Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 10 grudnia 2025 05:33
  • Data zakończenia: 10 grudnia 2025 05:42

Egzamin niezdany

Wynik: 7/40 punktów (17,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Dla urządzenia zasilanego trójfazową instalacją elektryczną o napięciu nominalnym 400 V maksymalny pobór mocy wynosi 13 kW. Określ minimalną wartość prądu znamionowego zabezpieczenia przedlicznikowego, przyjmując rezystancyjny charakter odbiorników i pomijając problem selektywności zabezpieczeń?

A. 10 A
B. 25 A
C. 20 A
D. 16 A
Wybór niewłaściwej wartości prądu znamionowego zabezpieczenia przedlicznikowego może wynikać z błędnych założeń dotyczących obliczeń oraz zrozumienia charakterystyki instalacji trójfazowej. Przykładowo, wybór 25 A może wydawać się uzasadniony w kontekście zabezpieczenia przed przeciążeniem, jednak przekracza on obliczoną wartość prądu znamionowego, co może prowadzić do nieodpowiedniej ochrony. Przy wyborze zabezpieczeń istotne jest, aby były one dostosowane do rzeczywistych warunków pracy. Zbyt wysoka wartość prądu zabezpieczenia zwiększa ryzyko uszkodzenia odbiorników, ponieważ nie będą one odpowiednio chronione przed przeciążeniami, a ich praca może stać się niestabilna. Z kolei wybór 16 A oraz 10 A jest niebezpieczny, ponieważ nie zapewniają one wystarczającej mocy dla zasilania odbiorników o mocy 13 kW. Zabezpieczenia te mogą działać w trybie wyzwolenia zbyt często, co prowadzi do niepożądanych przerw w zasilaniu i mogą skutkować uszkodzeniami urządzeń. Przy doborze wartości prądu zabezpieczenia, warto również wziąć pod uwagę normy branżowe, takie jak PN-IEC 60364, które zalecają dobór zabezpieczeń z odpowiednim marginesem, aby zapewnić bezpieczeństwo i stabilność pracy instalacji. Dlatego kluczowe jest zrozumienie zasadności doboru odpowiednich zabezpieczeń i ich wpływu na pracę całej instalacji elektrycznej.

Pytanie 2

Który z poniższych środków zabezpieczających przed porażeniem prądem elektrycznym nie jest właściwy do użycia w pomieszczeniach z zamontowaną wanną lub prysznicem?

A. Izolowanie stanowiska
B. Obwody SELV
C. Separacja elektryczna
D. Obwody PELV
Izolowanie stanowiska, mimo że jest jednym z zagadnień dotyczących bezpieczeństwa elektrycznego, nie jest właściwym środkiem ochrony w kontekście pomieszczeń mokrych, takich jak łazienki. W takich miejscach, gdzie obecność wody stwarza dodatkowe ryzyko porażenia prądem, należy stosować bardziej zaawansowane metody ochrony, takie jak obwody SELV czy PELV, które są zaprojektowane z myślą o niskim napięciu i ograniczeniu ryzyka. Izolowanie stanowiska często opiera się na założeniach dotyczących pracy w suchych środowiskach, gdzie można zmniejszyć ryzyko kontaktu z przewodzącymi elementami. Jednak w pomieszczeniach z wanną lub prysznicem, ryzyko to jest znacznie wyższe, a woda jest doskonałym przewodnikiem prądu. Ponadto, separacja elektryczna, którą proponuje się w innych odpowiedziach, również nie zawsze jest wystarczająca, jeśli nie jest odpowiednio wspierana przez inne środki bezpieczeństwa. Warto zwrócić uwagę na to, że zgodnie z normami bezpieczeństwa elektrycznego, w pomieszczeniach mokrych oraz w miejscach, gdzie występuje możliwość kontaktu z wodą, rekomendowane jest stosowanie systemów, które zapewniają optymalne warunki bezpieczeństwa, takie jak odpowiednie uziemienie czy obwody z niskim napięciem. Ignorowanie tych zasad prowadzi do niebezpieczeństw, które mogą mieć poważne konsekwencje zdrowotne.

Pytanie 3

Na jaką wartość krotności prądu znamionowego silnika klatkowego trójfazowego, który napędza hydrofor w gospodarstwie domowym, powinno się ustawić zabezpieczenie termiczne?

A. 1,1 ∙ In
B. 2,2 ∙ In
C. 1,4 ∙ In
D. 0,8 ∙ In
Odpowiedź 1,1 ∙ In jest poprawna, ponieważ zabezpieczenie termiczne silnika klatkowego trójfazowego powinno być dobrane w taki sposób, aby mogło one skutecznie chronić silnik przed przegrzaniem w normalnych warunkach pracy oraz w czasie rozruchu. W praktyce, standardowe ustawienie zabezpieczeń termicznych dla silników elektrycznych, zgodne z normami, zakłada, że maksymalne obciążenie nie powinno przekraczać 1,1-krotności prądu znamionowego In. Ustawienie to uwzględnia zarówno chwilowe przeciążenia, jak i okresy pracy silnika przy pełnym obciążeniu, zapewniając jednocześnie odpowiednią ochronę przed nadmiernym wzrostem temperatury. Ważne jest, aby zabezpieczenie termiczne nie było ustawione zbyt nisko, co mogłoby prowadzić do nadmiernych wyłączeń systemu, ani zbyt wysoko, co z kolei mogłoby skutkować uszkodzeniem silnika. Przykładowo, w instalacjach hydroforowych w gospodarstwach domowych, silniki często pracują w warunkach zmiennego obciążenia, dlatego dostosowanie ustawienia na poziomie 1,1 ∙ In zapewnia optymalną równowagę między ochroną a dostępnością mocy.

Pytanie 4

Jakie z wymienionych uszkodzeń można zidentyfikować podczas przeglądów podtynkowej instalacji elektrycznej?

A. Przekroczenie maksymalnego czasu reakcji RCD
B. Pogorszenie jakości izolacji przewodów instalacji
C. Uszkodzenia mechaniczne obudów oraz osłon urządzeń elektrycznych
D. Zerwanie w układzie przewodów ochronnych
Uszkodzenia mechaniczne obudów i osłon urządzeń elektrycznych są jednymi z najłatwiejszych do zidentyfikowania podczas oględzin podtynkowej instalacji elektrycznej. Obejmują one widoczne wgniecenia, pęknięcia oraz inne defekty zewnętrzne, które mogą negatywnie wpłynąć na bezpieczeństwo i funkcjonowanie instalacji. Obudowy urządzeń elektrycznych, takie jak skrzynki rozdzielcze czy osłony gniazdek, pełnią kluczową rolę w ochronie przed uszkodzeniami mechanicznymi oraz zapewnieniu bezpieczeństwa użytkowników. Regularne oględziny tych elementów są zalecane w ramach przeglądów okresowych, zgodnie z normami PN-EN 60204-1 dotyczącymi bezpieczeństwa maszyn oraz obowiązującymi przepisami prawa budowlanego. Przykładowo, w przypadku pękniętej obudowy gniazdka, istnieje ryzyko kontaktu z elementami przewodzącymi prąd, co może prowadzić do porażenia elektrycznego. Dlatego kluczowym jest, aby wszelkie uszkodzenia były niezwłocznie naprawiane, co podkreśla znaczenie systematycznych kontroli i odpowiednich działań prewencyjnych w zakresie utrzymania instalacji elektrycznych w dobrym stanie.

Pytanie 5

Aby zapewnić skuteczną ochronę przed porażeniem prądem dla użytkowników gniazd wtyczkowych z prądem nieprzekraczającym 32 A, należy je chronić wyłącznikiem różnicowoprądowym o nominalnym prądzie różnicowym wynoszącym

A. 500 mA
B. 1 000 mA
C. 30 mA
D. 100 mA
Wyłącznik różnicowoprądowy o znamionowym prądzie różnicowym równym 30 mA jest uważany za standard w przypadku ochrony użytkowników obwodów gniazd wtyczkowych o prądzie nieprzekraczającym 32 A. Jego głównym zadaniem jest szybka detekcja prądów upływowych, które mogą stwarzać zagrożenie porażenia prądem elektrycznym. Prąd różnicowy 30 mA jest skutecznym zabezpieczeniem, które wyłącza obwód w przypadku wykrycia różnicy prądów powyżej tej wartości, co znacząco redukuje ryzyko poważnych obrażeń ciała. W praktyce, w przypadku zastosowań w domach i lokalach użyteczności publicznej, wyłączniki te są często stosowane w obwodach zasilających gniazda, gdzie użytkownicy mogą mieć styczność z wodą lub wilgotnymi warunkami. Dodatkowo, zgodnie z normą PN-EN 61008-1, wyłączniki różnicowoprądowe o prądzie różnicowym 30 mA powinny być standardem w instalacjach elektrycznych, gdzie występuje ryzyko porażenia ciała ludzkiego.

