jest ich prawidłowe działanie oraz regularne testowanie ich sprawności.

Pytanie 28

Jakie akcesoria są wymagane do podłączenia gniazda wtyczkowego do instalacji zrealizowanej przewodami LY?

A. Szczypce, wkrętak, lutownica
B. Ściągacz izolacji, lutownica, tester
C. Tester, wkrętak, lutownica
D. Ściągacz izolacji, wkrętak, próbnik
Wybór narzędzi do podłączenia gniazda wtyczkowego jest kluczowy dla bezpieczeństwa i efektywności instalacji. Wiele osób może pomylić, jakie narzędzia są rzeczywiście konieczne, co prowadzi do nieprawidłowych wyborów. Na przykład, lutownica, choć może być użyteczna w niektórych kontekstach, nie jest niezbędna do podłączenia gniazda wtyczkowego w standardowej instalacji elektrycznej. Lutowanie jest techniką stosowaną głównie w połączeniach, które wymagają trwałego i przewodzącego połączenia, ale nie jest powszechnie zalecane w przypadku gniazd i wtyczek, gdzie stosuje się konektory i zaciski. Ponadto, brak ściągacza izolacji w odpowiedzi, która go nie uwzględnia, może prowadzić do uszkodzenia przewodów podczas ich przygotowywania. Zastosowanie szczypiec zamiast ściągacza izolacji może być niewłaściwe, ponieważ szczypce nie są zaprojektowane do precyzyjnego usuwania izolacji. Wkrętak jest oczywiście niezbędny, ale bez pozostałych narzędzi nie zapewni się prawidłowego kontaktu elektrycznego, co może prowadzić do awarii instalacji. Zrozumienie właściwego doboru narzędzi i ich zastosowania w kontekście standardów instalacji elektrycznych jest kluczowe dla wykonania bezpiecznej i funkcjonalnej instalacji.

Pytanie 29

Które urządzenie przedstawiono na ilustracji?

Ilustracja do pytania
A. Przekaźnik priorytetowy.
B. Automat zmierzchowy.
C. Przekaźnik czasowy.
D. Regulator temperatury.
Urządzenie przedstawione na ilustracji to przekaźnik czasowy, co można stwierdzić na podstawie charakterystycznych oznaczeń obecnych na jego obudowie, w tym symboli związanych z czasem oraz pokręteł służących do ustawiania opóźnień. Przekaźniki czasowe są kluczowymi elementami w systemach automatyki, umożliwiającymi kontrolowanie działania urządzeń w określonych odstępach czasu. Na przykład, w instalacjach oświetleniowych, przekaźniki czasowe mogą być ustawiane tak, aby włączać światło o zmierzchu i wyłączać je o świcie, co jest zgodne z zasadami efektywnego zarządzania energią. Dodatkowo, oznaczenia takie jak 'T1' i 'T2' na urządzeniu wskazują na różne funkcje czasowe, co potwierdza jego przeznaczenie. Zastosowanie przekaźników czasowych jest powszechne w różnych sektorach, od budynków mieszkalnych, gdzie automatyzują oświetlenie, po przemysł, gdzie kontrolują maszyny w zależności od czasu pracy. Stosowanie przekaźników czasowych w zgodzie z normami branżowymi, takimi jak IEC 60947, zapewnia bezpieczeństwo oraz efektywność operacyjną systemów elektrycznych i elektronicznych.

Pytanie 30

Na podstawie rysunku montażowego określ, na jakiej wysokości od podłogi należy zamontować dolną krawędź rozdzielnicy.

Ilustracja do pytania
A. 1,4 m
B. 0,80 m
C. 0,90 m
D. 1,5 m
Zgodnie z rysunkiem montażowym, dolna krawędź rozdzielnicy powinna być zamontowana na wysokości 1500 mm (1,5 m) od podłogi. Taki wymiar jest zgodny z normami branżowymi, które określają ergonomiczne i bezpieczne wysokości montażu rozdzielnic elektrycznych. Wysokość ta zapewnia wygodny dostęp do urządzeń oraz pozwala na swobodne prowadzenie prac serwisowych. Dodatkowo, montaż na tej wysokości minimalizuje ryzyko przypadkowego kontaktu z wodą oraz zanieczyszczeniami, co jest istotne w kontekście bezpieczeństwa elektrycznego. W praktyce, takie umiejscowienie rozdzielnicy ułatwia również korzystanie z niej w warunkach przemysłowych lub w budynkach użyteczności publicznej, gdzie użytkownicy mogą być różnego wzrostu. Warto pamiętać, że zgodność z obowiązującymi standardami oraz zasadami BHP jest kluczowym aspektem każdego projektu instalacji elektrycznych.

Pytanie 31

Który licznik należy zamontować w instalacji elektrycznej, aby umożliwić przedpłatowy system rozliczania energii elektrycznej?

