Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechanik
  • Kwalifikacja: MEC.05 - Użytkowanie obrabiarek skrawających
  • Data rozpoczęcia: 9 grudnia 2025 12:32
  • Data zakończenia: 9 grudnia 2025 12:45

Egzamin zdany!

Wynik: 31/40 punktów (77,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Łożyska silnika elektrycznego tokarki uniwersalnej według przedstawionej instrukcji smarowania należy konserwować

Lp.Zespół smarowanyGatunek smaruSposób smarowaniaCzęstotliwość
1ŁożeOlej maszynowy
Shell Tonna 33
Smarować przez rozlanie i rozmazanie.Codziennie
2Śruba pociągowa, nakrętka pod nakrętką--//--Smarować przez polanie na całej długościCodziennie
3Prowadnik śruby pociągowej--//--Oliwiarka smarowniczki kulkoweCodziennie
4Koła zębate gitara, wejście wałka--//--Oliwiarka smarowniczka kulkowa wejścia wałkaRaz na tydzień
5Sanie wzdłużne, poprzeczne, prowadnice, pokrętła, dźwignie--//--Oliwiarka smarowniczki kulkoweCodziennie
6Konik tuleja konika--//--Oliwiarka smarowniczki kulkoweCodziennie
7Suport wzdłużny mechanizmyOlej maszynowy
Shell Tonna 33
Oliwiarka smarowniczki kulkoweCodziennie
8WrzeciennikOlej maszynowy
Shell Tellus 22
Wypełnić korpus wrzeciennikaWymiana co dwa miesiące eksploatacji
9Wrzeciennik
(pozostałe modele)
--//--Oliwiarka ( po zdjęciu pokrywy górnej lub bocznej )Raz na tydzień
10Łożyska silnika elektrycznegoSmar stały
LT 4
W razie potrzeby lub przy wymianie łożyskRaz na pół roku
A. codziennie.
B. raz na pół roku.
C. raz na dwa miesiące.
D. raz na tydzień.
Odpowiedź "raz na pół roku" jest poprawna, ponieważ zgodnie z instrukcją smarowania dla łożysk silnika elektrycznego tokarki uniwersalnej, konserwacja tych elementów powinna odbywać się co pół roku. Regularne przeglądy oraz smarowanie łożysk są kluczowe dla zapewnienia ich prawidłowego działania oraz wydłużenia ich żywotności. W przypadku tokarek, które są intensywnie eksploatowane, odpowiednie smarowanie przyczynia się do zmniejszenia tarcia oraz zużycia, co ma bezpośredni wpływ na precyzję obróbki. W praktyce, wiele zakładów stosuje harmonogramy konserwacji, które uwzględniają nie tylko smarowanie, ale również kontrolę stanu łożysk oraz ich wymianę w przypadku wykrycia uszkodzeń. Przykładowo, jeśli łożysko nie jest odpowiednio smarowane, może dojść do przegrzewania, co prowadzi do uszkodzeń i w konsekwencji awarii maszyny. Dlatego tak ważne jest przestrzeganie zaleceń producenta dotyczących konserwacji.

Pytanie 2

Który fragment sterującego programu zawiera dane umożliwiające wykonanie gwintu M16 o skoku 2 mm?

N25 G1 X13.5 Z-10
N30 G0 X16
N35 G33 Z-40 F2
N40 G0 X25

Fragment A.
N25 G1 X13.5 Z-10
N30 G0 X13.5
N35 G63 Z-40
N40 G0 X20

Fragment B.
N25 G1 X13.5 Z-10
N30 G0 X13.5
N35 G33 Z-40 F2
N40 G0 X20

Fragment C.
N25 G1 X13.5 Z-10
N30 G0 X13.5 M5
N35 G33 Z-40 F2
N40 G0 X25

Fragment D.
A. Fragment B.
B. Fragment A.
C. Fragment D.
D. Fragment C.
Fragment C jest poprawny, ponieważ zawiera komendę G33 Z-40 F2, co oznacza nacinanie gwintu o skoku 2 mm. Komenda G33 jest standardem w programowaniu CNC, używaną do nacinania gwintów. Parametr Z-40 wskazuje głębokość nacinania gwintu, a F2 określa prędkość posuwu. W przypadku gwintu M16, istotne jest, aby skok gwintu wynosił dokładnie 2 mm, co jest zgodne z wymaganiami technicznymi dla tego typu gwintu. W praktyce, precyzyjne ustawienie tych parametrów jest kluczowe dla uzyskania wymaganego kształtu oraz wymiarów gwintu, co bezpośrednio wpływa na jego funkcjonalność w zastosowaniach mechanicznych. Zaleca się również korzystanie z symulacji w programach CAD/CAM w celu wizualizacji procesu nacinania, co pozwala na wcześniejsze wychwycenie potencjalnych błędów przed rzeczywistym wykonaniem operacji na maszynie.