Pytanie 6

Która z poniższych przyczyn powoduje nagły wzrost obrotów w trakcie działania silnika bocznikowego prądu stałego?

A. Przerwa w uzwojeniu wzbudzenia
B. Przerwa w obwodzie twornika
C. Zwarcie w uzwojeniu komutacyjnym
D. Zwarcie w obwodzie twornika
Zgłębiając temat przyczyn nagłego wzrostu prędkości obrotowej silnika bocznikowego prądu stałego, warto zauważyć, że przedstawione niepoprawne odpowiedzi odnoszą się do różnych aspektów funkcjonowania silników elektrycznych. Zwarcie w obwodzie twornika może prowadzić do znacznego wzrostu prądu, co w praktyce skutkuje przeciążeniem silnika, ale nie bezpośrednio do wzrostu prędkości obrotowej. W rzeczywistości, zwarcie w obwodzie twornika powoduje spadek napięcia, co z kolei zmniejsza moment obrotowy i może prowadzić do jego uszkodzenia. Oba te zjawiska są sprzeczne z zasadami działania silników prądu stałego, w których to napięcie i przepływ prądu są kluczowe dla generowania momentu obrotowego. Z kolei zwarcie w uzwojeniu komutacyjnym, chociaż może wpływać na działanie komutatora, nie jest bezpośrednią przyczyną wzrostu prędkości obrotowej. W przypadku przerwy w obwodzie twornika, silnik w zasadzie przestaje działać, co również nie prowadzi do wzrostu prędkości. Warto zatem nieco lepiej zrozumieć mechanizmy działania silników, aby unikać mylnych interpretacji związanych z zagadnieniami elektrycznymi i ich wpływem na wydajność urządzeń. Kluczowe jest zrozumienie, jak różne komponenty silników wpływają na ich działanie oraz jakie zabezpieczenia są potrzebne, aby zminimalizować ryzyko uszkodzeń w wyniku nieprawidłowego działania.

Pytanie 7

W instalacji trójfazowej prąd obciążenia w przewodach fazowych IB = 25 A, a maksymalna obciążalność długotrwała tych przewodów Idd = 30 A. Który z poniższych wyłączników nadprądowych powinien być użyty do ochrony tej instalacji przed działaniem nadmiernego prądu?

A. B32
B. B25
C. B16
D. B20
Wyłącznik nadprądowy B25 jest odpowiedni do zabezpieczenia instalacji trójfazowej, w której prąd obciążenia wynosi 25 A, a obciążalność długotrwała przewodów to 30 A. Wyłączniki nadprądowe oznaczone literą 'B' charakteryzują się określoną charakterystyką działania, która zazwyczaj jest stosowana w instalacjach domowych i małych przedsiębiorstwach. W przypadku prądu znamionowego B25, wyłącznik ten będzie działał przy prądzie obciążenia do 25 A, co oznacza, że nie zadziała w warunkach normalnej pracy. Jednakże, dla prądów przekraczających ten poziom, wyłącznik zareaguje, zapewniając odpowiednią ochronę. W praktyce oznacza to, że B25 oferuje wystarczający margines bezpieczeństwa, aby chronić przewody przed przeciążeniem, które mogłoby prowadzić do uszkodzenia izolacji, przegrzania lub nawet pożaru. Stosując B25, przestrzegamy zasad dotyczących doboru zabezpieczeń, zgodnych z normami PN-IEC 60898, które rekomendują, aby prąd znamionowy wyłącznika był bliski wartości prądu obciążenia, ale nie mniejszy, aby uniknąć niepotrzebnych wyłączeń. Przykładowo, w instalacjach o dużych obciążeniach, takich jak warsztaty czy zakłady produkcyjne, dobór odpowiednich wyłączników nadprądowych jest kluczowy dla zapewnienia bezpieczeństwa i efektywności operacyjnej.

Pytanie 8

Jakie z wymienionych elementów można wymieniać w instalacjach elektrycznych o napięciu 230 V bez konieczności wyłączania zasilania?

A. Opraw oświetleniowych.
B. Wkładek bezpiecznikowych.
C. Elementów łącznikowych.
D. Wyłączników różnicowoprądowych.
Wkładki bezpiecznikowe są elementami instalacji elektrycznych, które można wymieniać bez konieczności wyłączania zasilania, o ile zastosowane są odpowiednie rozwiązania technologiczne, takie jak wkładki bezpiecznikowe typu 'hot swap'. W praktyce oznacza to, że użytkownicy mogą wymieniać te elementy, aby przywrócić funkcjonalność obwodu, minimalizując ryzyko wystąpienia przerw w zasilaniu. Wkładki bezpiecznikowe mają kluczowe znaczenie dla bezpieczeństwa instalacji, ponieważ zabezpieczają obwody przed przeciążeniem i zwarciem. Prawidłowa wymiana tych wkładek, bez wyłączania zasilania, jest zgodna z normami bezpieczeństwa elektrycznego, takimi jak PN-IEC 60947, które określają wymagania dla urządzeń przeznaczonych do pracy w instalacjach elektrycznych. Przykładowo, w obiektach przemysłowych, gdzie nieprzerwane zasilanie ma kluczowe znaczenie, możliwość wymiany wkładek bezpiecznikowych w czasie pracy instalacji przyczynia się do zwiększenia efektywności operacyjnej.

Pytanie 9

W instalacji elektrycznej z napięciem nominalnym 230 V, skonstruowanej w systemie TN-S, działa urządzenie, które należy do pierwszej klasy ochronności. Jakie środki powinny być wdrożone, aby zapewnić dodatkową ochronę przed porażeniem w tym urządzeniu?

A. Wykonać lokalne połączenia wyrównawcze
B. Zainstalować transformator redukcyjny
C. Ułożyć dodatkową warstwę izolacyjną na podłożu
D. Połączyć obudowę z przewodem ochronnym
Połączenie obudowy urządzenia z przewodem ochronnym jest kluczowym środkiem zabezpieczającym przed porażeniem elektrycznym w instalacjach elektrycznych. W przypadku urządzeń klasy I, które polegają na ochronie poprzez uziemienie, takie połączenie ma na celu zapewnienie, że w przypadku awarii izolacji, prąd upływowy zostanie skierowany do ziemi, co zminimalizuje ryzyko porażenia prądem. W instalacjach TN-S, gdzie przewód ochronny (PE) jest oddzielony od przewodu neutralnego (N), jest to szczególnie istotne. Przykładem praktycznym może być sprzęt AGD, jak lodówka czy pralka, które muszą mieć pewne połączenia ochronne, aby zapewnić bezpieczeństwo użytkowników. Standardy takie jak PN-IEC 60364 stanowią podstawę dla projektowania i wykonania instalacji elektrycznych, a także definiują wymagania dotyczące ochrony przed porażeniem elektrycznym, co podkreśla znaczenie właściwego połączenia obudowy z przewodem ochronnym.

Pytanie 10

Podczas uruchamiania silnika pralki wyzwala się od razu wyłącznik różnicowoprądowy. Aby zidentyfikować problem, zmierzono rezystancję pomiędzy wszystkimi zaciskami uzwojeń silnika a obudową, uzyskując dla każdego pomiaru wartość w okolicach 7 kΩ. Co można wnioskować na podstawie tych pomiarów?

