Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik budownictwa
  • Kwalifikacja: BUD.12 - Wykonywanie robót murarskich i tynkarskich
  • Data rozpoczęcia: 17 grudnia 2025 20:04
  • Data zakończenia: 17 grudnia 2025 20:29

Egzamin zdany!

Wynik: 29/40 punktów (72,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jaki typ spoiwa wykorzystuje się do przygotowania zaprawy do murowania ścian fundamentowych?

A. Gips budowlany
B. Cement portlandzki
C. Wapno gaszone
D. Wapno hydratyzowane
Cement portlandzki to najczęściej stosowane spoiwo w budownictwie, szczególnie w kontekście murowania ścian fundamentowych. Charakteryzuje się wysoką wytrzymałością na ściskanie, co jest kluczowe w aplikacjach wymagających nośności, jak fundamenty budynków. W procesie murowania cement portlandzki łączy się z wodą, tworząc zaprawę, która wiąże i twardnieje, zapewniając trwałość oraz stabilność konstrukcji. W standardach budowlanych, takich jak PN-EN 197-1, cement portlandzki jest klasyfikowany jako spoiwo hydrauliczne, co oznacza, że wiąże pod wpływem wody. Dodatkowo, cement ten jest odporny na działanie wody, co jest niezwykle istotne w kontekście fundamentów, gdzie kontakt z wilgocią jest nieunikniony. Przykłady zastosowania obejmują nie tylko murowanie ścian fundamentowych, ale także ich wzmocnienie poprzez zastosowanie stropów i płyt betonowych, co pozwala na tworzenie stabilnych i bezpiecznych konstrukcji budowlanych.

Pytanie 2

Jeżeli podczas trasowania ścianki działowej w pomieszczeniu trzeba wyznaczyć kąt prosty pomiędzy ścianą nośną, a ścianą działową, to, posługując się taśmą mierniczą, należy na podłożu odmierzyć odcinki a, b, c o następujących długościach:

Ilustracja do pytania
A. 60, 60, 120 cm
B. 60, 80, 120 cm
C. 60, 80,100 cm
D. 50, 50, 100 cm
Wybór niewłaściwych długości odcinków prowadzi do błędów w pomiarach, które mogą skutkować niewłaściwym ustawieniem ścian działowych. Na przykład, długości 60, 80, 120 cm nie spełniają wymogów twierdzenia Pitagorasa, ponieważ suma kwadratów krótszych boków nie równa się kwadratowi najdłuższego boku. Użycie takich długości może prowadzić do powstania kąta, który nie jest prosty, co w praktyce oznacza, że ściany nie będą się ze sobą prawidłowo łączyć, co może prowadzić do problemów z późniejszymi pracami wykończeniowymi. Podobnie, zestaw 60, 60, 120 cm jest również nieprawidłowy z powodu braku różnorodności długości, która jest niezbędna do stworzenia trójkąta prostokątnego. Odpowiedź 50, 50, 100 cm to kolejny przykład nieodpowiedniego podejścia, ponieważ podobnie jak w przypadku wcześniejszych przykładów, nie tworzy ona właściwego kąta prostego. W kontekście budownictwa, takie błędy mogą prowadzić do znacznych kosztów naprawczych. Warto pamiętać, że każdy aspekt budowy, od pomiarów po wykonawstwo, powinien być przeprowadzany zgodnie z przyjętymi standardami, aby uniknąć kosztownych pomyłek.

Pytanie 3

Aby naprawić głębokie pęknięcia w ścianie murowanej, należy zastosować

A. stalowe pręty oraz zaprawę gipsową
B. klamry stalowe oraz zaczyn cementowy
C. cegły kominowe i zaprawę cementową
D. cegły dziurawe wraz z zaczynem gipsowym
Użycie klamer stalowych i zaczynu cementowego do naprawy głębokich pęknięć w ścianach murowanych jest zgodne z najlepszymi praktykami budowlanymi. Klamry stalowe służą do stabilizacji strukturalnej i wzmocnienia połączeń między elementami budowlanymi, co jest kluczowe w przypadku uszkodzeń o dużej głębokości. Zastosowanie zaczynu cementowego jako materiału wypełniającego pęknięcia jest również podstawą dobrych praktyk. Zaczyn cementowy charakteryzuje się wysoką wytrzymałością na ściskanie oraz odpornością na czynniki atmosferyczne, co czyni go idealnym do zastosowań zarówno wewnętrznych, jak i zewnętrznych. Przykładowo, w przypadku renowacji starych budynków, które mają pęknięcia wynikające z osiadania lub ruchów fundamentów, klamry stalowe mogą zostać użyte do złączenia i wzmocnienia uszkodzonych elementów, a zaczyn cementowy do ich wypełnienia. Warto również zwrócić uwagę na normy budowlane, które zalecają stosowanie tego typu materiałów w celu zapewnienia trwałości i bezpieczeństwa budynków.

Pytanie 4

Gdzie można wykorzystać zaprawy gipsowe?

A. do murowania fundamentów z elementów betonowych
B. do murowania ścian z gipsowych elementów w suchych pomieszczeniach
C. do tynkowania działowych ścian w pomieszczeniach o podwyższonej wilgotności
D. do tynkowania elewacji budynków
Odpowiedź dotycząca murowania ścian z elementów gipsowych w pomieszczeniach suchych jest poprawna, ponieważ zaprawy gipsowe charakteryzują się odpowiednimi właściwościami do stosowania w takich warunkach. Gips jest materiałem, który ma dobre właściwości klejące oraz szybko wiąże, co czyni go idealnym do murowania elementów gipsowych, które są lekkie i łatwe w obróbce. W praktyce, zaprawy gipsowe są często wykorzystywane do tworzenia ścianek działowych oraz do zabudów, które nie są narażone na wilgoć. W kontekście dobrych praktyk budowlanych, zastosowanie zaprawy gipsowej w suchych pomieszczeniach przyczynia się do poprawy efektywności energetycznej budynku oraz zwiększa komfort akustyczny. Ponadto, elementy gipsowe, takie jak płyty gipsowo-kartonowe, współpracują z zaprawami gipsowymi, co zapewnia trwałość i estetykę wykończenia. Warto również zwrócić uwagę na normy takie jak PN-EN 13279, które określają wymagania dla materiałów budowlanych na bazie gipsu.

Pytanie 5

Tynki doborowe to tynki standardowe

A. dwuwarstwowymi o równej, lecz szorstkiej powierzchni
B. trójwarstwowymi o równej i bardzo gładkiej powierzchni
C. dwuwarstwowymi o równej i gładkiej powierzchni
D. trójwarstwowymi o równej, lecz szorstkiej powierzchni
Tynki doborowe są klasyfikowane jako tynki trójwarstwowe, co oznacza, że składają się z trzech odrębnych warstw: podkładowej, zbrojonej i wykończeniowej. Dzięki temu, że mają one powierzchnię równą i bardzo gładką, stanowią doskonałe podłoże do dalszych prac wykończeniowych, takich jak malowanie czy tapetowanie. Tynki trójwarstwowe są często stosowane w budownictwie, ze względu na ich znakomite właściwości izolacyjne oraz estetyczne. W praktyce, tynki doborowe są szczególnie polecane w obiektach, gdzie wysoka jakość wykończenia jest kluczowa, na przykład w wnętrzach biurowych lub mieszkalnych o podwyższonym standardzie. Warto również zwrócić uwagę, że ich wykonanie wymaga precyzyjnego i starannego podejścia, ponieważ każda warstwa musi być odpowiednio nałożona z zachowaniem określonych norm budowlanych, co wpływa na trwałość i estetykę końcową. Stosowanie tynków doborowych zgodnie z najlepszymi praktykami branżowymi przyczynia się do zwiększenia efektywności energetycznej budynków oraz ich estetycznego wyglądu.