Pytanie 3

Jakiej maszyny używa się najczęściej do produkcji masowej gwintów zewnętrznych na prętach?

A. Tokarki uniwersalnej
B. Frezarki obwiedniowej
C. Przeciągarki
D. Walcarki
Walcarki są specjalistycznymi obrabiarkami zaprojektowanymi do formowania materiałów poprzez proces walcowania, co czyni je idealnym narzędziem do wytwarzania gwintów zewnętrznych na prętach w produkcji masowej. Dzięki swojej konstrukcji, walcarki umożliwiają jednoczesne kształtowanie i formowanie gwintów, co znacznie zwiększa wydajność procesu produkcji. W praktyce, walcarki mogą być stosowane do produkcji dużych serii gwintów o wysokiej precyzji, co jest kluczowe w branżach takich jak motoryzacja czy budownictwo. Standaryzacja wymiarów gwintów, zgodna z normami ISO, jest możliwa dzięki powtarzalności i dokładności, jaką oferują walcarki. Dodatkowo, proces walcowania jest bardziej energooszczędny w porównaniu do innych metod obróbczych, co jest istotnym czynnikiem w kontekście zrównoważonego rozwoju produkcji.

Pytanie 4

Zabieg powiercania przedstawiono na rysunku oznaczonym literą

Ilustracja do pytania
A. D.
B. B.
C. C.
D. A.
To, co zaznaczyłeś jako poprawną odpowiedź, to sposób obróbki, który jest mega ważny w skrawaniu. Narzędzie w kształcie V kręci się i fajnie tworzy rowki w kształcie trapezu. Takie rowki są potrzebne w wielu branżach, jak np. w mechanice precyzyjnej czy produkcji narzędzi. Przykładem mogą być różne części maszyn, gdzie te rowki są kluczowe, żeby wszystko działało jak należy. W motoryzacji często używa się powiercania do robienia wpustów w wałach, co pozwala dobrze połączyć różne elementy. Standardy ISO mówią, jak ważne są precyzyjne narzędzia, więc powiercanie jest istotnym procesem w produkcji i inżynierii. Zrozumienie tego procesu ma znaczenie nie tylko na papierze, ale też praktycznie, bo można dzięki temu lepiej organizować produkcję i zwiększyć wydajność w skrawaniu.

Pytanie 5

Promień ostrza narzędzia wieloostrzowego wynosi r = 0,8 mm. Jaką formę należy zastosować do zapisania tej informacji?

A. programie głównym.
B. podprogramie.
C. cyklu stałym.
D. korektorze narzędzia.
Wybór korektora narzędzia jako miejsca zapisu promienia płytki wieloostrzowej jest poprawny, ponieważ korektor narzędzia jest odpowiedzialny za przechowywanie i aktualizowanie parametrów narzędzi skrawających w maszynach CNC. Korektory narzędzi pozwalają na kompensację błędów pomiarowych oraz zmiany geometrii narzędzia, co jest niezbędne do precyzyjnego wykonania obróbki. W przypadku narzędzi wieloostrzowych, takich jak płytki skrawające, dokładne informacje o promieniu są kluczowe dla zapewnienia prawidłowego ustawienia narzędzia i optymalizacji procesu skrawania. Na przykład, w przypadku zmiany płytki na nowe lub w związku z jej zużyciem, istotne jest, aby zaktualizować wartości w korektorze narzędzia, co zminimalizuje ryzyko błędów w wymiarach obrabianych przedmiotów. Dobrą praktyką jest regularne weryfikowanie i kalibracja korektorów narzędzi, co podnosi jakość produkcji oraz redukuje koszty operacyjne.

Pytanie 6

Która z podanych obrabiarek skrawających posiada system pomiarowy?

A. Dłutownica Maaga
B. Wiertarka kadłubowa
C. Tokarka CNC
D. Frezarka obwiedniowa
Tokarka CNC to zaawansowane urządzenie skrawające, które integruje komputerowy system sterowania z układami pomiarowymi. Dzięki temu możliwe jest precyzyjne monitorowanie i kontrolowanie procesów obróbczych, co znacznie zwiększa dokładność oraz powtarzalność produkcji. W praktyce, tokarki CNC są wykorzystywane do obróbki detali o skomplikowanych kształtach, co wymaga nie tylko umiejętności ustawienia maszyny, ale również nieustannego nadzoru nad parametrami pracy. Wbudowane układy pomiarowe umożliwiają automatyczne skorygowanie odchyleń wymiarowych, co jest kluczowe w branżach takich jak motoryzacja czy lotnictwo, gdzie precyzja ma fundamentalne znaczenie. Maszyny te spełniają standardy jakości, takie jak ISO 9001, co dodatkowo podkreśla ich niezawodność oraz istotność w nowoczesnym przemyśle.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Do wytaczania otworów nieprzelotowych należy zastosować nóż pokazany na rysunku oznaczonym literą

