Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 9 grudnia 2025 11:17
  • Data zakończenia: 9 grudnia 2025 11:54

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jaka jest objętość oleju w cylindrze siłownika o powierzchni roboczej 20,3 cm2 oraz skoku 200 mm?

A. 4,06 cm3
B. 4060,00 cm3
C. 40,60 cm3
D. 406,00 cm3
Poprawna odpowiedź to 406,00 cm3, co wynika z obliczenia objętości cylindra siłownika hydraulicznego. Wzór na objętość cylindra to V = A * h, gdzie A to powierzchnia podstawy cylindra, a h to jego wysokość lub skok. W tym przypadku powierzchnia wynosi 20,3 cm2, a skok 200 mm, co po przeliczeniu daje 20 cm. Zatem objętość wynosi: V = 20,3 cm2 * 20 cm = 406,00 cm3. Praktyczne zastosowanie tej wiedzy jest nieocenione w hydraulice, gdzie precyzyjne obliczenia objętości pozwalają na właściwe dobranie siłowników do zadań, co wpływa na efektywność systemów mechanicznych. Dobrze dobrany siłownik zapewnia optymalne parametry pracy urządzenia, a także zwiększa trwałość i niezawodność systemów hydraulicznych. W przemyśle, w którym często wykorzystywane są siłowniki, zrozumienie zasad obliczania objętości jest kluczowe dla zapewnienia efektywności energetycznej i bezpieczeństwa pracy maszyn.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Jak można zweryfikować, czy przewód elektryczny jest w pełni sprawny?

A. amperomierz
B. induktor
C. woltomierz
D. omomierz
Omomierz jest urządzeniem pomiarowym, które służy do pomiaru oporu elektrycznego. Jest niezastąpiony w diagnostyce instalacji elektrycznych, szczególnie do sprawdzania, czy przewód elektryczny nie jest przerwany. Gdy przewód jest przerwany, jego opór będzie nieskończonością, co omomierz zarejestruje. Dzięki temu można szybko zlokalizować uszkodzenia w instalacji. W praktyce, omomierze są często wykorzystywane do weryfikacji ciągłości obwodów w różnych zastosowaniach, od prostych napraw domowych po skomplikowane instalacje przemysłowe. Zgodnie ze standardami bezpieczeństwa elektrycznego, regularne testowanie oporu przewodów umożliwia zapobieganie potencjalnym awariom oraz zwiększa bezpieczeństwo użytkowników. Dodatkowo, omomierze są używane do pomiaru rezystancji izolacji, co jest kluczowe w utrzymaniu właściwego stanu technicznego instalacji. Zatem, korzystając z omomierza, można nie tylko wykryć przerwy w przewodach, ale również ocenić ich stan ogólny.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Na rysunku przedstawiono

Ilustracja do pytania
A. frezowanie.
B. toczenie.
C. szlifowanie.
D. struganie.
Struganie to proces obróbki skrawaniem, gdzie narzędzie porusza się wzdłuż materiału, usuwając warstwę materiału. W przeciwieństwie do toczenia, przy którym obrabiany materiał obraca się, a narzędzie wykonuje ruch posuwowy, w struganiu materiał pozostaje nieruchomy lub przemieszcza się minimalnie. Narzędzie strugarskie ma charakterystyczny kształt, co pozwala na uzyskanie gładkiej powierzchni oraz precyzyjne wymiarowanie. Proces ten jest powszechnie stosowany w obróbce drewna oraz metali, umożliwiając uzyskanie odpowiednich wymiarów i kształtów elementów. Przykładowo, w przemyśle meblarskim struganie jest używane do wygładzania powierzchni drewnianych, co zwiększa estetykę i jakość wyrobu finalnego. Dobre praktyki związane z struganiem obejmują dobór odpowiednich narzędzi oraz parametrów obróbczych, takich jak prędkość posuwu i głębokość skrawania, co ma kluczowe znaczenie dla uzyskania optymalnych rezultatów i minimalizacji odpadów materiałowych.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Jakiego rodzaju cieczy hydraulicznej powinno się użyć w urządzeniu hydrauliczny, które może być narażone na kontakt z otwartym ogniem?

A. HT - ester syntetyczny, najlepiej ulegający biodegradacji
B. HFA - emulsja olejowo-wodna, mająca w składzie ponad 80 % wody
C. HV - dla urządzeń funkcjonujących w zmiennych warunkach temperatury
D. HTG - produkowana na bazie olejów roślinnych, rozpuszczalna w wodzie
Odpowiedź HFA, czyli emulsja olejowo-wodna, zawierająca ponad 80% wody, jest prawidłowa w kontekście pracy urządzeń hydraulicznych w warunkach zagrożenia pożarowego. Tego rodzaju ciecz hydrauliczna charakteryzuje się znacznie wyższą odpornością na wysokie temperatury i działanie ognia, co jest kluczowe w miejscach, gdzie istnieje ryzyko kontaktu z otwartym płomieniem. W przypadku wycieku emulsji olejowo-wodnej, woda działa jako czynnik chłodzący, minimalizując ryzyko pożaru. Tego rodzaju cieczy hydrauliczne są szeroko stosowane w przemyśle, gdzie praca z substancjami łatwopalnymi jest powszechna, jak na przykład w rafineriach, piecach przemysłowych czy zakładach chemicznych. Zgodnie z normami, takimi jak NFPA (National Fire Protection Association), stosowanie cieczy o obniżonej palności, takich jak HFA, jest zalecane w środowiskach o wysokim ryzyku pożaru. Dodatkowo, emulsje olejowo-wodne są często używane w zastosowaniach, gdzie wymagane jest smarowanie oraz chłodzenie, co czyni je wszechstronnym rozwiązaniem w hydraulice przemysłowej.

