Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik budownictwa
  • Kwalifikacja: BUD.12 - Wykonywanie robót murarskich i tynkarskich
  • Data rozpoczęcia: 17 grudnia 2025 10:28
  • Data zakończenia: 17 grudnia 2025 10:38

Egzamin niezdany

Wynik: 19/40 punktów (47,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Na podstawie danych zawartych w tabeli oblicz, ile cegieł pełnych potrzeba do wymurowania ściany na zaprawie cementowej o grubości 38 cm i wymiarach 4 × 3 m.

Nakłady na 1 m² ścianyFragment tablicy 0103 z KNR 2-02
Lp.WyszczególnienieJednostki miary,
oznaczenia
Ściany na zaprawie
wapiennej
lub
cementowo-wapiennej
cementowej
Symbole
eto
Rodzaje
materiałów
cyfroweliteroweGrubość w cegłach
111/22111/22
abcde010203040506
201800199Cegły budowlane
pełne
020szt.92,70139,90186,10100,10150,30200,60
211800200Cegły dziurawki
pojedyncze
020szt.(93,40)(140,80)(187,60)---
2223808099Zaprawa0600,0840,1300,1760,0660,1060,143
2323808099Zaprawa060(0,091)(0,143)(0,194)---
A. 1 690 szt.
B. 1 679 szt.
C. 2 408 szt.
D. 1 804 szt.
W przypadku odpowiedzi, które wskazują na błędnie obliczoną ilość cegieł, najczęściej występującym problemem jest niewłaściwe zrozumienie zasad obliczania zapotrzebowania na materiały budowlane. Często pomijane jest uwzględnienie grubości zaprawy, co prowadzi do zaniżania liczby potrzebnych cegieł. Obliczenia powinny zaczynać się od dokładnego określenia powierzchni do pokrycia, a następnie przeliczenia na podstawie danych dotyczących konkretnego typu cegły, która różni się wymiarami oraz ilością, jaką można użyć na 1 m². Często występuje również mylne założenie, że można po prostu przyjąć liczby z tabel bez ich odpowiedniego dopasowania do wymiarów projektu, co skutkuje znacznymi odchyleniami w wynikach. W praktyce budowlanej, ignorowanie takich detali nie tylko wpływa na jakość wykonania, ale również może prowadzić do przekroczenia budżetu oraz harmonogramu. Świadomość tych aspektów jest kluczowa dla każdego specjalisty w dziedzinie budownictwa, dlatego tak istotne jest rzetelne podejście do obliczeń i ich weryfikacja.

Pytanie 2

Na podstawie przedstawionej recepty roboczej ustal ilości składników sypkich, potrzebnych do wykonania 2 m3 mieszanki betonowej klasy C12/15 o konsystencji S3.

Recepta robocza na wykonanie mieszanki betonowej C12/15 z cementu portlandzkiego
CEM I 32,5 o konsystencji S3
Składniki
mieszanki betonowej
Ilości składników
na 1 m³ mieszanki
betonowej
Ilości składników
na betoniarkę
o pojemności 200 l
Ilości składników
na 25 kg worek
cementu
cement CEM I 32,5275 kg44 kg (34 l)25 kg (19 l)
piasek590 kg94 kg (59 l)54 kg (34 l)
żwir1377 kg220 kg (129 l)125 kg (74 l)
woda165 l26 l15 l
A. cement - 88 kg, piasek - 188 kg, żwir - 440 kg
B. cement - 550 kg, piasek - 1 180 kg, żwir - 2 754 kg
C. cement - 50 kg, piasek - 10 kg, żwir - 250 kg
D. cement - 550 kg, piasek - 88 kg, żwir - 50 kg
Wybór niepoprawnej odpowiedzi często wynika z błędnego zrozumienia proporcji składników betonowych lub z pomyłki w przeliczeniach. W przypadku mieszanki betonowej kluczowe jest, aby wiedzieć, że każdy składnik musi być proporcjonalnie zwiększany w zależności od objętości gotowego betonu. Na przykład, jeśli ktoś wybrał odpowiedź, w której cementu jest zaledwie 50 kg lub 88 kg, może to sugerować, że nie zrozumiał, iż ilość cementu powinna być znacznie większa w kontekście 2 m³. Jeszcze większym błędem jest podanie zbyt małych ilości piasku i żwiru. Każdy z tych składników ma swoje określone właściwości, które są krytyczne dla uzyskania betonu o wymaganej wytrzymałości. Niedoszacowanie ilości piasku i żwiru prowadzi do uzyskania mieszanki, która może nie spełniać norm jakościowych i nie zapewniać odpowiedniej trwałości. W praktyce stosowania betonu, istotne jest, aby ilości wszystkich komponentów były starannie zaplanowane i obliczone, co zapewnia nie tylko jakość, ale również bezpieczeństwo konstrukcji. Dlatego też ważne jest, aby podczas obliczeń nie tylko mnożyć ilości przez objętość, ale także znać właściwości materiałów oraz standardy, które rządzą ich stosowaniem w budownictwie.

Pytanie 3

Do zbudowania nadproża sklepionego (łęku) należy użyć cegły

A. dziurawki
B. kratówki
C. szczelinówki
D. pełnej
Wybieranie złej cegły do nadproża sklepionego może naprawdę namieszać wszystko w konstrukcji. Cegła szczelinówka, mimo że jest lżejsza, nie daje rady z nośnością, więc to nie jest dobry wybór do przenoszenia obciążeń, które mają nadproża. Jej ścianki są zazwyczaj cieńsze, przez co ma niższą wytrzymałość na ściskanie. Cegła kratówka, choć czasem jest używana w budowlance, to nie zapewnia stabilności i odporności na odkształcenia, które są kluczowe w nadprożach. To nie to miejsce, gdzie można ją stosować. Cegła dziurawka, będąca lżejszą opcją, też nie spełnia wymogów, bo nie przenosi ciężarów pionowych tak, jak powinna. Używanie takich materiałów do nadproża może doprowadzić do pęknięć czy nawet zawalenia się konstrukcji, jeśli obciążenia będą zbyt duże. Widziałem już budynki, gdzie zastosowano niewłaściwe materiały i to miało naprawdę fatalne skutki. Dlatego tak ważne jest, żeby używać cegły pełnej, bo to materiał zgodny z budowlanymi normami i dobrymi praktykami inżynieryjnymi.

Pytanie 4

Rozbiórkę ręczną stropu ceglanego na belkach stalowych należy zacząć od

A. wycięcia belek wzdłuż ścian
B. rozebrania górnej części stropu, czyli podłogi
C. skucia wypełnienia stropowego
D. zbicia tynku z powierzchni stropu
Rozpoczęcie rozbiórki stropu ceglanego od rozebrania wierzchu, czyli podłogi, jest niewłaściwym podejściem, ponieważ może prowadzić do poważnych konsekwencji strukturalnych i bezpieczeństwa. Zanim przystąpimy do demontażu podłogi, kluczowe jest zrozumienie, że bez uprzedniego usunięcia tynku, nie będziemy w stanie ocenić, jak dobrze zachowały się elementy nośne stropu. Tynk często ukrywa uszkodzenia lub osłabienia w konstrukcji, które mogą stać się widoczne dopiero po jego usunięciu. Ponadto, skuwanie wypełnienia stropu przed usunięciem tynku może spowodować, że fragmenty strukturalne będą niestabilne, co stwarza ryzyko dla pracowników. Wycinanie belek przy ścianach bez wcześniejszej analizy stanu tynku również jest niezalecane, ponieważ może prowadzić do osunięcia się stropu, co zagraża nie tylko bezpieczeństwu wykonawców, ale również osób znajdujących się w obrębie budynku. Zbijanie tynku ze stropu, jako pierwszy krok, umożliwia przeprowadzenie niezbędnych analiz i prac przygotowawczych, co jest zgodne z zaleceniami standardów budowlanych i najlepszymi praktykami branżowymi. Dlatego kluczowe jest, aby najpierw zrealizować ten etap, zanim przejdziemy do bardziej skomplikowanych prac związanych z demontażem stropu.