Pytanie 6

Jakie kruszywo wykorzystuje się do produkcji ciepłochronnych zapraw murarskich?

A. Kruszywo piaskowe
B. Kruszywo żwirowe
C. Perlit
D. Pospółka
Perlit to materiał o doskonałych właściwościach izolacyjnych, który jest powszechnie stosowany do produkcji ciepłochronnych zapraw murarskich. Jego unikalna struktura, powstała w wyniku poddania wysokiej temperaturze naturalnego wulkanicznego szkła, sprawia, że perlit ma niską przewodność cieplną. Dzięki temu, zaprawy murarskie z dodatkiem perlitu skutecznie ograniczają straty ciepła, co jest istotne w kontekście budownictwa energooszczędnego. Przykłady zastosowania perlitu obejmują budowę domów pasywnych, gdzie kluczowe jest osiągnięcie jak najniższego zapotrzebowania na energię. Standardy branżowe, takie jak PN-EN 998-1, podkreślają znaczenie jakości izolacji w budynkach, a użycie perlitu w zaprawach murarskich jest zgodne z najlepszymi praktykami w tej dziedzinie. Warto dodać, że perlit jest materiałem ekologicznym, co dodatkowo zwiększa jego atrakcyjność w nowoczesnym budownictwie.

Pytanie 7

Na zdjęciu przedstawiono lico muru w wiązaniu

Ilustracja do pytania
A. amerykańskim.
B. weneckim.
C. pospolitym.
D. polskim.
Na tym zdjęciu widzimy lico muru w wiązaniu polskim. To jedna z najpopularniejszych metod układania cegieł, szczególnie w budownictwie murowanym. W tym wiązaniu cegły są układane naprzemiennie - jedne leżą dłuższymi bokami, a inne krótszymi. Dzięki temu mur jest nie tylko ładny, ale też mocniejszy i stabilniejszy. Możemy to zauważyć w wielu tradycyjnych budynkach, jak domy jednorodzinne czy kościoły, gdzie ważny jest zarówno wygląd, jak i trwałość konstrukcji. Warto też wiedzieć, że to wiązanie dobrze radzi sobie z różnymi obciążeniami, więc świetnie nadaje się do mniejszych budynków czy ścianek działowych. Dobrze jest znać różne rodzaje wiązań, bo to klucz do zapewnienia solidności i bezpieczeństwa budowli, szczególnie dla architektów i inżynierów.

Pytanie 8

Aby przeprowadzać ocieplanie dachów z drewna, należy używać

A. wełny mineralnej
B. płyty gipsowo-włóknowej
C. płyty wiórowo-cementowej
D. włókna celulozowego
Wełna mineralna to materiał o doskonałych właściwościach izolacyjnych, który jest często stosowany do ociepleń dachów o konstrukcji drewnianej. Jej główne zalety to wysoka odporność na ogień, niska przewodność cieplna oraz dobra akustyka. Wełna mineralna jest również odporna na wilgoć, co czyni ją idealnym rozwiązaniem w przypadku dachów, gdzie może występować kondensacja pary wodnej. Zgodnie z normą PN-EN ISO 6946, wełna mineralna przyczynia się do zwiększenia efektywności energetycznej budynków, a jej użycie w konstrukcjach drewnianych jest zgodne z dobrymi praktykami w budownictwie. Przykładem zastosowania wełny mineralnej może być ocieplanie poddaszy, gdzie materiał ten jest umieszczany między krokwiami. Dodatkowo, wełna mineralna jest łatwa w obróbce, co ułatwia montaż oraz minimalizuje straty materiałowe, co jest istotne w kontekście zrównoważonego budownictwa. Jej chropowata struktura sprzyja również poprawie jakości powietrza wewnętrznego, co jest istotnym aspektem nowoczesnych standardów budowlanych.

Pytanie 9

Rozbiórkę ręczną stropu trzeba zacząć od

A. wycięcia belek wzdłuż ścian
B. podstemplowania stropu
C. skucia wypełnienia stropu
D. skucia tynku z sufitu
Podstemplowanie stropu jest kluczowym etapem w procesie rozbiórki, ale nie powinno być pierwszym krokiem. Jego celem jest zapewnienie wsparcia dla konstrukcji podczas usuwania elementów stropu, jednak bez wcześniejszego usunięcia tynku, ocena stanu belek oraz innych elementów nośnych może być utrudniona. Wycięcie belek przy ścianach przed skuciem tynku jest również niewłaściwe, ponieważ może prowadzić do niekontrolowanego osunięcia się stropu, co zagraża bezpieczeństwu osób pracujących. W przypadku skucia wypełnienia stropu, podobnie jak w przypadku belek, najpierw konieczne jest przygotowanie konstrukcji przez usunięcie tynku, co pozwoli na dokładną ocenę stanu technicznego oraz ewentualnych uszkodzeń. Nieprzemyślane działania mogą prowadzić do poważnych wypadków oraz zwiększają ryzyko uszkodzenia sąsiednich elementów budowlanych. W branży budowlanej kluczowe jest przestrzeganie zasad bezpieczeństwa oraz stosowanie się do wytycznych dotyczących prac rozbiórkowych, aby uniknąć sytuacji niebezpiecznych i nieprzewidzianych, które mogą wpłynąć na bezpieczeństwo zarówno pracowników, jak i użytkowników budynku.

Pytanie 10

Na podstawie danych zawartych w tabeli oblicz, ile bloków wapienno-piaskowych drążonych typu 2NFD o wymiarach 25 cm × 12 cm × 13,8 cm potrzeba do wymurowania ściany o grubości 38 cm i wymiarach 3,5 m × 6 m.

Ilustracja do pytania
A. 1 113 szt.
B. 1 670 szt.
C. 1 651 szt.
D. 1 069 szt.
Aby prawidłowo obliczyć liczbę bloków wapienno-piaskowych drążonych typu 2NFD potrzebnych do wymurowania ściany o wymiarach 3,5 m × 6 m i grubości 38 cm, kluczowe jest zrozumienie etapu wyliczeń. Powierzchnia ściany została obliczona jako 3,5 m × 6 m, co daje 21 m². Z danych w tabeli wynika, że na 1 m² przy tej grubości potrzeba 78,60 sztuk bloków. Mnożąc powierzchnię ściany przez liczbę bloków na 1 m², otrzymujemy wartość 1 650,6 szt., która po zaokrągleniu daje 1 651 sztuk. W praktyce, takie obliczenia są niezwykle istotne podczas planowania robót budowlanych, ponieważ pozwalają na precyzyjne oszacowanie materiałów budowlanych, co wpływa na koszty inwestycji oraz czas realizacji projektu. Prawidłowe oszacowanie ilości bloków ma również znaczenie dla zachowania standardów jakości i trwałości konstrukcji, co jest zgodne z normami budowlanymi.