Pytanie 8

Który typ oprogramowania należy zastosować do utworzenia wizualizacji procesu przedstawionego na rysunku?

Ilustracja do pytania
A. SCADA
B. CAM
C. CAD
D. CAQ
Wybór oprogramowania CAD, CAM lub CAQ do wizualizacji procesu opisanego na rysunku nie jest adekwatny do wymogów związanych z monitorowaniem i zarządzaniem systemami przemysłowymi. CAD (Computer-Aided Design) jest narzędziem używanym głównie do projektowania i tworzenia dokumentacji technicznej, co oznacza, że jego głównym celem jest wspomaganie inżynierów w tworzeniu szczegółowych rysunków oraz modeli 2D i 3D. Oprogramowanie CAM (Computer-Aided Manufacturing) natomiast skupia się na automatyzacji procesów produkcyjnych, gdzie wykorzystywane jest do sterowania maszynami i urządzeniami wytwórczymi, jednak nie oferuje funkcji monitorowania i zarządzania procesami w czasie rzeczywistym. CAQ (Computer-Aided Quality) koncentruje się na zapewnieniu jakości w procesach produkcyjnych, a jego zastosowanie obejmuje głównie kontrolę jakości i zarządzanie danymi, które są już wytworzone. W kontekście monitorowania procesów przemysłowych, jak na przykład mieszanie w zbiornikach, te podejścia są niewłaściwe, ponieważ nie umożliwiają integracji z systemami pomiarowymi ani nie dostarczają wizualizacji w czasie rzeczywistym. Kluczowym błędem jest mylenie funkcji tych programów z wymaganiami związanymi z nadzorem i zarządzaniem procesami na poziomie operacyjnym. W praktyce, do skutecznego monitorowania procesów przemysłowych niezbędne są systemy takie jak SCADA, które integrują dane z różnych źródeł i umożliwiają efektywne zarządzanie oraz kontrolę procesów.

Pytanie 9

Jakie rozwiązanie pozwala na zwiększenie prędkości ruchu tłoka w siłowniku pneumatycznym?

A. przełącznik obiegu
B. zawór szybkiego spustu
C. zawór zwrotny
D. zawór podwójnego sygnału
Zawór szybkiego spustu to naprawdę ważny element w systemach pneumatycznych. Jego główną rolą jest szybkie obniżenie ciśnienia w siłownikach. Dzięki temu tłok porusza się znacznie szybciej. Działa to tak, że sprężone powietrze ma szybki ujście, co pozwala na błyskawiczne zwolnienie siłownika. W praktyce, takie zawory są super przydatne, na przykład w przemyśle motoryzacyjnym czy automatyzacji produkcji, gdzie czas reakcji jest mega istotny. Zgodnie z normami ISO 4414, odpowiednio zainstalowany zawór szybkiego spustu powinien być standardem w każdej instalacji pneumatycznej, żeby zwiększyć wydajność i bezpieczeństwo. Jeżeli system jest dobrze zaprojektowany i wykorzystuje te zawory, to może to znacznie poprawić efektywność produkcji, a przy okazji obniżyć zużycie energii i skrócić czas cyklu procesów.

Pytanie 10

Podzespół instalacji pneumatycznej, którego fragment dokumentacji technicznej przedstawiono poniżej, służy do usuwania

Dane techniczne:

  • całość można rozmontować i użyć jako osobne urządzenia (filtro-reduktor i olejarka)
  • filtr to podstawa do otrzymania czystego powietrza szczególnie w lakiernictwie
  • zalecany dla wszystkich pneumatycznych narzędzi takich jak: klucze, piły pneumatyczne, młotki itd.
  • ciśnienie jest dokładnie ustawialne dzięki zastosowanemu regulatorowi na filtrze
  • można też dokładnie ustawić wielkość mgły olejowej poprzez śrubę regulacyjną
  • filtr jest wyposażony w półautomatyczny spust kondensatu
  • przepływ powietrza na poziomie 750 l/min.
Ilustracja do pytania
A. zanieczyszczeń powietrza w postaci drobin stałych i cząstek oleju.
B. oleju, wilgoci i wytwarzania nadciśnienia powietrza.
C. zanieczyszczeń powietrza w postaci drobin stałych, redukowania ciśnienia i naolejania powietrza.
D. wilgoci z powietrza oraz stabilizowania jego ciśnienia i temperatury.
Poprawna odpowiedź odnosi się do kluczowego zadania podzespołu instalacji pneumatycznej, który obejmuje filtr, reduktor ciśnienia oraz oliwiarkę. Filtr jest odpowiedzialny za eliminację zanieczyszczeń powietrza, takich jak drobiny stałe, które mogą uszkodzić narzędzia pneumatyczne oraz obniżyć ich efektywność. Reduktor ciśnienia umożliwia precyzyjne dostosowanie ciśnienia powietrza, co ma istotne znaczenie w kontekście zapewnienia stabilnych warunków pracy urządzeń pneumatycznych. Zbyt wysokie ciśnienie może prowadzić do uszkodzeń, natomiast zbyt niskie może powodować niewłaściwe działanie. Oliwiarka natomiast odpowiedzialna jest za naolejanie powietrza, co zapewnia właściwe smarowanie ruchomych elementów narzędzi pneumatycznych, zmniejszając ich zużycie i przedłużając żywotność. Wzorcowe praktyki branżowe podkreślają znaczenie regularnej konserwacji tych komponentów, co przyczynia się do zwiększenia efektywności systemów pneumatycznych i zmniejszenia kosztów eksploatacyjnych.

Pytanie 11

Filtr o charakterystyce pasmowo-zaporowej

A. tłumi sygnały o niskich częstotliwościach.
B. przepuszcza sygnały w zakresie określonego pasma częstotliwości.
C. przepuszcza sygnały o niskich częstotliwościach.
D. tłumi sygnały o częstotliwościach w obrębie określonego pasma częstotliwości.
W przypadku filtrów pasmowo-zaporowych istnieje wiele nieporozumień dotyczących ich funkcji i zastosowań. Odpowiedzi, które sugerują, że filtr ten przepuszcza sygnały o częstotliwościach wewnątrz wyznaczonego pasma częstotliwości, są zasadniczo mylne. Takie określenie odnosiłoby się raczej do filtrów pasmowych, które mają za zadanie przepuszczać sygnały w określonym zakresie częstotliwości, a nie ich tłumienie. Również te odpowiedzi, które wskazują na tłumienie sygnałów o małej częstotliwości, są błędne, ponieważ filtry pasmowo-zaporowe nie koncentrują się jedynie na niskich częstotliwościach, ale na eliminowaniu określonego zakresu częstotliwości, niezależnie od tego, czy są one niskie, średnie, czy wysokie. Typowe błędy myślowe prowadzące do tych błędnych wniosków często wynikają z nieporozumienia dotyczącego terminologii związanej z filtracją sygnałów. Zrozumienie, że filtry pasmowo-zaporowe aktywnie eliminują sygnały w określonym paśmie, a nie je przepuszczają, jest kluczowe dla poprawnego zastosowania tej teorii w praktyce inżynieryjnej. Dlatego ważne jest, aby przed przystąpieniem do projektowania lub analizy systemów wykorzystujących filtrację sygnałów, dokładnie zrozumieć działanie i właściwości różnych typów filtrów oraz ich zastosowanie w praktyce.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Osoba obsługująca urządzenie generujące drgania, takie jak młot pneumatyczny, powinna być przede wszystkim wyposażona

A. w hełm ochronny
B. w rękawice antywibracyjne
C. w odzież ochronną
D. w gogle ochronne
Rękawice antywibracyjne to naprawdę ważna rzecz dla ludzi, którzy pracują z maszynami, które drżą, jak na przykład młot pneumatyczny. Te drgania mogą prowadzić do poważnych problemów zdrowotnych, na przykład do zespołu wibracyjnego, który uszkadza nerwy i stawy. Dlatego właśnie te rękawice są zaprojektowane tak, żeby pochłaniać te drgania, co bardzo pomaga w zmniejszeniu ich wpływu na dłonie i ramiona. Z własnego doświadczenia powiem, że dzięki nim praca staje się znacznie bardziej komfortowa, a czas, kiedy można bezpiecznie używać sprzętu, naprawdę się wydłuża. Widzisz to często w budownictwie, gdzie pracownicy używają młotów wyburzeniowych. Normy ISO 5349 mówią, że takie rękawice to dobry sposób na to, żeby zminimalizować ryzyko zdrowotne związane z długotrwałym narażeniem na drgania.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Na rysunku zamieszczono element, który zabezpiecza przed

