Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 9 grudnia 2025 14:26
  • Data zakończenia: 9 grudnia 2025 14:34

Egzamin niezdany

Wynik: 19/40 punktów (47,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jaki adres IP w systemie dziesiętnym odpowiada adresowi IP 10101010.00001111.10100000.11111100 zapisanemu w systemie binarnym?

A. 170.14.160.252
B. 170.15.160.252
C. 171.14.159.252
D. 171.15.159.252
Wybór błędnych odpowiedzi opiera się na nieprawidłowej interpretacji wartości binarnych lub ich konwersji na system dziesiętny. Często w takich sytuacjach można się spotkać z typowymi błędami, takimi jak zignorowanie sposobu, w jaki oblicza się wartość oktetów. Na przykład, niektóre odpowiedzi mogą sugerować, że błędnie zinterpretowano oktet 00001111 jako 14 zamiast 15, co prowadzi do nieprawidłowego wyniku. Ponadto, istnieje ryzyko pomylenia wartości oktetów, co może prowadzić do całkowicie innego adresu IP. Warto pamiętać, że każdy oktet w adresie IP reprezentuje wartość od 0 do 255 i powinien być przeliczany z uwzględnieniem podstawy 2. Błędy te są powszechne, zwłaszcza w przypadku osób, które nie są dobrze zaznajomione z systemami liczbowymi. Zrozumienie, jak przeliczać wartości binarne na dziesiętne, jest kluczowe w kontekście sieci komputerowych. Umożliwia to nie tylko poprawną konfigurację urządzeń, ale także zrozumienie, jak różne części sieci komunikują się ze sobą. Dlatego ważne jest, aby systematycznie ćwiczyć te umiejętności oraz odnosić się do standardów takich jak RFC 791, które definiuje internetowy protokół IP.

Pytanie 2

Jaką topologię fizyczną stosuje się w sieciach z topologią logiczną Token Ring?

A. Gwiazdy
B. Magistrali
C. Siatki
D. Pierścienia
Topologia fizyczna pierścienia jest kluczowym elementem dla funkcjonowania sieci Token Ring. W tej topologii, urządzenia są połączone w sposób, który tworzy zamknięty pierścień, co oznacza, że dane przesyłane są w jednokierunkowym ruchu, które krąży wokół całej sieci. Każde urządzenie odbiera dane od swojego sąsiada i przekazuje je dalej, co minimalizuje kolizje w transmisji. Standardy takie jak IEEE 802.5 definiują zasady działania sieci Token Ring, w tym sposób zarządzania dostępem do medium transmisyjnego. Przykładem praktycznego zastosowania tej topologii są sieci lokalne w biurach, gdzie stabilność i przewidywalność działania sieci są kluczowe. Token Ring, mimo że mniej popularny w porównaniu do technologii Ethernet, oferuje korzyści w specyficznych zastosowaniach, takich jak systemy, gdzie synchronizacja i kontrola dostępu są priorytetowe.

Pytanie 3

Który z poniższych adresów IPv4 wraz z prefiksem reprezentuje adres sieci?

A. 64.77.199.192/26
B. 208.99.255.134/28
C. 127.100.100.67/27
D. 46.18.10.19/30
Wybór adresów IPv4 46.18.10.19/30, 208.99.255.134/28 oraz 127.100.100.67/27 jako potencjalnych adresów sieciowych jest błędny, ponieważ nie rozumie się, jak działa maskowanie podsieci i identyfikacja adresów sieciowych. Dla adresu 46.18.10.19/30 maska podsieci wynosi 255.255.255.252, co oznacza, że mamy do dyspozycji tylko 2 adresy hostów w tej podsieci (2^2 - 2 = 2, ze względu na zarezerwowane adresy). To sprawia, że ten adres nie może być użyty jako adres sieci, ponieważ nie będzie w stanie obsłużyć dodatkowych hostów. Podobnie, adres 208.99.255.134/28 wskazuje na maskę 255.255.255.240, co również ogranicza liczbę hostów w tej podsieci do 14, co czyni go nieodpowiednim do funkcji adresu sieciowego. W przypadku adresu 127.100.100.67/27, mamy maskę 255.255.255.224, co również nie odpowiada standardom dla adresów sieciowych. Typowym błędem w analizie tych adresów jest brak zrozumienia, że adres sieciowy to zawsze pierwszy adres w danej podsieci, a jego identyfikacja powinna bazować na odpowiednim zrozumieniu relacji między prefiksem a adresami hostów. W praktyce niewłaściwe określenie adresu sieciowego prowadzi do problemów z routingiem oraz zarządzaniem adresami IP, co może skutkować konfliktami w sieci oraz obniżeniem wydajności. Umiejętność prawidłowego obliczania adresów sieciowych jest kluczowa w administracji sieciami oraz w projektowaniu infrastruktury sieciowej.

Pytanie 4

Moduł Mini-GBiCSFP pełni funkcję

A. spawania włókien światłowodowych
B. zwiększania zasięgu sieci WIFI
C. podłączania światłowodu do switcha
D. krosowania switchów przy wykorzystaniu złącz GG45
Moduł Mini-GBiCSFP jest kluczowym elementem w architekturze nowoczesnych sieci telekomunikacyjnych, umożliwiającym podłączanie światłowodów do przełączników. Dzięki zastosowaniu złącza SFP (Small Form-factor Pluggable) jego wymiana i instalacja są wyjątkowo proste i szybkie, co jest istotne w kontekście dynamicznego rozwoju infrastruktury sieciowej. Zastosowanie światłowodów w komunikacji sieciowej zwiększa przepustowość oraz zasięg, a także minimalizuje zakłócenia elektromagnetyczne. Przykładem praktycznego zastosowania Mini-GBiCSFP może być budowa sieci lokalnej w biurze, gdzie wymagana jest wysoka wydajność i niezawodność połączeń. Warto również zauważyć, że zgodność z międzynarodowymi standardami, takimi jak IEEE 802.3, zapewnia interoperacyjność z różnymi urządzeniami, co jest kluczowe w środowiskach wielokrotnych dostawców.

Pytanie 5

Która z poniższych informacji odnosi się do profilu tymczasowego użytkownika?

A. Jest zakładany przez administratora systemu i magazynowany na serwerze, zmiany mogą w nim wprowadzać jedynie administratorzy
B. Po wylogowaniu użytkownika, modyfikacje dokonane przez niego w ustawieniach pulpitu oraz plikach nie będą zachowane
C. Pozwala na dostęp do ustawień i danych użytkownika z dowolnego komputera w sieci, które są przechowywane na serwerze
D. Tworzy się go w trakcie pierwszego logowania do systemu i zapisuje na lokalnym dysku twardym komputera
Zrozumienie, jak działają profile użytkowników, to klucz do dobrego zarządzania systemami operacyjnymi. Odpowiedzi, które mówią, że profil tymczasowy tworzy się przy pierwszym logowaniu i jest przechowywany na lokalnym dysku, są błędne. To pomylenie z profilem lokalnym, który jest trwalszy i pozwala zapisać zmiany po wylogowaniu. Profil tymczasowy nie ma takiej trwałości. Mówiąc o korzystaniu z ustawień na różnych komputerach w sieci, mamy na myśli profil roamingowy, który jest na serwerze i synchronizuje się z różnymi urządzeniami. Tworzenie profilu przez admina i trzymanie go na serwerze dotyczy stałego profilu, który jest pod kontrolą polityk organizacji. Każda z tych rzeczy jest inna i ma swoje konkretne zastosowania. Często mylimy profil tymczasowy z innymi typami profili, co może prowadzić do wielu kłopotów przy zarządzaniu ustawieniami użytkowników i nieporozumień związanych z bezpieczeństwem. Te różnice są naprawdę ważne, szczególnie dla administratorów, którzy muszą podejmować przemyślane decyzje dotyczące zarządzania dostępem i konfiguracji profili.

