Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.05 - Eksploatacja urządzeń elektronicznych
  • Data rozpoczęcia: 2 kwietnia 2025 07:01
  • Data zakończenia: 2 kwietnia 2025 07:30

Egzamin zdany!

Wynik: 20/40 punktów (50,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Amperomierz o klasie precyzji 1 oraz zakresie pomiarowym In=100 mA zarejestrował prąd I=100 mA. Jaki jest maksymalny błąd względny tego pomiaru?

A. 4%
B. 1%
C. 2%
D. 3%
Odpowiedź 1% jest prawidłowa, ponieważ maksymalny błąd względny pomiaru prądu przy zastosowaniu amperomierza o klasie dokładności 1 wynosi 1% wartości mierzonej. Klasa dokładności 1 oznacza, że maksymalny błąd pomiaru nie przekracza 1% wartości pełnego zakresu pomiarowego. W tym przypadku, przy pomiarze prądu wynoszącego 100 mA w zakresie do 100 mA, maksymalny błąd obliczamy jako 1% z 100 mA, co daje 1 mA. W praktyce oznacza to, że zmierzony prąd może mieć wartość od 99 mA do 101 mA. Tego rodzaju niepewność jest ważna w zastosowaniach inżynieryjnych, gdzie precyzyjne pomiary są kluczowe, na przykład w automatyce, gdzie nieprawidłowe wartości prądów mogą prowadzić do błędów w sterowaniu. Zgodnie z normą IEC 61010, pomiar prądu powinien być wykonywany przy użyciu odpowiednich narzędzi o udokumentowanej dokładności, co pozwala na utrzymanie bezpieczeństwa i dokładności w różnych zastosowaniach przemysłowych.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Jaką rezystancję Rb powinien mieć bocznik, aby można było podłączyć go równolegle do amperomierza o oporności wewnętrznej RA=300 mΩ, aby czterokrotnie zwiększyć jego zakres pomiarowy?

A. 300 mΩ
B. 150 mΩ
C. 100 mΩ
D. 75 mΩ
Rozważając błędne odpowiedzi, ważne jest zrozumienie podstawowych zasad dotyczących pomiarów prądu oraz rezystancji w układach elektrycznych. Odpowiedzi takie jak 150 mΩ, 75 mΩ oraz 300 mΩ mogą wynikać z niepoprawnego zrozumienia zasady równoległego połączenia rezystancji. Przy połączeniach równoległych rezystancje zmniejszają ogólną rezystancję układu, co jest kluczowe w kontekście amperomierza. Wartości 150 mΩ i 300 mΩ są zbyt wysokie, aby uzyskać pożądaną całkowitą rezystancję wynoszącą 75 mΩ, co prowadziłoby do nieprawidłowych odczytów. Odpowiedź 75 mΩ, mimo że zbliżona, pozostaje błędna, ponieważ w tym przypadku całkowita rezystancja nie osiągnie pożądanego celu czterokrotnego zwiększenia zakresu. Typowym błędem myślowym jest zakładanie, że większa wartość bocznika wspomoże pomiar, co w rzeczywistości prowadzi do spadku dokładności. Kluczowe jest, aby pamiętać, że dobór rezystancji bocznika musi być starannie przemyślany, aby zachować balans między bezpieczeństwem a dokładnością pomiaru. W przypadku nieprawidłowych wyborów rezystancji, wyniki pomiarowe mogą być zafałszowane, co w kontekście profesjonalnych pomiarów elektrycznych może prowadzić do poważnych błędów i nieprawidłowych analiz.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Po włożeniu płyty DVD do odtwarzacza, szuflada napędu najpierw się wsuwa, a następnie od razu wysuwa. Jaka może być najprawdopodobniejsza przyczyna tego problemu?

A. Uszkodzony laser
B. Luźny pasek zamykający szufladę lub styk krańcowy
C. Uszkodzony silnik przesuwu tacki
D. Uszkodzony silnik odtwarzacza płyty
Luźny pasek zamykania szuflady lub styk krańcowy to najczęstsze przyczyny problemów z tacką napędu DVD. W przypadku, gdy pasek zamykania jest luźny, mechanizm nie może prawidłowo zamknąć tacki, co prowadzi do jej natychmiastowego wysunięcia. Dobrą praktyką jest regularne sprawdzanie stanu pasków w urządzeniach mechanicznych oraz ich wymiana, gdy zauważymy oznaki zużycia. Ponadto, styki krańcowe pełnią kluczową rolę w sygnalizowaniu, czy tacka jest w prawidłowej pozycji. Jeśli styk nie działa poprawnie, system może odbierać błędne informacje i niepotrzebnie aktywować mechanizm wysuwania. W takich przypadkach warto zapoznać się z dokumentacją techniczną producenta, aby zrozumieć zasady działania mechanizmu oraz procedury diagnostyczne. Rozumienie tego mechanizmu jest szczególnie istotne dla techników zajmujących się naprawą sprzętu audio-wideo oraz dla użytkowników, którzy chcą samodzielnie rozwiązywać problemy z urządzeniami.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