Pytanie 5

Na rysunku przedstawiono przekrój i widok ściany

Ilustracja do pytania
A. oblicowanej.
B. dwuwarstwowej.
C. trój warstwowej.
D. szczelinowej.
Wybór ściany szczelinowej, oblicowanej czy trójwarstwowej może wynikać z nieporozumienia, jak te ściany właściwie działają. Ściana szczelinowa, mimo że w niektórych projektach się sprawdza, tutaj nie pasuje, bo zazwyczaj składa się z dwóch warstw z przestrzenią między nimi, a to nie jest dokładnie to, co widzimy na tym rysunku. Odpowiedź oblicowana dotyczy bardziej wyglądu ściany niż jej konstrukcji. Te ściany używa się głównie jako okładziny, ale nie mają one związku z tym, co mamy w tej sytuacji. Natomiast ściana trójwarstwowa, która ma trzy warstwy, w tym nośną, izolacyjną i osłonową, także nie pasuje do tego, co mamy na rysunku. Wiedza o tych różnicach między konstrukcjami jest ważna, żeby uniknąć problemów przy budowaniu i wyborze odpowiednich materiałów, bo to wpływa na efektywność energetyczną i trwałość całego budynku.

Pytanie 6

Uszkodzenie tynku przedstawione na zdjęciu jest

Ilustracja do pytania
A. złuszczeniem.
B. odspojeniem.
C. pęknięciem.
D. odpryskiem.
Prawidłowa odpowiedź to pęknięcie, ponieważ na zdjęciu widać wyraźnie liniowe uszkodzenie tynku, które charakteryzuje się podłużną szczeliną w materiale. Pęknięcia są wynikiem naprężeń wewnętrznych lub zewnętrznych, które powodują rozdzielenie struktury, co jest zgodne z definicją pęknięcia. W praktyce, identyfikacja pęknięć tynku jest kluczowa dla utrzymania dobrego stanu budynków, ponieważ mogą one prowadzić do dalszych uszkodzeń, w tym infiltracji wody, co z kolei może powodować rozwój pleśni lub uszkodzeń strukturalnych. Standardy budowlane, takie jak Eurokod, wymagają regularnych inspekcji i monitorowania stanu tynków, aby zapobiegać poważnym uszkodzeniom. W przypadku wykrycia pęknięć, istotne jest ich niezwłoczne zabezpieczenie oraz naprawa, aby uniknąć konsekwencji w postaci większych kosztów remontów lub rewitalizacji. Dobre praktyki w zakresie konserwacji obejmują stosowanie odpowiednich materiałów naprawczych oraz technik, które zapewniają długoterminową trwałość.

Pytanie 7

Jakie kruszywo wykorzystuje się do produkcji betonów lekkich?

A. Pospółkę
B. Baryt
C. Żwir
D. Keramzyt
Keramzyt jest materiałem, który idealnie nadaje się do produkcji betonów lekkich ze względu na swoje właściwości fizyczne. Jest to kruszywo pochodzenia naturalnego lub syntetycznego, charakteryzujące się niską gęstością i wysoką porowatością, co przekłada się na mniejsze obciążenie konstrukcji. Dzięki zastosowaniu keramzytu w betonie lekkim, możliwe jest uzyskanie właściwości termoizolacyjnych oraz akustycznych, co jest istotne w kontekście nowoczesnego budownictwa. W praktyce, betony lekkie z keramzytem są wykorzystywane w budownictwie mieszkalnym oraz przemysłowym, gdzie istotna jest redukcja masy konstrukcyjnej. Zgodnie z normą PN-EN 206, betony te mogą być stosowane w elementach nośnych oraz nie nośnych, co zapewnia ich wszechstronność w różnorodnych zastosowaniach budowlanych. Warto również zauważyć, że keramzyt jest materiałem ekologicznym, ponieważ jego produkcja często wykorzystuje odpady przemysłowe, co wpisuje się w zasady zrównoważonego rozwoju oraz ochrony środowiska.

Pytanie 8

Jaki sprzęt powinien być użyty do przygotowania zaprawy, niezbędnej do postawienia ścian w budynku jednorodzinnym z bloczków gazobetonowych, murowanych na standardowe spoiny?

A. Agregat tynkarski.
B. Mieszarkę wirową.
C. Betoniarkę wolnospadową.
D. Pompę do zapraw.
Betoniarka wolnospadowa jest najbardziej odpowiednim sprzętem do przygotowania zaprawy do wymurowania ścian budynku jednorodzinnego z bloczków gazobetonowych. Jej konstrukcja, umożliwiająca mieszanie materiałów w obracającym się bębnie, zapewnia równomierne połączenie składników zaprawy, co jest kluczowe dla uzyskania odpowiednich właściwości mechanicznych i trwałości materiału. Standardy budowlane, takie jak PN-EN 998-1, określają wymagania dotyczące zapraw murarskich, wskazując na konieczność zapewnienia odpowiedniej konsystencji i jednorodności mieszanki. Betoniarka wolnospadowa pozwala na przygotowanie większej ilości zaprawy jednocześnie, co zwiększa efektywność pracy na budowie i zmniejsza czas potrzebny na wykonanie zlecenia. Dodatkowo, dzięki właściwościom tej maszyny, zaprawa uzyskuje lepsze parametry wytrzymałościowe, co przekłada się na stabilność i bezpieczeństwo całej konstrukcji. W praktyce, zastosowanie betoniarki przyspiesza proces przygotowania materiałów, co jest szczególnie ważne w przypadku większych inwestycji budowlanych, gdzie czas realizacji ma kluczowe znaczenie.

Pytanie 9

Jakie są całkowite wydatki (materiałów i robocizny) na przygotowanie 5 m3 betonu, jeśli koszty materiałów do 1 m3 wynoszą 200 zł, a za robociznę należy dodać 20% wartości mieszanki?

A. 2420 zł
B. 2000 zł
C. 1200 zł
D. 1020 zł
Dobra robota z tą odpowiedzią! Jak to obliczyłeś? Koszt materiałów na 1 m3 betonu to 200 zł, więc dla 5 m3 wychodzi 1000 zł. Potem doliczyłeś robociznę, co jest super ważne, bo to 20% od materiałów, czyli dodatkowe 200 zł. Łącznie daje to 1200 zł. W budownictwie takie obliczenia to podstawa, bo bez tego łatwo można wpaść w kłopoty finansowe. Zawsze warto też mieć na uwadze, że ceny materiałów mogą się zmieniać w trakcie pracy, więc dobrze się przygotować na różne sytuacje.

Pytanie 10

Wykończenie powierzchni tynku zwykłego klasy IVf polega na

A. zatarciu świeżej zaprawy packą obłożoną filcem.
B. przeszlifowaniu stwardniałej zaprawy osełką.
C. przetarciu stwardniałej zaprawy ząbkowaną cykliną.
D. dociśnięciu świeżej zaprawy za pomocą packi.
Zatarcie świeżej zaprawy packą obłożoną filcem jest prawidłowym procesem wykończenia tynku zwykłego kategorii IVf. Ta technika ma na celu uzyskanie gładkiej, estetycznej powierzchni, która będzie dobrze współpracować z późniejszymi warstwami wykończeniowymi, takimi jak farby czy tynki dekoracyjne. Packa obłożona filcem pozwala na równomierne rozprowadzenie zaprawy, a także wygładzenie jej powierzchni, co jest kluczowe dla uzyskania właściwej przyczepności i trwałości. Użycie filcu zmniejsza ryzyko powstawania rys i innych uszkodzeń, co przekłada się na lepszy efekt końcowy. Dobrą praktyką jest wykonanie zatarcia po około 24 godzinach od nałożenia zaprawy, kiedy materiał jest jeszcze wystarczająco wilgotny, ale już na tyle stwardniały, by można było z nim pracować. Standardy budowlane wskazują, że odpowiednie wykończenie tynku ma kluczowe znaczenie dla jego funkcji ochronnych i estetycznych, dlatego warto stosować sprawdzone metody i materiały.