Pytanie 11

Materiał przedstawiony na rysunku jest używany do izolacji

Ilustracja do pytania
A. termicznych fundamentów.
B. przeciwwilgociowych fundamentów.
C. termicznych dachów.
D. przeciwwilgociowych dachów.
Folia fundamentowa, która jest przedstawiona na zdjęciu, jest kluczowym materiałem stosowanym do izolacji przeciwwilgociowej fundamentów budynków. Jej głównym zadaniem jest ochrona konstrukcji przed wilgocią pochodzącą z gruntu, co jest niezbędne dla zapewnienia trwałości i stabilności budynku. Izolacja przeciwwilgociowa fundamentów jest standardem w budownictwie, a dobrym przykładem jej zastosowania jest budowa domów jednorodzinnych na terenach o wysokim poziomie wód gruntowych. Zastosowanie odpowiedniej folii fundamentowej pozwala na uniknięcie problemów z wilgocią, takich jak pleśń czy osłabienie struktury budynku. Warto również zaznaczyć, że zgodnie z normami budowlanymi, izolacje przeciwwilgociowe powinny być wykonane zgodnie z projektem budowlanym oraz wytycznymi producenta materiałów budowlanych, co zapewnia ich skuteczność i trwałość przez wiele lat.

Pytanie 12

Jaki element architektoniczny przedstawiony jest na fotografii?

Ilustracja do pytania
A. Gzyms.
B. Rygiel.
C. Cokół.
D. Pilaster.
Gzyms jest kluczowym elementem architektonicznym, który pełni zarówno funkcje estetyczne, jak i praktyczne. Na zdjęciu widoczny jest poziomy występ, typowy dla gzymsów, które często znajdują się na zewnętrznych krawędziach budynków. Gzymsy mogą być profilowane, co dodaje im charakteru i dekoracyjności. Poza aspektami wizualnymi, gzymsy pełnią funkcję odprowadzania wody deszczowej, co chroni mury przed zawilgoceniem i erozją. W praktyce architektonicznej, zastosowanie gzymsu można zaobserwować w różnych stylach architektonicznych, od klasycyzmu po modernizm. Warto również zauważyć, że gzymsy mogą być wykonane z różnych materiałów, takich jak kamień, beton czy drewno, co pozwala na szeroką gamę zastosowań i estetyki. Współczesne budynki często wykorzystują gzymsy w sposób innowacyjny, łącząc tradycję z nowoczesnym wzornictwem, co jest zgodne z najlepszymi praktykami w projektowaniu architektonicznym.

Pytanie 13

Na podstawie danych zawartych w przedstawionej tabeli wskaż, ile piasku należy użyć do przygotowania 1 m3 zaprawy wapiennej o proporcji objętościowej składników 1:3 z użyciem ciasta wapiennego.

Proporcje i ilość składników na 1 m³ zaprawy wapiennej
Stosunek objętościowy wapna do piaskuMarka zaprawy [MPa]Ciasto wapienne [m³]Piasek [m³]Woda [dm³]
1 : 1,50,40,5100,76537
1 : 20,40,4300,86050
1 : 30,20,3200,960100
1 : 3,50,20,2800,980130
1 : 4,50,20,2241,010166
A. 0,960 m3
B. 0,320 m3
C. 0,980 m3
D. 1,080 m3
Odpowiedź 0,960 m3 jest prawidłowa, ponieważ zgodnie z danymi zawartymi w tabeli, dla zaprawy wapiennej o proporcji 1:3, ilość piasku potrzebna do przygotowania 1 m3 zaprawy wynosi dokładnie 0,960 m3. W kontekście przygotowania zaprawy, proporcje składników są kluczowe, ponieważ wpływają na właściwości mechaniczne i trwałość gotowego produktu. Stosowanie właściwych proporcji, jak w tym przypadku, ma na celu osiągnięcie optimlanej konsystencji oraz wytrzymałości zaprawy, co jest zgodne z normami budowlanymi. Dodatkowo, znajomość takich proporcji jest niezbędna w praktyce budowlanej, aby zapewnić odpowiednią jakość materiałów używanych w konstrukcji. Warto również zwrócić uwagę, że dla tej proporcji zaprawy, ilość ciasta wapiennego wynosi 0,320 m3, co również potwierdza prawidłowość wyliczeń. Takie umiejętności są kluczowe dla inżynierów budowlanych oraz techników, którzy muszą podejmować decyzje oparte na danych technicznych i standardach branżowych.

Pytanie 14

Nominalna grubość spoin poziomych wynosi 12 mm (-2 mm; +5 mm), a spoin pionowych 10 mm (±5 mm). Na którym rysunku przedstawiono grubość spoin niezgodna z dopuszczalną?

Ilustracja do pytania
A. A.
B. C.
C. D.
D. B.
Wybór innej odpowiedzi może wynikać z kilku typowych błędów myślowych oraz nieporozumień dotyczących tolerancji oraz zakresów grubości spoin. Na przykład, niektórzy mogą myśleć, że pokrewieństwo między tolerancją a nominalną wartością oznacza, iż mniejsze różnice nie mają znaczenia. To podejście jest błędne, ponieważ każda spoinę należy oceniać w kontekście jej nominalnej wartości oraz określonej tolerancji. W przypadku spoin pionowych, które mają tolerancję ±5 mm, wiele osób może mylnie ocenić, że grubość 5 mm jest akceptowalna bez uwzględnienia, że maksymalna dopuszczalna grubość spoiny poziomej na rysunku B również musi być w granicach tolerancji. Inny błąd to ignorowanie wpływu grubości spoin na trwałość konstrukcji. Przekroczenie tolerancji może prowadzić do osłabienia spoiny, co znacznie zwiększa ryzyko awarii. W praktyce inżynierowie muszą znać granice tolerancji i umieć je stosować, aby zapewnić bezpieczeństwo oraz zgodność projektu z obowiązującymi normami. Nieprzestrzeganie tych zasad prowadzi do kosztownych błędów oraz potencjalnych zagrożeń dla bezpieczeństwa w budownictwie.

Pytanie 15

Na rysunku przedstawiono

Ilustracja do pytania
A. kirkę.
B. zdzierak do tynków.
C. przecinak.
D. poziomnicę.
Zdzierak do tynków to narzędzie o płaskiej, ząbkowanej powierzchni, które służy do skutecznego usuwania starych tynków z powierzchni ścian. Jego konstrukcja pozwala na łatwe i efektywne skrawanie tynku, co minimalizuje ryzyko uszkodzenia podłoża. W praktyce, zdzierak jest niezastąpiony w pracach remontowych, gdzie często zachodzi potrzeba odnowienia i przygotowania powierzchni przed nałożeniem nowych materiałów wykończeniowych, takich jak gładzie czy farby. Prawidłowe użycie zdzieraka wiąże się z techniką, która pozwala na równomierne usunięcie tynku bez zbędnego wysiłku. Warto również dodać, że stosowanie tego narzędzia zgodnie z zasadami ergonomii przyczynia się do zmniejszenia ryzyka urazów i zwiększa komfort pracy. Zdzieraki do tynków są często wykorzystywane przez profesjonalnych malarzy i ekipy remontowe, co potwierdza ich znaczenie i zastosowanie w branży budowlanej.

Pytanie 16

Na podstawie wymiarów podanych na rysunku oblicz powierzchnię ściany przeznaczonej do wyburzenia, jeżeli wysokość pomieszczenia wynosi 270 cm.