Ilustracja do pytania
A. chwilowym zanikiem napięcia.
B. gwałtownym wzrostem napięcia.
C. zwarciem i przeciążeniem.
D. zwarciem doziemnym.
W przypadku wyboru odpowiedzi dotyczącej zwarcia i przeciążenia, należy zauważyć, że wyłączniki różnicowoprądowe nie są zaprojektowane do ochrony przed przeciążeniem. Ich funkcja koncentruje się na detekcji prądu różnicowego, co oznacza, że nie wykryją one sytuacji, w których prąd przekracza wartości nominalne, co jest typowe dla przeciążeń. Zamiast tego, do ochrony przed przeciążeniem stosuje się wyłączniki nadprądowe, które działają na innej zasadzie. Z kolei odpowiedź dotycząca chwilowego zaniku napięcia jest również błędna, ponieważ wyłączniki różnicowoprądowe nie reagują na zmiany w napięciu, lecz na różnice w prądzie. Gwałtowny wzrost napięcia, z kolei, może zagrażać urządzeniom elektrycznym, lecz wyłączniki różnicowoprądowe nie są w stanie zabezpieczyć przed takimi zdarzeniami; do tego celu stosuje się ograniczniki przepięć. Warto również podkreślić, że mylenie tych elementów ochronnych prowadzi do poważnych błędów w projektowaniu i eksploatacji instalacji elektrycznych, co może stwarzać zagrożenie zarówno dla ludzi, jak i dla mienia. Dlatego ważne jest, aby rozumieć różnice między tymi urządzeniami oraz ich specyficzne zastosowania w kontekście ochrony przed różnymi rodzajami zagrożeń elektrycznych.

Pytanie 17

Do jakiej kategorii pomiarów można zakwalifikować pomiar długości gwintowanego fragmentu śruby przy użyciu przymiaru kreskowego?

A. Złożonych
B. Pośrednich
C. Bezpośrednich
D. Uwikłanych
Pomiar długości nagwintowanego odcinka śruby z wykorzystaniem przymiaru kreskowego klasyfikowany jest jako pomiar bezpośredni, ponieważ zachodzi bezpośrednie porównanie wymiaru obiektu z jednostką miary, jaką jest przymiar. W praktyce oznacza to, że długość mierzona jest bezpośrednio z wykorzystaniem narzędzia, a nie poprzez obliczenia lub pomiary pośrednie. Przykładem zastosowania pomiaru bezpośredniego jest pomiar długości wałków, rur czy elementów konstrukcji, gdzie można zastosować przymiar lub suwmiarkę. W branży inżynieryjnej stosowanie pomiarów bezpośrednich jest kluczowe dla zapewnienia dokładności wymiarowej w procesie produkcji oraz w kontroli jakości. Zgodnie z normami ISO, pomiary bezpośrednie są preferowane w przypadkach, gdzie wymagana jest wysoka precyzja, co podkreśla znaczenie tych metod w codziennych zastosowaniach inżynieryjnych.

Pytanie 18

Ciśnienie o wartości 1 N/m2 to

A. 1 at
B. 1 bar
C. 1 mmHg
D. 1 Pa
Ciśnienie równe 1 N/m² jest równoznaczne z 1 Pa (paskalem), co jest jednostką miary ciśnienia w układzie SI. Definicja ciśnienia mówi, że jest to siła działająca na jednostkę powierzchni. W praktyce, 1 Pa oznacza, że na powierzchnię o wymiarach 1 m² działa siła o wartości 1 N. Paskal jest powszechnie stosowany w wielu dziedzinach, takich jak inżynieria mechaniczna, budownictwo oraz nauki przyrodnicze. Dla przykładu, w kontekście hydrauliki, ciśnienie 1 Pa jest niewielkie, ale w kontekście atmosferycznym, na poziomie morza, ciśnienie wynosi około 101325 Pa (czyli 1 atm), co pokazuje, jak mała jest jednostka 1 Pa w porównaniu do standardowego ciśnienia atmosferycznego. W praktyce, ciśnienie wyrażane w paskalach jest również często używane w procesach przemysłowych i laboratoryjnych, co czyni tę jednostkę kluczową w zrozumieniu i obliczeniach dotyczących sił działających w różnych systemach.

Pytanie 19

Jakie narzędzie jest wykorzystywane do zaciskania końcówek na przewodach elektrycznych?

A. pincety
B. praski ręcznej
C. ucinaczki boczne
D. kombinerki
Praska ręczna to narzędzie zaprojektowane specjalnie do zaciskania końcówek przewodów elektrycznych, co zapewnia solidne i trwałe połączenia. Dzięki mechanizmowi dźwigniowemu, praska umożliwia uzyskanie odpowiedniej siły zacisku, co jest kluczowe dla uniknięcia luzów w połączeniach oraz ich późniejszych awarii. Praski ręczne są dostosowane do różnych typów końcówek, takich jak złącza typu ring, fork czy blade, co czyni je uniwersalnym narzędziem w instalacjach elektrycznych. W praktyce, zaciskanie końcówek przy pomocy praski zapewnia nie tylko bezpieczeństwo, ale także efektywność pracy, ponieważ właściwie wykonane połączenia ograniczają straty energii oraz ryzyko przegrzewania się przewodów. Ponadto, stosując praski, można łatwo dostosować siłę zacisku do specyfiki zastosowania, co jest zgodne z najlepszymi praktykami branżowymi wynikającymi z norm IEC oraz PN-EN. Warto również zaznaczyć, że użycie praski jest zalecane w przypadku pracy z przewodami o różnych przekrojach, co zwiększa wszechstronność tego narzędzia.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Pracownik obsługujący urządzenia pneumatyczne generujące wibracje powinien mieć na sobie

