Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik automatyk
  • Kwalifikacja: ELM.01 - Montaż, uruchamianie i obsługiwanie układów automatyki przemysłowej
  • Data rozpoczęcia: 18 grudnia 2025 15:34
  • Data zakończenia: 18 grudnia 2025 15:38

Egzamin zdany!

Wynik: 40/40 punktów (100,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Przetwornik przedstawiony na rysunkach to

Ilustracja do pytania
A. zadajnik cyfrowo-analogowy.
B. przetwornica napięcia.
C. przetwornik PWM.
D. analogowo-cyfrowy konwerter USB.
Odpowiedź jest prawidłowa, ponieważ pokazany na rysunku układ to faktycznie analogowo-cyfrowy konwerter USB. To urządzenie działa jako pomost między sygnałami analogowymi a cyfrowymi, co jest kluczowe w wielu zastosowaniach przemysłowych i naukowych. W praktyce, takie konwertery są używane do przetwarzania sygnałów z czujników analogowych, takich jak termometry czy czujniki ciśnienia, na dane cyfrowe, które mogą być analizowane przez komputer. Standard USB zapewnia łatwość integracji z systemami komputerowymi oraz szeroką kompatybilność. Moim zdaniem, to niezbędne narzędzie w laboratoriach i przemyśle, gdzie precyzyjne pomiary są kluczowe. Dodatkowo, izolacja galwaniczna widoczna na schemacie chroni sprzęt przed różnicami potencjałów, co jest zgodne z dobrymi praktykami inżynierskimi. Dzięki temu, urządzenie można bezpiecznie używać w trudnych warunkach przemysłowych, gdzie mogą wystąpić zakłócenia elektromagnetyczne. Warto też wspomnieć, że taki konwerter umożliwia jednoczesne monitorowanie wielu kanałów pomiarowych, co znacząco zwiększa jego funkcjonalność.

Pytanie 2

W układzie regulacji temperatury zastosowano czujnik Pt500. Jaką wartość rezystancji czujnika w temperaturze 0 °C pokaże omomierz?

A. 1 000 Ω
B. 500 Ω
C. 0 Ω
D. 100 Ω
Czujniki Pt500 są powszechnie używane w systemach regulacji temperatury, głównie ze względu na ich dokładność i stabilność. Tego rodzaju czujnik nazywany jest rezystancyjnym czujnikiem temperatury (RTD) i działa na zasadzie zmiany rezystancji w zależności od temperatury. Pt w nazwie odnosi się do platyny, materiału, z którego jest wykonany element reagujący na temperaturę. Przykładowo, w temperaturze 0 °C jego rezystancja wynosi 500 Ω, co wynika ze specyfikacji technicznej tego typu czujników. To, że czujnik Pt500 w 0 °C pokazuje 500 Ω, jest zgodne ze standardami kalibracji RTD. W praktyce, instalując taki czujnik, mamy pewność, że pomiary będą precyzyjne, jeśli są wykonane zgodnie z przyjętymi normami. Dodatkowo Pt500 jest kompatybilny z różnymi układami pomiarowymi, co czyni go elastycznym narzędziem w wielu zastosowaniach przemysłowych. Warto pamiętać, że w miarę wzrostu temperatury rezystancja czujnika również wzrasta, co pozwala na precyzyjne monitorowanie zmian termicznych. Poznanie charakterystyki czujników RTD, takich jak Pt500, to klucz do efektywnego projektowania układów pomiarowych w automatyce przemysłowej.

Pytanie 3

Odpowiedź skokowa regulatora ciągłego przedstawiona na rysunku wskazuje, że w układzie regulacji zastosowano regulator typu