Pytanie 11

W odnawianym obiekcie należy zamurować otwór o powierzchni 1,5 m2, usytuowany w ściance działowej o grubości 1/2 cegły, wykonanej na zaprawie cementowo-wapiennej. Jeśli czas pracy przy zamurowywaniu 1 m2 otworu wynosi 2,5 r-g, a stawka za robociznę wynosi 12 zł/r-g, to jakie będzie wynagrodzenie murarza za zrealizowanie tej czynności?

A. 30 zł
B. 60 zł
C. 48 zł
D. 45 zł
Aby obliczyć wynagrodzenie murarza za zamurowanie otworu o powierzchni 1,5 m2, należy najpierw ustalić nakład robocizny. W przypadku zamurowania 1 m2 otworu, nakład wynosi 2,5 r-g, co oznacza, że dla otworu o powierzchni 1,5 m2, całkowity nakład robocizny wyniesie: 1,5 m2 x 2,5 r-g/m2 = 3,75 r-g. Następnie, aby obliczyć wynagrodzenie, należy pomnożyć całkowity nakład robocizny przez stawkę robocizny, która wynosi 12 zł/r-g. Zatem wynagrodzenie murarza wynosi: 3,75 r-g x 12 zł/r-g = 45 zł. Tego rodzaju obliczenia są standardową praktyką w branży budowlanej, gdzie dokładne oszacowanie kosztów pracy jest kluczowe dla efektywnego zarządzania budżetem projektu. Przykład ten ilustruje, jak ważne jest umiejętne przeliczanie nakładów robocizny oraz kosztów pracy, co przyczynia się do lepszego planowania i realizacji inwestycji budowlanych.

Pytanie 12

Zgodnie z zaleceniami producenta, zużycie gipsowej zaprawy tynkarskiej wynosi 6 kg/m2/10 mm. Oblicz, ile
30-kilogramowych worków zaprawy trzeba zakupić, aby nałożyć tynk o grubości 20 mm na ścianach o łącznej powierzchni 200 m2.

A. 10 worków
B. 40 worków
C. 20 worków
D. 80 worków
Żeby policzyć, ile gipsowej zaprawy potrzebujemy do tynku grubości 20 mm na powierzchni 200 m², najpierw musimy przeliczyć zużycie zaprawy przy tej grubości. Z tego, co mówi producent, potrzebne jest 6 kg/m² dla 10 mm grubości, więc dla 20 mm będziemy potrzebować już 12 kg/m². Potem mnożymy to przez powierzchnię ścianek: 12 kg/m² * 200 m² daje nam 2400 kg zaprawy. Następnie musimy podzielić tę wagę przez wagę jednego worka, czyli 30 kg: 2400 kg / 30 kg = 80 worków. Przy takich obliczeniach warto pamiętać o zaleceniach producenta i standardach budowlanych, bo to naprawdę kluczowe, żeby tynk był odpowiedniej jakości i trwałości.

Pytanie 13

Jaką cegłę należy zastosować do budowy murowanych ścianek działowych o grubości do 12 cm, aby uzyskać jak najniższy ciężar objętościowy?

A. wapienno-piaskową pełną
B. dziurawki
C. ceramiczną pełną
D. klinkierową
Cegły wapienno-piaskowe pełne, klinkierowe oraz ceramiczne pełne, choć używane w budownictwie, nie są optymalnym rozwiązaniem w kontekście budowy lekkich ścianek działowych. Cegły wapienno-piaskowe pełne, ze względu na swoją gęstość, są stosunkowo ciężkie i nieprzeznaczone do wykonania cienkowarstwowych konstrukcji. Stosowanie ich w takich zastosowaniach może prowadzić do nadmiernego obciążenia budynku oraz problemów z izolacyjnością akustyczną. Klinkier, znany ze swojej wytrzymałości oraz estetyki, ma również wysoką gęstość, co sprawia, że nie jest odpowiedni do tworzenia ścianek działowych, które mają być lekkie i łatwe w montażu. Z kolei cegły ceramiczne pełne, mimo że mogą być używane w tradycyjnym budownictwie, również są stosunkowo ciężkie i nie oferują takich korzyści jak dziurawki w kontekście obniżenia ciężaru konstrukcji. Często błędne jest przekonanie, że im bardziej solidny materiał, tym lepszy efekt budowlany – w przypadku ścianek działowych kluczowe jest nie tylko zapewnienie stabilności, ale również optymalizacja ciężaru oraz efektywność w zakresie izolacji. Dlatego wybór materiałów budowlanych powinien być dokładnie przemyślany, uwzględniając ich właściwości oraz przeznaczenie w kontekście danej konstrukcji.

Pytanie 14

Na podstawie tabeli oblicz ilości cementu portlandzkiego i piasku, potrzebne do wykonania 1,5 m3 zaprawy cementowo-wapiennej M2.

Orientacyjna ilość składników na 1 m³ zaprawy cementowo-wapiennej o konsystencji plastycznej
Proporcje
cement : wapno : piasek
Marka
zaprawy
Cement
portlandzki CEM I
[kg]
Wapno
hydratyzowane
[kg]
Piasek
[m³]
Woda
[dm³]
1 : 2,5 : 10,5M21071240,94316
1 : 1,25 : 6,75M5165970,95304
1 : 0,25 : 3,75M20293340,93284
A. 107,0 kg cementu, 1,425 m3 piasku
B. 160,5 kg cementu, 1,410 m3 piasku
C. 145,5 kg cementu, 1,410 m3 piasku
D. 186,0 kg cementu, 1,425 m3 piasku
Wybór innej odpowiedzi na pytanie dotyczące ilości cementu i piasku do zaprawy cementowo-wapiennej M2 wskazuje na typowe nieporozumienia związane z obliczeniami proporcji materiałów budowlanych. Wiele osób może mylnie przyjąć, że wystarczy podzielić lub pomnożyć ilości materiałów w sposób nieprzemyślany, nie uwzględniając specyficznych wymagań dotyczących zaprawy. Na przykład, odpowiedzi sugerujące 145,5 kg cementu albo różne objętości piasku nie opierają się na rzeczywistych danych z tabeli, co prowadzi do błędnych wniosków. Często zdarza się, że osoby projektujące mieszanki nie mają wystarczającej wiedzy o standardach budowlanych oraz o właściwościach materiałów. Zrozumienie, że ilości materiałów muszą być proporcjonalne do zapotrzebowania objętościowego, jest kluczowe. Niekonsekwentne podejście do proporcji nie tylko wpływa na jakość zaprawy, ale również może prowadzić do poważnych konsekwencji konstrukcyjnych, takich jak pęknięcia, kruchość czy inne defekty. Dodatkowo, brak zrozumienia różnic w gatunkach cementu i rodzaju piasku, które mogą mieć ogromny wpływ na zachowanie zaprawy, może prowadzić do nieodpowiednich wyborów w trakcie realizacji projektów budowlanych. Dlatego tak ważne jest, aby zawsze stosować się do uznanych norm i dobrych praktyk w branży budowlanej oraz konsultować się z doświadczonymi specjalistami przed przystąpieniem do mieszania składników.

Pytanie 15

Na podstawie danych zawartych w przedstawionej tabeli wskaż, ile piasku należy użyć do przygotowania 1 m3 zaprawy wapiennej o proporcji objętościowej składników 1:3 z użyciem ciasta wapiennego.