A. okulary ochronne
B. kask ochronny
C. fartuch ochronny
D. buty na gumowej podeszwie
Buty na gumowej podeszwie stanowią kluczowy element ochrony w środowisku pracy z urządzeniami pneumatycznymi, które mogą generować drgania. Te drgania mogą przenikać przez podłogę, co w dłuższym czasie może prowadzić do uszkodzenia stóp oraz stawów pracownika. Obuwie o gumowej podeszwie zapewnia lepszą przyczepność i amortyzację, co jest istotne w pracy z maszynami wytwarzającymi drgania. Przykładem zastosowania takiego obuwia może być praca w magazynach, gdzie używa się wózków widłowych – gumowe podeszwy pomagają w stabilności oraz redukują ryzyko poślizgnięcia. Zgodnie z normą PN-EN ISO 20345, obuwie robocze powinno być dostosowane do specyficznych warunków pracy, a wybór odpowiedniego obuwia może znacząco wpłynąć na bezpieczeństwo oraz komfort pracy. Dlatego istotne jest, aby pracownicy byli świadomi znaczenia odpowiedniego obuwia.

Pytanie 22

Sprężarka typu śrubowego jest sprężarką

A. przepływową
B. turbinową
C. wyporową
D. rotacyjną
Sprężarki turbinowe nie są tym samym, co sprężarki śrubowe, ponieważ opierają się na zupełnie innej zasadzie działania. Turbiny sprężają gaz poprzez jego przyspieszenie w wirnikach, co prowadzi do wzrostu ciśnienia. Ta metoda jest bardziej charakterystyczna dla sprężarek używanych w silnikach lotniczych lub w systemach generacji energii. Z kolei sprężarki wyporowe działają na zasadzie zmiany objętości, gdzie tłok porusza się w cylindrze, sprężając gaz. To rozwiązanie, chociaż powszechnie stosowane w mniejszych urządzeniach, ma swoje ograniczenia w kontekście efektywności przy dużych przepływach. Ostatnią z wymienionych opcji, sprężarki przepływowe, również różnią się od sprężarek rotacyjnych, gdyż ich konstrukcja opiera się na ciągłym przepływie gazu przez układ, co czyni je bardziej odpowiednimi dla specyficznych zastosowań przemysłowych, a nie uniwersalnych. Mylenie tych różnych typów sprężarek wynika często z niewłaściwego zrozumienia ich mechanizmów działania, co prowadzi do błędnych wniosków. Kluczowe jest zrozumienie, że każdy typ sprężarki ma swoje unikalne cechy, zalety i ograniczenia, które determinują ich zastosowanie w praktyce. Właściwy dobór sprężarki powinien być uzależniony od specyficznych wymagań procesu oraz warunków operacyjnych.

Pytanie 23

Sensory indukcyjne działające w trybie zbliżeniowym nie mogą być używane do detekcji elementów stworzonych

A. z polipropylenu
B. ze stali
C. z aluminium
D. z miedzi
Odpowiedź 'z polipropylenu' jest prawidłowa, ponieważ zbliżeniowe sensory indukcyjne działają na zasadzie wykrywania zmian w polu elektromagnetycznym, które są generowane przez metalowe obiekty. Polipropylen, będący materiałem nieprzewodzącym i nieferromagnetycznym, nie wpływa na to pole, co uniemożliwia sensoryzm ich detekcję. Użycie takich materiałów w aplikacjach wymagających wykrywania obiektów jest istotne, na przykład w automatyce przemysłowej, gdzie potrzebne są nietypowe materiały, jak plastiki, do produkcji elementów maszyny. W rzeczywistości, sensory indukcyjne są szeroko stosowane w procesach automatyzacji, takich jak detekcja elementów wykonanych z metali, np. w liniach montażowych. W takich aplikacjach standardy, takie jak ISO 12100 dotyczące bezpieczeństwa maszyn, wymagają odpowiedniego doboru technologii detekcji, co potwierdza praktyczną przydatność sensorów indukcyjnych w przemyśle.

Pytanie 24

Na którym rysunku przedstawiono mocowanie kołnierzowe siłowników pneumatycznych?

Ilustracja do pytania
A. A.
B. B.
C. C.
D. D.
Poprawna odpowiedź to "B". Rysunek B przedstawia siłownik pneumatyczny z kołnierzem montażowym, który jest kluczowym elementem w instalacjach pneumatycznych. Kołnierz montażowy umożliwia stabilne połączenie siłownika z innymi komponentami maszyny, zapewniając odpowiednie ułożenie i minimalizując drgania podczas pracy. W praktyce zastosowanie kołnierza jest szczególnie istotne w kontekście urządzeń, które wymagają precyzyjnego pozycjonowania, takich jak roboty przemysłowe czy automatyczne linie produkcyjne. Warto zwrócić uwagę na standardy montażowe, takie jak ISO 6431, które określają wymiary i tolerancje kołnierzy. Dobrze zaprojektowane mocowanie kołnierzowe nie tylko zwiększa bezpieczeństwo, ale także ułatwia konserwację siłowników poprzez szybki dostęp do ich elementów. Dodatkowo, prawidłowe mocowanie wpływa na żywotność siłownika, zmniejszając ryzyko uszkodzeń związanych z niewłaściwym zamocowaniem.