Pytanie 6

Umowa, na mocy której użytkownik ma między innymi wgląd do kodu źródłowego oprogramowania w celu jego analizy oraz udoskonalania, to licencja

A. MOLP
B. OEM
C. GNU GPL
D. OLP
Licencja GNU GPL to przykład jednej z najbardziej rozpoznawalnych licencji wolnego i otwartego oprogramowania. Daje użytkownikowi nie tylko możliwość korzystania z programu, ale też pełen wgląd w kod źródłowy, co pozwala na analizę działania, naprawianie błędów czy tworzenie własnych rozszerzeń. W praktyce oznacza to, że każdy, kto pobierze taki program, może go dowolnie modyfikować i dzielić się tymi zmianami z innymi – oczywiście pod warunkiem, że zachowa tę samą licencję (czyli tzw. copyleft). Takie podejście bardzo wspiera rozwój społeczności IT, bo kod staje się wspólnym dobrem i każdy może się uczyć na gotowych przykładach. Z mojego doświadczenia projekty open source to świetna okazja do rozwoju – na przykład Linux czy GIMP to znane narzędzia, których kod można nie tylko oglądać, ale też aktywnie współtworzyć. Warto pamiętać, że GNU GPL wymusza publikowanie zmian, więc firmy, które używają takiego oprogramowania do własnych celów, też muszą dzielić się swoimi modyfikacjami. Branża IT bardzo docenia takie standardy, bo sprzyjają transparentności i szybkiemu rozwojowi technologii. Niekiedy jednak, dla niektórych projektów, to ograniczenie może być problematyczne, jeśli ktoś chce zamknąć kod i zrobić coś tylko dla siebie. Ogólnie jednak – moim zdaniem – GPL to dobry przykład otwartości i współpracy w informatyce.

Pytanie 7

Na ilustracji przedstawiono urządzenie sieciowe, którym jest

Ilustracja do pytania
A. konwerter mediów
B. router
C. firewall
D. przełącznik
Firewall jest urządzeniem sieciowym którego głównym zadaniem jest ochrona sieci poprzez kontrolę przepływu ruchu oraz zapobieganie nieautoryzowanemu dostępowi. Działa na poziomie warstwy sieciowej i transportowej modelu OSI analizując pakiety danych oraz decyzje o ich przepuszczaniu blokowaniu lub modyfikowaniu na podstawie zdefiniowanych reguł bezpieczeństwa. Nie jest jednak odpowiedzialny za kierowanie ruchem pomiędzy różnymi sieciami co jest zadaniem routera. Przełącznik to urządzenie działające na drugim poziomie modelu OSI a jego główną funkcją jest łączenie urządzeń w sieci lokalnej LAN poprzez przekazywanie ramek danych pomiędzy portami na podstawie adresów MAC. Przełączniki nie podejmują decyzji o kierowaniu pakietów pomiędzy sieciami co jest zadaniem routera. Konwerter mediów to urządzenie które przekształca sygnały z jednego medium transmisyjnego na inny umożliwiając połączenie dwóch różnych rodzajów kabli np. miedzianych z światłowodami. Konwerter mediów nie zarządza ruchem w sieci i nie podejmuje decyzji o przesyłaniu danych między różnymi sieciami. W przypadku pytania kluczowym aspektem jest zrozumienie że tylko routery posiadają zdolność do zarządzania ruchem IP pomiędzy różnymi segmentami sieci co jest podstawą ich funkcji w infrastrukturach sieciowych. Typowe błędy w rozróżnianiu tych urządzeń wynikają z mylenia funkcji ochronnych i przełączających z funkcjami routingu co prowadzi do nieprawidłowych wniosków dotyczących ich zastosowania w sieciach komputerowych. Zadaniem routera jest kierowanie ruchem pomiędzy różnymi sieciami podczas gdy inne urządzenia pełnią bardziej wyspecjalizowane role w zakresie bezpieczeństwa czy połączeń lokalnych.

Pytanie 8

Aby uzyskać dostęp do adresu serwera DNS w ustawieniach karty sieciowej w systemie z rodziny Windows, należy wprowadzić polecenie

A. ipconfig /all
B. arp -a
C. ping
D. ipconfig
Polecenie 'ipconfig /all' jest kluczowym narzędziem w systemach operacyjnych Windows, które umożliwia uzyskanie szczegółowych informacji o konfiguracji sieciowej. Wykorzystując to polecenie, użytkownik może zobaczyć adresy serwerów DNS, maski podsieci, adresy IP, oraz inne istotne dane dotyczące połączenia sieciowego. To szczególnie przydatne w diagnostyce problemów z połączeniem internetowym lub w przypadku konfigurowania sieci lokalnej. Dodatkowo, w kontekście praktycznych zastosowań, administratorzy systemów oraz technicy IT regularnie korzystają z 'ipconfig /all', aby zweryfikować konfigurację urządzeń oraz wprowadzone zmiany. Zgodnie z najlepszymi praktykami, znajomość tych poleceń jest niezbędna dla każdego, kto zajmuje się zarządzaniem siecią, a umiejętność ich wykorzystania może znacznie ułatwić proces rozwiązywania problemów. Warto również wspomnieć, że 'ipconfig' bez dodatkowych parametrów pokaże jedynie podstawowe informacje, co czyni 'ipconfig /all' bardziej wszechstronnym narzędziem do analizy.

Pytanie 9

Który z wymienionych interfejsów stanowi port równoległy?

A. USB
B. IEEE1394
C. IEEE1294
D. RS232
Wybrane odpowiedzi nie są poprawnymi przykładami portu równoległego. USB, czyli Universal Serial Bus, to interfejs szeregowy, który zyskał ogromną popularność dzięki jego wszechstronności i łatwości użycia. USB przesyła dane w sposób szeregowy, co oznacza, że bity informacji są przesyłane jeden po drugim, co może być mniej efektywne w przypadku dużych ilości danych, ale pozwala na uproszczenie konstrukcji złącza i zmniejszenie kosztów produkcji. RS232 to również standard interfejsu szeregowego, który był szeroko stosowany w komunikacji komputerowej, lecz również nie jest portem równoległym. Jego zastosowanie obejmowało połączenia z modemami i innymi urządzeniami, jednak w dzisiejszych czasach jest już mniej powszechne. IEEE 1394, znany także jako FireWire, jest standardem interfejsu, również szeregowego, który umożliwia przesył danych w dużych prędkościach, głównie w zastosowaniach audio-wideo. Wybór tych interfejsów jako portów równoległych może być mylący, ponieważ mogą one oferować wysoką wydajność, jednak ich architektura jest oparta na przesyłaniu danych w trybie szeregowym, co jest fundamentalnie różne od metody równoległej, stosowanej w IEEE 1294. Warto pamiętać, że mylenie tych standardów może prowadzić do nieefektywnego doboru sprzętu oraz problemów z kompatybilnością w projektach technologicznych.

Pytanie 10

Podczas procesu zamykania systemu operacyjnego na wyświetlaczu pojawił się błąd, znany jako bluescreen 0x000000F3 Bug Check 0xF3 DISORDERLY_SHUTDOWN - nieudane zakończenie pracy systemu, spowodowane brakiem pamięci. Co może sugerować ten błąd?