Ilustracja do pytania
A. PI
B. PID
C. P
D. PD
Regulator PI, czyli proporcjonalno-całkujący, jest często stosowany w układach regulacji, ponieważ łączy zdolność szybkiej reakcji na zmiany z precyzyjnym osiąganiem wartości zadanej. Na prezentowanym wykresie widzimy, że odpowiedź skokowa regulatora ma początkowy skok, który odpowiada części proporcjonalnej (P), a następnie liniowe narastanie, co jest charakterystyczne dla części całkującej (I). Dzięki temu regulator PI jest w stanie nie tylko szybko zareagować na zmiany, ale również wyeliminować uchyb ustalony, co jest jego kluczową zaletą w stosunku do regulatorów P. W praktyce oznacza to, że PI jest często używany w systemach, gdzie dokładność jest kluczowa, na przykład w regulacji temperatury czy prędkości obrotowej. W wielu aplikacjach przemysłowych stosuje się algorytmy PI ze względu na ich prostotę i efektywność, a także łatwość implementacji w układach cyfrowych. Warto też zaznaczyć, że dobór parametrów regulatora PI, takich jak wzmocnienie proporcjonalne i czas całkowania, jest kluczowy dla osiągnięcia optymalnej wydajności systemu. Optymalizacja tych parametrów często bazuje na metodach takich jak Ziegler-Nichols, które pozwalają na szybkie i skuteczne dostrojenie regulatora do specyfiki danego układu.

Pytanie 4

Stosując zasadę stałego spadku napięcia na przewodzie zasilającym, w przypadku zwiększenia dwukrotnie odległości odbiornika od źródła zasilania należy zastosować przewód o

Ilustracja do pytania
A. cztery razy mniejszym polu przekroju.
B. dwa razy większym polu przekroju.
C. dwa razy mniejszym polu przekroju.
D. cztery razy większym polu przekroju.
Zasadę stałego spadku napięcia stosujemy, aby uniknąć nadmiernych strat energii w przewodach, co jest istotne w instalacjach elektrycznych. Spadek napięcia jest proporcjonalny do długości przewodu i odwrotnie proporcjonalny do jego przekroju, co wynika z prawa Ohma i wzoru na rezystancję. Gdy zwiększamy długość przewodu dwukrotnie, spadek napięcia również się podwoi, chyba że zrekompensujemy to większym przekrojem przewodnika. Dlatego, aby utrzymać ten sam spadek napięcia, powinniśmy zwiększyć pole przekroju przewodu dwa razy. To podejście jest zgodne z dobrymi praktykami projektowania instalacji elektrycznych, które dążą do minimalizacji strat energetycznych i zapewnienia bezpiecznej pracy systemu. Praktycznie, w różnych zastosowaniach przemysłowych i budowlanych, inżynierowie często muszą brać pod uwagę te zmiany, aby zapewnić efektywność energetyczną i zgodność z normami, takimi jak PN-EN 60204 dotycząca bezpieczeństwa maszyn i instalacji elektrycznych.

Pytanie 5

Przedstawione na ilustracjach narzędzie służy do montażu

Ilustracja do pytania
A. zabezpieczeń E-ring.
B. kołków rozprężnych.
C. pierścieni Segera.
D. podkładek dystansowych.
Narzędzie przedstawione na ilustracjach to specjalna forma szczypiec do montażu zabezpieczeń E-ring. Te niewielkie zabezpieczenia są powszechnie stosowane w mechanice do utrzymywania elementów na osiach lub wałkach. Szczypce mają charakterystyczne końcówki, które umożliwiają zakleszczenie się w otworze E-ring i jego bezpieczne zamontowanie. W praktyce, zabezpieczenia te stosuje się w przekładniach, silnikach oraz innych mechanizmach, gdzie konieczne jest szybkie i bezpieczne mocowanie elementów. Przy stosowaniu tych narzędzi zaleca się przestrzeganie odpowiednich norm, takich jak DIN 471 lub ISO 10642, które definiują wymiary i wymagania dotyczące tego typu zabezpieczeń. Dzięki temu mamy pewność, że montujemy elementy zgodnie z wymogami technicznymi. E-ringi są cenione za prostotę montażu oraz demontażu, co znacząco przyspiesza procesy serwisowe. Często można je spotkać w urządzeniach codziennego użytku, co świadczy o ich uniwersalności i niezawodności. Samo narzędzie jest ergonomicznie zaprojektowane, aby zapewnić komfort pracy i precyzję, co jest kluczowe w zastosowaniach technicznych.