Pytanie 25

Który element został oznaczony na rysunku symbolem literowym X?

Ilustracja do pytania
A. Zawór bezpieczeństwa.
B. Tłumik hałasu.
C. Sensor ciśnienia.
D. Korek uszczelniający.
Element oznaczony na rysunku symbolem literowym X to tłumik hałasu, który pełni kluczową rolę w różnych systemach mechanicznych i hydraulicznych. Tłumiki hałasu są stosowane do redukcji niepożądanych dźwięków generowanych przez przepływające medium, takie jak powietrze lub ciecz. Ich projekt oparty jest na zasadach akustyki i inżynierii mechanicznej, co pozwala na skuteczne tłumienie fal dźwiękowych. W zastosowaniach przemysłowych, takich jak systemy pneumatyczne i hydrauliczne, tłumiki hałasu przyczyniają się nie tylko do poprawy komfortu pracy, ale także do ochrony elementów układu przed uszkodzeniami spowodowanymi wibracjami. Dobrze zaprojektowany tłumik hałasu może również wpłynąć na wydajność systemu, minimalizując straty energii związane z hałasem. W branży stosuje się różne normy dotyczące poziomów hałasu, co sprawia, że stosowanie tłumików hałasu staje się nie tylko zalecane, ale wręcz wymagane w wielu zastosowaniach, aby zapewnić zgodność z regulacjami ochrony środowiska i zdrowia pracowników.

Pytanie 26

Którego klucza należy użyć do odkręcenia przedstawionej na rysunku śruby?

Ilustracja do pytania
A. Trzpieniowego sześciokątnego.
B. Płaskiego szczękowego.
C. Oczkowego sześciokątnego.
D. Z gniazdem sześciokątnym.
Wybór niewłaściwego klucza do odkręcania śruby z gniazdem sześciokątnym, takiego jak klucz oczkowy sześciokątny, jest typowym błędem, który wynika z braku zrozumienia specyfikacji narzędzi. Klucz oczkowy jest przeznaczony do odkręcania nakrętek i śrub, które mają zewnętrzne gniazdo sześciokątne. Stosowanie go do śrub z wewnętrznym gniazdem prowadzi do nieefektywnego przenoszenia momentu obrotowego i łatwego uszkodzenia gniazda, co może skutkować uszkodzeniem śruby oraz narzędzia. Podobnie, klucz płaski szczękowy nie jest odpowiedni, ponieważ nie zapewnia stabilności i precyzyjnego dopasowania, co jest kluczowe w operacjach wymagających wysokiego momentu obrotowego. Klucz z gniazdem sześciokątnym, mimo że może być używany do odkręcania niektórych typów nakrętek, jest również niewłaściwy w kontekście śrub z gniazdem sześciokątnym wewnętrznym, ponieważ nie pasuje do ich specyfiki. Zrozumienie kształtów oraz zastosowań narzędzi jest kluczowe dla bezpiecznej i efektywnej pracy w mechanice, a ignorowanie tych zasad prowadzi do typowych błędów, które mogą spowodować nie tylko uszkodzenie narzędzi, lecz także poważne uszkodzenia samej konstrukcji.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Prawidłowa kolejność dokręcania śrub lub nakrętek części przedstawionej na rysunku jest następująca:

Ilustracja do pytania
A. 2,4,1,3,5
B. 1,2,3,4,5
C. 3,5,2,1,4
D. 1,5,4,3,2
Wybór innej kolejności dokręcania, takiej jak 1,2,3,4,5, może prowadzić do poważnych problemów z równomiernym rozkładem siły, co jest kluczowym elementem w inżynierii mechanicznej. Dokręcanie w sekwencji liniowej, jak sugeruje ta odpowiedź, jest błędnym podejściem, które może prowadzić do skrzywienia części lub ich uszkodzenia w wyniku nierównomiernego docisku. W kontekście technicznym, takie działanie nie uwzględnia podstawowych zasad mechaniki, w tym równowagi sił i momentów, co jest fundamentalne dla stabilności konstrukcji. Typowym błędem, który może prowadzić do tego rodzaju myślenia, jest ignorowanie aspektów statyki i dynamiki, które powinny być podstawą każdej analizy związanej z dokręcaniem elementów. Dodatkowo, korzystanie z nieodpowiedniej sekwencji dokręcania, sugerowanej w odpowiedziach innych niż poprawna, może przyczynić się do przedwczesnego zużycia lub awarii komponentów, co w dłuższej perspektywie wiąże się z wysokimi kosztami napraw i przestojów produkcyjnych. Dlatego tak ważne jest, aby stosować się do sprawdzonych standardów oraz praktyk branżowych, które nie tylko zapewniają efektowność, lecz także bezpieczeństwo działania maszyn i urządzeń.