Ilustracja do pytania
A. 8,91 m2
B. 10,67 m2
C. 8,24 m2
D. 10,07 m2
W przypadku błędnych odpowiedzi często pojawia się niedocenianie znaczenia właściwych wymiarów, co prowadzi do niepoprawnych obliczeń. Na przykład, jeśli ktoś podałby wysokość pomieszczenia jako 3,0 m zamiast 2,7 m, mógłby obliczyć powierzchnię jako 9,9 m², co jest wynikiem nieprawidłowym. Zmiana wysokości bez uwzględnienia faktycznych wymiarów prowadzi do błędnych wyników. Inny typowy błąd to mylenie długości ściany lub nieprawidłowe zaokrąglanie wartości, co może skutkować oferowaniem powierzchni 10,07 m² lub 10,67 m². Ważne jest, aby przy obliczeniach powierzchni uwzględniać wszystkie aktualne dane. Kolejnym błędem jest nieznajomość jednostek metrycznych i pomijanie konwersji, co prowadzi do niezgodności w jednostkach, np. podawania wartości w centymetrach zamiast w metrach. Użycie niewłaściwych wartości lub popełnienie błędu przy mnożeniu to częste pułapki, które mogą zmylić uczniów. Kluczowym wnioskiem z tych błędów jest potrzeba znajomości podstawowych zasad matematycznych oraz umiejętności ich zastosowania w praktycznych scenariuszach związanych z budownictwem. W kontekście budowy czy renowacji, precyzyjne obliczenia są nie tylko kwestią estetyki, ale również bezpieczeństwa i zgodności z obowiązującymi normami budowlanymi.

Pytanie 17

Na rysunku przedstawiono szczegół oparcia stropu gęstożebrowego na ścianie zewnętrznej z betonu komórkowego. Całkowita wysokość tego stropu wynosi

Ilustracja do pytania
A. 300 mm
B. 250 mm
C. 220 mm
D. 190 mm
Wybór odpowiedzi 190 mm, 300 mm lub 250 mm może wynikać z kilku powszechnych mylnych przekonań. Zbyt niski wymiar, jak w przypadku 190 mm, może pochodzić z niewłaściwego odczytu rysunku lub braku zrozumienia, że wysokość stropu gęstożebrowego jest mierzona w kontekście całkowitym, a nie tylko w odniesieniu do jednego z jego komponentów. Odpowiedź 300 mm może sugerować nadmierne przewidywanie, które nie znajduje odzwierciedlenia w rzeczywistości, ponieważ standardowe stropy gęstożebrowe rzadko przekraczają tę wartość w typowych zastosowaniach budowlanych. Wysokość 250 mm, z kolei, może wynikać z ogólnego błędnego założenia, że stropy muszą być zawsze szersze dla lepszej nośności, co jest niezgodne z zasadami projektowania zgodnymi z normami budowlanymi. Kluczowe jest zrozumienie, że wybór odpowiednich wymiarów stropów powinien być oparty na dokładnych danych i analizach, a nie na subiektywnych osądach. Podczas projektowania konstrukcji powinno się zawsze polegać na precyzyjnych wymiarach i wytycznych branżowych, aby zapewnić bezpieczeństwo oraz funkcjonalność budowlanych rozwiązań.

Pytanie 18

Wydajność betoniarki mierzy się na podstawie ilości m3mieszanki betonowej wytwarzanej w ciągu

A. jednego tygodnia
B. jednej godziny
C. jednej zmiany
D. jednego dnia
Wydajność betoniarki określa się na podstawie ilości mieszanki betonowej produkowanej w jednostce czasu, a w tym przypadku jest to jedna godzina. W praktyce oznacza to, że betoniarka powinna być w stanie wyprodukować określoną ilość betonu w ciągu godziny, co pozwala na efektywne planowanie prac budowlanych. Na przykład, jeżeli betoniarka ma wydajność 10 m³ na godzinę, oznacza to, że w ciągu ośmiogodzinnej zmiany roboczej może wyprodukować 80 m³ betonu. Jest to kluczowe dla harmonogramów budowy, ponieważ pozwala na precyzyjne obliczenie potrzebnych ilości betonu dla różnych etapów projektu. W branży budowlanej standardowo przyjmuje się, że wydajność betoniarki jest jednym z podstawowych parametrów, który wpływa na czas realizacji zadania oraz jego koszty. Optymalizacja wydajności betoniarki jest zatem niezwykle istotna, ponieważ pozwala na zwiększenie efektywności pracy oraz minimalizację strat materiałowych.

Pytanie 19

Na którym rysunku przedstawiono bloczek silikatowy?

Ilustracja do pytania
A. B.
B. A.
C. D.
D. C.
W przypadku odpowiedzi, które wskazują na inne rysunki jako przedstawiające bloczki silikatowe, warto zauważyć, że każdy z tych materiałów jest wykonany z różnych surowców i ma odmienną charakterystykę. Bloczki oznaczone literami A, B i D mogą być wykonane na przykład z betonu komórkowego lub keramzytobetonu, które różnią się właściwościami fizycznymi i mechanicznymi od bloczków silikatowych. Beton komórkowy jest materiałem lżejszym, ale o niższej odporności na działanie wilgoci, co czyni go mniej odpowiednim do zastosowań w obszarach narażonych na wysoką wilgotność. Keramzytobeton natomiast, choć cechuje się dobrą izolacyjnością, ma zupełnie inną strukturę, co wpływa na sposób, w jaki odbierają go inżynierowie budowlani. Osoby wybierające bloczki budowlane powinny kierować się nie tylko ich wyglądem, ale przede wszystkim właściwościami materiałowymi, które określają ich zastosowanie oraz efektywność energetyczną budynku. W praktyce, mylenie tych materiałów może prowadzić do niewłaściwego doboru surowców, co w konsekwencji wpłynie na trwałość i komfort użytkowania obiektu. Dobrze jest również zasięgać opinii specjalistów oraz zapoznawać się z normami branżowymi, które dostarczają wskazówek dotyczących właściwego wyboru materiałów budowlanych.

Pytanie 20

Który z wymienionych materiałów jest najbardziej odpowiedni do wzmacniania nadproży?

A. Narożniki aluminiowe
B. Kątowniki stalowe
C. Liny nierdzewne
D. Zetowniki zimnogięte
Kątowniki stalowe są jednym z najskuteczniejszych materiałów stosowanych do wzmocnienia nadproży w konstrukcjach budowlanych. Ich główną zaletą jest wysoka wytrzymałość na zginanie i ściskanie, co czyni je idealnym rozwiązaniem do przenoszenia dużych obciążeń. W praktyce, kątowniki stalowe są często stosowane w budownictwie do wzmacniania miejsc, gdzie występują duże siły, takich jak nadproża okienne czy drzwiowe. Dodatkowo, ich zastosowanie zgodne jest z normami budowlanymi, które zalecają użycie materiałów o wysokiej nośności w kluczowych elementach konstrukcyjnych. Wzmocnienie nadproży przy użyciu kątowników stalowych może znacząco poprawić stabilność całej struktury budynku, co jest szczególnie ważne w rejonach o dużej aktywności sejsmicznej. Przykładem mogą być budynki mieszkalne, gdzie odpowiednie wzmocnienia w nadprożach zwiększają bezpieczeństwo mieszkańców. Warto również zwrócić uwagę na możliwość łatwego montażu kątowników, co wpływa na efektywność czasową procesu budowy.

Pytanie 21

Który z materiałów stosuje się do wykonania izolacji termicznej w budynkach?