A. Pojawiła się przerwa w jednym z uzwojeń silnika
B. Jedno z uzwojeń odłączyło się od tabliczki zaciskowej
C. Jeden z zacisków silnika może być poluzowany
D. Izolacja uzwojeń silnika jest zawilgocona
Izolacja uzwojeń silnika została zawilgocona, co jest przyczyną nieprawidłowego działania wyłącznika różnicowoprądowego w momencie załączenia silnika. Podczas pomiaru rezystancji między zaciskami uzwojeń silnika a obudową, wartość około 7 kΩ może sugerować, że izolacja jest uszkodzona lub zawilgotniała. W normalnych warunkach rezystancja powinna być znacznie wyższa, co wskazywałoby na dobrą izolację. Wilgoć w izolacji może prowadzić do przewodzenia prądu, a to z kolei powoduje zadziałanie wyłącznika różnicowoprądowego jako elementu zabezpieczającego przed porażeniem prądem. Praktyczne zastosowanie tej wiedzy polega na regularnym sprawdzaniu stanu izolacji, zwłaszcza w wilgotnych warunkach. W przypadku stwierdzenia niskiej rezystancji, należy przeprowadzić szczegółową diagnostykę i ewentualnie wymienić uszkodzone elementy, co jest zgodne z normami dotyczącymi bezpieczeństwa elektrycznego, jak np. PN-EN 60204-1. Taki przegląd jest kluczowy w celu zapewnienia bezpieczeństwa użytkowników i trwałości urządzeń elektrycznych.

Pytanie 11

Który z poniższych przewodów powinien zastąpić uszkodzony przewód OW 4×2,5 mm2, który zasila silnik indukcyjny trójfazowy do napędu maszyny w warsztacie ślusarskim?

A. H03V2V2-F 3G2,5
B. H07RR-F 5G2,5
C. H03V2V2H2-F 2X2,5
D. H07VV-U 5G2,5

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź H07RR-F 5G2,5 jest poprawna, ponieważ przewody te charakteryzują się odpowiednią konstrukcją oraz właściwościami mechanicznymi, które są niezbędne do zasilania silników indukcyjnych w warunkach warsztatowych. Przewód H07RR-F to elastyczny przewód gumowy, co oznacza, że jest odporny na zginanie i uszkodzenia mechaniczne. Dzięki temu idealnie nadaje się do pracy w miejscach o dużym ryzyku uszkodzenia, takich jak warsztaty, gdzie maszyny są często przemieszczane. Dodatkowo, przewód ten posiada pięć żył o przekroju 2,5 mm², co zapewnia odpowiednią nośność prądową oraz możliwość podłączenia do trójfazowych silników indukcyjnych. Zgodnie z normą IEC 60227, H07RR-F spełnia wszystkie wymagania dotyczące bezpieczeństwa oraz jakości, co czyni go odpowiednim wyborem w kontekście zasilania silników. W praktyce, stosując ten przewód, można zminimalizować ryzyko pożaru oraz awarii sprzętu, co jest kluczowe w każdej przestrzeni roboczej.

Pytanie 12

Przed dokonaniem pomiarów rezystancji izolacji w elektrycznej instalacji oświetleniowej należy odciąć zasilanie, zdemontować ochronniki przeciwprzepięciowe oraz

A. otworzyć łączniki instalacyjne i wykręcić źródła światła
B. zamknąć łączniki instalacyjne i wykręcić źródła światła
C. otworzyć łączniki instalacyjne i wkręcić źródła światła
D. zamknąć łączniki instalacyjne i wkręcić źródła światła

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zamknięcie łączników instalacyjnych oraz wykręcenie źródeł światła przed przeprowadzeniem pomiarów rezystancji izolacji jest kluczowym krokiem mającym na celu zapewnienie bezpieczeństwa oraz dokładności pomiarów. W przypadku otwartych łączników, istnieje ryzyko, że zwarcie może wystąpić, co może prowadzić do uszkodzeń urządzeń pomiarowych oraz stwarzać niebezpieczeństwo dla osoby wykonującej pomiar. Wykręcenie źródeł światła pozwala na minimalizację ryzyka wprowadzenia dodatkowych elementów do obwodu, które mogłyby zakłócić pomiar. Zgodnie z obowiązującymi normami, takimi jak PN-IEC 60364, zaleca się, aby przed przeprowadzeniem jakichkolwiek pomiarów elektrycznych najpierw odłączyć zasilanie oraz przygotować instalację w sposób gwarantujący bezpieczeństwo. Przykładowo, w przypadku instalacji oświetleniowej, wykręcenie źródeł światła nie tylko redukuje ryzyko, ale również umożliwia dokładniejsze pomiary rezystancji izolacji, co jest kluczowe dla oceny stanu technicznego instalacji i jej zgodności z obowiązującymi przepisami.

Pytanie 13

Podczas diagnostyki silnika elektrycznego stwierdzono, że uzwojenie stojana ma obniżoną rezystancję izolacji. Jakie działania należy podjąć?

A. Zastosować dodatkowe uziemienie
B. Zmniejszyć prąd wzbudzenia
C. Przeprowadzić osuszanie uzwojenia lub wymienić izolację
D. Zwiększyć częstotliwość napięcia zasilającego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Obniżona rezystancja izolacji w uzwojeniu stojana silnika elektrycznego jest poważnym problemem, który może prowadzić do awarii silnika lub nawet zagrożenia bezpieczeństwa. Jednym z podstawowych działań, które należy podjąć, jest osuszanie uzwojenia. Proces ten ma na celu usunięcie wilgoci, która często jest przyczyną obniżonej rezystancji izolacji. Osuszanie można przeprowadzić za pomocą specjalnych urządzeń grzewczych lub wykorzystując energię elektryczną do podgrzania uzwojeń. Jeśli osuszanie nie przynosi oczekiwanych rezultatów, konieczna może być wymiana izolacji na nową, co jest bardziej skomplikowanym i kosztownym procesem. Współczesne normy i dobre praktyki branżowe zalecają regularne monitorowanie stanu izolacji oraz stosowanie materiałów o wysokiej odporności na wilgoć i temperaturę. Dzięki temu można zminimalizować ryzyko wystąpienia tego typu problemów i zapewnić niezawodną pracę urządzeń elektrycznych. Ważne jest, aby wszelkie prace naprawcze były wykonywane zgodnie z wytycznymi producenta oraz normami bezpieczeństwa, co zapewnia długą i bezawaryjną pracę silnika elektrycznego.

Pytanie 14

Wartość rezystancji cewki stycznika w układzie sterującym silnikiem wynosi 0 Ω. Co można na podstawie tego pomiaru wnioskować?

A. przewód fazowy jest odłączony
B. cewka stycznika jest uszkodzona
C. cewka stycznika działa prawidłowo
D. przewód neutralny jest odłączony

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar rezystancji cewki stycznika wynoszący 0 Ω jednoznacznie wskazuje na zwarcie w tej cewce, co sugeruje jej uszkodzenie. W praktyce, cewka stycznika jest elementem wykonawczym, który za pomocą pola elektromagnetycznego kontroluje włączanie i wyłączanie obwodów elektrycznych. W przypadku, gdy wartość rezystancji cewki wynosi zero, oznacza to, że nie ma oporu dla przepływu prądu, co jest typowym objawem uszkodzenia. Stosując się do normy IEC 60204-1, która reguluje wymogi dotyczące bezpieczeństwa maszyn, należy regularnie kontrolować stan elementów sterujących, aby zapewnić ich prawidłowe funkcjonowanie i unikać sytuacji, które mogą prowadzić do awarii całego systemu. Przykładowo, w zastosowaniach przemysłowych, gdzie styczniki sterują silnikami, uszkodzenie cewki może prowadzić do poważnych problemów operacyjnych, jak zatrzymanie produkcji. Dlatego ważne jest, aby po zidentyfikowaniu takiej usterki, niezwłocznie przeprowadzić wymianę cewki na nową, aby przywrócić pełną funkcjonalność układu.

Pytanie 15

Jak często, według podanych w tabeli i zalecanych przez Prawo Budowlane czasookresów, należy wykonywać pomiary okresowe skuteczności ochrony przeciwporażeniowej i rezystancji izolacji instalacji elektrycznych w szkołach?