Proporcje i ilość składników na 1 m³ zaprawy wapiennej
Stosunek objętościowy wapna do piaskuMarka zaprawy [MPa]Ciasto wapienne [m³]Piasek [m³]Woda [dm³]
1 : 1,50,40,5100,76537
1 : 20,40,4300,86050
1 : 30,20,3200,960100
1 : 3,50,20,2800,980130
1 : 4,50,20,2241,010166
A. 0,960 m3
B. 0,320 m3
C. 1,080 m3
D. 0,980 m3
Wybór innej odpowiedzi może wynikać z kilku typowych błędów myślowych, które należy omówić, aby lepiej zrozumieć, dlaczego te odpowiedzi są niepoprawne. Na przykład, odpowiedź 0,980 m3 może sugerować, że osoba odpowiadająca przyjęła założenie, że ciasto wapienne i piasek muszą być stosowane w równych proporcjach, co jest niezgodne z danymi tabeli. Alternatywne wybory, takie jak 0,320 m3, wskazują na nieprawidłowe zrozumienie proporcji składników, ponieważ ta wartość odpowiada wyłącznie ilości ciasta wapiennego, a nie piasku. Istnieje także możliwość, że osoba odpowiadająca pomyliła jednostki miar lub nie uwzględniła, że całkowita objętość zaprawy to suma wszystkich składników. Tego rodzaju błędy są powszechne, zwłaszcza w przypadku osób, które nie mają doświadczenia w pracy z materiałami budowlanymi. W rzeczywistości, odpowiednia ilość piasku jest kluczowa dla uzyskania pożądanej struktury zaprawy, a nieprawidłowe proporcje mogą prowadzić do obniżenia jej wytrzymałości i trwałości, co jest szczególnie istotne w kontekście zastosowań budowlanych. Zrozumienie tych zagadnień jest istotne nie tylko w teorii, ale także w praktyce budowlanej, gdzie błędy w obliczeniach mogą prowadzić do poważnych konsekwencji w trakcie realizacji projektów.

Pytanie 16

Betonową mieszankę tuż po umieszczeniu w formach należy

A. przykryć matami lub folią
B. nawilżyć mleczkiem cementowym
C. zagęścić
D. zwilżyć wodą
Zastosowanie mleczka cementowego, zwilżanie wodą czy przykrywanie matami lub folią to takie rzeczy, które nie przynoszą oczekiwanych efektów, jeśli chodzi o przygotowanie betonu po jego ułożeniu. Mleczko cementowe, choć może poprawić wygląd powierzchni, nie ma wpływu na to, żeby beton był gęstszy czy miał lepsze właściwości mechaniczne. W rzeczywistości, to może wręcz zaszkodzić przyczepności kolejnych warstw, co prowadzi do osłabienia całej konstrukcji. Zwilżanie wodą to ważna rzecz, ale ono nie zastępuje zagęszczania. Kiedy jest za dużo wody, może dość do segregacji składników mieszanki, a to naprawdę negatywnie odbija się na wytrzymałości betonu. Osłanianie betonu matami czy folią jest ważne, żeby chronić przed warunkami atmosferycznymi, ale to wciąż nie rozwiązuje problemu zagęszczenia, które jest kluczowe, żeby beton miał jednorodną strukturę. W budowlance często można usłyszeć błędne przekonania, że te metody mogą jakoś naprawić brak zagęszczenia, a to nieprawda i może prowadzić do poważnych defektów potem.

Pytanie 17

Jakie metody należy zastosować, aby zabezpieczyć metalowe elementy przed korozją podczas wznoszenia ścian z bloczków gipsowych?

A. Aplikować mleczko cementowe
B. Pokryć lakierem asfaltowym
C. Nałożyć farbę olejną
D. Zastosować pokost lniany
Odpowiedzi wskazane jako alternatywy dla pokrycia lakierem asfaltowym mają swoje ograniczenia i nie zapewniają tak efektywnej ochrony przed korozją. Smarowanie pokostem lnianym, chociaż ma swoje zastosowania w konserwacji drewna, nie jest wystarczające dla metalowych elementów, gdyż nie tworzy trwałej, elastycznej powłoki, a jego ochrona jest ograniczona do warunków atmosferycznych. Podobnie, malowanie farbą olejną, mimo że może zapewnić pewien poziom ochrony, nie jest wystarczająco odporne na wilgoć i czynniki chemiczne, które mogą przyspieszać proces korozji. Farby olejne mogą również wymagać częstej konserwacji, co jest niepraktyczne w długoterminowej ochronie metalowych elementów budowlanych. Z kolei, pokrycie lakierem asfaltowym, który często jest wykorzystywany w budownictwie, tworzy barierę, która nie tylko chroni przed wodą, ale również przed substancjami chemicznymi. Naniesienie mleczka cementowego na metalowe elementy również nie jest skutecznym rozwiązaniem, ponieważ mleczko cementowe jest bardziej przeznaczone do poprawy przyczepności betonu niż do zabezpieczania metalu przed korozją. Użytkownicy mogą nie doceniać znaczenia odpowiednich metod ochrony, co prowadzi do stosowania mniej skutecznych rozwiązań. Ważne jest, aby w budownictwie stosować sprawdzone metody zabezpieczania, takie jak lakier asfaltowy, które zgodne są z najlepszymi praktykami branżowymi.

Pytanie 18

Gdy konstrukcja budynku opiera się na stalowych kształtownikach, to przed nałożeniem tynku na słup stalowy należy go

A. umyć wodą
B. oszlifować
C. owinąć siatką
D. pomalować farbą
Owinąć siatką słup stalowy przed otynkowaniem jest kluczowe dla zapewnienia odpowiedniego współczynnika przyczepności między tynkiem a stalą. Siatka zbrojeniowa, wykonana z odpowiednich materiałów, takich jak stal lub włókna syntetyczne, tworzy solidną podstawę dla tynku, poprawiając jego przyczepność oraz zwiększając ogólną trwałość wykończenia. Stalowe słupy, ze względu na swoją gładką powierzchnię, mogą mieć trudności z utrzymaniem tynku, jeśli nie zostaną odpowiednio przygotowane. Oprócz tego, owinęcie siatką chroni stal przed uszkodzeniami mechanicznymi podczas wykonywania dalszych prac budowlanych. W praktyce budowlanej często stosuje się również siatki o różnej wielkości oczek, co pozwala na dostosowanie ich do specyficznych wymagań projektu. Zgodnie z normami budowlanymi, takimi jak PN-EN 13914, odpowiednie przygotowanie podłoża jest kluczowe dla uzyskania trwałych i estetycznych wykończeń budowlanych.

Pytanie 19

Na podstawie danych zawartych w tabeli określ maksymalną odległość, w której należy wykonać szczeliny dylatacyjne w ścianie jednowarstwowej wymurowanej z pustaków ceramicznych, o spoinach pionowych niewypełnionych.

Rodzaj muruOdległości Ld między szczelinami dylatacyjnymi (w metrach) w ścianach
szczelinowychjedno- lub dwuwarstwowych o spoinach pionowych
warstwa zewnętrznawarstwa wewnętrznawypełnionychniewypełnionych
Z elementów ceramicznych12403025
Z innych elementów murowych8302520
A. 30 metrów.
B. 12 metrów.
C. 20 metrów.
D. 25 metrów.
Wybór innej odległości, jak 20, 12, czy 30 metrów, może wynikać z nieporozumienia dotyczącego zasad projektowania konstrukcji z pustaków ceramicznych. Odległość 20 metrów, mimo że może wydawać się odpowiednia, nie uwzględnia faktu, że dylatacje mają na celu nie tylko kompensację rozszerzalności cieplnej, ale także kontrolę naprężeń, które mogą prowadzić do uszkodzeń. Z kolei odległość 12 metrów nie jest zalecana, ponieważ prowadziłaby do nadmiaru dylatacji, co może osłabić integralność strukturalną i zwiększyć koszty budowy. Zastosowanie odległości 30 metrów z kolei przekracza normy branżowe, co może skutkować poważnymi problemami konstrukcyjnymi, takimi jak pęknięcia i osiadanie. Ważne jest, aby w każdym projekcie uwzględnić specyfikę materiałów oraz warunki lokalne, zwracając uwagę na standardy takie jak PN-EN 1996-1-1, które jasno określają optymalne odległości dylatacyjne. Typowym błędem myślowym jest błędne zakładanie, że większa odległość zwiększa stabilność, podczas gdy w rzeczywistości może to prowadzić do przeciążenia konstrukcji i poważnych konsekwencji. Dlatego kluczowe jest oparcie się na danych zawartych w tabelach i normach, które są wynikiem badań i praktyki inżynierskiej.