Ilustracja do pytania
A. C.
B. A.
C. B.
D. D.
Materiał oznaczony literą C, czyli wełna mineralna, jest bardzo często używany w budownictwie, zwłaszcza do izolacji termicznej. Ma naprawdę świetne właściwości, jeśli chodzi o ograniczanie strat ciepła w budynkach, co na pewno pomoże obniżyć rachunki za ogrzewanie. Co więcej, wełna mineralna jest też ogniotrwała, co daje dodatkowe bezpieczeństwo, zmniejszając ryzyko, że ogień się rozprzestrzeni. W praktyce korzysta się z niej nie tylko w dachach i ścianach, ale też w podłogach, co czyni ją bardziej uniwersalnym materiałem budowlanym. Są też standardy, takie jak PN-EN 13162, które mówią o wymaganiach jakościowych, a to potwierdza, że wełna mineralna jest naprawdę skuteczna. A jeśli chodzi o akustykę, to też działa, co wpływa na komfort w pomieszczeniach. Warto zainwestować w ten materiał, żeby zwiększyć efektywność energetyczną i poprawić komfort cieplny w budynkach.

Pytanie 22

Która z podanych zapraw cechuje się najlepszymi właściwościami plastycznymi?

A. Wapienna
B. Gipsowa
C. Cementowo-gliniana
D. Cementowo-wapienna
Zaprawa wapienna jest uznawana za jedną z najlepszych pod względem właściwości plastycznych. Jej zdolność do łatwego formowania i wytrzymywania deformacji sprawia, że jest idealnym materiałem w zastosowaniach budowlanych, gdzie wymagana jest elastyczność i łatwość w aplikacji. Wapno wykazuje doskonałe właściwości wiążące, co pozwala na osiągnięcie wysokiej przyczepności do różnych podłoży. Dodatkowo, zaprawy wapienne charakteryzują się dużą paroprzepuszczalnością, co zapobiega gromadzeniu się wilgoci w strukturze budynku, a także wspiera naturalne procesy wentylacyjne. W praktyce, zaprawy wapienne są powszechnie używane do tynkowania ścian, zarówno wewnętrznych, jak i zewnętrznych, oraz do murowania cegieł i bloczków. W kontekście norm budowlanych, stosowanie zapraw wapiennych jest zgodne z zaleceniami wielu krajowych i międzynarodowych standardów, które podkreślają ich ekologiczność i trwałość. Warto zauważyć, że ich zastosowanie w renowacji zabytków budowlanych jest szczególnie cenione, ponieważ wapno nie tylko dobrze współpracuje z tradycyjnymi materiałami, ale także wspiera długoterminową ochronę architektury.

Pytanie 23

Oblicz objętość 2 nadprożowych belek żelbetowych długości 1,4 m każda, których przekrój poprzeczny przedstawiono na rysunku.

Ilustracja do pytania
A. 0,161 m3
B. 0,081 m3
C. 1612,800 m3
D. 806,400 m3
Poprawna odpowiedź wynosi 0,161 m³, co odzwierciedla prawidłowe obliczenia objętości dwóch nadprożowych belek żelbetowych. Aby obliczyć objętość belek, należy najpierw ustalić pole przekroju poprzecznego pojedynczej belki. W tym przypadku, przekrój belki wynosi 576 cm², co po przeliczeniu daje 0,0576 m². Następnie, aby obliczyć objętość jednej belki, mnożymy pole przekroju przez długość belki. Dla belek o długości 1,4 m, objętość jednej belki wynosi 0,08064 m³. W przypadku dwóch belek, obliczamy objętość jako 2 razy objętość jednej belki, co daje wynik 0,16128 m³. Po zaokrągleniu do trzech miejsc po przecinku otrzymujemy 0,161 m³. Takie obliczenia są fundamentalne w inżynierii budowlanej, ponieważ pozwalają na precyzyjne oszacowanie materiałów potrzebnych do budowy oraz ich kosztów. Dobrą praktyką w projektowaniu struktur jest przeprowadzanie takich obliczeń z dużą dokładnością, by zapewnić bezpieczeństwo i stabilność konstrukcji.

Pytanie 24

Na podstawie danych zawartych w tabeli określ maksymalną odległość, w której należy wykonać szczeliny dylatacyjne w ścianie jednowarstwowej wymurowanej z pustaków ceramicznych, o spoinach pionowych niewypełnionych.

Rodzaj muruOdległości Ld między szczelinami dylatacyjnymi (w metrach) w ścianach
szczelinowychjedno- lub dwuwarstwowych o spoinach pionowych
warstwa zewnętrznawarstwa wewnętrznawypełnionychniewypełnionych
Z elementów ceramicznych12403025
Z innych elementów murowych8302520
A. 25 metrów.
B. 30 metrów.
C. 12 metrów.
D. 20 metrów.
Wybór odpowiedzi 25 metrów jako maksymalnej odległości, w której należy wykonać szczeliny dylatacyjne w ścianie jednowarstwowej wymurowanej z pustaków ceramicznych, jest zgodny z danymi zawartymi w tabeli. Zgodnie z normami budowlanymi, dylatacje są niezbędne w konstrukcjach, aby zminimalizować ryzyko pęknięć wynikających z rozszerzalności cieplnej materiałów. W przypadku ścian z pustaków ceramicznych, które mają spoiny pionowe niewypełnione, odległość 25 metrów to standardowy parametr, który zapewnia odpowiednią elastyczność konstrukcji oraz umożliwia neutralizację naprężeń. Przykładowo, w praktyce budowlanej zastosowanie dylatacji co 25 metrów jest efektywnym rozwiązaniem, które jest stosowane w projektach budowlanych zarówno dla budynków mieszkalnych, jak i komercyjnych. Dodatkowo, warto zwrócić uwagę na zalecenia w normach PN-EN 1996-1-1, które podkreślają znaczenie takiego rozkładu dylatacji w kontekście trwałości i bezpieczeństwa konstrukcji.

Pytanie 25

Koszt robocizny związany z wykonaniem 1 m2 tynku mozaikowego wynosi 20,00 zł. Oblicz całkowity wydatek na wykonanie (materiał i robocizna) tego tynku na ścianach o powierzchni 200 m2, jeżeli opakowanie (25 kg) tynku drobnoziarnistego kosztuje 150,00 zł, a jego zużycie to 3 kg/m2.

A. 3 600,00 zł
B. 7 600,00 zł
C. 4 000,00 zł
D. 3 800,00 zł
Aby obliczyć całkowity koszt wykonania tynku mozaikowego na ścianach o powierzchni 200 m², należy wziąć pod uwagę zarówno koszty materiałów, jak i robocizny. Koszt robocizny wynosi 20,00 zł za 1 m², co przy 200 m² daje łącznie 4 000,00 zł. Ponadto, do wykonania tynku potrzeba 3 kg tynku na 1 m², co oznacza, że na 200 m² zużyjemy 600 kg tynku. Ponieważ opakowanie tynku ma masę 25 kg, potrzebujemy 24 opakowań (600 kg / 25 kg). Koszt jednego opakowania to 150,00 zł, więc całkowity koszt materiału wynosi 3 600,00 zł (24 opakowania x 150,00 zł). Suma kosztów robocizny i materiałów wynosi 7 600,00 zł (4 000,00 zł + 3 600,00 zł). Takie obliczenia są zgodne z praktykami branżowymi, gdzie precyzyjne oszacowanie kosztów jest kluczowe dla budżetowania projektów budowlanych.