Zalecana częstotliwość wykonywania okresowych badań sprawności technicznej instalacji elektrycznych
w zależności od warunków środowiskowych
Lp.Rodzaj pomieszczeniaPomiar skuteczności ochrony
przeciwporażeniowej
(nie rzadziej niż):
Pomiar rezystancji izolacji
(nie rzadziej niż):
1O wyziewach żrących1 rok1 rok
2Zagrożonych wybuchem1 rok1 rok
3Otwarta przestrzeń1 rok5 lat
4Wilgotne i bardzo wilgotne
(o wilgotności względnej 75-100%)
1 rok5 lat
5Gorące (temperatura powyżej 35 °C)1 rok5 lat
6Zagrożone pożarem5 lat1 rok
7Stwarzające zagrożenie dla ludzi
(ZL I, ZL II, ZL III)
5 lat1 rok
8Zapylone5 lat5 lat


Pomiar skuteczności ochrony
przeciwporażeniowej
(nie rzadziej niż):
Pomiar rezystancji izolacji
(nie rzadziej niż):
A1 rok1 rok
B1 rok5 lat
C5 lat1 rok
D5 lat5 lat
A. B.
B. A.
C. D.
D. C.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź C jest prawidłowa, ponieważ zgodnie z obowiązującymi przepisami prawa budowlanego oraz standardami technicznymi, pomiary skuteczności ochrony przeciwporażeniowej w szkołach powinny być przeprowadzane co 5 lat, natomiast pomiary rezystancji izolacji wymagają okresowego sprawdzania co rok. Takie podejście ma na celu zapewnienie bezpieczeństwa użytkowników obiektów edukacyjnych, gdzie prawidłowa ochrona przed porażeniem prądem elektrycznym jest kluczowa. Przykładowo, w przypadku awarii systemów ochronnych, konsekwencje mogą być nie tylko materialne, ale przede wszystkim zdrowotne, zagrażające życiu uczniów i personelu. Regularne kontrole pozwalają na wczesne wykrycie potencjalnych usterek, co z kolei przyczynia się do zmniejszenia ryzyka wypadków. Warto zwrócić uwagę na standardy, takie jak PN-IEC 60364, które szczegółowo regulują wymagania dotyczące instalacji elektrycznych oraz ich okresowej konserwacji. Przestrzeganie tych zasad jest nie tylko obowiązkiem, ale również najlepszą praktyką w zarządzaniu bezpieczeństwem elektrycznym w obiektach edukacyjnych.

Pytanie 16

W tabeli zamieszczono wyniki okresowych pomiarów impedancji pętli zwarcia instalacji elektrycznej budynku mieszkalnego wykonanej w układzie TN-S. Jaka jest najbardziej prawdopodobna przyczyna zwiększonej wartości Zs w sypialni?

Pomiar impedancji pętli zwarcia obwodów gniazd jednofazowych zabezpieczonych wyłącznikami nadprądowymi B16
Pomieszczenie:SalonSypialniaKuchniaPrzedpokójŁazienka
Wartość ZS:2,32 Ω6,84 Ω1,72 Ω1,39 Ω2,55 Ω
A. Brak ciągłości przewodu ochronnego w mierzonym obwodzie.
B. Poluzowany przewód liniowy zasilający gniazda w mierzonym obwodzie.
C. Niewłaściwie dobrany wyłącznik nadprądowy dla mierzonego obwodu.
D. Brak ciągłości przewodu neutralnego w mierzonym obwodzie.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź dotyczy poluzowanego przewodu liniowego zasilającego gniazda w obwodzie, co może prowadzić do zwiększonej wartości impedancji pętli zwarcia (Zs). W praktyce, poluzowanie przewodu wpływa na zwiększenie rezystancji, co z kolei podnosi wartość Zs. W sytuacji awaryjnej, wysoka impedancja pętli zwarcia oznacza, że w przypadku wystąpienia zwarcia prąd zwarcia będzie niższy, co może prowadzić do opóźnienia w działaniu zabezpieczeń, takich jak wyłączniki nadprądowe, co naraża instalację na potencjalne uszkodzenia. Standardy, takie jak PN-IEC 60364, podkreślają znaczenie zapewnienia odpowiedniej wartości Zs dla bezpieczeństwa użytkowania instalacji. Warto regularnie przeprowadzać pomiary Zs w obiektach, aby upewnić się, że wartości te są zgodne z wymaganiami normatywnymi i praktykami branżowymi, co zapobiega ryzyku pożarów oraz uszkodzeń urządzeń elektrycznych.

Pytanie 17

Jakie konsekwencje wystąpią w instalacji elektrycznej po zamianie przewodów ADY 2,5 mm2 na DY 2,5 mm2?

A. Obniżenie rezystancji pętli zwarciowej
B. Obniżenie obciążalności prądowej
C. Wzrost spadku napięcia na przewodach
D. Zwiększenie temperatury przewodu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wymiana przewodów ADY 2,5 mm² na DY 2,5 mm² prowadzi do zmniejszenia rezystancji pętli zwarciowej dzięki zastosowaniu przewodów o lepszej jakości i właściwościach materiałowych. Przewody DY charakteryzują się mniejszym oporem elektrycznym, co bezpośrednio wpływa na efektywność działania instalacji elektrycznej. Przy niższej rezystancji pętli zwarciowej, w przypadku awarii, prąd zwarciowy jest wyższy, co pozwala na szybsze działanie zabezpieczeń, takich jak wyłączniki nadprądowe czy różnicowoprądowe. Standardy określające wymagania dla instalacji elektrycznych, jak PN-IEC 60364, podkreślają znaczenie minimalizowania rezystancji w systemach elektroenergetycznych, aby zapewnić bezpieczeństwo i niezawodność. Przykładem praktycznym jest instalacja w obiektach przemysłowych, gdzie szybka reakcja zabezpieczeń jest kluczowa dla ochrony sprzętu i ludzi. Właściwe dobranie przewodów w instalacjach elektrycznych ma zatem kluczowe znaczenie dla bezpieczeństwa oraz efektywności energetycznej.

Pytanie 18

Który z poniższych przetworników powinien być użyty do pomiaru momentu obrotowego działającego na wał napędowy silnika elektrycznego?

A. Pozystor
B. Tensometr
C. Halotron
D. Piezorezystor

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Tensometr to przetwornik, który jest idealnym narzędziem do pomiaru momentu obrotowego, szczególnie w kontekście wałów napędowych silników elektrycznych. Działa na zasadzie pomiaru deformacji, które są wynikiem przyłożonego momentu obrotowego. Kiedy wał napędowy zostaje poddany obciążeniu, jego deformacja jest proporcjonalna do przyłożonego momentu, co pozwala na dokładne obliczenie tego momentu przy użyciu tensometrów. Przykłady zastosowania tensometrów obejmują przemysł motoryzacyjny, gdzie są wykorzystywane do testowania komponentów silników, a także w maszynach przemysłowych do monitorowania stanu technicznego wałów oraz detekcji przeciążeń. W branży stosuje się także standardy, takie jak ISO 376, które regulują metody kalibracji i pomiaru tensometrycznego, zapewniając wysoką precyzję i niezawodność wyników. Zastosowanie tensometrów w praktyce nie tylko poprawia jakość pomiarów, ale również zwiększa bezpieczeństwo operacyjne, dzięki możliwości wczesnego wykrywania problemów w systemach napędowych.

Pytanie 19

Jakim rodzajem wyłączników nadprądowych powinien być zabezpieczony obwód zasilania silnika klatkowego trójfazowego, którego parametry znamionowe to: PN = 11 kW, UN = 400 V, cos φ = 0,73, η = 80%?

A. S303 C32
B. S303 C25
C. S303 C20
D. S303 C40

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to S303 C32, ponieważ w przypadku obwodu zasilania trójfazowego silnika klatkowego o mocach znamionowych 11 kW i napięciu 400 V, należy obliczyć prąd roboczy silnika. Prąd ten można wyznaczyć ze wzoru: I = P / (√3 * U * cos φ), co daje wartość około 18,5 A. Z uwagi na istotne zmiany w obciążeniu oraz do ochrony przed przeciążeniem i zwarciem, stosuje się wyłączniki nadprądowe, które powinny mieć wartość znamionową prądu nie niższą niż 125% prądu roboczego silnika. W tym przypadku 125% z 18,5 A to 23,125 A, co wskazuje na to, że wyłącznik S303 C25 (25 A) byłby niewystarczający. Wyłącznik S303 C32 z wartością 32 A jest odpowiedni, ponieważ zapewnia odpowiedni margines bezpieczeństwa. Tego typu wyłączniki są szeroko stosowane w przemyśle i są zgodne z normami EN 60947-2, co zapewnia ich wysoką jakość i niezawodność.