Ilustracja do pytania
A. B.
B. A.
C. D.
D. C.
Licznik przedpłatowy, taki jak przedstawiony w odpowiedzi B, jest specjalistycznym urządzeniem zaprojektowanym do umożliwienia użytkownikom płacenia za energię elektryczną przed jej zużyciem. Jest to szczególnie korzystne w kontekście budżetowania wydatków na energię, ponieważ użytkownik może kontrolować swoje wydatki na bieżąco. W liczniku tym znajduje się klawiatura numeryczna oraz wyświetlacz, co umożliwia wprowadzenie kodów doładowujących, które można nabyć w sklepach lub przez internet. Taki system zachęca do oszczędzania energii, gdyż użytkownicy są bardziej świadomi swojego zużycia. Instalacje elektryczne z licznikami przedpłatowymi są zgodne z normami branżowymi, takimi jak IEC 62053, które określają wymagania dla liczników energii elektrycznej. Wiele nowoczesnych liczników przedpłatowych oferuje również funkcje zdalnego monitorowania, co ułatwia zarządzanie zużyciem energii w czasie rzeczywistym.

Pytanie 32

Na której ilustracji przedstawiono kabel przeznaczony do wykonania trójfazowego przyłącza ziemnego do budynku jednorodzinnego w sieci TN-S?

Ilustracja do pytania
A. Na ilustracji 1.
B. Na ilustracji 3.
C. Na ilustracji 4.
D. Na ilustracji 2.
Ilustracja 3 przedstawia kabel, który idealnie nadaje się do trójfazowego przyłącza ziemnego w systemie TN-S. W systemie tym kluczowe jest, aby kabel zawierał trzy przewody fazowe, przewód neutralny oraz przewód ochronny. Trzy przewody fazowe (L1, L2, L3) są niezbędne do równomiernego rozłożenia obciążenia w instalacji elektrycznej, co jest istotne dla zapewnienia stabilności oraz efektywności działania systemu. Przewód neutralny (N) jest używany do zamykania obwodu elektrycznego, co jest kluczowe w przypadku asymetrycznego obciążenia, podczas gdy przewód ochronny (PE) zapewnia bezpieczeństwo użytkowników, odprowadzając prąd do ziemi w przypadku awarii. Użycie odpowiednich kabli w instalacjach TN-S jest zgodne z normami PN-IEC 60364, które określają zasady projektowania i wykonania instalacji elektrycznych. Przykładem zastosowania takiego kabla może być budynek jednorodzinny, w którym zapewnienie odpowiedniego zasilania dla urządzeń elektrycznych stało się standardem w nowoczesnym budownictwie.

Pytanie 33

Całkowitą moc odbiornika trójfazowego mierzoną w układzie pomiarowym pokazanym na rysunku oblicza się ze wzoru

Ilustracja do pytania
A. B.
B. A.
C. C.
D. D.
Układ Arona jest kluczowym narzędziem w pomiarach mocy w trójfazowych układach elektrycznych. Umożliwia dokładne określenie całkowitej mocy odbiornika, zarówno w układach symetrycznych, jak i niesymetrycznych. Poprawna odpowiedź to A: P1 + P2, co odzwierciedla sumaryczną moc wskazywaną przez dwa watomierze zastosowane w tym układzie. W praktyce, wykorzystanie dwóch watomierzy pozwala na eliminację błędów pomiarowych związanych z różnymi wartościami prądów i napięć w poszczególnych fazach. Dodatkowo, metoda ta jest zgodna z zaleceniami standardów takich jak IEC 61000, które podkreślają znaczenie dokładności w pomiarach elektrycznych. W przypadku symetrycznych układów trójfazowych, gdzie prądy i napięcia są sobie równe, suma mocy z dwóch watomierzy daje nam całkowitą moc czynną, co ułatwia analizę i kontrolę procesów energetycznych, co jest niezbędne w wielu zastosowaniach przemysłowych. Warto także pamiętać, że poprawne zastosowanie układu Arona w praktyce wymaga odpowiedniego kalibrowania urządzeń pomiarowych, aby zapewnić ich dokładność i niezawodność.

Pytanie 34

Na rysunku przedstawiono wnętrze jednej z rozdzielnic mieszkaniowych zasilonych z rozdzielnicy głównej trzypiętrowego budynku. Które urządzenie, stanowiące część rozdzielnicy mieszkaniowej, oznaczono strzałką?