Pytanie 29

Na rysunku przedstawiono symbol graficzny

Ilustracja do pytania
A. fotodiody.
B. optotriaka.
C. fototyrystora.
D. transoptora.
Rozważając odpowiedzi inne niż transoptor, można zauważyć, że fotodiody, optotriaki oraz fototyrystory są różnymi, aczkolwiek pokrewnymi elementami, które pełnią inne funkcje niż transoptor. Fotodiody, na przykład, są elementami półprzewodnikowymi, które przekształcają światło w sygnał elektryczny, ale nie zapewniają izolacji galwanicznej. Ich zastosowanie koncentruje się głównie w detekcji światła i nie w przesyłaniu sygnałów między dwoma obwodami. Z kolei optotriaki to elementy stosowane do kontrolowania dużych obciążeń prądowych, działające na zasadzie przewodzenia prądu w obie strony, co całkowicie różni się od działania transoptora, który pozwala na jednokierunkowy przepływ sygnału. Fototyrystory również mają swoje zastosowanie w obwodach sterujących, ale ich główną rolą jest włączanie i wyłączanie obwodów pod dużym obciążeniem, a nie przekazywanie sygnałów. Typowym błędem myślowym jest mylenie tych elementów z transoptorami, co prowadzi do nieporozumień w projektowaniu obwodów. Kluczowe jest zrozumienie, że transoptor łączy w sobie funkcje diody emitującej światło i fototranzystora, co pozwala na efektywne i bezpieczne przekazywanie sygnałów, a jego użycie jest standardem w nowoczesnych rozwiązaniach elektronicznych.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

Jakie urządzenie umożliwia pomiar temperatury łopat sprężarki o ruchu obrotowym?

A. manometru
B. pirometru
C. tensometru
D. termistora
Wybór tensometru do pomiaru temperatury wirujących łopat sprężarki przepływowej jest nieadekwatny, ponieważ tensometry służą do pomiaru deformacji materiałów, a nie temperatury. Ich działanie opiera się na pomiarze zmiany oporu elektrycznego w wyniku odkształcenia, co jest zupełnie inną kategorią pomiarów. Z kolei termistory, mimo że są czujnikami temperatury, działają na zasadzie zmiany oporu elektrycznego w odpowiedzi na zmiany temperatury, co może być stosunkowo powolne w kontekście dynamicznych warunków panujących w obrębie wirujących części sprężarki. Systemy kontroli w przemyśle często wymagają szybkich i dokładnych pomiarów, a termistory mogą nie zaspokajać tych potrzeb z uwagi na swoją konstrukcję i czas reakcji. Manometry, natomiast, służą do pomiaru ciśnienia gazów lub cieczy, co jest zupełnie innym parametrem niż temperatura. Pomiar ciśnienia nie ma bezpośredniego związku z temperaturą wirujących łopat, co czyni tę odpowiedź nieodpowiednią. Użycie niewłaściwych urządzeń pomiarowych prowadzi do błędnych wniosków i potencjalnych awarii, co podkreśla znaczenie wyboru odpowiednich narzędzi pomiarowych w kontekście specyficznych zastosowań inżynieryjnych. W praktyce inżynieryjnej istotne jest, aby wybierać urządzenia, które odpowiadają wymaganiom procesów, a zrozumienie różnic między różnymi typami czujników jest kluczowe dla zapewnienia efektywności operacyjnej i bezpieczeństwa systemów.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Na podstawie przedstawionej tabliczki znamionowej pompy hydraulicznej określ jej maksymalną wydajność.

Ilustracja do pytania
A. 0,75 kW
B. 43 m
C. 1,20 kW
D. 4,50 m3/h
Wydaje mi się, że wybór odpowiedzi, która nie odnosi się do maksymalnej wydajności pompy, może wynikać z nieporozumienia związanego z danymi na tabliczce. Sporo osób myli parametry techniczne, na przykład moc w kW z wydajnością w m3/h. Moc nominalna, jak 0,75 kW czy 1,20 kW, mówi o tym, ile energii pompa potrzebuje, a nie ile cieczy może przetłoczyć. Odpowiedzi jak 43 m mogą być mylące, bo to nie jest jednostka wydajności. W praktyce, wydajność pompy jest związana z jej zdolnością do przetłaczania cieczy w określonym czasie, co jest kluczowe w inżynierii. Nieznajomość tych różnic prowadzi do błędnych wniosków. Osoby pracujące w hydraulice powinny zwracać uwagę na tabliczki znamionowe i interpretować je w kontekście zastosowań i standardów, co często wymaga praktycznego doświadczenia i znajomości specyfiki urządzeń hydraulicznych. Dobrze jest zrozumieć te parametry, bo to klucz do efektywnego projektowania i eksploatacji hydrauliki.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Jakie napięcie musi być zastosowane do zasilania prostowniczego układu sześciopulsowego?