W trakcie przeglądu okresowego systemu telewizji kablowej jakość sygnału u poszczególnych abonentów ocenia się, dokonując pomiaru

A. współczynnika szumów w kanale zwrotnym poszczególnych abonentów
B. poziomu sygnału przesyłanego przez stację czołową do abonentów
C. współczynnika szumów w sygnale przekazywanym przez stację czołową do abonentów
D. poziomu sygnału wizyjnego w gniazdach abonenckich poszczególnych użytkowników
Wybór innych opcji jako sposobu monitorowania jakości sygnału telewizyjnego może prowadzić do nieporozumień dotyczących rzeczywistego wpływu na jakość odbioru. Poziom sygnału wysyłanego przez stację czołową do abonentów, choć istotny, nie odzwierciedla problemów pojawiających się w trakcie transmisji do poszczególnych użytkowników. Poziom sygnału wizyjnego w gniazdach abonenckich również nie uwzględnia zakłóceń powstałych w kanale zwrotnym, które mogą wpływać na jakość odbioru. Współczynnik szumów w sygnale wysyłanym przez stację czołową do abonentów nie jest miarodajnym wskaźnikiem, ponieważ nie określa on jakości sygnału, który już przeszedł przez różnorodne elementy infrastruktury sieciowej. Typowym błędem jest założenie, że jakość sygnału na etapie stacji czołowej równoznaczna jest z jakością, jaką odbierają abonenci. W rzeczywistości, przeszkody fizyczne, interferencje z innymi urządzeniami oraz dowolne zakłócenia w kablu mogą znacząco wpłynąć na sygnał, co czyni skuteczną kontrolę kanału zwrotnego niezbędną do oceny rzeczywistej jakości dostarczanego sygnału.

Pytanie 11

Jakie urządzenie łączy komputer z lokalną siecią komputerową?

A. firewall
B. wyposażenie bramowe
C. karta sieciowa
D. most
Karta sieciowa to taki kluczowy element, który łączy komputer z lokalną siecią, jakby to był most między różnymi urządzeniami. Jej główne zadanie to umożliwienie komunikacji, co jak wiadomo, odbywa się poprzez zamianę danych na sygnały elektryczne i przesyłanie ich przez różne media, jak kable Ethernet czy fale radiowe w sieciach bezprzewodowych. Karty sieciowe występują w różnych wersjach, na przykład jako karty rozszerzeń do montażu w gniazdach PCI albo jako wbudowane urządzenia w laptopach. Każda z nich ma swój unikalny adres MAC, który jest, mówiąc kolokwialnie, takim identyfikatorem w sieci. Standardy, jak IEEE 802.3 dla Ethernet czy IEEE 802.11 dla Wi-Fi, mówią, jak te karty powinny działać, żeby wszystko ze sobą współpracowało. Dzięki nim użytkownicy mogą korzystać z różnych zasobów sieciowych, jak serwery, drukarki czy internet, co jest niezbędne, szczególnie w biurach i domach.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Jakiego modułu dotyczy usterka w telewizorze, jeśli nie odbiera on sygnału z zewnętrznej anteny w transmisji naziemnej, a jednocześnie prawidłowo wyświetla obraz z podłączonego tunera satelitarnego przez przewód EUROSCART oraz z kamery VHS-C za pomocą przewodu S-Video?

A. Selektora i separatora
B. Wielkiej i pośredniej częstotliwości
C. Wzmacniacza wizji
D. Synchronizacji i odchylania
Odpowiedź "Wielkiej i pośredniej częstotliwości" jest poprawna, ponieważ to właśnie te moduły odpowiadają za odbiór sygnałów z anteny telewizyjnej. Moduł wielkiej częstotliwości (VHF/UHF) odbiera sygnały z anteny, a moduł pośredniej częstotliwości (IF) przetwarza te sygnały na format, który może być dalej przetwarzany przez telewizor. Kiedy telewizor nie odbiera sygnału z anteny, ale potrafi odtwarzać obraz z innych źródeł, jak tuner satelitarny czy kamera VHS-C, wskazuje to na problem z obiegiem sygnału w przedwzmacniaczu lub innym elemencie toru sygnałowego odbiornika. W praktyce, w takich sytuacjach, często zaleca się sprawdzenie zarówno anteny, jak i stanu technicznego modułów wielkiej i pośredniej częstotliwości, co jest zgodne z metodami diagnostyki stosowanymi w serwisach elektronicznych.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Która z funkcji w oprogramowaniu EDA zajmuje się wyznaczaniem ścieżek przy projektowaniu układów PCB?