Ilustracja do pytania
A. C.
B. A.
C. B.
D. D.
Nóż oznaczony literą D jest odpowiedni do wytaczania otworów nieprzelotowych ze względu na swój specyficzny kształt, który umożliwia efektywne formowanie dna otworu. W praktyce, wytaczanie otworów nieprzelotowych jest kluczowym procesem w obróbce mechanicznej, który znajduje zastosowanie w wielu branżach, takich jak motoryzacja, lotnictwo i produkcja maszyn. Dobór odpowiedniego narzędzia jest niezbędny, aby zapewnić precyzję i jakość wykonania. Nóż D, charakteryzujący się odpowiednią geometrią i kątem natarcia, minimalizuje ryzyko uszkodzenia materiału i zapewnia optymalne odprowadzenie wiórów. W standardach przemysłowych, takich jak ISO 9001, podkreśla się znaczenie stosowania właściwych narzędzi do określonych operacji, co przekłada się na wydajność i jakość produkcji. Przykładem może być zastosowanie noży do wytaczania w produkcji wałów, gdzie precyzyjne otwory są kluczowe dla prawidłowego działania komponentów.

Pytanie 9

Przyczyny zatrzymywania wiertła wraz z uchwytem (nawet przy uruchomionym silniku) podczas wiercenia na wiertarce stacjonarnej mogą być

A. brak płynu chłodzącego
B. poślizg paska klinowego
C. zbyt wysoki stożek w wrzecionie wiertarki
D. zbyt duża prędkość obrotowa wrzeciona
Poślizg paska klinowego to powszechny problem, który może prowadzić do zatrzymywania się wiertła pomimo działania silnika w wiertarce stołowej. W momencie, gdy pasek klinowy, który przekazuje moc z silnika na wrzeciono, nie zachowuje odpowiedniego napięcia lub jest zużyty, dochodzi do poślizgu. Skutkuje to tym, że silnik pracuje, ale ruch obrotowy nie jest przekazywany na wiertło, co uniemożliwia jego prawidłowe wiercenie. W praktyce, warto regularnie kontrolować stan paska klinowego, aby zapobiec takim sytuacjom. Zaleca się wymianę paska co kilka miesięcy lub w zależności od intensywności użytkowania. Dobrą praktyką jest także używanie pasków o odpowiedniej specyfikacji, zgodnej z zaleceniami producenta wiertarki. Oprócz tego, warto sprawdzić napięcie paska, aby zapewnić jego stabilne działanie. W przypadku niewłaściwego napięcia, należy je skorygować w celu optymalizacji wydajności maszyny i uniknięcia nieefektywności w wierceniu.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Długi trzpień stały jest wykorzystywany do mocowania obrabianego elementu na powierzchni

A. wewnętrznej
B. czołowej
C. zewnętrznej
D. bocznej
Trzpień stały długi do ustalania obrabianego przedmiotu na powierzchni wewnętrznej jest kluczowym narzędziem w procesach obróbczych, szczególnie w obróbce otworów. Użycie trzpienia w tym kontekście pozwala na precyzyjne i stabilne umiejscowienie elementu roboczego w obrabiarce, co jest niezwykle istotne dla zapewnienia wysokiej dokładności wymiarowej. Przykładem zastosowania trzpienia długiego może być wiertarka, gdzie trzpień stabilizuje obrabiany element, umożliwiając dokładne wiercenie otworów o złożonych kształtach i głębokościach. Dobre praktyki w obróbce wymagają od operatora odpowiedniego doboru długości i średnicy trzpienia, co jest zgodne z normami ISO dotyczącymi tolerancji wymiarowych. Ponadto, stosowanie trzpieni stałych zapewnia większą sztywność w porównaniu do systemów z ruchomymi elementami, co przekłada się na mniejszą podatność na drgania i błędy podczas obróbki.