A. stałym 110 V
B. stałym 24 V
C. trójfazowym 230 V/400 V
D. jednofazowym symetrycznym 2 x 115 V
Układ prostowniczy sześciopulsowy jest systemem, który przekształca prąd przemienny w prąd stały, wykorzystując sześć diod do realizacji prostowania. Aby zapewnić efektywną pracę tego układu, wymagane jest zasilanie trójfazowe o napięciu 230 V/400 V. Taki typ zasilania pozwala na uzyskanie stabilnego i wydajnego prostowania, co jest kluczowe w wielu zastosowaniach przemysłowych, takich jak zasilanie napędów elektrycznych, systemów zasilania awaryjnego czy też w aplikacjach w automatyce. Warto zauważyć, że standardowe zasilanie trójfazowe w systemach przemysłowych jest powszechnie stosowane, co sprzyja kompatybilności urządzeń. Dobre praktyki w projektowaniu systemów elektrycznych zalecają użycie prostowników o odpowiednich parametrach zgodnych z wymaganiami odbiorników, co zapewnia ich długotrwałą i niezawodną pracę.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Na rysunkach przedstawiono nakrętkę

Ilustracja do pytania
A. motylkową.
B. kwadratową.
C. radełkową.
D. koronową.
Nakrętka koronowa, przedstawiona na rysunku, jest powszechnie stosowanym elementem złącznym, charakteryzującym się sześciokątnym kształtem oraz wypustami na zewnętrznej krawędzi. Te wypusty pozwalają na łatwe dokręcanie i odkręcanie nakrętki za pomocą klucza, co jest kluczowe w wielu zastosowaniach inżynieryjnych i mechanicznych. Nakrętki koronowe są często wykorzystywane w konstrukcjach maszyn, gdzie wymagana jest wysoka siła zaciągająca oraz odporność na luzowanie się połączeń. Dzięki ich konstrukcji, umożliwiają one uzyskanie lepszego momentu dokręcania, co jest zgodne z dobrymi praktykami w inżynierii mechanicznej. Warto również zauważyć, że zastosowanie nakrętek koronowych jest preferowane w standardach takich jak ISO 4032, które regulują wymiary i tolerancje dla takich elementów złącznych. Używanie nakrętek koronowych przyczynia się do zwiększenia bezpieczeństwa połączeń mechanicznych, minimalizując ryzyko ich awarii.

Pytanie 39

Do zagniatania tulejek kablowych należy użyć narzędzia przedstawionego na rysunku

Ilustracja do pytania
A. A.
B. B.
C. C.
D. D.
Narzędzie oznaczone literą C to szczypce do zagniatania końcówek kablowych, znane również jako zaciskarka. Używanie tego typu narzędzi jest kluczowe w pracach elektrycznych, gdzie niezbędne jest zapewnienie trwałego i bezpiecznego połączenia elektrycznego. Zaciskarki pozwalają na precyzyjne zagniatanie tulejek kablowych, co minimalizuje ryzyko awarii czy zwarcia. W praktyce, zagniatanie tulejek kablowych wykonuje się w celu zapewnienia solidnego połączenia między przewodami a złączkami, co jest niezwykle ważne w instalacjach elektrycznych. Wysoka jakość narzędzia oraz odpowiednia technika użycia są zgodne z najlepszymi praktykami w branży elektrotechnicznej, które zalecają stosowanie narzędzi zaprojektowanych specjalnie do danego celu. Warto również pamiętać o regularnej kontroli stanu technicznego narzędzi, co wpływa na bezpieczeństwo i trwałość wykonywanych połączeń.

Pytanie 40

Elektryczne żelazko wyposażone w termoregulator bimetaliczny stanowi przykład

A. układu sterowania programowalnego
B. układu regulacji automatycznej
C. sterowania sekwencyjnego
D. sterowania w układzie otwartym
Żelazko elektryczne z termoregulatorem bimetalicznym jest doskonałym przykładem układu regulacji automatycznej, ponieważ wykorzystuje mechanizm, który automatycznie dostosowuje temperaturę grzania w zależności od wymagań użytkownika i właściwości materiału, który jest prasowany. Termoregulator bimetaliczny składa się z dwóch różnych metali, które rozszerzają się różnie pod wpływem temperatury, co powoduje odkształcenie i włączenie lub wyłączenie zasilania do grzałki żelazka. Przykładem praktycznego zastosowania tego rozwiązania jest żelazko, które automatycznie dostosowuje temperaturę do rodzaju tkaniny, co zapobiega ich przypaleniu lub uszkodzeniu. Tego typu regulacja automatyczna jest zgodna z zasadami efektywności energetycznej oraz komfortu użytkowania, co czyni ją standardem w projektowaniu urządzeń gospodarstwa domowego. Zastosowanie termoregulatorów bimetalicznych w żelazkach jest zgodne z najlepszymi praktykami w dziedzinie automatyki i kontrolowania procesów, zapewniając niezawodność oraz bezpieczeństwo eksploatacji urządzeń. Dodatkowo, układy regulacji automatycznej są szeroko stosowane w różnych dziedzinach przemysłu, gdzie precyzyjne utrzymywanie parametrów jest kluczowe dla jakości produkcji.