A. Annotation
B. RuleCheck
C. Routing
D. Placing
Wybór innych opcji wskazuje na pewne nieporozumienia dotyczące funkcji programów EDA oraz ich zastosowania w projektowaniu obwodów drukowanych. RuleCheck odnosi się do weryfikacji zasad projektowych, takich jak upewnienie się, że nie ma naruszeń reguł dotyczących odstępów czy szerokości ścieżek. Choć ważne, nie zajmuje się bezpośrednio wytyczaniem tras. Placing koncentruje się na odpowiednim umiejscowieniu komponentów na PCB, co jest krokiem poprzedzającym routing. Nieodpowiednie umiejscowienie elementów może prowadzić do problemów w późniejszym etapie, ale samo w sobie nie wytycza ścieżek. Annotation to proces przypisywania etykiet i identyfikatorów komponentom, co jest istotne dla organizacji projektu, ale również nie ma wpływu na sam proces routingu. Zrozumienie tych funkcji jest kluczowe dla efektywnego projektowania obwodów, dlatego warto zapoznać się z ich rolą w cyklu życia projektu PCB. Przede wszystkim, nieprawidłowe podejście do rozróżnienia tych funkcji może prowadzić do nieefektywności w projektach oraz wydłużenia czasu realizacji, co w branży elektronicznej jest niewłaściwe. Właściwe zrozumienie roli routingu, a także innych funkcji, jest fundamentem dla każdego inżyniera zajmującego się projektowaniem PCB.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

HbbTV to skrót oznaczający standard telewizji

A. analogowej
B. kablowej
C. hybrydowej
D. dozorowej
HbbTV, czyli Hybrid Broadcast Broadband Television, to standard telewizyjny, który integruje tradycyjną telewizję broadcast z szerokopasmowym dostępem do internetu. Dzięki temu użytkownicy mogą korzystać zarówno z programów telewizyjnych nadawanych przez telewizję, jak i z interaktywnych aplikacji oraz treści dostępnych w internecie. Przykłady zastosowania HbbTV obejmują oglądanie programów na życzenie, interaktywne reklamy oraz dostęp do dodatkowych informacji o programach w trakcie ich oglądania. Standard ten jest szczególnie popularny w Europie, gdzie wiele krajów wdrożyło HbbTV, aby wzbogacić doświadczenie oglądania telewizji. HbbTV wspiera również zdalne interaktywne funkcje, takie jak głosowanie w programach czy zakupy online bezpośrednio z telewizora. Warto zaznaczyć, że HbbTV jest zgodne z normami DVB (Digital Video Broadcasting), co potwierdza jego wysoką jakość oraz interoperacyjność z innymi systemami telewizyjnymi.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Wtórnik emiterowy to wzmacniacz z tranzystorem w układzie wspólnego kolektora, który odznacza się

A. niską rezystancją wejściową
B. niskim wzmocnieniem prądowym
C. wzmocnieniem napięciowym bliskim jedności
D. wysokim wzmocnieniem napięciowym
Wybór odpowiedzi dotyczących małej rezystancji wejściowej, małego wzmocnienia prądowego czy dużego wzmocnienia napięciowego jest wynikiem powszechnych nieporozumień związanych z działaniem wzmacniaczy w konfiguracji wspólnego kolektora. W przypadku wtórnika emiterowego, rezystancja wejściowa jest w rzeczywistości wysoka, co umożliwia efektywne przyjmowanie sygnałów z wyższych impedancji. Stąd, sugerowanie, że wtórnik emiterowy ma małą rezystancję wejściową, jest mylące i niezgodne z rzeczywistością. Ponadto, stwierdzenie, że wtórnik emiterowy charakteryzuje się małym wzmocnieniem prądowym, jest również nieprecyzyjne, ponieważ wzmocnienie prądowe w tej konfiguracji jest zazwyczaj bliskie jedności, co oznacza, że prąd wyjściowy jest niemal równy prądowi wejściowemu. Z kolei duże wzmocnienie napięciowe jest sprzeczne z fundamentalnymi zasadami działania wtórnika emiterowego, który ma na celu przede wszystkim stabilizację napięcia, a nie jego wzmocnienie. Wzmacniacze te działają na zasadzie ścisłego dopasowania napięcia, co czyni je niezwykle przydatnymi w aplikacjach wymagających precyzyjnego zarządzania sygnałem. Osoby, które nie rozumieją tych podstawowych zasad, mogą łatwo wprowadzić się w błąd, myśląc o wtórniku emiterowym jako o typowym wzmacniaczu, co prowadzi do błędnych wniosków.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