Pytanie 20

Silnik prądu stałego w układzie szeregowym dysponuje parametrami: PN = 8 kW, UN = 440 V, IN = 20 A, Rt = 0,5 ? (całkowita rezystancja twornika), RW = 0,5 ? (rezystancja wzbudzenia). Jaką wartość powinna mieć całkowita rezystancja rozrusznika, jeśli prąd rozruchowy silnika ma wynosić dwa razy więcej niż prąd znamionowy?

A. 21 ?
B. 22 ?
C. 10 ?
D. 11 ?

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby obliczyć całkowitą wartość rezystancji rozrusznika, należy najpierw zrozumieć, że przy rozruchu silnika prąd osiąga wartość dwukrotnie wyższą niż prąd znamionowy. W tym przypadku prąd rozruchowy wynosi 2 * I_N = 2 * 20 A = 40 A. Całkowita rezystancja układu, która pozwoli na osiągnięcie tego prądu przy napięciu znamionowym, może być obliczona za pomocą prawa Ohma: R = U / I. Podstawiając dane: R = 440 V / 40 A = 11 ?. Następnie, uwzględniając rezystancje twornika (R_t = 0,5 ?) oraz rezystancję wzbudzenia (R_W = 0,5 ?), możemy obliczyć całkowitą rezystancję rozrusznika jako: R_rozrusznika = R - (R_t + R_W) = 11 ? - 1 ? = 10 ?. Takie wyliczenie jest kluczowe przy projektowaniu obwodów rozruchowych i zapewnia, że silnik będzie uruchamiany w sposób bezpieczny i efektywny. W praktyce, prawidłowe dobranie rezystancji rozrusznika może znacznie wydłużyć żywotność sprzętu oraz zminimalizować ryzyko uszkodzeń.

Pytanie 21

Jaką wartość powinno mieć napięcie testowe podczas pomiaru rezystancji izolacyjnej uzwojenia wtórnego transformatora ochronnego?

A. 250 V
B. 2 000 V
C. 1 000 V
D. 500 V

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wartość napięcia probierczego przy pomiarach rezystancji izolacji uzwojenia wtórnego transformatora bezpieczeństwa powinna wynosić 250 V. Zgodnie z normami IEC 61557 oraz PN-EN 61557-1, pomiary rezystancji izolacji są przeprowadzane w celu oceny stanu izolacji oraz jej zdolności do zapewnienia bezpieczeństwa użytkowników. Napięcie 250 V jest uznawane za odpowiednie dla systemów niskonapięciowych, w tym transformatorów bezpieczeństwa, aby nie uszkodzić wrażliwych komponentów. Dodatkowo, stosowanie niższego napięcia probierczego, jak 250 V, jest zalecane w kontekście minimalizacji ryzyka uszkodzenia izolacji oraz potencjalnych zagrożeń elektrycznych. Przykładem zastosowania jest regularne testowanie instalacji elektrycznej w budynkach użyteczności publicznej, gdzie zgodnie z przepisami bezpieczeństwa elektrycznego, przeprowadzane są pomiary rezystancji izolacji dla oceny jej stanu. Ekspert zaleca takie pomiary co najmniej raz na pięć lat, aby zapewnić wysoką jakość oraz bezpieczeństwo instalacji.

Pytanie 22

Kto jest zobowiązany do opracowania planów regularnych przeglądów oraz konserwacji instalacji elektrycznej w obiekcie mieszkalnym?

A. Dostawca energii elektrycznej
B. Właściciel lub zarządca nieruchomości
C. Użytkownicy mieszkań
D. Organ inspekcji technicznej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Właściciel lub zarządca budynku jest odpowiedzialny za sporządzenie planów okresowych kontroli i napraw instalacji elektrycznej, co wynika z przepisów prawa budowlanego oraz standardów dotyczących zarządzania budynkami. Właściciel budynku ma obowiązek zapewnienia bezpieczeństwa instalacji elektrycznej, co obejmuje regularne przeglądy, które mogą wykryć potencjalne zagrożenia, takie jak przestarzałe komponenty, uszkodzenia mechaniczne czy nieprawidłowe połączenia. W praktyce, właściciele i zarządcy często korzystają z usług wyspecjalizowanych firm zajmujących się audytem i konserwacją instalacji elektrycznych. Dobre praktyki branżowe wskazują, że takie kontrole powinny być przeprowadzane co najmniej raz w roku, a szczególnie w przypadku starszych budynków, gdzie ryzyko awarii jest wyższe. Dodatkowo, zgodnie z normą PN-IEC 60364-6, regularne inspekcje są kluczowe dla zapewnienia bezpieczeństwa użytkowników oraz minimalizacji ryzyka pożarowego. Właściciele powinni również prowadzić dokumentację tych przeglądów, co jest istotne nie tylko dla utrzymania standardów, ale także w kontekście ewentualnych roszczeń ubezpieczeniowych.

Pytanie 23

Które z podanych wskazówek nie odnosi się do projektanta oraz wykonawcy nowej instalacji elektrycznej w lokalu mieszkalnym?

A. Odbiorniki o dużej mocy, które są zainstalowane na stałe, powinny być zasilane z wydzielonych obwodów
B. Oddzielić obwody oświetlenia od obwodów z gniazdami wtykowymi
C. Gniazda wtykowe w każdym pomieszczeniu zasilane powinny być z oddzielnego obwodu
D. Gniazda wtykowe w kuchni należy zasilać z oddzielnego obwodu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Gniazda wtykowe każdego pomieszczenia zasilać z osobnego obwodu to zalecenie, które nie znajduje zastosowania w standardach dotyczących instalacji elektrycznych w pomieszczeniach mieszkalnych. Według norm PN-IEC 60364-1 oraz wytycznych związanych z projektowaniem instalacji elektrycznych, obwody gniazd wtykowych mogą być grupowane, aby zminimalizować koszty i uprościć instalację. Zazwyczaj zaleca się, aby gniazda wtykowe w jednym pomieszczeniu były zasilane z jednego obwodu, co pozwala na efektywne wykorzystanie energii oraz ogranicza liczbę wymaganych obwodów w rozdzielnicy. Przykładowo, w typowej kuchni lub salonie, gdzie wykorzystuje się wiele gniazd wtykowych, projektowanie obwodów z wykorzystaniem jednego obwodu dla danego pomieszczenia jest praktycznym rozwiązaniem. Ponadto, stosując się do takich zasad, można uniknąć niepotrzebnej komplikacji w instalacji oraz eksploatacji, co sprzyja bezpieczeństwu użytkowania."

Pytanie 24

Jakie metody zapewniają ochronę przed porażeniem w instalacji fotowoltaicznej na stronie prądu stałego w przypadku uszkodzenia?

A. wykonanie wszystkich elementów w II klasie ochronności
B. użycie automatycznego wyłączenia zasilania przez zastosowanie bezpieczników topikowych
C. użycie automatycznego wyłączenia zasilania poprzez wyłączniki nadprądowe
D. umieszczenie wszystkich komponentów na izolowanym podłożu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wykonanie urządzeń w II klasie ochronności oznacza, że są one zaprojektowane w taki sposób, aby zapewnić odpowiedni poziom bezpieczeństwa użytkownikom. Urządzenia te mają dodatkowe izolacje oraz nie wymagają podłączenia do uziemienia, co jest kluczowe w instalacjach fotowoltaicznych, gdzie prąd stały może stanowić zagrożenie w przypadku awarii. Przykładem zastosowania tego rozwiązania może być montaż paneli słonecznych, w których zastosowane komponenty są certyfikowane jako spełniające normy II klasy ochronności. W przypadku uszkodzenia instalacji, takie urządzenia zminimalizują ryzyko porażenia prądem, ponieważ są one zaprojektowane tak, by nie dopuścić do wystąpienia niebezpiecznych napięć na obudowie. Dodatkowo, stosowanie urządzeń w II klasie ochronności jest zgodne z normami IEC 61140, które definiują wymagania dotyczące ochrony osób przed porażeniem elektrycznym, co potwierdza ich praktyczną wartość na etapie projektowania i wdrażania instalacji fotowoltaicznych.

Pytanie 25

Jakiego rodzaju zabezpieczenie powinno być zastosowane, gdy rozruch silnika indukcyjnego pierścieniowego bez urządzeń rozruchowych jest niedopuszczalny?