Pytanie 12

Według wskazówek technologa zajmującego się obróbką korpusu, należy zastąpić "standardowe" płytki płytkami z materiałów supertwardych. Taki typ płytki można wykonać

A. z węglika spiekanego
B. z cermetalu
C. ze stali hartowanej
D. z regularnego azotku boru
Wybór materiałów do produkcji narzędzi skrawających jest kluczowy dla efektywności procesów obróbczych. Wybór stali hartowanej jako materiału na płytki skrawające nie jest odpowiedni, ponieważ mimo że stal hartowana charakteryzuje się dużą twardością, jej odporność na ścieranie i stabilność termiczna są znacznie gorsze w porównaniu do supertwardych materiałów, takich jak azotek boru. Stal hartowana może ulegać deformacjom i skruszeniu w warunkach intensywnej obróbki. Z kolei cermetal, będący mieszaniną ceramiki i metalu, również nie zapewnia odpowiednich właściwości twardości i odporności na wysokotemperaturowe warunki pracy, co ogranicza jego zastosowanie w narzędziach skrawających. W przypadku węglika spiekanego, chociaż jest to materiał znany z wysokiej twardości, jego struktura może nie zapewniać optymalnych parametrów skrawania w porównaniu do azotku boru. Często błędne wnioski dotyczące wyboru materiałów wynikają z uproszczonego postrzegania ich właściwości. Ważne jest, aby przy podejmowaniu decyzji kierować się nie tylko twardością, ale również innymi parametrami, takimi jak odporność na ścieranie, stabilność termiczna oraz podatność na pękanie. Dlatego wybór regularnego azotku boru jako materiału na płytki skrawające jest uzasadniony pod względem technologicznym i zgodny z normami jakościowymi w przemyśle obróbczy.

Pytanie 13

Podczas toczenia zewnętrznej powierzchni walca o średnicy 30 mm i długości 200 mm, wałek był zamocowany jedynie w uchwycie trójszczękowym samocentrującym. W trakcie serii próbnej wyprodukowane wałki miały zbyt duże odchyłki kształtu. W tej sytuacji następne wałki powinny być toczone

A. z większym posuwem
B. ze stałą prędkością skrawania
C. z podparciem kłem
D. z zamocowaniem na tarczy tokarskiej
Odpowiedź "z podparciem kłem" jest prawidłowa, ponieważ podparcie kłem zapewnia dodatkową stabilność obrabianego elementu podczas toczenia, co jest kluczowe w przypadku dłuższych wałków o mniejszych średnicach, takich jak wałek o średnicy 30 mm. Tego typu podparcie minimalizuje drgania i poprawia dokładność obróbki, co przeciwdziała powstawaniu odchyleń kształtu. W branży obróbczej, zgodnie z zasadami dobrych praktyk, podparcie kłem jest zalecane szczególnie w przypadkach, gdy długość wałka przekracza jego średnicę, co zwiększa ryzyko wyginania się elementu. Na przykład, w produkcji precyzyjnych wałków do maszyn przemysłowych, stosowanie podparcia kłem umożliwia osiągnięcie wymaganej tolerancji wymiarowej oraz poprawia jakość powierzchni. Dodatkowo, zastosowanie kła pozwala na zwiększenie wydajności obróbki, ponieważ można zastosować wyższe prędkości skrawania bez obaw o utratę jakości. Przykłady zastosowania kłów w toczeniu obejmują przedmioty, takie jak wały napędowe czy dłuższe elementy maszyn, gdzie precyzja jest kluczowa.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Jaki instrument jest przeznaczony do oceny parametrów chropowatości oraz falistości powierzchni?

A. Twardościomierz.
B. Transametr.
C. Profilometr.
D. Wydolnik.
Profilometr to całkiem przydatne urządzenie, które pozwala nam dokładnie mierzyć chropowatość i falistość powierzchni. W praktyce to ma ogromne znaczenie w wielu branżach, takich jak inżynieria mechaniczna czy obróbka materiałów. Wiesz, że są dwa rodzaje profilometrów? Możemy spotkać te kontaktowe, gdzie igła się przesuwa po próbce i zapisuje zmiany wysokości, a także te bezkontaktowe, które korzystają z technologii optycznych, jak interferometria. Chropowatość to kluczowy parametr, który, według norm ISO 4287 i ISO 1302, ma wpływ na różne właściwości, takie jak tarcie czy odporność na korozję. Na przykład w przemyśle motoryzacyjnym, precyzyjne mierzenie chropowatości cylindrów silników wpływa na ich wydajność, co czyni ten pomiar naprawdę ważnym w produkcji.

Pytanie 18

Aby sprawdzić wykonanie wymiaru ϕ40H7, jakiego narzędzia należy użyć?