A. niewystarczający rozmiar pamięci wirtualnej
B. uszkodzenie partycji systemowej
C. przegrzanie procesora
D. uruchamianie zbyt wielu aplikacji przy starcie komputera
Błąd 0x000000F3, znany jako DISORDERLY_SHUTDOWN, wskazuje na problemy związane z brakiem pamięci podczas zamykania systemu operacyjnego. W kontekście tej odpowiedzi, niewystarczający rozmiar pamięci wirtualnej jest kluczowym czynnikiem, który może prowadzić do tego błędu. Pamięć wirtualna jest mechanizmem, który pozwala systemowi operacyjnemu na użycie przestrzeni dyskowej jako rozszerzenia pamięci RAM. Gdy dostępna pamięć RAM jest niewystarczająca do obsługi uruchomionych aplikacji i procesów, system operacyjny wykorzystuje pamięć wirtualną, aby zaspokoić te potrzeby. Jeśli jednak rozmiar pamięci wirtualnej jest zbyt mały, system może napotkać problemy z zamykaniem aplikacji i zwalnianiem zasobów, co prowadzi do błędów, takich jak ten opisany w pytaniu. Aby uniknąć takich sytuacji, zaleca się regularne monitorowanie użycia pamięci oraz dostosowywanie ustawień pamięci wirtualnej zgodnie z zaleceniami producenta systemu operacyjnego. Dobrym standardem jest zapewnienie, że pamięć wirtualna jest ustawiona na co najmniej 1,5 razy większą niż fizyczna pamięć RAM w systemie.

Pytanie 11

Jakie polecenie należy zastosować, aby zamontować pierwszą partycję logiczną dysku primary slave w systemie Linux?

A. mount /dev/hda2 /mnt/hdd
B. mount /dev/hdb5 /mnt/hdd
C. mount /dev/hda4 /mnt/hdd
D. mount /dev/hdb3 /mnt/hdd
Wybór jakiejkolwiek innej odpowiedzi prowadzi do błędnego wskazania partycji, co jest kluczowe w kontekście zarządzania systemem plików w Linuxie. Odpowiedź 'mount /dev/hdb3 /mnt/hdd' sugeruje, że użytkownik próbowałby zamontować trzecią partycję na tym samym dysku, co nie byłoby odpowiednie w kontekście pytania o pierwszą partycję logiczną. Podobnie, 'mount /dev/hda2 /mnt/hdd' odnosi się do drugiej partycji na pierwszym dysku 'primary master', co także nie jest zgodne z kontekstem pytania. Odpowiedź 'mount /dev/hda4 /mnt/hdd' również nie jest prawidłowa, ponieważ wskazuje na czwartą partycję na tym samym dysku, co może prowadzić do nieporozumień przy organizowaniu przestrzeni dyskowej. Typowe błędy to mylenie partycji fizycznych z logicznymi oraz nieznajomość konwencji nazewnictwa w systemach Linux. Ważne jest, aby przed montowaniem partycji zapoznać się z ich strukturą oraz zrozumieć, jak system plików jest zorganizowany. W praktyce, niepoprawny wybór partycji może prowadzić do utraty danych lub problemów z dostępem do plików, dlatego kluczowe jest stosowanie się do zasad i norm dotyczących zarządzania dyskami oraz partycjami w systemie Linux. Zrozumienie tych zasad jest niezbędne dla efektywnego administrowania systemem operacyjnym.

Pytanie 12

Aby w systemie Windows ustawić właściwości wszystkich zainstalowanych urządzeń lub wyświetlić ich listę, należy użyć narzędzia

A. diskmgmt.msc
B. devmgmt.msc
C. dnsmgmt.msc
D. dhcpmgmt.msc
Wybierając którąkolwiek z innych opcji niż devmgmt.msc, łatwo wpaść w pułapkę nazewnictwa narzędzi administracyjnych w Windows. Niestety, w praktyce to częsty błąd – nie każdy rozróżnia funkcjonalność management snap-ins, zwłaszcza gdy brzmią podobnie. dnsmgmt.msc to narzędzie dedykowane do zarządzania serwerem DNS, czyli systemem tłumaczącym nazwy domenowe na adresy IP. Jego zastosowanie ogranicza się wyłącznie do konfiguracji i obsługi serwerów DNS, więc nie znajdziesz tam opcji dotyczących sterowników czy listy urządzeń. Z kolei diskmgmt.msc to Menedżer dysków, który służy do zarządzania przestrzenią dyskową – partycjami, dyskami, woluminami, formatowaniem czy inicjalizacją nowych nośników. Tutaj skupiasz się na pamięci masowej, a nie ogólnej liście sprzętu podłączonego do komputera. Natomiast dhcpmgmt.msc odpowiada za administrację serwerem DHCP, co wykorzystuje się głównie w środowiskach sieciowych do automatycznego przydzielania adresów IP klientom w sieci LAN. Ten snap-in jest dostępny w edycjach serwerowych Windowsa, a na standardowym komputerze osobistym zwykle nawet nie da się go uruchomić. Często spotyka się mylenie tych narzędzi, bo mają podobne końcówki i wszystkie należą do kategorii „konsol MMC”. Jednak każda z nich ma bardzo jasno określone zadania, i tylko devmgmt.msc daje dostęp do pełnej listy urządzeń oraz ich właściwości. Warto zapamiętać ten podział, bo w codziennej praktyce administratora czy technika mylenie narzędzi może prowadzić nie tylko do frustracji, ale i do niepotrzebnych strat czasu. Dobrą praktyką jest korzystanie zawsze z dokumentacji lub wbudowanego mechanizmu pomocy Windows, gdy masz wątpliwości, która konsola MMC będzie odpowiednia do danego zadania – to znacznie ułatwia życie i pozwala uniknąć takich nieporozumień.

Pytanie 13

Która z macierzy RAID opiera się na replikacji dwóch lub więcej dysków twardych?

A. RAID 3
B. RAID 1
C. RAID 5
D. RAID 0
RAID 1, znany również jako mirroring, polega na replikacji danych na co najmniej dwóch dyskach fizycznych. W przeciwieństwie do RAID 0, który dzieli dane na dyskach i nie zapewnia redundancji, RAID 1 tworzy kopię zapasową wszystkich danych, co znacząco zwiększa bezpieczeństwo informacji. W przypadku awarii jednego dysku, system może kontynuować działanie, korzystając z drugiego dysku. Przykładem zastosowania RAID 1 są serwery, które wymagają wysokiej dostępności danych, takich jak serwery plików czy bazy danych. Dobrym praktycznym podejściem jest również wykorzystanie RAID 1 w systemach desktopowych, gdzie użytkownik przechowuje ważne dokumenty lub zdjęcia. W branżowych standardach, takich jak ANSI/TIA-942, rekomenduje się implementację rozwiązań RAID jako część planu ochrony danych, co podkreśla znaczenie RAID 1 w zapewnieniu ciągłości działania i minimalizacji utraty danych.

Pytanie 14

Jakie liczby należy wprowadzić na klawiaturze telefonu podłączonego do bramki VoIP po wcześniejszym wpisaniu *** w celu ustawienia adresu bramy domyślnej sieci?

A. 02
B. 04
C. 03
D. 01
Wybór błędnych opcji, takich jak 01, 02 lub 03, prowadzi do nieprawidłowej konfiguracji bramki VoIP, ponieważ każda z tych opcji dotyczy innych parametrów. Opcja 01 odnosi się do ustawienia DHCP lub statycznego adresu IP, co jest ważne, ale nie bezpośrednio związane z ustawieniem bramy domyślnej. Użytkownicy mogą mylnie sądzić, że wybór tej opcji zaspokoi ich potrzeby związane z komunikacją sieciową, jednak bez skonfigurowanej bramy domyślnej, urządzenie nie będzie mogło skutecznie komunikować się z zewnętrznymi sieciami. Opcja 02 do 05 koncentruje się na różnych aspektach adresacji IP, takich jak statyczny adres IP, maska podsieci, adres bramy i adres serwera DNS, co są istotne, jednak nie są one odpowiednie w kontekście pytania, które dotyczyło bezpośrednio adresu bramy domyślnej. Wybór tych opcji mógłby zmylić użytkowników, którzy nie mają jasnego zrozumienia, że brama domyślna jest osobnym parametrem, który należy ustawić w ramach opcji 04. Tego rodzaju pomyłki mogą skutkować problemami w nawiązywaniu połączenia, dlatego kluczowe jest zrozumienie, że odpowiednia konfiguracja bramy domyślnej jest fundamentem dla poprawnego działania sieci lokalnej i dostępu do Internetu.