Pytanie 6

Na podstawie fragmentu karty katalogowej zaworu elektromagnetycznego określ maksymalne wartości ciśnienia roboczego i temperatury medium.

Fragment karty katalogowej
Typ modułu pneumatykizawór elektromagnetyczny
GwintBSP 3/4"
Średnica zewnętrzna przewodu20 mm
Ciśnienie robocze0.1÷16 bar
Temperatura pracymax. 50°C
Temperatura medium maks.90°C
Napięcie zasilania24 V DC
Klasa szczelnościIP65
Materiał korpusumosiądz
Materiał uszczelnieniakauczuk NBR
Podłączenie elektryczneDIN 43650 typ A
A. Ciśnienie robocze 16 barów i temperatura 90°C
B. Ciśnienie robocze 10 barów i temperatura 90°C
C. Ciśnienie robocze 0,1 bara i temperatura 50°C
D. Ciśnienie robocze 16 barów i temperatura 50°C
Maksymalne wartości ciśnienia roboczego i temperatury medium w zaworach elektromagnetycznych są kluczowe dla ich prawidłowego funkcjonowania i trwałości. W podanym fragmencie karty katalogowej znajdziemy informację, że ciśnienie robocze wynosi od 0,1 do 16 barów, co oznacza, że zawór może pracować z ciśnieniem nawet do 16 barów. To ważne, bo różne aplikacje w przemyśle wymagają różnych poziomów ciśnienia, a zawory muszą być w stanie spełnić te wymagania. Jeżeli chodzi o temperaturę medium, tutaj maksymalna wartość wynosi 90°C. Oznacza to, że ciecz lub gaz przepływające przez zawór mogą mieć temperaturę do 90°C, co jest istotne przy zastosowaniach w miejscach, gdzie medium może być gorące, na przykład w systemach grzewczych lub przemysłowych procesach chemicznych. Ważne jest, aby zawsze sprawdzać te parametry przed doborem zaworu do konkretnego zastosowania, ponieważ przekroczenie dopuszczalnych wartości może prowadzić do uszkodzenia zaworu i potencjalnych awarii w systemie. Warto też zwrócić uwagę na standardy branżowe, które regulują dobór i zastosowanie zaworów elektromagnetycznych, takie jak normy PN-EN dotyczące armatury przemysłowej.

Pytanie 7

Elektronarzędzie, którym można wykonywać precyzyjną obróbkę mechaniczną polegającą na frezowaniu i szlifowaniu powierzchni, przedstawiono na ilustracji

A.
Ilustracja do odpowiedzi A
B.
Ilustracja do odpowiedzi B
C.
Ilustracja do odpowiedzi C
D.
Ilustracja do odpowiedzi D
To elektronarzędzie w odpowiedzi numer 2 to miniaturowa szlifierka, znana jako multi-tool lub dremel. Jest idealna do precyzyjnej obróbki, takiej jak frezowanie, szlifowanie, polerowanie czy nawet cięcie drobnych elementów. Dzięki swojej wszechstronności znajduje zastosowanie w modelarstwie, rzemiosłach artystycznych oraz w drobnych pracach naprawczych. To narzędzie ma możliwość wymiany końcówek, co pozwala na dostosowanie go do konkretnej pracy. Dremel jest bardzo popularny w warsztatach domowych, ale również w profesjonalnych. Umożliwia pracę z różnymi materiałami, od drewna, przez metal, po tworzywa sztuczne. Warto pamiętać, że korzystanie z niego wymaga pewnej wprawy i ostrożności, ponieważ jego prędkość obrotowa jest wysoka. Stosowanie odpowiednich końcówek i właściwych prędkości obrotowych jest kluczowe, aby uniknąć przegrzewania materiału i zapewnić idealne wykończenie. Z mojego doświadczenia, użycie takiego narzędzia znacząco przyspiesza drobne prace i pozwala na osiągnięcie wysokiej precyzji w obróbce.

Pytanie 8

Na którym rysunku prawidłowo przedstawiono początek sekwencji współbieżnej sieci SFC?