Ilustracja do pytania
A. Wyłącznik nadmiarowoprądowy.
B. Rozłącznik instalacyjny.
C. Stycznik.
D. Ogranicznik przepięć.
Odpowiedź "Ogranicznik przepięć" jest poprawna, ponieważ to urządzenie jest kluczowym elementem ochrony instalacji elektrycznej przed przepięciami, które mogą wystąpić w wyniku wyładowań atmosferycznych lub nagłych zmian w sieci zasilającej. Ograniczniki przepięć mają za zadanie zredukować napięcie do poziomu, który nie zagraża sprzętowi elektrycznemu. W praktyce stosuje się je w mieszkaniach, biurach oraz w obiektach przemysłowych, aby zabezpieczyć wrażliwe urządzenia, takie jak komputery czy systemy automatyki. Zgodnie z normami, takimi jak PN-EN 61643-11, ograniczniki te powinny być instalowane w bliskim sąsiedztwie chronionych urządzeń, co zapewnia ich skuteczność. Warto również wspomnieć, że ograniczniki przepięć są dostępne w różnych klasach, co pozwala na ich dobór zgodnie z charakterystyką instalacji oraz potrzebami użytkownika, co jest zgodne z dobrymi praktykami branżowymi.

Pytanie 35

Jakie typy przewodów instaluje się na izolatorach wspornikowych?

A. Rdzeniowe
B. Uzbrojone
C. Kabelkowe
D. Szynowe
Odpowiedź 'szynowe' jest poprawna, ponieważ szyny montowane są na izolatorach wsporczych w systemach elektroenergetycznych. Izolatory wsporcze pełnią kluczową rolę w podtrzymywaniu szyn, zapewniając jednocześnie ich izolację od otoczenia. Szyny są elementami wykorzystywanymi do przesyłania energii elektrycznej na dużą skalę, a ich zastosowanie w instalacjach wysokiego napięcia jest standardem w branży. Przykładem mogą być linie przesyłowe oraz rozdzielnie, gdzie szyny są stosowane do efektownego i bezpiecznego przekazywania prądu. Dobrą praktyką jest również korzystanie z szyn w instalacjach przemysłowych, gdzie ich zastosowanie zwiększa niezawodność oraz zmniejsza opory elektryczne. W instalacjach szynowych należy przestrzegać standardów dotyczących materiałów i konstrukcji, co zapewnia długotrwałość i bezpieczeństwo operacyjne tych systemów.

Pytanie 36

Który rodzaj źródła światła przedstawiono na ilustracji?

Ilustracja do pytania
A. Żarowe.
B. Wyładowcze niskoprężne.
C. Półprzewodnikowe.
D. Wyładowcze wysokoprężne.
Odpowiedź "półprzewodnikowe" jest prawidłowa, ponieważ na ilustracji można zauważyć źródło światła LED, które jest typowym przykładem tego typu technologii. Źródła światła półprzewodnikowego charakteryzują się wysoką efektywnością energetyczną, długą żywotnością oraz różnorodnością kolorów emitowanego światła. Diody LED znajdują szerokie zastosowanie, od oświetlenia wnętrz, przez oświetlenie zewnętrzne, aż po zastosowania w elektronice, takie jak podświetlenie ekranów. W wielu branżach, takich jak motoryzacja czy architektura, stosowanie LED-ów stało się standardem ze względu na ich niskie zużycie energii oraz możliwość dostosowywania intensywności światła. Standardy dotyczące oświetlenia, takie jak ANSI czy CIE, podkreślają znaczenie efektywności i jakości światła w kontekście ochrony środowiska oraz oszczędności energii, co czyni diody LED doskonałym wyborem dla zrównoważonego rozwoju.

Pytanie 37

Do pomiaru której wielkości jest przeznaczony miernik przedstawiony na ilustracji?

Ilustracja do pytania
A. Współczynnika mocy.
B. Odkształceń przebiegu napięcia.
C. Spadku napięcia.
D. Częstotliwości.
Miernik przedstawiony na ilustracji jest przeznaczony do pomiaru współczynnika mocy, co jest kluczowe w analizie pracy układów elektrycznych. Współczynnik mocy, oznaczany jako cos φ, określa, jak efektywnie energia elektryczna jest przekształcana w pracę. W praktyce, wartości współczynnika mocy mogą sięgać od 0 do 1, gdzie 1 oznacza, że cała moc jest efektywnie wykorzystana. W przypadku obciążeń indukcyjnych, takich jak silniki, współczynnik mocy jest zazwyczaj mniejszy niż 1, co oznacza straty energii. Poprawne zarządzanie współczynnikiem mocy jest istotne w przemyśle, ponieważ niski współczynnik mocy może prowadzić do zwiększonych kosztów energii oraz kar nałożonych przez dostawców energii. Przykłady zastosowań obejmują monitorowanie i poprawę wydajności energetycznej w zakładach produkcyjnych, a także optymalizację systemów oświetleniowych i grzewczych. Zgodność z normami, takimi jak IEC 61000, jest również istotna w ocenie jakości energii elektrycznej i minimalizacji zakłóceń w systemach zasilania.