Pytanie 15

Wykonanie polecenia perfmon w terminalu systemu Windows spowoduje

A. uruchomienie aplikacji Monitor wydajności
B. przygotowanie kopii zapasowej systemu
C. aktualizację systemu operacyjnego przy użyciu usługi Windows Update
D. aktywację szyfrowania zawartości aktualnego folderu
Wybór odpowiedzi dotyczącej wykonania kopii zapasowej systemu jest mylny, ponieważ proces tworzenia kopii zapasowej w systemie Windows realizowany jest za pomocą dedykowanych narzędzi, takich jak Windows Backup lub inne aplikacje do zarządzania kopiami zapasowymi. Komenda perfmon nie ma funkcji związanej z archiwizacją danych ani przywracaniem ich do stanu wcześniejszego. Szyfrowanie zawartości folderu jest również niepoprawne, ponieważ ta funkcjonalność jest realizowana przez system Windows przy użyciu funkcji EFS (Encrypting File System), a nie przez komendę perfmon. Z kolei aktualizacja systemu operacyjnego za pomocą usługi Windows Update jest procesem automatycznym, który wymaga innych komend lub interfejsów użytkownika, a perfmon nie jest narzędziem do zarządzania aktualizacjami. Te błędne odpowiedzi mogą wynikać z nieporozumienia dotyczącego roli, jaką pełni perfmon. Osoby, które nie są zaznajomione z systemem operacyjnym Windows, mogą pomylić jego funkcje z innymi narzędziami administracyjnymi. Zrozumienie, że perfmon skupia się na monitorowaniu wydajności, a nie na zarządzaniu danymi czy bezpieczeństwem, jest kluczowe dla prawidłowego wykorzystania tego narzędzia w praktyce. Wiedza o tym, jakie funkcje przypisane są do różnych narzędzi w systemie Windows, jest niezbędna dla efektywnego zarządzania infrastrukturą IT.

Pytanie 16

Medium transmisyjne oznaczone symbolem S/FTP wskazuje na skrętkę

A. bez ekranu.
B. z ekranem dla każdej pary oraz z ekranem z folii dla czterech par przewodów.
C. tylko z ekranem z folii dla czterech par przewodów.
D. z ekranem z folii dla każdej pary przewodów oraz z ekranem z siatki dla czterech par.
Odpowiedzi, które wskazują na inne typy ekranowania, wprowadzają w błąd, co może wynikać z niepełnego zrozumienia zasad działania ekranów w kablach sieciowych. Na przykład, twierdzenie, że skrętka jest ekranowana jedynie folią na czterech parach przewodów, nie uwzględnia faktu, że w standardzie S/FTP każda para musi być ekranowana indywidualnie, co ma kluczowe znaczenie dla redukcji zakłóceń między parami. Taki błąd pokazuje nieporozumienie dotyczące roli ekranowania – nie tylko chroni to przed zakłóceniami z zewnątrz, ale również poprawia integralność sygnału wewnętrznego. Również stwierdzenie, że skrętka jest nieekranowana, całkowicie zaprzecza definicji S/FTP, co może prowadzić do poważnych konsekwencji w projektowaniu systemów sieciowych. Brak odpowiedniego ekranowania może skutkować spadkiem jakości sygnału, co w praktyce objawia się problemami z połączeniami, większą liczbą błędów w transmisji, a w skrajnych przypadkach nawet utratą połączenia. W projektowaniu sieci należy kierować się najlepszymi praktykami, które uwzględniają wszystkie aspekty ekranowania, aby zapewnić optymalną wydajność sieci i minimalizować zakłócenia.

Pytanie 17

Ile par kabli w standardzie 100Base-TX jest używanych do transmisji danych w obie strony?

A. 4 pary
B. 1 para
C. 2 pary
D. 3 pary
W przypadku błędnych odpowiedzi, pojawia się często nieporozumienie dotyczące liczby par przewodów używanych w standardzie 100Base-TX. Niektórzy mogą uznawać, że jedna para jest wystarczająca do komunikacji, jednak to podejście nie uwzględnia koncepcji pełnodupleksu. Użycie jednej pary oznaczałoby transmisję danych w trybie półdupleksowym, co ograniczałoby jednoczesne przesyłanie informacji w obu kierunkach. Takie ograniczenie byłoby nieefektywne w kontekście nowoczesnych aplikacji sieciowych, które wymagają wysokiej wydajności i niskich opóźnień. Warto zauważyć, że w standardach Ethernet liczba przewodów ma krytyczne znaczenie dla wydajności sieci. Przyjęcie, że do prawidłowej komunikacji wystarczą trzy pary lub wszystkie cztery, jest również mylące, ponieważ w standardzie 100Base-TX tylko dwie pary są zarezerwowane do transmisji danych. Pozostałe pary, chociaż mogą być wykorzystywane w innych standardach, nie mają zastosowania w tym kontekście. Rozumienie architektury sieci i standardów transmisji danych jest kluczowe dla efektywnego projektowania i wdrażania rozwiązań sieciowych.

Pytanie 18

Jakie rozwiązanie techniczne pozwala na transmisję danych z szybkością 1 Gb/s z zastosowaniem światłowodu?

A. 1000Base-LX
B. 100Base-FX
C. 10Base5
D. 10GBase-T
Odpowiedź 1000Base-LX jest poprawna, ponieważ jest to standard Ethernet, który umożliwia przesyłanie danych z prędkością 1 Gb/s, korzystając z technologii światłowodowej. Standard ten jest częścią rodziny Gigabit Ethernet i pozwala na transmisję na odległość do 5 km przy użyciu światłowodów jednomodowych, co czyni go idealnym rozwiązaniem dla dużych sieci kampusowych oraz połączeń międzybudynkowych. W praktyce 1000Base-LX znajduje zastosowanie w różnych środowiskach, takich jak centra danych, gdzie wymagana jest wysoka przepustowość i niskie opóźnienia. Ponadto, standard ten jest zgodny z normami IEEE 802.3, co zapewnia jego szeroką akceptację w branży i łatwość integracji z innymi technologiami sieciowymi. Dodatkowo, korzystanie z technologii światłowodowej przyczynia się do zwiększenia odporności na zakłócenia elektromagnetyczne oraz umożliwia dłuższe połączenia bez utraty jakości sygnału, co jest kluczowe w dzisiejszych wymagających środowiskach.

Pytanie 19

Jaką maksymalną liczbę podstawowych partycji na dysku twardym z tablicą MBR można utworzyć za pomocą narzędzia Zarządzanie dyskami dostępnego w systemie Windows?

A. 3
B. 2
C. 4
D. 1
Odpowiedzi 1, 2 i 3 są niepoprawne, ponieważ opierają się na błędnych założeniach dotyczących struktury tablicy MBR i możliwości zarządzania partycjami. W przypadku opcji pierwszej, twierdzenie, że można utworzyć jedynie jedną partycję podstawową, jest błędne, ponieważ MBR został zaprojektowany z myślą o umożliwieniu tworzenia czterech partycji podstawowych. Dla odpowiedzi drugiej, pomylenie możliwości utworzenia dwóch partycji z rzeczywistością sugeruje, że użytkownik nie rozumie podstawowych zasad działania MBR i jego struktury. Z kolei odpowiedź trzecia, która sugeruje, że można utworzyć trzy partycje podstawowe, również nie uwzględnia maksymalnego limitu czterech partycji. Takie błędne interpretacje często wynikają z niepełnego zrozumienia tematu i nieznajomości specyfiki działania systemów operacyjnych oraz sposobów przydzielania przestrzeni dyskowej. Warto również zauważyć, że w przypadku systemu MBR, partycje mogą być wykorzystywane nie tylko do przechowywania danych, ale także do instalacji różnych systemów operacyjnych, co czyni je kluczowym elementem w zarządzaniu dyskami. Dlatego znajomość limitów i funkcji MBR jest istotna dla osób zajmujących się administracją systemami oraz dbających o efektywność wykorzystania przestrzeni dyskowej.