Pytanie 20

Główne składniki mieszanki betonowej stosowanej do produkcji betonu zwykłego to

A. cement, piasek, żwir i woda
B. cement, popiół, keramzyt i woda
C. cement, wapno, piasek i woda
D. cement, piasek, keramzyt i woda
Wiesz, podstawowe składniki, które są potrzebne do zrobienia betonu zwykłego, to cement, piasek, żwir i woda. Cement działa jak spoiwo, które łączy resztę składników. Piasek i żwir to te materiały, które nadają betonowi dobrą strukturę i wytrzymałość. Woda jest super ważna, bo to ona pozwala na reakcje chemiczne przy wiązaniu cementu. W praktyce, proporcje tych składników są mega istotne, żeby beton miał odpowiednią wytrzymałość i trwałość. Są normy budowlane, jak PN-EN 206, które mówią, jakie składniki i właściwości powinien mieć beton, żeby można go było używać w różnych warunkach. Beton zwykły, z tymi składnikami, jest naprawdę powszechnie stosowany w budownictwie, od fundamentów po różne konstrukcje nośne, bo jest uniwersalny i solidny.

Pytanie 21

Czym jest spoiwo mineralne hydrauliczne?

A. cement hutniczy
B. wapno hydratyzowane
C. wapno dolomitowe
D. gips hydrauliczny
Wybór wapna dolomitowego jako spoiwa mineralnego hydraulicznego jest błędny, ponieważ jest to materiał, który twardnieje jedynie w obecności dwutlenku węgla, a nie pod wpływem wody. Wapno dolomitowe jest stosunkowo mało odporne na działanie wody, co ogranicza jego zastosowanie w konstrukcjach narażonych na wilgoć. Gips hydrauliczny, choć ma zdolność do twardnienia w wodzie, nie jest klasyfikowany jako spoiwo mineralne hydrauliczne w znaczeniu używanym w budownictwie, gdyż jego zastosowanie jest raczej ograniczone do tynków i wykończeń. Wapno hydratyzowane, podobnie jak wapno dolomitowe, również wymaga obecności CO2 do twardnienia, co czyni je nieodpowiednim w kontekście hydraulicznych spoiw mineralnych. Typowe błędy myślowe, które prowadzą do wyboru tych materiałów, często wynikają z niepełnego zrozumienia różnic między spoiwami hydraulicznymi a tymi, które wymagają reakcji z atmosferycznym dwutlenkiem węgla. Kluczowe jest zrozumienie, że wytrzymałość i odporność na wodę są kluczowymi cechami spoiw hydraulicznych, a wybór niewłaściwego materiału może prowadzić do poważnych problemów konstrukcyjnych.

Pytanie 22

Na rysunku przedstawiono układ cegieł

Ilustracja do pytania
A. w narożniku murów o grubości 2.5 i 1.5 cegły.
B. w przenikających się murach o grubości 2.5 i 1.5 cegły.
C. w przenikających się murach o grubości 1.5 i 1.5 cegły.
D. w narożniku murów o grubości 1.5 i 1.5 cegły.
Dobra robota! Zaznaczenie narożnika murów o grubości 2.5 i 1.5 cegły pokazuje, że dobrze analizujesz, co widać na rysunku. Wiedza o grubości murów jest naprawdę kluczowa w budownictwie, bo to wpływa na stabilność całej konstrukcji. Lewy mur, cieńszy (1.5 cegły), to typowa praktyka, żeby zaoszczędzić materiały, a grubszy (2.5 cegły) rzeczywiście daje więcej nośności. Spotkasz to w różnych projektach, od domków jednorodzinnych po hale przemysłowe. Pamiętaj, że w narożnikach często stosuje się wzmocnienia, żeby wszystko trzymało się kupy. Mówiąc prościej, wykonawcy często dodają stalowe zbrojenia i różne technologie łączenia cegieł, żeby uniknąć pęknięć. To wszystko jest mega ważne, zwłaszcza dla inżynierów i architektów, którzy projektują i budują różne obiekty.

Pytanie 23

Na podstawie tablicy z KNR 2-02 oblicz, ile m3 zaprawy cementowo-wapiennej potrzeba do wymurowania dwóch prostokątnych filarków o wymiarach 2×2½ cegły i wysokości 3 m.

Nakłady na 1 mna podstawie Tablicy 0118
Lp.Wyszczególnienie
rodzaje materiałów i maszyn
Jednostki
miary,
oznaczenia
literowe
Słupy i filarki prostokątne
na zaprawie wapiennej lub cementowo-wapiennej
o wymiarach
1×1
cegły
1×1½
cegły
1½×1½
cegły
1½×2
cegły
2×2
cegły
2×2½
cegły
2½×2½
cegły
abc01020304050607
20Cegły budowlane pełneszt.26,0039,0065,0081,30105,10131,30170,70
21Zaprawa0,0140,0230,0370,0490,0690,0870,098
70Wyciągm-g0,100,150,250,320,430,530,67
A. 0,588 m3
B. 0,294 m3
C. 0,522 m3
D. 0,138 m3
W przypadku odpowiedzi, które nie są zgodne z poprawnym wynikiem, istnieje szereg kluczowych nieporozumień związanych z interpretacją danych oraz obliczeniami. Często pojawia się błąd polegający na nieprawidłowym pomnożeniu objętości filarków przez odpowiednie zużycie zaprawy. Zrozumienie, że do wykonania dwóch filarków potrzebna jest suma ich objętości, a nie pojedyncze obliczenia dla każdego z nich, jest fundamentem poprawnych wyliczeń. Użytkownicy mogą czasami zlekceważyć znaczenie dokładnych danych z KNR, co prowadzi do przyjęcia nieprawidłowych wartości zużycia zaprawy. Dodatkowo, brak uwzględnienia proporcji pomiędzy zaprawą a objętością muru może skutkować znacznymi błędami w oszacowaniach. Wiele osób myśli, że wystarczy podzielić całkowitą objętość przez średnie zużycie, jednak kluczowe jest zrozumienie, że każda sytuacja budowlana wymaga indywidualnego podejścia i analizy. Ostatecznie, nieprzemyślane podejście do tych obliczeń prowadzi do konsekwencji finansowych, ponieważ zbyt niska ilość materiału może skutkować niekompletnym wykonaniem zadania oraz wzrostem kosztów związanych z pilnymi zakupami dodatkowych materiałów. Dlatego ważne jest, aby stosować standardy i dobre praktyki inżynieryjne, które są fundamentem skutecznego zarządzania projektami budowlanymi.

Pytanie 24

Jaką technikę powinno się zastosować do murowania na puste spoiny?