A. czujnika zegarowego
B. suwmiarki klasycznej
C. sprawdzianu szczękowego regulowanego
D. sprawdzianu tłoczkowego dwugranicznego
Sprawdzian tłoczkowy dwugraniczny jest narzędziem pomiarowym dedykowanym do sprawdzania wymiarów cylindrycznych, takich jak ϕ40H7. W przypadku tolerancji H7, kluczowe jest zapewnienie, że wymiar zewnętrzny obrabianego elementu mieści się w określonym zakresie. Sprawdzian tłoczkowy dwugraniczny składa się z dwóch tłoczków, które mają różne średnice, co umożliwia efektywne sprawdzenie zarówno górnej, jak i dolnej granicy wymiarowej. Przykładowo, jeśli chcemy zweryfikować otwór o średnicy 40 mm, to sprawdzian pozwoli określić, czy otwór nie jest ani za mały, ani za duży, co jest kluczowe dla prawidłowego funkcjonowania elementów mechanicznych. Użycie tego narzędzia jest zgodne z normą ISO 286, która definiuje tolerancje wymiarowe i pasowania. W praktyce, zastosowanie sprawdzianu tłoczkowego dwugranicznego zwiększa dokładność pomiarów i minimalizuje ryzyko pomyłek, co jest niezwykle istotne w precyzyjnej obróbce.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Obrabiarka przedstawiona na zdjęciu, to wiertarka

Ilustracja do pytania
A. współrzędnościowa.
B. stołowa.
C. kadłubowa.
D. promieniowa.
Wiertarka stołowa to urządzenie charakteryzujące się stabilną konstrukcją, która zapewnia precyzyjne wiercenie w materiałach takich jak drewno, metal czy tworzywa sztuczne. Wyróżnia ją płaska podstawa oraz stół roboczy, na którym można umieścić elementy obrabiane. Głowica wiertarki, zamocowana na pionowym słupie, umożliwia regulację głębokości wiercenia oraz kątów nachylenia, co jest kluczowe przy obróbce skomplikowanych kształtów. W praktyce wiertarka stołowa znajduje zastosowanie w stolarstwie, metaloplastyce oraz w warsztatach hobbystycznych. Używanie wiertarki stołowej zwiększa efektywność i dokładność pracy, co jest zgodne z normami bezpieczeństwa i efektywności w przemyśle. Wiertarki tego typu są często wykorzystywane w szkoleniach zawodowych, gdzie uczniowie uczą się zasad obróbki materiałów oraz bezpiecznego posługiwania się narzędziami. Wybór odpowiedniej wiertarki stołowej powinien być uzależniony od rodzaju materiału oraz specyfiki wykonywanych prac, co jest zgodne z dobrą praktyką inżynierską.

Pytanie 24

Przedstawiony symbol graficzny jest oznaczeniem (w widoku z góry) podpory

Ilustracja do pytania
A. stałej.
B. wahliwej.
C. regulowanej.
D. samonastawnej.
Poprawna odpowiedź to podpory stałej, co jest zgodne z powszechnie przyjętymi normami rysunku technicznego. Symbol graficzny przedstawiony na zdjęciu reprezentuje podporę, która zapewnia stałe wsparcie dla konstrukcji, eliminując wszelkie ruchy w poziomie i pionie. W praktyce podpory stałe są niezwykle istotne w projektowaniu budowli, gdzie wymagane jest zapewnienie dużych obciążeń przy minimalnym przemieszczeniu. Przykładem może być zastosowanie podpór stałych w mostach, gdzie konieczne jest zachowanie stabilności pod wpływem obciążeń dynamicznych. Zgodnie z normą PN-EN 1992-1-1, odpowiednie projektowanie i dobór podpór stałych są kluczowe dla bezpieczeństwa i trwałości konstrukcji. Znajomość symboliki rysunkowej jest niezbędna dla inżynierów, projektantów i architektów, co podkreśla potrzebę edukacji w tym zakresie.

Pytanie 25

Codzienna konserwacja tokarki obejmuje między innymi

A. smarowanie olejem maszynowym odsłoniętych powierzchni prowadnic.
B. wymianę cieczy chłodzącej.
C. dokładne czyszczenie i odtłuszczenie całej obudowy.
D. sprawdzenie wszystkich elastycznych przewodów oraz włączników.
Wszystkie inne odpowiedzi, mimo że mogą wydawać się istotne, nie są kluczowe w kontekście codziennej konserwacji tokarki. Sprawdzenie przewodów giętkich oraz wyłączników jest istotne, ale nie należy do regularnych czynności konserwacyjnych. Takie kontrole są zazwyczaj wykonywane w ramach przeglądów technicznych lub w przypadku wykrycia usterek. Ich pominięcie nie wpływa bezpośrednio na codzienną operacyjność maszyny. Podobnie, dokładne mycie i odtłuszczanie całej obudowy, chociaż ważne w kontekście estetyki i zapobiegania korozji, jest procesem bardziej rutynowym, który można przeprowadzać w dłuższych odstępach czasu. W odniesieniu do wymiany chłodziwa, ta czynność ma swoje miejsce w konserwacji, jednak nie jest częścią codziennych zadań i odbywa się w określonych interwałach, w zależności od intensywności pracy tokarki. Częsta wymiana chłodziwa może być również kosztowna i nie zawsze konieczna, zwłaszcza gdy używane jest wysokiej jakości chłodziwo. Warto zatem dostrzegać różnice między czynnościami rutynowymi a tymi, które wymagają większej uwagi, aby skutecznie zarządzać konserwacją maszyn i minimalizować ryzyko przestojów związanych z awariami.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