Pytanie 20

Jakim kolorem oznaczona jest izolacja żyły pierwszego pinu wtyku RJ45 w układzie połączeń T568A?

A. Biało-zielonym
B. Biało-pomarańczowym
C. Biało-niebieskim
D. Biało-brązowym
Izolacja żyły skrętki w pierwszym pinie wtyku RJ45 w sekwencji połączeń T568A jest oznaczona kolorem biało-zielonym. T568A to jeden z dwóch standardów okablowania, które są powszechnie stosowane w sieciach Ethernet, a jego odpowiednia aplikacja jest kluczowa dla prawidłowego działania systemów komunikacyjnych. W standardzie T568A pierwsza para, która jest używana do transmisji danych, to para zielona, co czyni biało-zielony kolor oznaczający żyłę skrętki pierwszym kolorem w tym schemacie. Szereg pinów w wtyku RJ45 jest ustalony, co oznacza, że zgodność z tym standardem jest istotna zarówno w instalacjach nowych, jak i w przypadku modernizacji istniejących systemów. Użycie właściwego standardu zapewnia nie tylko efektywność połączeń, lecz także minimalizuje zakłócenia i błędy transmisji, które mogą wystąpić przy nieprawidłowym podłączeniu. Przykładem zastosowania tego standardu mogą być instalacje w biurach, gdzie wiele urządzeń jest podłączonych do sieci lokalnej. Zastosowanie T568A w takich sytuacjach jest szeroko zalecane przez organizacje takie jak IEEE oraz EIA/TIA, co potwierdza jego znaczenie w branży telekomunikacyjnej.

Pytanie 21

Komunikat o błędzie KB/Interface, wyświetlany na monitorze komputera podczas BIOS POST firmy AMI, wskazuje na problem

A. baterii CMOS
B. pamięci GRAM
C. sterownika klawiatury
D. rozdzielczości karty graficznej
Wybrana przez Ciebie odpowiedź dotycząca baterii CMOS, pamięci RAM czy rozdzielczości karty graficznej jest nietrafiona, bo nie odnosi się do problemu z komunikatem KB/Interface error. Bateria CMOS jest ważna, bo przechowuje ustawienia BIOS-u, jak czas czy konfiguracje, ale nie zajmuje się rozpoznawaniem urządzeń, takich jak klawiatura. Jej uszkodzenie może spowodować problemy z ustawieniami, ale nie spowoduje błędu odnośnie klawiatury. Pamięć RAM działa w tle, kiedy system już działa i jej problemy dają inne błędy, a nie te związane z BIOS-em. Rozdzielczość karty graficznej mówi tylko o tym, jak obraz wygląda na monitorze. Dlatego to wcale nie wpływa na działanie klawiatury. Warto zrozumieć te różnice, bo to klucz do prawidłowej diagnostyki sprzętu. Często popełniamy błąd, myśląc, że usterki jednego elementu mają związki z innym, co prowadzi do pomyłek przy rozwiązywaniu problemów. Dobrze jest znać funkcje poszczególnych części komputera, żeby łatwiej diagnozować i naprawiać usterek.

Pytanie 22

Wykonanie komendy NET USER GRACZ * /ADD w wierszu poleceń systemu Windows spowoduje

A. utworzenie konta GRACZ bez hasła i nadanie mu uprawnień administratora komputera
B. zaprezentowanie komunikatu o błędnej składni polecenia
C. wyświetlenie monitora o podanie hasła
D. utworzenie konta GRACZ z hasłem *
Wybór opcji dodania konta GRACZ z hasłem '*' może wydawać się logiczny, jednak w rzeczywistości jest niepoprawny. Podczas wykonywania polecenia 'NET USER GRACZ * /ADD' system Windows nie interpretuje znaku '*' jako rzeczywistego hasła, ale używa go jako wskazówki do wywołania monitu o hasło. Implementacja tego polecenia nie umożliwia bezpośredniego wprowadzenia hasła, co jest kluczowym krokiem w procesie tworzenia konta. Kolejna mylna koncepcja dotyczy przekonania, że polecenie to może dodać konto bez hasła. Takie podejście jest niezgodne z zasadami zabezpieczeń systemu, które wymagają, aby każde konto użytkownika miało przypisane hasło, aby zminimalizować ryzyko nieautoryzowanego dostępu. Również przypisanie kontu uprawnień administratora poprzez to polecenie jest niemożliwe bez dodatkowych parametrów i nie jest automatycznie realizowane podczas jego wykonania. Istotne jest zrozumienie, że proces tworzenia użytkowników w systemach operacyjnych, w tym Windows, powinien być przeprowadzany zgodnie z ustalonymi standardami, aby zapewnić bezpieczeństwo oraz odpowiednie zarządzanie dostępem do zasobów. Brak zrozumienia tych mechanizmów często prowadzi do osłabienia zabezpieczeń i zwiększenia podatności systemów na ataki.

Pytanie 23

Na płycie głównej z chipsetem Intel 865G

A. można zainstalować kartę graficzną z interfejsem AGP
B. nie ma możliwości zainstalowania karty graficznej
C. można zainstalować kartę graficzną z interfejsem ISA
D. można zainstalować kartę graficzną z interfejsem PCI-Express
No więc, odpowiedź, że da się włożyć kartę graficzną z AGP na płytę z chipsetem Intel 865G, jest jak najbardziej na miejscu. Ten chipset to część serii Intel 800 i został zaprojektowany tak, by obsługiwać właśnie AGP, co czyni go idealnym do starszych kart graficznych. Złącze AGP, czyli Accelerated Graphics Port, pozwala na lepszą komunikację z kartą graficzną i ma większą przepustowość niż starsze PCI. Wiesz, że w pierwszej dekadzie XXI wieku takie karty były na porządku dziennym w komputerach do grania? Ich montaż w systemach opartych na Intel 865G był normalnością. Oczywiście, teraz mamy PCI-Express, które oferuje jeszcze lepsze osiągi, ale w kontekście starych maszyn AGP nadal się sprawdza. Jak modernizujesz wiekowe komputery, dobrze jest dobierać części, które pasują do tego, co już masz, a tu właśnie AGP jest takim rozwiązaniem.

Pytanie 24

Jak nazywa się protokół bazujący na architekturze klient-serwer oraz na modelu żądanie-odpowiedź, który jest używany do transferu plików?

A. SSL
B. SSH
C. FTP
D. ARP
Protokół FTP (File Transfer Protocol) jest standardowym rozwiązaniem stosowanym do przesyłania plików w architekturze klient-serwer. Umożliwia on transfer danych pomiędzy komputerami w sieci, co czyni go jednym z najpopularniejszych protokołów do udostępniania plików. FTP działa na zasadzie żądania-odpowiedzi, gdzie klient wysyła żądania do serwera, a serwer odpowiada na te żądania, wysyłając pliki lub informacje na temat dostępnych zasobów. Przykładem praktycznego zastosowania FTP jest użycie go przez webmasterów do przesyłania plików na serwery hostingowe. Umożliwia to łatwe zarządzanie plikami strony internetowej. Dodatkowo, w kontekście bezpieczeństwa, często używa się jego rozszerzonej wersji - FTPS lub SFTP, które oferują szyfrowanie danych w trakcie transferu, zgodne z najlepszymi praktykami branżowymi. Zastosowanie protokołu FTP jest kluczowe w wielu dziedzinach, w tym w zarządzaniu danymi w chmurze oraz w integracji systemów informatycznych."