A. Na docisk zaprawy kielnią
B. Z nakładaniem zaprawy na całą powierzchnię cegły
C. Na wycisk zaprawy cegłą
D. Na wycisk z podcięciem zaprawy kielnią
Nieprawidłowe metody murowania, takie jak murowanie na docisk zaprawy kielnią, nie są zalecane, ponieważ mogą prowadzić do problemów związanych z jakością muru. Technika ta nie zapewnia odpowiedniego wypełnienia spoin, co skutkuje powstawaniem szczelin, które mogą negatywnie wpływać na trwałość i stabilność konstrukcji. Murowanie z użyciem kielni może prowadzić do nadmiaru zaprawy w spoinach, co z kolei przyczynia się do deformacji cegieł oraz może prowadzić do ich pęknięcia w dłuższym okresie użytkowania. Nakładanie zaprawy na całą powierzchnię cegły, choć może wydawać się wygodne, również nie jest zalecane, ponieważ może spowodować, że zaprawa będzie się wydobywać na zewnątrz, co wpływa na estetykę muru. W przypadku zastosowania wycisku z podcięciem zaprawy kielnią, może dochodzić do nieprzewidywalnych efektów związanych z przyczepnością, co jest niezgodne z aktualnymi standardami budowlanymi. Wszystkie te błędne podejścia często wynikają z niewłaściwego zrozumienia zasad murowania oraz zaniedbania w zakresie techniki, które są kluczowe dla stworzenia solidnej i estetycznej konstrukcji. Dlatego warto kłaść nacisk na odpowiednie metody, które są zgodne z najlepszymi praktykami w budownictwie.

Pytanie 25

Na podstawie fragmentu opisu technicznego określ, ile pojemników cementu i wapna należy zużyć do przygotowania zaprawy, jeżeli do jej sporządzenia zaplanowano 20 pojemników piasku?

Opis techniczny
(fragment)
(...) Do wykonania ścian zewnętrznych z pustaków Max należy zastosować zaprawę cementowo-wapienną odmiany E, o proporcji objętościowej składników 1 : 0,5 : 4. (...)
A. 4 pojemniki cementu i 2 pojemniki wapna.
B. 5 pojemników cementu i 2,5 pojemnika wapna.
C. 4 pojemniki wapna i 2 pojemniki cementu.
D. 5 pojemników wapna i 2,5 pojemnika cementu.
Kiedy analizujemy inne dostępne odpowiedzi, możemy zauważyć, że opierają się one na błędnych założeniach dotyczących proporcji składników zaprawy. Niepoprawne odpowiedzi sugerują nieadekwatne ilości wapna lub cementu w stosunku do piasku, co jest kluczowe dla uzyskania pożądanych właściwości zaprawy. Na przykład, jedna z niepoprawnych odpowiedzi może sugerować użycie 4 pojemników cementu i 2 pojemników wapna. Takie proporcje prowadzą do niewłaściwego stosunku składników, co może skutkować zaprawą o obniżonej wytrzymałości. Praktycznie, zbyt mała ilość cementu w mieszance może prowadzić do problemów z wiązaniem, co skutkuje wkrótce po wykonaniu prac budowlanych pęknięciami lub osuwaniem się materiału. Istotne jest, aby rozumieć, że nie tylko ilość materiałów jest ważna, ale także ich odpowiednie proporcje, które determinują jakość końcowego produktu. Ponadto, niewłaściwe zrozumienie proporcji może wynikać z ogólnego braku uwagi na specyfikacje techniczne, co jest częstym błędem wśród osób bez odpowiedniego doświadczenia w budownictwie. Kluczową lekcją, jaką można wyciągnąć z analizy tych błędnych odpowiedzi, jest konieczność dokładnego zapoznania się z dokumentacją techniczną i przestrzegania wskazanych proporcji, aby zapewnić trwałość i bezpieczeństwo konstrukcji.

Pytanie 26

Proces docieplania metodą lekką mokrą zaczyna się od

A. przymocowania siatki zbrojącej
B. przytwierdzenia materiału izolacyjnego
C. nałożenia tynku cienkowarstwowego
D. instalacji listwy startowej
Wprowadzenie w błąd podczas planowania docieplenia metodą lekką mokrą może prowadzić do wielu problemów technicznych, które mogą wpłynąć na efektywność energetyczną budynku. Wklejenie siatki zbrojącej, choć istotne, nie powinno być pierwszym krokiem, ponieważ wymaga wcześniejszego przygotowania podłoża oraz ustabilizowania materiału izolacyjnego. Mieszanie kolejności czynności prowadzi do ryzyka, że siatka nie zostanie odpowiednio osadzone, co może skutkować jej odklejaniem się lub pękaniem tynku. Mocowanie materiału izolacyjnego powinno następować po stabilizacji listwy startowej. W przeciwnym razie, istnieje ryzyko, że izolacja nie będzie trwale przymocowana i może ulegać odkształceniom. Wykonanie tynku cienkowarstwowego jako pierwszego kroku jest nie tylko niemożliwe, ale także niezgodne z ogólnymi zasadami wykonywania prac budowlanych. Tynk wymaga solidnej podstawy, jaką zapewnia właściwie zamontowana listwa startowa oraz izolacja. Zrozumienie tych etapów jest kluczowe dla uniknięcia problemów z izolacyjnością oraz trwałością całej konstrukcji budowlanej, dlatego należy ściśle stosować się do sprawdzonych praktyk budowlanych.

Pytanie 27

Na fotografii przedstawiono materiał izolacyjny przeznaczony do wykonywania izolacji

Ilustracja do pytania
A. termicznej i akustycznej.
B. akustycznej i przeciwwodnej.
C. przeciwwilgociowej i paroprzepuszczalnej.
D. przeciwwodnej i przeciwwilgociowej.
Niepoprawne odpowiedzi opierają się na błędnych założeniach dotyczących właściwości izolacyjnych wełny mineralnej. Odpowiedzi związane z izolacją przeciwwodną oraz przeciwwilgociową są mylne, ponieważ wełna mineralna nie jest materiałem przeznaczonym do zabezpieczania przed wodą i wilgocią. Chociaż wełna mineralna może wykazywać pewien stopień odporności na wilgoć, nie jest w stanie chronić przed bezpośrednim działaniem wody. Dlatego stosowanie jej jako jedynego materiału w kontekście izolacji przeciwwodnej jest niewłaściwe. Ponadto, termin 'paroprzepuszczalność' odnosi się do zdolności materiału do przepuszczania pary wodnej, co w przypadku wełny mineralnej nie jest jej główną funkcją, zwłaszcza gdy jest stosowana w połączeniu z folią paroizolacyjną. Często błędnie zakłada się, że materiały izolacyjne muszą spełniać wszystkie funkcje jednocześnie, co prowadzi do nieporozumień. W praktyce ważne jest, aby dobierać materiały zgodnie z ich przeznaczeniem i właściwościami, co jest kluczowe dla zachowania efektywności energetycznej budynku oraz zapewnienia odpowiednich warunków wewnętrznych.

Pytanie 28

Na niewielkiej budowie do przygotowania betonu zastosowano dozowanie objętościowe składników. Murarz miał stworzyć beton zwykły w proporcjach 1 : 2 : 4. Oznacza to, że odmierzył

A. 1 wiadro cementu, 2 wiadra piasku, 4 wiadra żwiru
B. 1 wiadro żwiru, 2 wiadra cementu, 4 wiadra piasku
C. 1 wiadro cementu, 2 wiadra żwiru, 4 wiadra piasku
D. 1 wiadro piasku, 2 wiadra żwiru, 4 wiadra cementu
Niepoprawne odpowiedzi przedstawiają różne błędne interpretacje proporcji składników betonu. W przypadku każdej z tych opcji występuje pomylenie podstawowych komponentów: cementu, piasku i żwiru. Kluczowym błędem jest nieprawidłowe zrozumienie zasady dozowania objętościowego, co prowadzi do nieodpowiednich proporcji, które mogą wpłynąć na właściwości końcowego produktu, jakim jest beton. Na przykład, w odpowiedzi, która wskazuje na 1 wiadro piasku, 2 wiadra żwiru i 4 wiadra cementu, kolejność składników jest całkowicie odwrotna, co prowadzi do mieszanki zbyt bogatej w cement, co może skutkować nadmierną sztywnością i kruchością betonu. Inna odpowiedź, sugerująca użycie żwiru jako pierwszego składnika, również wprowadza w błąd, ponieważ zmienia proporcje, co z kolei może prowadzić do osłabienia struktury betonu. W kontekście projektowania mieszanek betonowych, niezwykle istotne jest przestrzeganie ustalonych proporcji, które zapewniają równowagę pomiędzy wytrzymałością a plastycznością. Mieszanki betonowe muszą być projektowane zgodnie ze standardem PN-EN 206, który określa wymogi techniczne dotyczące betonu, w tym odpowiednie proporcje składników, aby zapewnić ich odpowiednie właściwości użytkowe.