Pytanie 26

Aby zrealizować izolację termiczną ścian, należy wykorzystać

A. styropian, wełnę mineralną
B. styropian, papę
C. wełnę mineralną, emulsję asfaltową
D. wełnę mineralną, masy bitumiczne
Izolacja cieplna ścian jest kluczowym elementem skutecznego zarządzania energią w budynków. Wybór odpowiednich materiałów izolacyjnych, takich jak styropian i wełna mineralna, wynika z ich doskonałych właściwości termoizolacyjnych. Styropian, znany z niskiego współczynnika przewodzenia ciepła, jest lekki, łatwy w obróbce i stosunkowo tani. Jego zastosowanie w izolacji ścian zewnętrznych pozwala na znaczną redukcję strat ciepła, co przekłada się na niższe koszty ogrzewania. Wełna mineralna z kolei charakteryzuje się nie tylko dobrą izolacyjnością termiczną, ale również akustyczną, a także odpornością na ogień. Dzięki tym właściwościom, stosowanie obu materiałów w połączeniu pozwala na stworzenie kompleksowego systemu izolacji, który nie tylko poprawia komfort cieplny, ale także spełnia wymagania norm budowlanych i standardów efektywności energetycznej, takich jak np. normy PN-EN 13162 dla styropianu. W praktyce, użycie tych materiałów może być różnorodne, od prostych ścian jednowarstwowych po bardziej skomplikowane systemy ociepleń budynków wielokondygnacyjnych.

Pytanie 27

Jeśli czas pracy potrzebny do wykonania 1 m2 ścianki działowej wynosi 1,4 r-g, a stawka godzinowa murarza to 15 zł, to jakie wynagrodzenie powinien otrzymać murarz za zrealizowanie 120 m2 ścianek działowych?

A. 2 520 zł
B. 3 600 zł
C. 1 680 zł
D. 1 800 zł
Aby obliczyć wynagrodzenie murarza za wykonanie 120 m2 ścianek działowych, najpierw musimy ustalić, ile roboczogodzin (r-g) jest potrzebnych do wykonania tej pracy. Ponieważ nakład robocizny na 1 m2 wynosi 1,4 r-g, to dla 120 m2 obliczamy: 120 m2 * 1,4 r-g/m2 = 168 r-g. Następnie, znając stawkę godzinową murarza wynoszącą 15 zł, obliczamy całkowite wynagrodzenie: 168 r-g * 15 zł/r-g = 2520 zł. Takie obliczenia są podstawą w branży budowlanej, gdzie precyzyjne planowanie robocizny oraz kosztów jest kluczowe dla efektywności projektów. Dobrą praktyką jest również stworzenie harmonogramu roboczego, który pozwoli na kontrolowanie postępów oraz kosztów, co minimalizuje ryzyko przekroczenia budżetu.

Pytanie 28

Na podstawie danych zawartych w tabeli podaj, ile wody należy dodać do 20 kg suchej mieszanki, aby sporządzić zaprawę lekką Termor?

Specyfikacja zapraw lekkich Termor
WłaściwościWymagania
Uziarnienie wypełniaczydo 4 mm
Gęstość nasypowa w stanie suchymnie większa niż 565 kg/m3
Przydatność suchej mieszanki do stosowanianie mniej niż 3 miesiące
Konsystencja7÷8,5 cm
Proporcje mieszania suchej mieszanki z wodą2:1
Czas zachowania właściwości roboczychnie mniej niż 3 godziny
A. 401
B. 101
C. 201
D. 301
Odpowiedź, którą zaznaczyłeś, to 101 litrów. Wiesz, to liczba, która wynika z proporcji 2:1, czyli na każde 2 kg suchej mieszanki przypada 1 kg wody. Gdy robisz zaprawę lekką Termor, kluczowe jest, aby trzymać się tych proporcji. Dzięki temu zaprawa ma lepsze właściwości mechaniczne i jest trwalsza. Dla 20 kg suchej mieszanki potrzebujesz 10 kg wody, co daje 10 litrów. Warto też robić próby, żeby dostosować ilość wody do różnych warunków budowy. Pamiętaj, że jak za dużo wody, to zaprawa może być słabsza, a jak za mało, to mogą być kłopoty z aplikacją i konsystencją. Dobrze jest też wiedzieć, że są normy budowlane, które mówią, jak dokładnie to wszystko mieszać, więc warto się ich trzymać.

Pytanie 29

Na rysunku przedstawiono wiązanie

Ilustracja do pytania
A. kowadełkowe muru o grubości 2 cegieł.
B. kowadełkowe muru o grubości 1,5 cegły.
C. pospolite muru o grubości 2,5 cegły.
D. wielowarstwowe muru o grubości 2 cegieł.
Wybór kowadełkowego muru o grubości 2 cegieł jest właściwy, ponieważ taka konstrukcja charakteryzuje się układem cegieł, w którym krótsze boki (główki) cegieł są ułożone na zmianę z dłuższymi bokami (łóżkami). Tego rodzaju wiązanie zapewnia odpowiednią wytrzymałość i stabilność muru. Zastosowanie kowadełkowego wiązania jest powszechne w budownictwie, gdyż skutecznie zapobiega pękaniu i przesuwaniu się cegieł. Standardy budowlane rekomendują stosowanie takich rozwiązań w miejscach narażonych na różne obciążenia. W praktyce, mur o grubości dwóch cegieł jest często wykorzystywany w budynkach mieszkalnych oraz obiektach przemysłowych, co potwierdzają regulacje dotyczące projektowania murowanych konstrukcji. Dodatkowo, kowadełkowe wiązanie ułatwia także prawidłowe ułożenie warstw materiału izolacyjnego, co jest istotne dla zachowania właściwości termicznych budynku.

Pytanie 30

Jakie mury można zbudować z cegły kratówki klasy 5?

A. Osłonowe
B. Fundamentowe
C. Kominowe
D. Piwniczne
Cegła kratówka klasy 5 jest materiałem budowlanym, który charakteryzuje się wysoką wytrzymałością na ściskanie oraz korzystnymi właściwościami izolacyjnymi. Jest to materiał o dobrych parametrach mechanicznych, co sprawia, że może być stosowany do budowy murów osłonowych. Mury osłonowe pełnią kluczową rolę w ochronie budynków przed działaniem warunków atmosferycznych, a ich konstrukcja często wymaga zastosowania materiałów, które zapewniają odpowiednią trwałość i izolację. W praktyce mury osłonowe wykonane z cegły kratówki klasy 5 mogą wspierać efektywność energetyczną budynku, a także przyczyniać się do jego estetyki. Dodatkowo, przy budowie murów osłonowych należy przestrzegać norm budowlanych, takich jak PN-EN 1996, które określają wymagania dotyczące materiałów, konstrukcji i ich właściwości. Dzięki tym standardom, inwestorzy mogą mieć pewność, że ich budowle będą nie tylko estetyczne, ale także funkcjonalne i trwałe.

Pytanie 31

Który z materiałów budowlanych przedstawia oznaczenie rysunkowe?