Pytanie 25

Okablowanie pionowe w systemie strukturalnym łączy się

A. w głównym punkcie rozdziału z gniazdem abonenckim
B. w pośrednim punkcie rozdziału z gniazdem abonenckim
C. w głównym punkcie rozdziału z pośrednimi punktami rozdziału
D. w gnieździe abonenckim
Okablowanie pionowe w sieciach strukturalnych powinno łączyć różne punkty w sieci, ale widać, że nie do końca to rozumiesz. Połączenie w gnieździe abonenckim nie wystarczy, bo one są tylko końcowymi punktami dla użytkowników, a nie miejscem do zarządzania sygnałem. Gdy mówimy o połączeniu głównego punktu z gniazdem abonenckim, zapominasz o pośrednich punktach, które są naprawdę potrzebne do rozkładu sygnału w większych sieciach. Nie bierzesz też pod uwagę standardów, które mówią, że trzeba mieć te pośrednie punkty, co może prowadzić do problemów z wydajnością. Jak dla mnie, trzeba zrozumieć rolę głównego punktu i pośrednich punktów, żeby mieć skuteczną sieć. Projektując takie sieci, warto trzymać się standardów, żeby uniknąć kłopotów z wydajnością.

Pytanie 26

Liczba FAFC w systemie heksadecymalnym odpowiada wartości liczbowej

A. 1111101011011101 (2)
B. 1111101011111100 (2)
C. 175376 (8)
D. 64256(10)
Liczba FAFC w systemie heksadecymalnym odpowiada liczbie 1111101011111100 w systemie binarnym. Aby zrozumieć, dlaczego tak jest, warto najpierw przyjrzeć się konwersji pomiędzy systemami liczbowymi. Liczba heksadecymalna FAFC składa się z czterech cyfr, gdzie każda cyfra heksadecymalna odpowiada czterem bitom w systemie binarnym. Zatem, aby przeliczyć FAFC na system binarny, należy przetłumaczyć każdą z cyfr: F to 1111, A to 1010, F to 1111, a C to 1100. Po połączeniu tych bitów otrzymujemy 1111101011111100. Taka konwersja jest powszechnie stosowana w programowaniu i elektronice, zwłaszcza w kontekście adresowania pamięci lub przedstawiania kolorów w systemach graficznych, gdzie heksadecymalne kody kolorów są często używane. Przykładami zastosowań mogą być grafika komputerowa oraz rozwój systemów wbudowanych, gdzie konwersje między różnymi systemami liczbowymi są na porządku dziennym. Zrozumienie tych konwersji jest kluczowe dla efektywnego programowania i pracy z różnymi formatami danych.

Pytanie 27

Jak zapisuje się liczbę siedem w systemie ósemkowym?

A. 7(D)
B. 7(B)
C. 7(o)
D. 7(H)
Zapis liczby siedem w systemie ósemkowym to 7(o), co oznacza, że liczba ta jest przedstawiona w systemie pozycyjnym z podstawą 8. System ósemkowy używa cyfr od 0 do 7, a liczby w tym systemie są reprezentowane w sposób podobny do innych systemów pozycyjnych, takich jak dziesiętny (podstawa 10) czy binarny (podstawa 2). W praktyce, system ósemkowy znajduje zastosowanie w programowaniu i w systemach komputerowych, gdzie może być używany do reprezentacji danych w bardziej kompaktowy sposób. Przykładowo, w niektórych językach programowania, takich jak C czy Java, liczby ósemkowe zaczynają się od zera, co oznacza, że 07 to liczba siedem w systemie ósemkowym. Ponadto, użycie systemu ósemkowego może być korzystne w kontekście konwersji danych, gdzie każdy oktet (8-bitowa jednostka) może być reprezentowany jako liczba ósemkowa. Zrozumienie tego systemu jest kluczowe dla programistów i inżynierów zajmujących się systemami wbudowanymi oraz aplikacjami niskopoziomowymi.

Pytanie 28

Do serwisu komputerowego przyniesiono laptop z matrycą, która bardzo słabo wyświetla obraz. Dodatkowo obraz jest niezwykle ciemny i widoczny jedynie z bliska. Co może być przyczyną tej usterki?

A. uszkodzone połączenie między procesorem a matrycą
B. uszkodzone złącze HDMI
C. uszkodzony inwerter
D. pęknięta matryca
Rozważając inne odpowiedzi, należy zrozumieć, dlaczego nie są one prawidłowe. Uszkodzone łącze między procesorem a matrycą może prowadzić do braku obrazu lub artefaktów, jednak nie jest to typowy objaw ciemnego obrazu, który staje się widoczny jedynie z bliska. Gniazdo HDMI, z kolei, dotyczy wyjścia sygnału wideo do zewnętrznych monitorów, a nie samego wyświetlania obrazu na wbudowanej matrycy laptopa. Problemy z gniazdem HDMI nie wpływają na zdolność matrycy do wyświetlania obrazu, chyba że laptop próbuje przesłać sygnał na zewnętrzny ekran, co nie dotyczy opisanej sytuacji. Uszkodzona matryca mogłaby również powodować problemy, ale objawy byłyby bardziej zróżnicowane i często szersze niż tylko ciemny obraz z bliska. Pęknięta matryca zazwyczaj prowadzi do widocznych uszkodzeń, takich jak pęknięcia lub rozlane kolory, co również nie pasuje do opisanego problemu. W praktyce, diagnostyka problemów z wyświetlaniem wymaga precyzyjnego podejścia, które uwzględnia różne elementy i ich interakcje, a nie tylko powierzchowne objawy. Dlatego tak ważne jest, aby technik posiadał gruntowną wiedzę na temat funkcjonowania wszystkich komponentów laptopa, aby skutecznie zidentyfikować źródło problemów z wyświetlaniem.

Pytanie 29

W ustawieniach haseł w systemie Windows Server aktywowano opcję, że hasło musi spełniać wymagania dotyczące złożoności. Z jakiej minimalnej liczby znaków musi składać się hasło użytkownika?

A. 5 znaków
B. 6 znaków
C. 12 znaków
D. 10 znaków
Hasło użytkownika w systemie Windows Server, gdy włączona jest opcja wymuszająca złożoność, musi składać się z co najmniej 6 znaków. To wymóg, który ma na celu zwiększenie bezpieczeństwa kont użytkowników. Złożone hasła powinny zawierać kombinację wielkich i małych liter, cyfr oraz znaków specjalnych, co sprawia, że są trudniejsze do odgadnięcia. Na przykład, silne hasło może wyglądać jak 'P@ssw0rd!' i zawierać wszystkie te elementy. Warto pamiętać, że stosowanie złożonych haseł jest zalecane przez wiele organizacji zajmujących się bezpieczeństwem, w tym NIST (National Institute of Standards and Technology). Zastosowanie takiego podejścia przyczynia się do ochrony przed atakami słownikowymi oraz innymi formami nieautoryzowanego dostępu, co jest kluczowe w środowiskach, gdzie bezpieczeństwo danych jest priorytetem.

Pytanie 30

Jakie polecenie wykorzystano do analizy zaprezentowanej konfiguracji interfejsów sieciowych w systemie Linux?