W rysunkach technologicznych elementów maszyn, kontury powierzchni oraz krawędzie obrabiane oznacza się

A. linią grubą przerywaną, natomiast pozostałe (nieobrabiane) kontury i krawędzie linią cienką ciągłą
B. linią grubą ciągłą, natomiast pozostałe (nieobrabiane) kontury i krawędzie linią cienką ciągłą
C. linią grubą ciągłą, natomiast pozostałe (nieobrabiane) kontury i krawędzie linią cienką falistą
D. linią cienką ciągłą, natomiast pozostałe (nieobrabiane) kontury i krawędzie linią cienką falistą
Odpowiedź wskazująca, że zarysy powierzchni i krawędzie obrabiane oznacza się linią grubą ciągłą, jest zgodna z przyjętymi standardami w rysunku technicznym. W kontekście projektowania maszyn, odpowiednie oznaczenie elementów jest kluczowe dla zrozumienia, które części będą poddawane obróbce. Linia gruba ciągła jest stosowana do wyraźnego wskazania krawędzi, które będą obrabiane, co jest istotne w procesie produkcji, ponieważ zapewnia to prawidłowe wykonywanie operacji mechanicznych. Na przykład, przy projektowaniu detali maszyn, takich jak wały czy obudowy, precyzyjne oznaczenie obrabianych krawędzi pozwala na efektywniejsze planowanie procesu technologicznego. Dodatkowo, linie cienkie ciągłe używane do oznaczania pozostałych zarysów i krawędzi, które nie podlegają obróbce, pomagają w wizualizacji całej konstrukcji, co jest niezbędne dla inżynierów oraz technologów. W praktyce, stosowanie odpowiednich linii wynika z norm ISO 128 dotyczących rysunku technicznego, które stanowią podstawę dla jednolitych praktyk w branży inżynieryjnej.

Pytanie 30

Sprawdzian służący do kontroli poprawności wykonania promienia zaokrąglenia przedstawia zdjęcie oznaczone literą

Ilustracja do pytania
A. D.
B. A.
C. B.
D. C.
Poprawna odpowiedź to D, ponieważ na zdjęciu znajduje się sprawdzian promieniowy, który jest kluczowym narzędziem w procesie wytwarzania i kontroli jakości detali z zaokrągleniami. Sprawdzian ten pozwala na precyzyjne pomiary promienia zaokrąglenia i jest niezbędny w branży inżynieryjnej oraz produkcyjnej, gdzie dokładność wymiarowa ma kluczowe znaczenie. Użycie sprawdzianów promieniowych zgodnych z normami ISO 1101 zapewnia, że wykonane elementy spełniają wymagania tolerancji kształtu i wymiarów. Przykładowo, w przemyśle motoryzacyjnym, kontrola promieni zaokrągleń jest niezbędna przy ocenie jakości elementów konstrukcyjnych, takich jak obudowy silników czy elementy zawieszenia. Niewłaściwe pomiary mogłyby prowadzić do błędów montażowych, a w efekcie do obniżenia bezpieczeństwa i wydajności pojazdów. Dlatego znajomość i umiejętność używania tego narzędzia jest niezbędna dla każdego inżyniera oraz technika zajmującego się kontrolą jakości.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Jakie urządzenie jest używane do mocowania noża tokarskiego oprawkowego na tokarce CNC?