Ilustracja do pytania
A. Żelbet.
B. Tynk.
C. Szkło.
D. Tworzywo sztuczne.
Wybór materiałów takich jak tworzywo sztuczne, tynk czy żelbet w kontekście oznaczenia rysunkowego jest błędny, ponieważ każdy z tych materiałów ma specyficzne zastosowania oraz oznaczenia, które różnią się od oznaczenia szkła. Tworzywa sztuczne mają swoje unikalne właściwości, które są używane w różnych branżach, od elektroniki po budownictwo, ale ich oznaczenia rysunkowe nie są związane z omawianym standardem PN-70/B-01030. Tynk, jako materiał wykończeniowy, również nie jest przedstawiany w taki sam sposób na rysunkach technicznych, a jego zastosowanie koncentruje się głównie na estetyce i ochronie ścian. Żelbet, czyli żelbeton, to materiał konstrukcyjny, którego oznaczenia są całkowicie inne i odnoszą się do jego właściwości wytrzymałościowych i zastosowania w budownictwie. Wybór nieprawidłowych materiałów może prowadzić do błędnych wniosków oraz nieporozumień w projektach budowlanych. Właściwe rozumienie i stosowanie standardowych oznaczeń jest kluczowe w kontekście efektywnej komunikacji w zespole projektowym oraz zapewnienia zgodności z normami branżowymi, co w dłuższej perspektywie przekłada się na jakość i bezpieczeństwo realizowanych inwestycji.

Pytanie 32

Który z wymienionych typów tynków kwalifikuje się jako tynki szlachetne?

A. Pocieniony
B. Ciepłochronny
C. Wodoszczelny
D. Nakrapiany
Tynki nakrapiane, znane także jako tynki mineralne, są klasyfikowane jako tynki szlachetne ze względu na swoje unikalne właściwości estetyczne oraz techniczne. Charakteryzują się one drobnymi, dekoracyjnymi wypustkami, które nadają elewacji oryginalny wygląd. Dzięki zastosowaniu różnych materiałów oraz technik aplikacji, tynki nakrapiane oferują szeroki wachlarz faktur i kolorów, co pozwala na indywidualizację projektów budowlanych. W praktyce, tynki te nie tylko estetyzują budynek, ale również mogą poprawiać jego właściwości termoizolacyjne oraz hydrofobowe. Przykładem zastosowania tynków nakrapianych może być elewacja budynku mieszkalnego, gdzie architekt chciał podkreślić nowoczesny design, jednocześnie zapewniając ochronę przed warunkami atmosferycznymi. Warto dodać, że tynki nakrapiane spełniają różne normy jakościowe, takie jak PN-EN 998-1, które określają wymagania dla tynków. Dobór odpowiedniego rodzaju tynku jest kluczowy dla trwałości i estetyki budynku.

Pytanie 33

Jaką kwotę otrzyma robotnik za zrealizowanie 250 m2 tynku kategorii III, jeśli za 100 m2 takiego tynku przysługuje mu 1500 zł?

A. 25000 zł
B. 37500 zł
C. 3750 zł
D. 2500 zł
Aby obliczyć wynagrodzenie robotnika za wykonanie 250 m2 tynku kategorii III, najpierw należy ustalić stawkę za jednostkę powierzchni. Skoro robotnik otrzymuje 1500 zł za 100 m2, to jednostkowa stawka wynosi 1500 zł / 100 m2 = 15 zł/m2. Następnie, mnożymy tę stawkę przez powierzchnię, którą robotnik ma wykonać: 15 zł/m2 * 250 m2 = 3750 zł. To podejście jest zgodne z dobrymi praktykami w branży budowlanej, gdzie wynagrodzenie często oblicza się na podstawie stawek jednostkowych. Zastosowanie takich obliczeń pozwala na precyzyjne określenie kosztów pracy oraz efektywne zarządzanie budżetem projektu. Warto również pamiętać, że w praktyce może być konieczne uwzględnienie dodatkowych czynników, takich jak czas realizacji, trudność prac oraz ewentualne dodatkowe koszty materiałów, co może wpłynąć na ostateczną kwotę wynagrodzenia.

Pytanie 34

Rozpoczęcie docieplania ściany metodą lekką suchą polega na zamontowaniu

A. kratek odpowietrzających
B. rusztu konstrukcyjnego
C. wełny mineralnej
D. izolacji wiatrowej
Docieplenie ściany metodą lekką suchą zaczynamy od montażu rusztu konstrukcyjnego, ponieważ stanowi on podstawę dla dalszych warstw izolacyjnych. Ruszt ten może być wykonany z profili stalowych lub drewnianych, które są dostosowane do specyfiki budynku i rodzaju zastosowanej izolacji. Jego głównym zadaniem jest zapewnienie stabilności i nośności całego systemu ociepleń, a także umożliwienie montażu izolacji. Dobre praktyki wskazują na konieczność precyzyjnego wyznaczenia osi rusztu, co ma kluczowe znaczenie dla estetyki i efektywności izolacji. Po zamontowaniu rusztu, przystępuje się do aplikacji materiału izolacyjnego, który najczęściej jest wykonany z wełny mineralnej lub styropianu, zależnie od wymagań projektowych. Warto pamiętać, że zgodnie z normami budowlanymi ruszt powinien być odpowiednio zabezpieczony przed wilgocią oraz wiatrem, co znacząco wpływa na długoletnią efektywność izolacji. Takie podejście pozwala na skuteczne zarządzanie ciepłem w budynku oraz poprawia jego efektywność energetyczną.

Pytanie 35

Jaką powierzchnię ściany przedstawionej na rysunku należy uwzględnić w przedmiarze robót murarskich, jeżeli od powierzchni projektowanej ściany należy odliczyć powierzchnie otworów większych od 0,5 m2?

Ilustracja do pytania
A. 23,51 m2
B. 21,51 m2
C. 24,00 m2
D. 22,00 m2
Odpowiedź 22,00 m2 jest poprawna, ponieważ uwzględnia wszystkie istotne czynniki wpływające na obliczenie powierzchni ściany. W przedmiarze robót murarskich kluczowe jest odliczenie powierzchni otworów, które mają większą powierzchnię niż 0,5 m2. Zgodnie z dobrą praktyką w budownictwie, projektując ścianę, należy precyzyjnie obliczyć jej powierzchnię, aby uniknąć zbędnych kosztów materiałowych oraz zapewnić zgodność z dokumentacją projektową. W tym przypadku, jeśli całkowita powierzchnia ściany wynosiła 24,00 m2, a powierzchnia otworów większych od 0,5 m2 wynosi 2,00 m2, to otrzymujemy 24,00 m2 - 2,00 m2 = 22,00 m2. Takie podejście jest typowe w branży budowlanej, gdzie każdy meter kwadratowy ma znaczenie ekonomiczne. Warto również zaznaczyć, że stosowanie takich obliczeń jest zgodne z normami budowlanymi, które mówią o konieczności rzetelnego podejścia do określania potrzebnych materiałów.

Pytanie 36

Czym charakteryzuje się tynk trójwarstwowy, który składa się z następujących po sobie warstw?

A. 1. narzut, 2. obrzutka, 3. gładź
B. 1. obrzutka, 2. narzut, 3. gładź
C. 1. gładź, 2. obrzutka, 3. narzut
D. 1. gładź, 2. narzut, 3. obrzutka
Wybór kolejności kolejnych warstw tynku trójwarstwowego, przedstawiony w niepoprawnych odpowiedziach, jest oparty na niepełnym zrozumieniu zasad aplikacji tynków i ich funkcji. Niezrozumienie roli obrzutki jako pierwszej warstwy prowadzi do ryzyka niewłaściwego przygotowania podłoża, co może skutkować odspajaniem się kolejnych warstw. Obrzutka, ze względu na swoją gruboziarnistą strukturę, jest kluczowa do zapewnienia przyczepności narzutu. Zastosowanie gładzi jako pierwszej warstwy jest technicznie błędne, ponieważ bez odpowiednio przygotowanej powierzchni, gładź nie będzie się trzymać, co może prowadzić do jej pękania i łuszczenia się. Z kolei błędne umiejscowienie narzutu przed obrzutką sprawia, że cała konstrukcja traci swoje właściwości izolacyjne i estetyczne. W praktyce, brak właściwego zastosowania kolejności warstw może prowadzić do kosztownych napraw i konieczności usunięcia i ponownego nałożenia tynku, co jest nieefektywne i niezgodne z zaleceniami branżowymi. Dlatego tak ważne jest, aby zrozumieć, jak każda warstwa przyczynia się do ostatecznego efektu i trwałości tynku, oraz aby stosować się do ustalonych standardów w budownictwie.