Ilustracja do pytania
A. ping
B. ifconfig
C. ip addr down
D. ip route
Polecenie ping, choć użyteczne do diagnozowania łączności sieciowej, nie służy do wyświetlania konfiguracji interfejsów sieciowych. Ping jest narzędziem do testowania dostępności hosta w sieci poprzez wysyłanie pakietów ICMP Echo Request i oczekiwanie na odpowiedź, co czyni je idealnym narzędziem do sprawdzania, czy dany adres IP jest osiągalny. Z kolei polecenie ip route jest używane do wyświetlania i modyfikowania tabel routingu w systemie. Działa w oparciu o narzędzie ip z pakietu iproute2 i pozwala na zarządzanie trasami sieciowymi, co jest kluczowe do rozwiązywania problemów z routingiem w sieci, ale nie dostarcza informacji o konfiguracji interfejsów jako takich. Natomiast ip addr down to polecenie używane do wyłączania określonego interfejsu sieciowego, co jest przydatne w kontekście zarządzania dostępnością interfejsów, lecz nie wyświetla jego bieżącej konfiguracji. Błędne zrozumienie funkcji tych poleceń może prowadzić do nieprawidłowej diagnozy problemów sieciowych lub błędów w zarządzaniu siecią. Zrozumienie różnicy między narzędziami do diagnozowania problemów z połączeniem a tymi służącymi do zarządzania konfiguracją interfejsów jest kluczowe w profesjonalnym administrowaniu sieciami.

Pytanie 31

Co wskazuje oznaczenie danego procesora?

Ilustracja do pytania
A. niskim poborze energii przez procesor
B. jego niewielkich rozmiarach obudowy
C. braku blokady mnożnika (unlocked)
D. wersji mobilnej procesora
Procesor z literką 'K' to świetna sprawa, bo oznacza, że nie ma blokady mnożnika. To znaczy, że można go podkręcać, co jest super dla tych, którzy chcą uzyskać z niego więcej mocy. Fajnie jest mieć możliwość zwiększenia częstotliwości taktowania, bo w grach czy przy obrabianiu wideo to naprawdę się przydaje. Takie procesory są trochę droższe, ale można je dostosować do swoich potrzeb, co jest dużą zaletą. Oczywiście, żeby podkręcanie działało, trzeba mieć też odpowiednie chłodzenie i płytę główną. Procesor i7-6700K to przykład takiego modelu, który daje pełną kontrolę nad wydajnością. Ważne, żeby przy podkręcaniu monitorować temperatury, bo to standard w branży IT. To wszystko sprawia, że taki procesor naprawdę może zdziałać cuda, jeśli się go dobrze ustawi.

Pytanie 32

Polecenie df w systemie Linux umożliwia

A. określenie dostępnej przestrzeni na dysku
B. wyświetlenie procesów o największym obciążeniu procesora
C. zarządzanie paczkami instalacyjnymi
D. sprawdzenie spójności systemu plików
Polecenie df (disk free) w systemie Linux jest kluczowym narzędziem używanym do monitorowania dostępnej i wykorzystanej przestrzeni na systemach plików. Dzięki niemu użytkownicy mogą łatwo uzyskać informacje na temat dostępnego miejsca na dyskach, co jest niezwykle istotne w kontekście zarządzania zasobami systemowymi. W praktyce, polecenie df może być używane do identyfikacji, które systemy plików są bliskie pełnego zapełnienia, co może prowadzić do spadku wydajności lub nawet awarii aplikacji. Użytkownicy mogą także wykorzystać opcję -h, aby uzyskać dane w bardziej przystępny sposób, wyrażone w jednostkach takich jak MB lub GB. Dobrym podejściem jest regularne monitorowanie przestrzeni dyskowej, co pozwala na prewencyjne działania, takie jak usuwanie niepotrzebnych plików lub przenoszenie danych na inne nośniki. Przestrzeganie dobrych praktyk w zarządzaniu przestrzenią dyskową, takich jak tworzenie kopii zapasowych, jest również kluczowe dla zapewnienia integralności danych oraz stabilności systemu.

Pytanie 33

Urządzenie pokazane na ilustracji to

Ilustracja do pytania
A. Zaciskarka do wtyków RJ45
B. Narzędzie do uderzeń typu krone
C. Tester długości przewodów
D. Tester diodowy kabla UTP
Tester diodowy przewodu UTP jest niezbędnym narzędziem w diagnostyce i weryfikacji poprawności połączeń w kablach sieciowych. Działanie tego urządzenia polega na sprawdzaniu ciągłości przewodów oraz wykrywaniu ewentualnych błędów takich jak przerwy zwarcia czy niewłaściwe skręcenia żył. W przypadku sieci Ethernet poprawne połączenia są kluczowe dla zapewnienia niezawodnego przesyłu danych i utrzymania wysokiej jakości usług sieciowych. Tester diodowy jest często wykorzystywany podczas instalacji okablowania w nowych lokalizacjach oraz w trakcie konserwacji już istniejących sieci. Przykładem zastosowania może być testowanie patch cordów oraz kabli w strukturach sieciowych budynków biurowych. Standardowe testery mogą również sprawdzać zgodność z normami sieciowymi takimi jak TIA/EIA-568 i pomagają uniknąć problemów związanych z nieprawidłową transmisją danych. Dzięki jego użyciu można zidentyfikować i zlokalizować błędy bez konieczności wprowadzania zmian w konfiguracji sieci co jest zgodne z dobrymi praktykami w zarządzaniu infrastrukturą IT.

Pytanie 34

Na zdjęciu widać

Ilustracja do pytania
A. most
B. punkt dostępowy
C. przełącznik
D. router
Przełącznik jest kluczowym urządzeniem sieciowym, które działa w warstwie drugiej modelu OSI, czyli w warstwie łącza danych. Jego głównym zadaniem jest przekazywanie ramek danych pomiędzy urządzeniami w tej samej sieci lokalnej. Przełączniki wykorzystują adresy MAC, aby skutecznie przesyłać dane, co pozwala na minimalizację kolizji i efektywniejsze zarządzanie ruchem sieciowym. Typowy przełącznik, jak ten na zdjęciu, posiada wiele portów Ethernet, co umożliwia podłączenie wielu urządzeń, takich jak komputery, drukarki czy serwery, do jednej sieci LAN. Przełączniki mogą być stosowane w różnych środowiskach – od małych sieci domowych po duże korporacyjne centra danych, gdzie zarządzają setkami urządzeń. Ponadto, współczesne przełączniki oferują zaawansowane funkcje, takie jak VLAN-y, które poprawiają bezpieczeństwo i elastyczność sieci, oraz PoE (Power over Ethernet), które umożliwia zasilanie urządzeń sieciowych bez dodatkowych kabli. Zgodnie z dobrymi praktykami branżowymi, stosowanie przełączników w sieciach pozwala na zwiększenie wydajności oraz lepsze zarządzanie ruchem sieciowym, co jest kluczowe w środowiskach wysokoobciążeniowych.

Pytanie 35

Jakie urządzenie jest używane do pomiaru napięcia w zasilaczu?

A. pirometr
B. multimetr
C. amperomierz
D. impulsator
Impulsator to urządzenie stosowane do generowania sygnałów impulsowych, które mogą być używane w różnych aplikacjach, ale nie służy do pomiaru wartości napięcia. Jego zastosowanie jest bardziej związane z automatyzacją czy sterowaniem procesami, a nie z bezpośrednim pomiarem parametrów elektrycznych. Amperomierz, z kolei, to przyrząd zaprojektowany do pomiaru natężenia prądu, a nie napięcia. W związku z tym, użycie amperomierza w celu sprawdzenia napięcia byłoby nieodpowiednie i mogłoby prowadzić do nieprawidłowych wyników oraz potencjalnie do uszkodzenia urządzenia. Pirometr to zupełnie inny typ urządzenia, które mierzy temperaturę obiektów na podstawie promieniowania cieplnego, więc nie ma zastosowania w kontekście pomiaru napięcia elektrycznego. Typowe błędy w myśleniu, które mogą prowadzić do takich niepoprawnych wniosków, obejmują mylenie funkcji poszczególnych urządzeń pomiarowych oraz brak zrozumienia ich zasad działania. W kontekście pomiarów elektrycznych, kluczem jest stosowanie odpowiednich narzędzi, takich jak multimetr, który jest przystosowany do pomiaru różnych parametrów elektrycznych, w tym napięcia.