A. Rysunek 3.
Ilustracja do odpowiedzi A
B. Rysunek 4.
Ilustracja do odpowiedzi B
C. Rysunek 1.
Ilustracja do odpowiedzi C
D. Rysunek 2.
Ilustracja do odpowiedzi D
Świetnie, wybrałeś poprawną odpowiedź! Rysunek 3 dokładnie przedstawia początek sekwencji współbieżnej w sieci SFC. W tym przypadku, po zakończeniu Kroku 1 uruchamiane są równocześnie dwa procesy: Krok 2 i Krok 3, co pokazuje podwójna linia pozioma. To jest kluczowe w projektowaniu systemów sterowania, gdzie równoległość procesów jest niezbędna dla efektywności i szybkości działania. W praktyce, takie rozwiązanie znajduje zastosowanie w systemach automatyki przemysłowej, gdzie różne zadania muszą być uruchamiane jednocześnie, na przykład w produkcji automatycznej. Warto zwrócić uwagę, że takie podejście jest zgodne ze standardami IEC 61131-3, które definiują struktury języka programowania dla PLC. Równoległe procesy mogą być zarządzane za pomocą odpowiednio zaprojektowanych bramek logicznych, które zapewniają synchronizację i bezkolizyjne działanie zadań. Moim zdaniem, jeżeli planujesz zajmować się projektowaniem systemów automatyki, zrozumienie i umiejętność implementacji takich sekwencji jest nieoceniona. Zawsze pamiętaj o optymalnym wykorzystaniu zasobów i zminimalizowaniu czasu przetwarzania, co jest kluczowe w dynamicznych środowiskach produkcyjnych.

Pytanie 9

Do pomiaru ciśnienia cieczy w układach hydraulicznych stosuje się

A. areometry.
B. barometry.
C. manometry.
D. higrometry.
Manometry to podstawowe narzędzia stosowane w hydraulice do pomiaru ciśnienia cieczy. Działają na zasadzie równowagi sił w układzie zamkniętym, co pozwala na dokładne określenie wartości ciśnienia. Są niezwykle powszechne w wielu branżach, od przemysłu petrochemicznego po produkcję maszyn. Praktyczne zastosowania manometrów obejmują monitorowanie ciśnienia w układach chłodniczych, instalacjach wodociągowych czy systemach pneumatycznych. Warto wiedzieć, że manometry są kluczowym elementem bezpieczeństwa w zakładach przemysłowych, ponieważ pozwalają na szybkie wykrycie nieprawidłowości, które mogą prowadzić do awarii lub wypadków. Standardowe praktyki branżowe zalecają regularną kalibrację manometrów, aby zapewnić ich dokładność i niezawodność. Istnieją różne rodzaje manometrów, takie jak manometry mechaniczne czy cyfrowe, które mogą być stosowane w zależności od specyfiki aplikacji. Ważne jest, by wybierać odpowiednie manometry zgodnie z zakresem ciśnienia i medium, z którym będą pracować. Stosowanie manometrów to nie tylko kwestia pomiaru, ale również dbałości o bezpieczeństwo i efektywność procesów.

Pytanie 10

Na rysunku przedstawiono diagram działania jednego z bloków funkcjonalnych sterownika PLC. Jest to

Ilustracja do pytania
A. blok timera opóźniającego wyłączenie TOF
B. blok licznika impulsów zliczającego w dół CTD
C. blok licznika impulsów zliczającego w górę CTU
D. blok timera opóźniającego załączenie TON
Blok licznika impulsów zliczającego w dół, oznaczany jako CTD, jest kluczowym elementem w sterownikach PLC, który pozwala na zliczanie wstecz impulsów sterujących. Na wykresie widzimy, że wartość CV (Current Value) zmniejsza się z każdym impulsem, co odpowiada działaniu licznika zliczającego w dół. Tego typu bloki są często używane w aplikacjach przemysłowych, w których ważne jest utrzymanie kontroli nad ilością wykonanych operacji lub zliczaniem komponentów na linii produkcyjnej. Stosując standardy IEC 61131-3, projektanci systemów mogą łatwo zintegrować funkcję licznika w swoich programach, co zapewnia spójność i niezawodność działania. Moim zdaniem, liczniki zliczające w dół są niezastąpione w sytuacjach, gdzie kontrola ilości zasobów czy operacji jest kluczowa. Dzięki nim możemy również realizować bardziej zaawansowane zadania logiczne, jak np. zatrzymywanie procesu po osiągnięciu określonej liczby cykli. Ważnym aspektem jest także możliwość resetowania licznika, co daje dużą elastyczność w zastosowaniach praktycznych.