A. Zabezpieczenia podnapięciowego
B. Zabezpieczenia nadnapięciowego
C. Zabezpieczenia zwarciowego
D. Zabezpieczenia przeciążeniowego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zabezpieczenie podnapięciowe w systemach rozruchu silników indukcyjnych pierścieniowych jest naprawdę istotne, jak dla ich bezpieczeństwa, tak i dla samego działania urządzenia. Działa to tak, że jak napięcie spada poniżej pewnego poziomu, to układ nie pozwala na uruchomienie silnika. Bo wiesz, w przypadku silników pierścieniowych, które często używa się tam, gdzie potrzebny jest duży moment obrotowy, jeśli nie zastosujesz dobrego zabezpieczenia, możesz doprowadzić do przeciążenia i w efekcie uszkodzenia silnika. Takie zabezpieczenie ma na celu to, żeby silnik nie wystartował, gdy napięcie jest za niskie, bo to może prowadzić do przegrzania uzwojeń i innych poważnych problemów. W przemyśle takie zabezpieczenia są standardem, bo niewłaściwa praca silnika może wywołać dodatkowe koszty i przestoje. Często też normy, jak IEC 60947-4-1, mówią, że warto mieć takie zabezpieczenia, żeby chronić silniki przed złymi warunkami zasilania, co jest zgodne z tym, jak to się robi w branży.

Pytanie 26

Korzystając z tabeli, w której zamieszczono dopuszczalne wartości obciążalności prądowej długotrwałej, dobierz przekrój przewodów jednożyłowych typu DY do wykonania trójfazowego obwodu instalacji mieszkaniowej ułożonej w rurach. Obwód ma zasilać odbiorniki energii elektrycznej o łącznej mocy znamionowej 16 kVA przy napięciu znamionowym 400 V.

Przekrój przewodu mm²Jeden lub kilka przewodów 1-żyłowych ułożonych w rurzePrzewody płaszczowe, rurowe, wtynkowePrzewody gołe
Żyła Cu, AŻyła Al., AŻyła Cu, AŻyła Al, AŻyła Cu, AŻyła Al, A
A.1,011-15-19-
B.1,515-18-24-
C.2,5201526203226
D.4,0252034274233
A. D.
B. B.
C. C.
D. A.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź D jest poprawna, ponieważ została oparta na właściwych obliczeniach. Aby dobrać odpowiedni przekrój przewodów jednożyłowych typu DY, należy najpierw obliczyć prąd obciążenia obwodu trójfazowego. Moc znamionowa wynosząca 16 kVA przy napięciu 400 V prowadzi do obliczenia prądu obciążenia jako 16 kVA / (√3 * 400 V) co daje około 23.09 A. Z tabeli obciążalności prądowej wynika, że przewód o przekroju 4 mm² ma obciążalność 25 A, co przewyższa wymaganą wartość prądu. W praktyce, stosowanie odpowiednich przekrojów przewodów jest kluczowe dla zapewnienia bezpieczeństwa i niezawodności instalacji elektrycznych. Przewody o niewłaściwym przekroju mogą się przegrzewać, co może prowadzić do uszkodzeń, a nawet pożaru. W zainstalowanych systemach elektrycznych zaleca się także stosowanie kabelków o zapasie mocy, co pozwala na przyszłe rozbudowy instalacji oraz może pomóc w uniknięciu potencjalnych problemów.

Pytanie 27

Jakie urządzenia są najmniej podatne na obecność wyższych harmonicznych w napięciu oraz prądzie zasilającym?

A. Transformatory
B. Lampy wyładowcze
C. Silniki indukcyjne
D. Piece grzewcze

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Piece grzewcze to takie urządzenia, które radzą sobie całkiem dobrze nawet z wyższymi harmonicznymi napięcia i prądów. W przeciwieństwie do silników indukcyjnych czy transformatorów, które mogą mieć z tym poważne problemy, piece grzewcze zamieniają energię elektryczną w ciepło. To oznacza, że ich działanie nie zależy od kształtu fali zasilającej, więc są dość odporne na różne zniekształcenia. Jeśli chodzi o standardy, jak IEC 61000, które dotyczą odporności na zakłócenia elektromagnetyczne, to piece grzewcze mogą dobrze działać nawet w trudnych warunkach z dużymi zniekształceniami harmonicznymi. W przemyśle piece grzewcze, na przykład elektryczne piekarniki w piekarni czy systemy ogrzewania, mogą pracować stabilnie i efektywnie, co sprawia, że są popularnym wyborem tam, gdzie jakość zasilania może nastręczać problemów.

Pytanie 28

Który przekrój kabla najczęściej używa się do tworzenia obwodów gniazdek w instalacjach domowych podtynkowych?

A. 1 mm²
B. 2,5 mm²
C. 4 mm²
D. 1,5 mm²

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przekrój przewodu 2,5 mm² jest najczęściej stosowany do wykonywania obwodów gniazd wtyczkowych w instalacjach mieszkaniowych podtynkowych, ponieważ zapewnia odpowiednią nośność prądową oraz minimalizuje ryzyko przegrzewania się przewodów. Zgodnie z normą PN-IEC 60364, obwody gniazd wtyczkowych powinny być projektowane z uwzględnieniem maksymalnych obciążeń, które mogą wystąpić w gospodarstwie domowym. Obwody z przekrojem 2,5 mm² są w stanie obsłużyć obciążenie do 16A, co jest wystarczające dla większości sprzętu AGD oraz elektroniki. Przykładowo, standardowa pralka, zmywarka czy kuchenka elektryczna wymagają takiego przekroju, aby zapewnić ich prawidłowe działanie. Użycie mniejszych przekrojów, takich jak 1 mm² czy 1,5 mm², może prowadzić do nadmiernego nagrzewania się przewodów, co zwiększa ryzyko pożaru. Dlatego stosowanie przewodów o przekroju 2,5 mm² w gniazdach wtyczkowych jest zgodne z zasadami bezpieczeństwa oraz dobrymi praktykami w zakresie instalacji elektrycznych.

Pytanie 29

Określ prawidłową sekwencję działań przy wymianie uszkodzonego łącznika świecznikowego w instalacji elektrycznej.
włączenie napięcia, sprawdzenie prawidłowości działania.

A. Stwierdzenie braku napięcia, wyłączenie napięcia, demontaż łącznika, montaż łącznika, sprawdzenie
B. Sprawdzenie prawidłowości działania, włączenie napięcia, stwierdzenie braku napięcia, demontaż łącznika, montaż łącznika, wyłączenie napięcia
C. Wyłączenie napięcia, stwierdzenie braku napięcia, demontaż łącznika, montaż łącznika, włączenie napięcia, sprawdzenie prawidłowości działania
D. Wyłączenie napięcia, demontaż łącznika, montaż łącznika, sprawdzenie prawidłowości działania, stwierdzenie braku napięcia, włączenie napięcia

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kiedy zabierasz się za wymianę uszkodzonego łącznika świecznikowego, najważniejsze to zacząć od wyłączenia napięcia. Bez tego krok nie tylko porażka może się wydarzyć, ale coś gorszego. Potem, zanim zaczniesz grzebać w instalacji, dobrze jest upewnić się, że naprawdę nie ma napięcia w obwodzie. To trochę jak dobre nawyki, które mogą uratować życie. Jak już to masz za sobą, możesz zająć się demontażem starego łącznika, ale pamiętaj, żeby być ostrożnym – nigdy nie wiadomo, co może się zdarzyć. Po włożeniu nowego łącznika, dopiero wtedy możesz włączyć napięcie i sprawdzić, czy wszystko działa. Taka kolejność jest super ważna i zgadza się z normami bezpieczeństwa, jak PN-IEC 60364, które mówią, jak robić to bezpiecznie. W sumie, w domowym warsztacie to przydatna wiedza, bo często coś się psuje i warto wiedzieć, jak to zrobić porządnie i bezpiecznie.

Pytanie 30

Podczas inspekcji silnika indukcyjnego klatkowego o mocy 11 kW, który działa bez obciążenia, można usłyszeć głośne stuki dochodzące z wnętrza urządzenia. Jaką przyczynę tej usterki można uznać za najbardziej prawdopodobną?