Pytanie 29

W jakiej temperaturze najlepiej wykonywać prace tynkarskie?

A. < 10o
B. 15o - 20o
C. 25o - 30o
D. w dowolnej
Odpowiedź 15o - 20o jest uważana za optymalną temperaturę do prowadzenia robót tynkarskich, ponieważ w tym zakresie można zapewnić odpowiednią plastyczność zaprawy tynkarskiej. W zbyt niskich temperaturach, poniżej 10o, proces wiązania zaprawy jest spowolniony, co może prowadzić do problemów z przyczepnością oraz pęknięć. Z kolei przy temperaturach przekraczających 20o, zwłaszcza w zakresie 25o - 30o, woda w zaprawie może zbyt szybko parować, co skutkuje niepełnym wiązaniem i osłabieniem struktury tynku. Dobry praktyką jest także monitorowanie wilgotności powietrza oraz stosowanie odpowiednich dodatków, które mogą poprawić właściwości zaprawy w trudnych warunkach atmosferycznych. Warto również pamiętać, że zgodnie z normą PN-B-10101, minimalne i maksymalne temperatury dla robót tynkarskich powinny być przestrzegane, aby zapewnić długotrwałość i jakość wykonania.

Pytanie 30

Aby połączyć kształtki ceramiczne narażone na wysokie temperatury, należy użyć zaprawy

A. cementowej
B. krzemionkowej
C. żywiczej
D. polimerowej
Krzemionkowa zaprawa jest najodpowiedniejszym wyborem do łączenia kształtek kamionkowych narażonych na działanie wysokiej temperatury ze względu na swoje właściwości termiczne i chemiczne. Krzemionka, jako główny składnik, wykazuje doskonałą odporność na wysokie temperatury, co czyni ją idealnym materiałem do stosowania w piecach, kominkach oraz innych instalacjach, gdzie wymagana jest trwałość w ekstremalnych warunkach. W praktyce, zaprawa krzemionkowa nie tylko łączy elementy, ale także zapewnia ich stabilność oraz odporność na szoki termiczne. W budownictwie ceramicznym i piekarskim, stosowanie zaprawy krzemionkowej zgodnie z normami PN-EN 998-2 pozwala na uzyskanie trwałych i odpornych na działanie wysokich temperatur połączeń. Dlatego w kontekście zastosowania w warunkach wysokotemperaturowych, krzemionkowa zaprawa jest najlepszym wyborem, co potwierdzają standardy branżowe oraz praktyki inżynieryjne.

Pytanie 31

Na rysunku przedstawiono zakończenie muru wykonane na strzępia

Ilustracja do pytania
A. zazębione boczne.
B. uciekające.
C. zazębione końcowe.
D. na wpust i wypust.
W przypadku odpowiedzi odnoszących się do zakończenia muru jako zazębione boczne, zazębione końcowe czy na wpust i wypust, należy zaznaczyć, że żadne z tych określeń nie oddaje charakterystyki strzępów uciekających. Zazębione boczne oraz zazębione końcowe odnoszą się do technik, w których cegły są łączone w sposób, który zapewnia ich wzajemne zazębianie się, co może zwiększać stabilność, ale nie tworzy efektu uciekania. Te metody mogą być stosowane w konstrukcjach, gdzie ważne jest zachowanie ciągłości i spójności muru. Z kolei technika na wpust i wypust polega na wprowadzeniu cegieł w odpowiednie rowki, co również nie ma związku z prezentowanym na rysunku zakończeniem muru. Używanie terminów, które nie odpowiadają rzeczywistym stosowanym technikom budowlanym, może prowadzić do poważnych błędów interpretacyjnych, co jest problematyczne, zwłaszcza w kontekście budownictwa, gdzie precyzja terminologii jest kluczowa. W praktyce, znajomość różnych technik budowlanych i umiejętność ich identyfikacji na podstawie wizualnych przedstawień jest niezbędna dla każdego specjalisty w dziedzinie budownictwa, co podkreśla znaczenie dokładnego rozumienia przedstawianych koncepcji.

Pytanie 32

Aby przywrócić właściwości ścian murowanych, które zostały zasolone i zawilgocone, potrzebna jest zaprawa

A. izolująca cieplnie
B. renowacyjna
C. lekka
D. ogólnego przeznaczenia
Zaprawa renowacyjna jest specjalnie zaprojektowana do naprawy uszkodzeń, takich jak zasolenie i zawilgocenie ścian murowanych. Zawiera składniki, które pomagają w redukcji krytycznych problemów związanych z wilgocią i solami, co jest kluczowe w zachowaniu integralności konstrukcyjnej budynków. Przykładowo, podczas renowacji zabytkowych murów, ważne jest, aby zastosować materiały, które są kompatybilne z oryginalnymi, aby nie spowodować dalszych uszkodzeń. W praktyce, zaprawy renowacyjne charakteryzują się niską przepuszczalnością dla wody oraz dobrą paroprzepuszczalnością, co pozwala na regulację wilgotności w murze, a także na wyeliminowanie problemów z solami, które mogą prowadzić do degradacji materiału. Dobrym przykładem zastosowania zaprawy renowacyjnej jest konserwacja starych budynków, gdzie zachowanie oryginalnych materiałów i struktury jest kluczowe dla utrzymania wartości historycznej i estetycznej.

Pytanie 33

Remont odspojonego tynku należy przeprowadzić w poniższej kolejności:

A. skuć odspojony tynk, odkurzyć podłoże, zwilżyć podłoże wodą, otynkować ścianę
B. odkurzyć podłoże, skuć odspojony tynk, zwilżyć podłoże wodą, otynkować ścianę
C. odkurzyć podłoże, zwilżyć podłoże wodą, skuć odspojony tynk, otynkować ścianę
D. skuć odspojony tynk, zwilżyć podłoże wodą, odkurzyć podłoże, otynkować ścianę
Wybór niewłaściwej kolejności prac przy naprawie tynku często prowadzi do nieefektywnych rezultatów, a nawet do konieczności powtórzenia całego procesu. W przypadku, gdy najpierw odkurzymy podłoże, a następnie usuniemy odspojony tynk, istnieje ryzyko, że nie usuniemy wszystkich luźnych fragmentów, co może skutkować osłabieniem przyczepności nowego tynku. Dodatkowo, jeśli najpierw zwilżymy podłoże przed jego oczyszczeniem, wilgoć może wniknąć w pył i zanieczyszczenia, co również negatywnie wpłynie na adhezję tynku. Podobnie, bez wcześniejszego odkurzenia, wilgoć może sprawić, że pył będzie trudniejszy do usunięcia, co w rezultacie obniża jakość przygotowanego podłoża. W praktyce, każdy z tych etapów ma swoją rolę i pominięcie któregokolwiek z nich prowadzi do nieprawidłowego przygotowania powierzchni, co może skutkować pęknięciami, odspojeniem oraz krótszym czasem użytkowania nowo nałożonej warstwy tynku. Dlatego kluczowe jest przestrzeganie ustalonej kolejności prac, aby zapewnić trwałość i estetykę wykonania. W branży budowlanej, znajomość i stosowanie standardowych procedur ma ogromne znaczenie dla sukcesu projektu oraz zadowolenia klientów.

Pytanie 34

Oblicz całkowity koszt realizacji tynku mozaikowego na ścianie o powierzchni 30 m2, przy założeniu, że koszt robocizny wynosi 25,00 zł/m2, a wydatki na materiały to 20,00 zł/m2?