Pytanie 38

Naciśnięcie przycisku TEST na wyłączniku różnicowoprądowym, imituje

A. przeciążenie
B. uszkodzenie przewodu
C. przepięcie
D. upływ prądu
Wciśnięcie przycisku TEST na wyłączniku różnicowoprądowym (RCD) ma na celu symulację upływu prądu, co jest kluczowym elementem działania tego urządzenia. Wyłączniki różnicowoprądowe są zaprojektowane w celu ochrony przed porażeniem prądem elektrycznym oraz pożarami spowodowanymi przez upływ prądu, dlatego ich regularne testowanie jest niezwykle istotne. Kiedy użytkownik naciska przycisk TEST, wewnętrzny mechanizm wyłącznika wytwarza sztuczny upływ prądu, co powinno spowodować natychmiastowe wyłączenie obwodu. To działanie pozwala użytkownikom na weryfikację, czy urządzenie działa prawidłowo i jest w stanie wykryć rzeczywisty upływ prądu. Zgodnie z normami branżowymi, takie testowanie powinno być przeprowadzane co najmniej raz w miesiącu, aby zapewnić bezpieczeństwo instalacji elektrycznej. Przykładowo, w przypadku zużycia izolacji przewodów lub uszkodzeń urządzeń elektrycznych, wyłącznik różnicowoprądowy powinien zareagować, wyłączając zasilanie, co zapobiega potencjalnym wypadkom i uszkodzeniom mienia. Regularne testowanie RCD przyczynia się do wyższej ochrony użytkowników oraz zgodności z przepisami bezpieczeństwa elektrycznego, jak normy PN-EN 61008-1.

Pytanie 39

Która z wymienionych przyczyn może spowodować samoczynne wyłączenie wyłącznika nadprądowego obwodu gniazd wtyczkowych kuchni w przedstawionej instalacji?

Ilustracja do pytania
A. Zwarcie przewodu ochronnego z przewodem neutralnym.
B. Włączenie odbiornika drugiej klasy ochronności.
C. Jednoczesne podłączenie odbiorników o zbyt dużej mocy.
D. Przerwa w przewodzie uziemiającym instalację.
Jednoczesne podłączenie odbiorników o zbyt dużej mocy jest kluczowym czynnikiem, który może spowodować samoczynne wyłączenie wyłącznika nadprądowego. Wyłącznik nadprądowy, taki jak B16, jest zaprojektowany w celu ochrony obwodu przed przeciążeniem i zwarciem. Kiedy do obwodu podłączone są urządzenia o dużym zapotrzebowaniu na moc, ich łączny prąd może przekroczyć wartość znamionową wyłącznika, co automatycznie prowadzi do jego zadziałania. Przykładem może być jednoczesne włączenie kuchenki elektrycznej, piekarnika oraz zmywarki, co w wielu przypadkach przekracza 16 A, a tym samym powoduje wyłączenie. Zgodnie z normami PN-IEC 60898, każda instalacja elektryczna powinna być projektowana z uwzględnieniem maksymalnych obciążeń oraz odpowiednich zabezpieczeń, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. W praktyce, aby uniknąć problemów z wyłącznikami, należy świadomie dobierać moc urządzeń oraz rozważać ich jednoczesne użycie.

Pytanie 40

Którego klucza należy użyć do przymocowania urządzenia elektrycznego do podłoża przy użyciu wkrętów, jak przedstawiony na ilustracji?

Ilustracja do pytania
A. Płaskiego.
B. Oczkowego.
C. Ampulowego.
D. Nasadowego.
Odpowiedź "Ampulowego" jest prawidłowa, ponieważ klucz ampulowy (inaczej klucz imbusowy) jest specjalnie zaprojektowany do pracy z wkrętami, które posiadają gniazdo sześciokątne wewnętrzne. Tego rodzaju wkręty są powszechnie stosowane w urządzeniach elektrycznych, co czyni klucz ampulowy niezwykle przydatnym narzędziem w wielu zastosowaniach. Dzięki konstrukcji klucza, który idealnie pasuje do gniazda wkrętu, można osiągnąć wysoki moment dokręcenia, co jest kluczowe dla zapewnienia stabilności zamocowanego urządzenia. W praktyce, użycie klucza ampulowego przy dokręcaniu wkrętów w urządzeniach elektrycznych zmniejsza ryzyko uszkodzenia elementów, ponieważ klucz nie zsuwa się z gniazda, co jest częstym problemem przy użyciu kluczy nasadowych czy oczkowych. Warto pamiętać, że nieodpowiednie narzędzie może prowadzić do uszkodzeń wkrętów oraz szkodliwych dla struktury zamocowanego urządzenia. Dlatego, wybierając odpowiedni klucz, należy kierować się jego specyfiką oraz standardami branżowymi dotyczącymi montażu i konserwacji urządzeń elektrycznych.