A. Zużyte łożyska kulkowe na wale silnika
B. Niestabilne przymocowanie silnika do podłoża
C. Zanik napięcia w jednej z faz
D. Zbyt wysoka temperatura urządzenia

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zużyte łożyska kulkowe w silniku to często powód, dla którego zaczyna on głośno stukać. Kiedy silnik pracuje bez obciążenia, wirnik kręci się szybko, co zwiększa napięcie na łożyskach. Z czasem te łożyska się zużywają, co prowadzi do luzów, a to z kolei skutkuje nieprzyjemnymi wibracjami i hałasami. Warto pamiętać, że jeśli łożyska są uszkodzone, ich wymiana to coś, co trzeba zrobić jak najszybciej, żeby nie narobić jeszcze większych szkód, jak na przykład uszkodzenie wirnika czy wału silnika. Regularne sprawdzanie stanu łożysk, a także dbanie o odpowiednie smarowanie, to kluczowe sprawy, o których nie można zapominać. Gdy usłyszysz głośne stukanie, zrób dokładną inspekcję łożysk. To zgodne z zasadami dobrego utrzymania urządzeń. Można też pomyśleć o czujnikach wibracji, które mogą pomóc w wychwyceniu problemów zanim będzie za późno.

Pytanie 31

Której z poniższych czynności nie obejmuje zakres kontrolny badań instalacji elektrycznej?

A. Pomiarów oraz weryfikacji spadków napięć
B. Oględzin związanych z ochroną przeciwpożarową
C. Pomiarów rezystancji izolacji przewodów
D. Badania zabezpieczeń przed dotykiem pośrednim

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiarów i sprawdzania spadków napięć nie przewiduje zakres badań okresowych instalacji elektrycznej, ponieważ tego rodzaju pomiary są wykonywane w ramach diagnostyki systemów energetycznych, a nie standardowych przeglądów instalacji elektrycznych. W badaniach okresowych koncentruje się na ocenie stanu technicznego instalacji oraz zabezpieczeń, takich jak odporność izolacji przewodów. Pomiar rezystancji izolacji przewodów pozwala na ocenę stanu izolacji i identyfikację potencjalnych zagrożeń związanych z przebiciem. Badania ochrony przed dotykiem pośrednim są kluczowe dla zapewnienia bezpieczeństwa użytkowników, gdyż dotyczą oceny skuteczności systemów zabezpieczeń. Oględziny dotyczące ochrony przeciwpożarowej są niemniej istotne, gdyż pozwalają na wykrycie nieprawidłowości mogących prowadzić do pożaru. Standardy, takie jak PN-IEC 60364, określają szczegółowe wymagania dotyczące badań okresowych, co podkreśla znaczenie poszczególnych metod oceny stanu instalacji elektrycznych.

Pytanie 32

Korzystając z danych zamieszczonych w tabeli wyznacz, wartość rezystancji jednej żyły przewodu YDY 3×2,5 mm2 o długości 100 m.

Dane techniczne przewodu YDY
Ilość i przekrój znamionowy żyłGrubość znamionowa izolacjiMax. rezystancja żyłOrientacyjna masa przewodu o długości 1 km
mm²mmΩ/kmkg/km
2x10,818,181
2x1,50,812,197
2x2,50,87,41125
2x40,94,61176
2x60,93,08228
3x10,918,196
3x1,50,912,1116
3x2,50,97,41153
A. 7,410 Ω
B. 74,10 Ω
C. 0,741 Ω
D. 741,0 Ω

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź '0,741 Ω' jest jak najbardziej trafna! Dobrze, że wziąłeś pod uwagę długość przewodu, bo 100 m to tak naprawdę 1/10 km. Obliczenia rezystancji dla przewodów miedzianych można znaleźć w normach, a te mówią, że dla 2,5 mm² rezystancja na kilometr to około 7,41 Ω. Wiadomo, że jeśli mamy 100 m, to musimy to przeliczyć na 0,741 Ω. W inżynierii elektrycznej takie obliczenia są mega ważne, bo pomagają zrozumieć, jak minimalizować straty energii i dobierać odpowiednie zabezpieczenia. Właściwe przeliczenia pomagają w efektywności energetycznej. Formuła R = ρ * (L / A) to standardowy sposób podejścia, który powinien być znany każdemu, kto projektuje instalacje elektryczne. Dzięki temu cały system działa lepiej.

Pytanie 33

Która z wymienionych przyczyn może powodować przegrzewanie się uzwojenia stojana w trakcie działania trójfazowego silnika indukcyjnego?

A. Zmiana kolejności faz zasilających
B. Zbyt niska częstotliwość napięcia zasilającego
C. Nieprawidłowe połączenie grup zezwojów
D. Nierównomierna szczelina powietrzna

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Błędne połączenie grup zezwojów w trójfazowym silniku indukcyjnym może prowadzić do przegrzewania się uzwojenia stojana z kilku powodów. Połączenia te są kluczowe dla prawidłowego działania silnika, ponieważ decydują o fazowej synchronizacji przepływu prądu w uzwojeniach. Nieprawidłowe połączenia mogą prowadzić do nierównomiernego obciążenia faz, co z kolei skutkuje nadmiernym nagrzewaniem się niektórych uzwojeń. W praktyce, aby uniknąć takich problemów, należy stosować się do norm, takich jak IEC 60034 dotyczących maszyn elektrycznych, które zalecają odpowiednie procedury montażu i testowania silników. W przypadku wykrycia przegrzewania się silnika, kluczowe jest przeprowadzenie analizy połączeń oraz wykonanie badań termograficznych w celu zidentyfikowania miejsc o podwyższonej temperaturze. Prawidłowe połączenie grup zezwojów zapewnia równomierne rozkładanie obciążenia, co jest kluczowe dla wydajności oraz trwałości silnika.

Pytanie 34

Dodatkowy przewód ochronny w instalacji wykonanej przewodem LYd 750 4x2,5 zamocowanej na uchwytach na ścianie piwnicy powinien być oznaczony symbolem

A. YDY 450/750 1x2,5
B. LYc 300/500 1x6
C. ADY 750 1x2,5
D. Dyd 750 1x4

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź Dyd 750 1x4 jest poprawna, ponieważ oznaczenie to odnosi się do przewodu ochronnego, który jest zgodny z wymaganiami instalacji elektrycznych w budynkach. Zastosowanie przewodu Dyd 750 1x4 w instalacji LYd 750 4x2,5 na uchwytach na powierzchni ściany piwnicy zapewnia odpowiednią ochronę przed zagrożeniami elektrycznymi, takimi jak zwarcia czy przepięcia. Przewody ochronne muszą być odpowiednio dobrane do warunków pracy oraz obciążenia, a Dyd 750 1x4 spełnia te normy, zapewniając odporność na wysokie napięcia do 750V. W praktyce, stosowanie przewodów z oznaczeniem Dyd w instalacjach podnosi poziom bezpieczeństwa, ponieważ są one często używane do uziemienia oraz ochrony przed porażeniem elektrycznym. Dodatkowo, zgodnie z normami PN-IEC 60364, właściwy dobór przewodów w instalacjach elektrycznych jest kluczowy dla ich prawidłowego funkcjonowania i bezpieczeństwa użytkowników.

Pytanie 35

Która z poniższych informacji powinna być wyeksponowana na elektrycznym urządzeniu napędowym?

A. Poziom odchylenia napięcia zasilającego
B. Termin kolejnego przeglądu technicznego
C. Typ zastosowanych zabezpieczeń przeciwzwarciowych
D. Strzałka wskazująca wymagany kierunek obrotu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Strzałka oznaczająca wymagany kierunek wirowania jest kluczowym elementem oznaczenia elektrycznego urządzenia napędowego, który musi być widoczny dla operatorów i personelu technicznego. Oznaczenie to jest niezbędne, aby zapewnić poprawne uruchomienie i eksploatację maszyny. W przypadku napędów elektrycznych, niewłaściwy kierunek wirowania może prowadzić do poważnych uszkodzeń mechanicznych, zwiększonego zużycia energii oraz zagrożeń dla bezpieczeństwa pracowników. W praktyce oznaczenie kierunku wirowania powinno być zgodne z obowiązującymi standardami, takimi jak norma PN-EN 60204-1 dotycząca bezpieczeństwa maszyn oraz prawidłowej obsługi urządzeń elektrycznych. Przykładowo, w przypadku silników elektrycznych, strzałka na obudowie silnika wskazuje, w którą stronę wirnik powinien się obracać podczas pracy. Niezastosowanie się do tych oznaczeń może skutkować błędami w procesu produkcji, a także prowadzić do znacznych kosztów napraw i przestojów.