W wzmacniaczu mocy działającym w klasie A prąd przez element aktywny tego wzmacniacza (tranzystor) przepływa przez czas

A. wynoszący pełen okres sygnału sterującego
B. wynoszący połowę okresu sygnału sterującego
C. krótszy od pół okresu sygnału sterującego
D. krótszy niż pełen okres, lecz dłuższy niż pół okresu sygnału sterującego
Wzmacniacze mocy pracujące w klasie A charakteryzują się tym, że element aktywny, zazwyczaj tranzystor, prowadzi prąd przez cały okres sygnału sterującego. Oznacza to, że w każdym cyklu sygnału, niezależnie od jego amplitudy czy kształtu, tranzystor jest aktywny przez pełny okres. To podejście zapewnia wysoką liniowość i małe zniekształcenia, co jest kluczowe w aplikacjach audio, gdzie jakość dźwięku jest priorytetem. W praktyce, wzmacniacze klasy A są często wykorzystywane w drobnych systemach audio, gdzie wymagane jest odtwarzanie sygnałów o wysokiej wierności. Przykładem mogą być wzmacniacze lampowe, które zyskały popularność wśród audiofilów właśnie dzięki jakości dźwięku. Wzmacniacze te są również stosowane w systemach RF (radio-frequency), gdzie ich stabilność i linearność są kluczowe. Znajomość działania wzmacniaczy klasy A jest niezbędna dla inżynierów pracujących w branży audio oraz telekomunikacyjnej, co czyni tę wiedzę niezwykle istotną w kontekście standardów branżowych.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Jakiej pamięci usunięcie danych wymaga wykorzystania źródła promieniowania UV?

A. PROM
B. EPROM
C. FLASH
D. EEPROM
Odpowiedzią na to pytanie jest EPROM (Erasable Programmable Read-Only Memory), która rzeczywiście wymaga użycia źródła promieniowania ultrafioletowego do kasowania zapisanych danych. EPROM to typ pamięci, który można programować i kasować przy użyciu światła UV. Proces kasowania polega na naświetlaniu chipu, co powoduje usunięcie zapisanych danych. Zastosowanie EPROM jest szczególnie istotne w produkcji urządzeń elektronicznych, gdzie konieczne jest wielokrotne programowanie układów. Przykładem zastosowania EPROM są systemy wbudowane, w których programy muszą być modyfikowane po instalacji. W branży inżynieryjnej EPROM nadal znajduje zastosowanie w prototypowaniu oraz w produkcie końcowym, gdy wymagane jest aktualizowanie oprogramowania. Dzięki swojej architekturze, EPROM zapewnia stabilność danych przez długi czas, co jest zgodne z najlepszymi praktykami inżynieryjnymi dotyczącymi przechowywania informacji. Koszt programowania i kasowania epromów jest znacznie niższy w porównaniu do alternatywnych technologii, co czyni je atrakcyjnym rozwiązaniem.

Pytanie 40

Który z wymienionych scalonych stabilizatorów napięcia powinien być użyty do zasilania systemów zaprojektowanych w technologii TTL?

A. LM7908
B. LM7805
C. LM7915
D. LM7812
Wybór stabilizatora LM7805 do zasilania układów TTL jest uzasadniony przede wszystkim jego parametrami technicznymi, które są zgodne z wymaganiami tych układów. LM7805 to liniowy stabilizator napięcia, który dostarcza stabilne napięcie 5V, co jest standardowym napięciem zasilania dla układów TTL. Układy te, znane z niskiego poboru prądu i dużej szybkości działania, wymagają dostarczania precyzyjnego napięcia, co zapewnia LM7805. Jego zastosowanie w praktyce jest szerokie, od prostych projektów edukacyjnych po bardziej zaawansowane aplikacje w elektronice użytkowej. Warto również wspomnieć, że LM7805 charakteryzuje się dobrymi właściwościami termicznymi oraz możliwością pracy w szerszym zakresie temperatur, co czyni go odpowiednim wyborem w różnych warunkach. W kontekście dobrych praktyk, korzystanie z tego stabilizatora zgodnie z jego specyfikacją zapewnia wysoką niezawodność i stabilność działania układów TTL, co jest kluczowe w projektach elektronicznych.