A. uchwyt tokarski hydrauliczny
B. podtrzymka stała
C. tarcza zabierakowa
D. głowica narzędziowa
Głowica narzędziowa to kluczowy element tokarki CNC, który służy do mocowania narzędzi skrawających, w tym noży tokarskich oprawkowych. Jej konstrukcja pozwala na precyzyjne ustawienie narzędzia w odpowiedniej pozycji roboczej, co jest niezbędne dla uzyskania dokładności w obróbce. Głowice narzędziowe mogą być wyposażone w mechanizmy szybkiej wymiany narzędzi, co znacząco zwiększa efektywność procesu produkcyjnego. Przykładem zastosowania głowicy narzędziowej może być obrabianie różnorodnych materiałów, takich jak stal, aluminium czy tworzywa sztuczne, gdzie precyzyjne mocowanie narzędzia ma kluczowe znaczenie dla jakości wykonania detali. W praktyce, stosowanie głowic narzędziowych zgodnie z najlepszymi praktykami w zakresie obróbki CNC, zapewnia nie tylko wysoką powtarzalność wymiarów, ale również wydłuża żywotność narzędzi skrawających, co przekłada się na redukcję kosztów produkcji i przestojów.

Pytanie 33

Którym narzędziem należy wykonać rowek pod wpust pokazany na zdjęciu?

Ilustracja do pytania
A. C.
B. D.
C. B.
D. A.
Wybierając inne narzędzia niż frez wpustowy, jak na przykład wiertło spiralne czy frez modułowy, możesz napotkać duże problemy w procesie obróbki. Wiertło spiralne, chociaż dobrze się sprawdza do robienia otworów, nie jest w stanie uformować rowków pod wpusty, bo jego geometria ostrza nie nadaje się do tego. Frez modułowy, który głównie używa się do obróbki zębatek, ma zupełnie inną geometrię i nie nadaje się do robienia rowków. A frez trzpieniowy do rowków prostych? Też nie ma odpowiednich kształtów, żeby skrawać wzdłuż rowka wpustowego. No i wybierając niewłaściwe narzędzie, możesz mieć później problem z jakością detalu, co oznacza więcej poprawek albo wymiany materiału. Do tego, używając narzędzi niespecjalnie przystosowanych do konkretnego zadania, stwarzasz ryzyko dla swojego bezpieczeństwa i sprzętu, co zdecydowanie nie jest zgodne z dobrymi praktykami w obróbce.

Pytanie 34

Jakie urządzenie wykorzystuje się do pomiaru średnicy wałka ø20+0,03?

A. Suwmiarkowy wysokościomierz
B. Mikrometr zewnętrzny
C. Uniwersalną suwmiarkę
D. Mikrometryczną średnicówkę
Mikrometr zewnętrzny to narzędzie pomiarowe, które jest idealne do dokładnego pomiaru średnicy wałków, szczególnie w przypadkach wymagających precyzyjnych pomiarów, jak w omawianym przypadku średnicy wałka ø20+0,03 mm. Mikrometr zewnętrzny pozwala na pomiar z dokładnością do 0,01 mm, co czyni go doskonałym wyborem w zastosowaniach inżynieryjnych, gdzie precyzja jest kluczowa. W praktyce mikrometr zewnętrzny jest używany do pomiaru elementów cylindrycznych, takich jak wałki, tuleje czy pręty, a jego konstrukcja umożliwia łatwe i powtarzalne pomiary. Dobra praktyka przemysłowa wymaga regularnej kalibracji narzędzi pomiarowych, co zapewnia dokładność wyników. Mikrometry są zgodne z normami ISO, co podkreśla ich znaczenie w pomiarach w przemyśle jakościowym. Dodatkowo, ze względu na ich specyfikę, można je używać w różnych warunkach, co czyni je narzędziem uniwersalnym w warsztatach i laboratoriach pomiarowych.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Jaką narzędzie należy wykorzystać do obróbki wykończeniowej otworu o średnicy ϕ16H7?

A. nawiertak
B. wiertło kręte
C. rozwiertak
D. pogłębiacz walcowy
Wybór niewłaściwego narzędzia do obróbki wykończeniowej otworu może prowadzić do wielu problemów, w tym do obniżenia jakości wykonania oraz skrócenia żywotności narzędzi. Nawiertak, choć również jest narzędziem do obróbki otworów, jest przeznaczony głównie do wstępnego formowania otworów i nie zapewnia tak wysokiej precyzji oraz gładkości jak rozwiertak. Jego struktura i sposób działania ograniczają go do prac, które wymagają jedynie orientacyjnego wymiarowania. Z kolei pogłębiacz walcowy służy do powiększania już istniejących otworów, ale nie jest przystosowany do końcowej obróbki, co oznacza, że nie spełni wymagań związanych z tolerancją H7. W przypadku wiertła krętego, jest to narzędzie zbyt agresywne do obróbki wykończeniowej, które może prowadzić do zniekształceń otworu. Wybór niewłaściwego narzędzia może skutkować nie tylko niższą jakością pracy, ale także dodatkowym czasem potrzebnym na poprawki, co w przemyśle jest nieakceptowalne. Kluczowe jest, aby podczas planowania obróbki wykończeniowej dokładnie rozumieć charakterystykę oraz przeznaczenie poszczególnych narzędzi, aby uniknąć nieefektywności i błędów w produkcji.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Zakres tolerancji otworuϕ45,4+0,02-0,03 można zmierzyć mikrometrem z wewnętrznymi szczękami w podanym zakresie pomiarowym?