Pytanie 36

Podczas badania skuteczności działania dwóch wyłączników różnicowoprądowych, których znamionowy prąd różnicowy wynosi 30 mA, uzyskano wyniki przedstawione w tabeli:
Przy założeniu, że prąd wyzwalający nie powinien być mniejszy niż 0,5 znamionowego prądu różnicowego oraz nie powinien przekraczać wartości znamionowego prądu różnicowego, o działaniu tych wyłączników można powiedzieć, że

Numer wyłącznika różnicowoprądowegoRzeczywisty, zmierzony prąd różnicowy
120 mA
210 mA
A. pierwszy i drugi działają prawidłowo.
B. pierwszy działa prawidłowo, a drugi działa nieprawidłowo.
C. pierwszy działa nieprawidłowo, a drugi działa prawidłowo.
D. pierwszy i drugi działają nieprawidłowo.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłącznik różnicowoprądowy nr 1 działa jak należy, bo jego prąd wyzwalający to 20 mA. Mieści się to w akceptowalnym zakresie, bo prąd nie powinien być mniejszy niż 0,5 znamionowego prądu różnicowego. Dla wyłącznika 30 mA to oznacza, że musi być minimalnie 15 mA. Działanie takiego wyłącznika ocenia się pod kątem ochrony przed porażeniem prądem, co jest naprawdę ważne. W praktyce, wyłączniki różnicowoprądowe są kluczowe w instalacjach elektrycznych, bo zapewniają bezpieczeństwo wszystkich użytkowników. Regularne kontrolowanie i testowanie tych urządzeń to podstawa, żeby mieć pewność, że działają zgodnie z normami, na przykład PN-EN 61008-1, która określa wymagania dla tych wyłączników. Warto też prowadzić dokumentację pomiarów i regularnie je kalibrować, bo to zapewnia, że systemy ochrony przed porażeniem są niezawodne.

Pytanie 37

Jak często powinno się wykonywać przeglądy instalacji elektrycznej w obiektach o napięciu znamionowym 230/400 V?

A. Tylko po wymianie elementów instalacji
B. Tylko po przeprowadzonym remoncie budynku
C. Nie rzadziej niż co 10 lat
D. Nie rzadziej niż co 5 lat

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'Nie rzadziej niż co 5 lat' jest całkiem zgodna z tym, co mówi prawo i zalecenia dotyczące bezpieczeństwa instalacji elektrycznych, jak normy PN-IEC 60364. Regularne przeglądy instalacji elektrycznej są mega ważne, bo pozwalają upewnić się, że wszystko działa jak należy i że użytkownicy są bezpieczni. Jak robi się inspekcje co 5 lat, można wcześniej wychwycić jakieś awarie czy zużycie materiałów, które mogą potem przynieść poważne kłopoty, jak pożar. Na przykład, wyłączniki różnicowoprądowe mogą z wiekiem przestać działać właściwie przez różne uszkodzenia. Dodatkowo, regularne kontrole pozwalają też dostosować instalacje do nowszych wymagań technologicznych, co jest szczególnie ważne teraz, gdy jest coraz więcej urządzeń elektrycznych w domach. Dlatego dbanie o te przeglądy to nie tylko kwestia prawa, ale też racjonalne podejście do bezpieczeństwa i efektywności budynku.

Pytanie 38

Który z poniższych środków ostrożności nie jest wymagany do bezpiecznego przeprowadzenia prac na linii napowietrznej odłączonej od zasilania?

A. Używanie sprzętu izolacyjnego
B. Zarządzanie pracą w grupie
C. Uziemienie odłączonej linii
D. Ogrodzenie obszaru pracy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'Stosowanie sprzętu izolacyjnego' jest prawidłowa, ponieważ w przypadku prac przy linii napowietrznej, która jest wyłączona spod napięcia, nie ma konieczności stosowania sprzętu izolacyjnego. Sprzęt izolacyjny, taki jak rękawice i narzędzia, jest niezbędny w sytuacjach, gdy istnieje ryzyko wystąpienia wysokiego napięcia. W przypadku linii, która jest bezpiecznie wyłączona, nie ma takiego ryzyka, co oznacza, że użycie sprzętu izolacyjnego nie jest wymagane. Mimo to, w praktyce zaleca się stosowanie sprzętu ochronnego dla pewności, zwłaszcza gdy pracownicy nie mają pełnej pewności co do stanu instalacji. Dodatkowo, w wielu branżach stosuje się zasady BHP, które zalecają zachowanie ostrożności i przygotowanie do ewentualnych awarii, nawet gdy urządzenia są wyłączone. Standardy, takie jak normy ISO i PN, podkreślają znaczenie bezpieczeństwa pracy oraz stosowania odpowiednich procedur i praktyk przy wszelkich czynnościach związanych z energią elektryczną.

Pytanie 39

Jakie oznaczenia powinien posiadać wyłącznik różnicowoprądowy RCD przeznaczony do ochrony obwodu gniazd jednofazowych w pracowni komputerowej, gdzie używane są 15 zestawy komputerowe?

A. 25/4/100-A
B. 40/2/030-A
C. 16/2/010-A
D. 63/4/300-A

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłącznik różnicowoprądowy RCD o oznaczeniu 40/2/030-A jest odpowiedni do zabezpieczenia obwodu gniazd jednofazowych w pracowni komputerowej z 15 zestawami komputerowymi z kilku istotnych powodów. Przede wszystkim, pierwsza liczba '40' oznacza nominalny prąd różnicowy, który wynosi 40 mA. Taki poziom jest zazwyczaj zalecany dla obwodów, które mogą być narażone na niebezpieczne sytuacje związane z upływem prądu, co jest szczególnie ważne w miejscach, gdzie pracuje wiele urządzeń elektronicznych. Druga liczba '2' wskazuje na liczbę faz, co w przypadku gniazd jednofazowych jest poprawne. Trzecia liczba '030' oznacza czas działania z różnicą prądową, który nie powinien przekraczać 30 ms. Ta wartość jest zgodna z normami bezpieczeństwa, które zalecają szybkie odłączenie zasilania w przypadku wykrycia prądu różnicowego, co jest kluczowe dla ochrony użytkowników. W praktyce, stosując RCD o tym oznaczeniu, można skutecznie zabezpieczyć użytkowników przed porażeniem prądem, co jest niezwykle istotne w środowisku biurowym, gdzie wiele urządzeń może być podłączonych jednocześnie.

Pytanie 40

Jakie uszkodzenie lub defekt można wykryć podczas przeglądu instalacji elektrycznej w budynku mieszkalnym?

A. Pogorszenie się stanu mechanicznego złącz i połączeń
B. Brak ciągłości połączeń
C. Pogorszenie się stanu izolacji
D. Przekroczenie dopuszczalnego czasu zadziałania wyłącznika ochronnego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pogorszenie się stanu mechanicznego złącz i połączeń jest kluczowym elementem, który można zlokalizować podczas oględzin instalacji elektrycznej. Wszelkie uszkodzenia mechaniczne złącz mogą prowadzić do zwiększonego oporu, co z kolei może skutkować przegrzewaniem się złącz oraz potencjalnymi awariami systemu. W praktyce, obserwacja stanu mechanicznego złącz pozwala na wczesne wykrywanie problemów, które mogą prowadzić do niebezpiecznych sytuacji, takich jak zwarcia czy pożary. Na przykład, złącza, które wykazują oznaki korozji lub zużycia, powinny być wymieniane, aby zapewnić bezpieczeństwo i niezawodność instalacji elektrycznej. W branży elektrycznej istnieją określone standardy, takie jak normy IEC 60364, które zalecają regularne przeglądy oraz konserwację elementów instalacji, co jest kluczowe dla zapewnienia ich prawidłowego funkcjonowania i bezpieczeństwa użytkowników. Przeprowadzanie systematycznych inspekcji złącz i połączeń jest zatem nie tylko zalecane, ale wręcz konieczne w kontekście utrzymania instalacji elektrycznej w dobrym stanie.