Pytanie 36

Czym jest odwrotność bezstratnego algorytmu kompresji danych?

A. archiwizacja
B. pakowanie danych
C. dekompresja
D. prekompresja
Odwrotność bezstratnej kompresji danych to złożony temat, który wymaga zrozumienia różnych metod przetwarzania danych. Archiwizacja, jako proces, polega na zbieraniu i przechowywaniu danych w celu ich długoterminowego zachowania, ale nie jest to odwrotność kompresji. Pakowanie danych to ogólny termin, który odnosi się do umieszczania danych w formacie umożliwiającym ich łatwiejsze przesyłanie lub przechowywanie, co również nie jest równoznaczne z dekompresją. Prekompresja natomiast dotyczy działań podejmowanych przed samym procesem kompresji, mających na celu optymalizację danych, ale w żadnym wypadku nie odnosi się do ich przywracania. Wynika z tego, że wiele osób myli te terminy, co prowadzi do nieporozumień. Kluczowym jest zrozumienie, że dekompresja jest procesem, który przywraca skompresowane dane do ich pierwotnej postaci, co jest fundamentalne w kontekście bezstratnej kompresji. Dobrze jest również znać różnice między kompresją stratną a bezstratną, ponieważ każda z nich ma swoje zastosowania i konsekwencje. Zrozumienie tych koncepcji jest kluczowe dla efektywnego zarządzania danymi i zapewnienia ich integralności.

Pytanie 37

Jakie urządzenie powinno być użyte do łączenia komputerów w strukturze gwiazdy?

A. Switch
B. Bridge
C. Repetytor
D. Transceiver
Switch to urządzenie, które odgrywa kluczową rolę w topologii gwiazdy, ponieważ umożliwia efektywne zarządzanie ruchem danych między podłączonymi komputerami. W topologii gwiazdy wszystkie urządzenia są bezpośrednio połączone z centralnym punktem, którym w tym przypadku jest switch. Switch działa na poziomie warstwy drugiej modelu OSI, co oznacza, że przetwarza ramki danych na podstawie adresów MAC. Dzięki temu, gdy komputer wysyła dane, switch kieruje je bezpośrednio do odpowiedniego urządzenia, co minimalizuje kolizje i zwiększa wydajność sieci. Przykładem zastosowania switche'a w topologii gwiazdy może być biuro, gdzie wiele komputerów i urządzeń drukujących jest połączonych z jednym switchem, co pozwala na sprawne działanie oraz łatwe zarządzanie siecią. Dodatkowo, stosowanie switchy pozwala na implementację funkcji VLAN, co umożliwia segmentację ruchu sieciowego i zwiększa bezpieczeństwo oraz wydajność sieci. Zgodnie z dobrymi praktykami branżowymi, switche powinny być projektowane z myślą o skalowalności, co pozwala na łatwe dodawanie kolejnych urządzeń bez wpływu na istniejące połączenia.

Pytanie 38

Aby Jan mógł zmienić właściciela drukarki w systemie Windows, musi mu zostać przypisane prawo do w opcjach zabezpieczeń

A. modyfikacji uprawnień do drukowania
B. administrowania drukarkami
C. manipulacji dokumentami
D. uprawnień specjalnych
Nieprawidłowe odpowiedzi sugerują niepełne zrozumienie struktury uprawnień w systemie Windows, co może prowadzić do problemów z zarządzaniem zasobami IT. Odpowiedź "zmiany uprawnień drukowania" wskazuje na pewne ograniczenie, ponieważ dotyczy jedynie dostępu do funkcji drukowania, a nie do zarządzania drukarką jako całością. Użytkownik nie może przyznać ani zmienić uprawnień innym użytkownikom, co jest kluczowe w kontekście zarządzania środowiskiem wieloużytkownikowym. Z kolei odpowiedź "zarządzania dokumentami" jest myląca, ponieważ dotyczy jedynie dokumentów w kolejce drukowania, a nie samej drukarki. Oznacza to, że użytkownik wciąż może mieć ograniczony dostęp do modyfikacji ustawień drukarki. Odpowiedź "zarządzania drukarkami" może wydawać się logiczna, ale nie zapewnia pełnej kontroli nad systemem zarządzania uprawnieniami, co jest konieczne do zmiany właściciela drukarki. Wiele osób nie docenia znaczenia uprawnień specjalnych i myli je z bardziej podstawowymi opcjami, co prowadzi do typowych błędów myślowych w przydzielaniu uprawnień. W rzeczywistości, zarządzanie uprawnieniami wymaga precyzyjnego zrozumienia hierarchii i dostępności uprawnień, a także ich wpływu na codzienne operacje drukowania w środowisku pracy.

Pytanie 39

Czym wyróżniają się procesory CISC?

A. niewielką ilością trybów adresowania
B. prostą i szybką jednostką kontrolną
C. ograniczoną wymianą danych pomiędzy pamięcią a procesorem
D. wysoką liczbą instrukcji
Wybór odpowiedzi, które sugerują, że procesory CISC mają prostą i szybką jednostkę sterującą, jest mylący. W rzeczywistości, procesory CISC są zaprojektowane z myślą o złożoności zestawu instrukcji, co często prowadzi do bardziej skomplikowanej jednostki sterującej. Złożoność ta wynika z konieczności dekodowania wielu różnych instrukcji, co może wprowadzać opóźnienia w wykonaniu. W kontekście architektury CISC, jednostka sterująca jest znacznie bardziej złożona niż w architekturze RISC (Reduced Instruction Set Computing), gdzie skupia się na prostocie i szybkości. Ponadto, stwierdzenie o niewielkiej liczbie trybów adresowania nie odnosi się do rzeczywistości, gdyż procesory CISC często oferują wiele trybów adresowania, co zwiększa ich elastyczność w operacjach na danych. Ograniczona komunikacja pomiędzy pamięcią a procesorem jest również niepoprawnym założeniem, ponieważ w architekturze CISC, ilość danych przesyłanych pomiędzy pamięcią a procesorem może być znacząca, biorąc pod uwagę złożoność instrukcji. Zrozumienie tych różnic jest kluczowe dla prawidłowego rozpoznawania zalet i wad różnych architektur procesorów oraz ich zastosowań w praktyce, co jest istotne w kontekście projektowania systemów komputerowych.

Pytanie 40

Aby zablokować oraz usunąć złośliwe oprogramowanie, takie jak exploity, robaki i trojany, konieczne jest zainstalowanie oprogramowania

A. adblock
B. antymalware
C. antyspyware
D. antyspam
Odpowiedź "antymalware" jest prawidłowa, ponieważ oprogramowanie tego typu zostało zaprojektowane specjalnie do wykrywania, blokowania i usuwania różnorodnych zagrożeń, takich jak exploity, robaki i trojany. Oprogramowanie antymalware działa na zasadzie analizy zachowań plików oraz ich kodu w celu identyfikacji zagrożeń. Przykłady renomowanych programów antymalware to Malwarebytes, Bitdefender i Norton. Używanie tego rodzaju oprogramowania jest znane jako jedna z najlepszych praktyk w zakresie zabezpieczeń komputerowych, a ich skuteczność potwierdzają liczne testy przeprowadzane przez niezależne laboratoria. W kontekście wdrożeń korporacyjnych, zaleca się regularne aktualizacje bazy danych definicji wirusów oraz skanowanie pełnego systemu, co przyczynia się do utrzymania wysokiego poziomu bezpieczeństwa. Ponadto, odpowiednie oprogramowanie antymalware często integruje się z innymi rozwiązaniami zabezpieczającymi, takimi jak zapory ogniowe, co tworzy wielowarstwową strategię ochrony przed zagrożeniami. Zastosowanie oprogramowania antymalware to kluczowy element ochrony nie tylko indywidualnych użytkowników, ale także organizacji przed różnymi typami ataków cybernetycznych.