A. 5÷25 mm
B. 5÷30 mm
C. 5÷50 mm
D. 5÷40 mm
Odpowiedź 5÷50 mm jest prawidłowa, ponieważ zakres pomiarowy mikrometru szczękowego wewnętrznego musi być dostosowany do wymiaru tolerowanego otworu oraz jego tolerancji. Otwór o średnicy nominalnej 45,4 mm z tolerancją +0,02/-0,03 mm oznacza, że jego rzeczywisty wymiar może wahać się w granicach 45,37 mm do 45,42 mm. Aby prawidłowo dokonać pomiaru otworu, mikrometr musi mieć odpowiedni zakres, który umożliwia pomiar tych wartości. Zakres pomiarowy 5÷50 mm idealnie pokrywa się z rzeczywistym wymiarem otworu, co pozwala na dokładne i wiarygodne pomiary. Praktycznym przykładem może być zastosowanie takiego mikrometru w przemyśle, gdzie precyzyjne pomiary otworów są kluczowe dla zapewnienia jakości elementów. Standardy dotyczące pomiarów, takie jak ISO 9001, podkreślają znaczenie precyzyjnych narzędzi pomiarowych, co czyni wybór odpowiedniego mikrometru kluczowym dla zachowania zgodności wymiarowej w produkcji.

Pytanie 39

Maszyna CNC wykonująca obróbkę wielu elementów uruchamiana jest w trybie

A. AUTOMATIC
B. REFPOINT
C. JOG
D. MDI-AUTOMATIC
Odpowiedź 'AUTOMATIC' jest poprawna, ponieważ tryb automatyczny w obrabiarkach CNC jest przeznaczony do realizacji obróbki seryjnej wielu części bez potrzeby interwencji operatora w trakcie procesu. W trybie tym obrabiarka wykonuje wszystkie zaprogramowane operacje w pełni automatycznie, co znacząco zwiększa wydajność produkcji oraz powtarzalność wykonania detali. Przykładem zastosowania tego trybu może być produkcja komponentów w przemyśle motoryzacyjnym, gdzie setki identycznych części muszą być wytwarzane z wysoką dokładnością. Korzystanie z trybu automatycznego umożliwia również zminimalizowanie ryzyka błędów ludzkich oraz pozwala na pełną kontrolę nad parametrami obróbczości. Dobre praktyki branżowe wskazują, że dla uzyskania optymalnych wyników w pracy obrabiarki CNC, operator powinien również regularnie monitorować stan maszyny oraz jakość wytwarzanych części, co jest łatwiejsze do realizacji, gdy proces odbywa się w trybie automatycznym. To podejście jest zgodne z europejskimi normami jakości, takimi jak ISO 9001, które podkreślają znaczenie procesów zautomatyzowanych w zapewnieniu wysokiej jakości produkcji.

Pytanie 40

Podczas szlifowania na szlifierce płaskiej, materiał ferromagnetyczny w postaci płyty o wymiarach 150 x 100 x 30 mm, jest mocowany w uchwycie

A. tulejkowym
B. samocentrującym
C. pneumatycznym
D. magnetycznym
Użycie uchwytu magnetycznego do mocowania materiału ferromagnetycznego podczas obróbki na szlifierce do płaszczyzn jest standardową praktyką w przemyśle. Uchwyt magnetyczny działa na zasadzie wytwarzania pola magnetycznego, które przyciąga materiał do powierzchni roboczej, zapewniając stabilne i pewne mocowanie bez deformacji materiału. W przypadku materiałów ferromagnetycznych, jak stal czy żelazo, zastosowanie uchwytów magnetycznych jest szczególnie efektywne, ponieważ ich właściwości magnetyczne pozwalają na szybkie i łatwe przymocowanie oraz demontaż elementów. Tego rodzaju uchwyty są również niezawodne w utrzymywaniu niskiej tolerancji podczas szlifowania, co jest kluczowe dla uzyskania wysokiej precyzji wymiarowej. W praktyce, uchwyty magnetyczne są często wykorzystywane w produkcji seryjnej, gdzie wymagana jest powtarzalność i efektywność. Należy również wspomnieć, że korzystanie z uchwytów magnetycznych pozwala na oszczędność czasu i kosztów związanych z przygotowaniem stanowiska pracy, co przekłada się na ogólną wydajność procesu obróbczego.