A. 600,00 zł
B. 750,00 zł
C. 1 500,00 zł
D. 1 350,00 zł
Aby policzyć, ile będzie kosztowało zrobienie tynku mozaikowego na ścianie o powierzchni 30 m², musimy zsumować koszty robocizny i materiałów. Koszt robocizny to 25 zł za m², więc przy 30 m² wychodzi 750 zł. Koszt materiałów to 20 zł za m², co daje 600 zł. Zatem całkowity koszt wynosi 1 350 zł. W branży budowlanej to standardowe podejście do obliczeń. Dobrze jest też pamiętać o innych wydatkach, które mogą się pojawić, jak np. transport materiałów czy wynajem sprzętu – to wszystko może mieć wpływ na ostateczną cenę.

Pytanie 35

Gdzie można wykorzystać zaprawy gipsowe?

A. do tynkowania działowych ścian w pomieszczeniach o podwyższonej wilgotności
B. do tynkowania elewacji budynków
C. do murowania ścian z gipsowych elementów w suchych pomieszczeniach
D. do murowania fundamentów z elementów betonowych
Odpowiedź dotycząca murowania ścian z elementów gipsowych w pomieszczeniach suchych jest poprawna, ponieważ zaprawy gipsowe charakteryzują się odpowiednimi właściwościami do stosowania w takich warunkach. Gips jest materiałem, który ma dobre właściwości klejące oraz szybko wiąże, co czyni go idealnym do murowania elementów gipsowych, które są lekkie i łatwe w obróbce. W praktyce, zaprawy gipsowe są często wykorzystywane do tworzenia ścianek działowych oraz do zabudów, które nie są narażone na wilgoć. W kontekście dobrych praktyk budowlanych, zastosowanie zaprawy gipsowej w suchych pomieszczeniach przyczynia się do poprawy efektywności energetycznej budynku oraz zwiększa komfort akustyczny. Ponadto, elementy gipsowe, takie jak płyty gipsowo-kartonowe, współpracują z zaprawami gipsowymi, co zapewnia trwałość i estetykę wykończenia. Warto również zwrócić uwagę na normy takie jak PN-EN 13279, które określają wymagania dla materiałów budowlanych na bazie gipsu.

Pytanie 36

Jaką minimalną długość powinno mieć oparcie nadproża L19 na murze?

A. 6 cm
B. 10 cm
C. 22 cm
D. 19 cm
Minimalna długość oparcia nadproża L19 wynosząca 10 cm jest zgodna z obowiązującymi normami budowlanymi oraz najlepszymi praktykami w zakresie projektowania konstrukcji. Oparcie nadproża jest kluczowym elementem w systemach murowych, ponieważ przenosi obciążenia z nadproża na ściany boczne, co zapewnia stabilność całej konstrukcji. W praktyce, stosowanie długości oparcia o wartości 10 cm zapewnia odpowiednią nośność, a jednocześnie minimalizuje ryzyko pęknięć i deformacji w budynku. Przykładem zastosowania tej wartości jest budowa ścian oporowych w obiektach mieszkalnych, gdzie nadproża są narażone na różnorodne obciążenia, w tym obciążenia dynamiczne. Warto również zwrócić uwagę, że przy projektowaniu nadproży należy uwzględniać dodatkowe czynniki, takie jak rodzaj materiału, z którego wykonane jest nadproże, oraz jego szerokość, co może wpływać na wymaganą długość oparcia. Zastosowanie 10 cm jako minimalnej długości oparcia nadproża jest zgodne z literaturą przedmiotu oraz standardami budowlanymi, co czyni tę odpowiedź poprawną.

Pytanie 37

Jakie będzie łączne wynagrodzenie pracownika za tynkowanie 2 powierzchni o wielkości 50 m2 oraz 3 powierzchni po 30 m2, jeśli cena za 1 m2 tynku wynosi 8 zł?

A. 1 600 zł
B. 1 280 zł
C. 1 520 zł
D. 290 zł
Żeby policzyć całkowite wynagrodzenie za otynkowanie, musisz najpierw ustalić, ile masz powierzchni do pokrycia. Mamy dwie powierzchnie po 50 m2, co daje nam 100 m2 oraz trzy po 30 m2, czyli dodatkowe 90 m2. Jak to zsumujemy, to dostajemy 190 m2. Koszt za 1 m2 tynku to 8 zł, więc całość wyniesie 190 m2 razy 8 zł, co daje 1 520 zł. Takie obliczenia są mega ważne w budowlance, bo dokładne oszacowanie kosztów to klucz do sukcesu projektu. Z własnego doświadczenia wiem, że warto też pomyśleć o dodatkowych wydatkach, jak materiały pomocnicze czy transport. Posiadanie odpowiednich narzędzi do kalkulacji może naprawdę przyspieszyć te obliczenia. Zrozumienie tych podstawowych zasad ułatwia później planowanie i zarządzanie projektami budowlanymi.

Pytanie 38

Korzystając z danych zawartych w tabeli, wskaż najmniejszą dopuszczalną grubość jednowarstwowego tynku chroniącego przed wodą, wykonanego z fabrycznie suchej zaprawy.

Grubości tynkówŚrednia grubość
w [mm]
Dopuszczalna
najmniejsza
grubość
w [mm]
dla tynków zewnętrznych2015
dla tynków wewnętrznych1510
dla jednowarstwowych tynków
wewnętrznych z fabrycznie suchej
zaprawy
105
dla jednowarstwowych tynków
chroniących przed wodą z fabrycznie
suchej zaprawy
1510
dla tynków z izolacją termicznązależnie od
wymagań
20
A. 5 mm
B. 15 mm
C. 20 mm
D. 10 mm
Odpowiedź 10 mm jest poprawna, ponieważ zgodnie z obowiązującymi standardami budowlanymi oraz danymi zawartymi w tabeli, najmniejsza dopuszczalna grubość jednowarstwowego tynku, który ma chronić przed wodą, powinna wynosić właśnie 10 mm. Tego typu tynki są stosowane w budownictwie do ochrony elewacji przed działaniem wilgoci, co jest kluczowe dla zapewnienia długowieczności konstrukcji. Przy zbyt małej grubości, tynk nie wypełni swojej funkcji, co może prowadzić do wnikania wody, a w efekcie do uszkodzenia struktury budynku. W praktyce, stosowanie tynków o grubości minimum 10 mm jest zgodne z zasadami sztuki budowlanej oraz normami, co potwierdzają liczne badania i publikacje branżowe. Prawidłowe dobranie grubości tynku jest zatem kluczowe dla efektywności ochrony przed wilgocią.

Pytanie 39

Na której ilustracji przedstawiono chwytak do przenoszenia cegieł?

Ilustracja do pytania
A. Na ilustracji 3.
B. Na ilustracji 4.
C. Na ilustracji 1.
D. Na ilustracji 2.
Ilustracja 2 przedstawia chwytak do przenoszenia cegieł, co czyni ją poprawną odpowiedzią w tym pytaniu. Chwytaki tego typu są niezwykle istotnym narzędziem w branży budowlanej, umożliwiającym szybki i efektywny transport cegieł z miejsca na miejsce. Ich konstrukcja opiera się na mechanizmie zaciskowym, który pozwala na pewne i bezpieczne uchwycenie cegły, co znacznie minimalizuje ryzyko uszkodzenia materiału oraz obrażeń pracowników. W praktyce, chwytaki do przenoszenia cegieł są często stosowane na placach budowy, gdzie zwiększają wydajność pracy, a także redukują czas potrzebny na transport ciężkich materiałów. Warto zaznaczyć, że zgodność z normami BHP oraz standardami pracy odgrywa kluczową rolę w zapewnieniu bezpieczeństwa podczas używania takich narzędzi. Właściwe techniki przenoszenia materiałów, jak również znajomość właściwości cegieł, to aspekty, które każdy pracownik budowlany powinien znać, aby efektywnie i bezpiecznie wykonywać swoje zadania.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.