Pytanie 37

Na której ilustracji przedstawiono element ceramiczny stosowany do murowania zewnętrznych ścian nośnych piwnic?

Ilustracja do pytania
A. Na ilustracji 3.
B. Na ilustracji 4.
C. Na ilustracji 2.
D. Na ilustracji 1.
Podczas analizy pozostałych ilustracji, można zauważyć, że przedstawione cegły z otworami nie są odpowiednie do murowania zewnętrznych ścian nośnych piwnic. Cegły z otworami, które często są używane w różnych konstrukcjach, mają swoje zastosowanie w miejscach, gdzie wymagane są mniejsze obciążenia, takie jak ściany działowe czy wypełnienia. Ze względu na swoją budowę, te cegły nie zapewniają tak wysokiej wytrzymałości na ściskanie, co czyni je niewłaściwym wyborem do budowy nośnych elementów piwnic, które muszą wytrzymywać znaczące obciążenia i jednocześnie chronić przed wilgocią. Wielu budowniczych popełnia błąd, sądząc, że wszelkie rodzaje cegły mogą być stosowane wymiennie. Kluczowym punktem jest zrozumienie, że każdy rodzaj cegły ma swoje specyficzne właściwości i zastosowania, które muszą być zgodne z wymogami projektowymi. Cegły z otworami powinny być stosowane z rozwagą, a ich użycie powinno być dokładnie przemyślane w kontekście statyki budynku oraz wymagań dotyczących izolacji. Brak zrozumienia właściwego zastosowania tych materiałów może prowadzić do problemów konstrukcyjnych oraz nieefektywności energetycznej budowli, co jest niezgodne z najlepszymi praktykami w branży budowlanej.

Pytanie 38

Jakie kruszywo wykorzystuje się do produkcji betonów klasycznych?

A. Łupkoporyt
B. Baryt
C. Keramzyt
D. Żwir
Żwir jest kruszywem naturalnym, które jest powszechnie stosowane do produkcji betonów zwykłych. Jego zastosowanie wynika z korzystnych właściwości, takich jak odpowiednia granulacja, która zapewnia dobrą przepuszczalność oraz przyczepność z cementem. Żwir charakteryzuje się wysoką trwałością i odpornością na czynniki atmosferyczne, co sprawia, że jest idealnym materiałem do budowy infrastruktury, jak drogi, mosty czy budynki. W procesie produkcji betonu, żwir stanowi kluczowy składnik, który, w połączeniu z cementem, wodą i ewentualnymi dodatkami, tworzy trwałą i wytrzymałą mieszankę. W normach branżowych, takich jak PN-EN 12620, określono wymagania dotyczące jakości kruszyw, co dodatkowo podkreśla znaczenie wyboru odpowiednich materiałów. Przykładem zastosowania żwiru w praktyce może być beton używany do budowy fundamentów, gdzie jego właściwości mechaniczne są kluczowe dla stabilności całej konstrukcji.

Pytanie 39

Na podstawie informacji zawartych w tabeli określ, która ilość składników odpowiada proporcji wagowej stosowanej przy wykonaniu zaprawy cementowej klasy M7.

Skład i marka zapraw cementowych w zależności od klasy cementu
Klasa cementuSkład wagowy przy marce zaprawy
M4M7M12M15
32,51 : 5,51 : 4,51 : 3,51 : 3
A. 100 kg cementu i 900 kg piasku.
B. 200 kg cementu i 900 kg piasku.
C. 100 kg piasku i 450 kg cementu.
D. 200 kg piasku i 900 kg cementu.
Stosowanie niewłaściwych proporcji w zaprawie cementowej może prowadzić do wielu problemów, takich jak obniżenie wytrzymałości zaprawy oraz jej trwałości. Proporcje podane w odpowiedziach, które nie są zgodne z wymaganiami dla zaprawy klasy M7, wynikają z nieporozumień dotyczących podstawowych zasad mieszania składników. Na przykład, odpowiedzi sugerujące użycie 100 kg cementu i 900 kg piasku, czy 200 kg piasku i 900 kg cementu, nie spełniają wymagań proporcji 1:4,5. W pierwszym przypadku, stosunek wynosi 1:9, co oznacza, że na jednostkę cementu przypada znacznie za dużo piasku. W drugim przypadku również proporcja jest błędna, ponieważ zamiast stosować większą ilość cementu, zgodnie z wymogami, użyto go w niewystarczającej ilości. Takie podejście może prowadzić do nadmiernego porowatości zaprawy, co z kolei przekłada się na jej mniejszą wytrzymałość i większą podatność na uszkodzenia. Kluczowe jest, aby przy mieszaniu zaprawy przestrzegać norm i dobrych praktyk budowlanych, co pozwala uniknąć problemów w późniejszym użytkowaniu budowli. Zrozumienie tych zasad jest kluczowe dla każdego, kto zajmuje się pracami budowlanymi.

Pytanie 40

Z informacji podanych w tabeli wynika, że aby otrzymać zaprawę cementowo-wapienną marki 5, należy 2 pojemniki wapna hydratyzowanego zmieszać z

Orientacyjny skład objętościowy zapraw cementowo-wapiennych
Marka zaprawyz użyciem ciasta wapiennegoz użyciem wapna hydratyzowanego
1,51:1,5:81:1:9
31:1:71:1:6
51:0,3:41:0,5:4,5
A. 4 pojemnikami cementu i 18 pojemnikami piasku.
B. 2 pojemnikami cementu i 12 pojemnikami piasku.
C. 2 pojemnikami cementu i 14 pojemnikami piasku.
D. 4 pojemnikami cementu i 16 pojemnikami piasku.
Zrozumienie proporcji materiałów w budownictwie to naprawdę ważna sprawa, jeśli chcesz mieć trwałe zaprawy. W odpowiedziach faktycznie można znaleźć sporo typowych błędów, jak pomylenie proporcji. Dla zaprawy cementowo-wapiennej ta proporcja 1:0,5:4,5 jest naprawdę kluczowa i nie można jej zmieniać na własną rękę. Jeśli ktoś sugeruje mniej cementu albo za mało piasku, to może to prowadzić do poważnych problemów. Na przykład, jeśli użyjesz 2 pojemników cementu i 14 piasku, to zaprawa będzie znacznie słabsza, co może prowadzić do strukturalnych kłopotów. Wiele błędów wynika z niepełnego zrozumienia roli materiałów – cement jest najważniejszy dla wiązania mieszanki. Z drugiej strony, nadmiar piasku, jak w przypadku 16 pojemników, powoduje, że zaprawa staje się krucha, co też jest niezgodne z zasadami. Tak więc, grubość i płynność zaprawy to kluczowe rzeczy, żeby spełniała swoje zadanie. Lepiej więc trzymaj się standardów, jak PN-EN 998, żeby nie mieć później problemów.