Pytanie 11

Do którego przyłącza zaworu hydraulicznego należy podłączyć zbiornik z cieczą hydrauliczną?

Ilustracja do pytania
A. P
B. A
C. B
D. T
Poprawna odpowiedź to przyłącze T, czyli tzw. port powrotny (ang. Tank). W zaworach hydraulicznych oznaczenie T zawsze odnosi się do przewodu odprowadzającego ciecz z powrotem do zbiornika. W klasycznym układzie hydrauliki siłowej mamy trzy podstawowe przyłącza: P – zasilanie (ciśnienie z pompy), A i B – wyjścia robocze do siłowników lub silników hydraulicznych oraz T – powrót do zbiornika. W momencie, gdy zawór ustawi się w pozycji neutralnej, przepływ z P często kierowany jest właśnie do T, aby układ nie pracował pod stałym ciśnieniem. W praktyce montażowej należy pamiętać, że przewód powrotny powinien mieć możliwie małe opory przepływu i odpowiednią średnicę, aby uniknąć wzrostu ciśnienia zwrotnego. Z mojego doświadczenia w układach przemysłowych przewód T prowadzi ciecz do filtra, a dopiero potem do zbiornika – poprawia to czystość i trwałość całego systemu. W schematach hydraulicznych port T często rysowany jest na dole zaworu, co odpowiada kierunkowi grawitacyjnego powrotu cieczy.

Pytanie 12

W celu wykonania połączenia między zasilaczem a sterownikiem punktów oznaczonych jako PE należy zastosować przewód którego izolacja ma kolor

A. czerwony.
B. niebieski.
C. żółto-zielony.
D. niebiesko-zielony.
W instalacjach elektrycznych kolor żółto-zielony jest zarezerwowany dla przewodów ochronnych, znanych również jako przewody PE (Protective Earth). Takie przewody pełnią kluczową rolę w zapewnieniu bezpieczeństwa, chroniąc użytkowników przed porażeniem prądem oraz zabezpieczając urządzenia przed uszkodzeniami. Kolory izolacji w instalacjach elektrycznych są standaryzowane przez normy, takie jak PN-EN 60446, które określają, że przewód ochronny musi być żółto-zielony. Dlatego właśnie, łącząc zasilacz ze sterownikiem, punkty oznaczone jako PE powinny być połączone przewodem o takiej izolacji. W praktyce, w przypadku wystąpienia zwarcia, prąd zwarciowy zostaje skierowany do ziemi, co zapobiega porażeniu użytkownika. Warto również pamiętać, że odpowiednie oznaczenie przewodów w instalacji jest nie tylko kwestią zgodności z normami, ale również dobrym nawykiem, który ułatwia późniejsze prace serwisowe i zmniejsza ryzyko błędów podczas wykonywania instalacji. Moim zdaniem, zrozumienie znaczenia kolorów przewodów to podstawa bezpiecznej i zgodnej z normami pracy każdego elektryka.

Pytanie 13

Dobierz przewód do wykonania połączenia silnika 3-fazowego z przemiennikiem częstotliwości.

A. Przewód 1.
Ilustracja do odpowiedzi A
B. Przewód 3.
Ilustracja do odpowiedzi B
C. Przewód 2.
Ilustracja do odpowiedzi C
D. Przewód 4.
Ilustracja do odpowiedzi D
Właściwy wybór to przewód 1. Ten typ przewodu jest przeznaczony do zasilania silników 3-fazowych z przemiennikiem częstotliwości (falownikiem). Ma on ekran z oplotu miedzianego lub aluminiowego, który ogranicza emisję zakłóceń elektromagnetycznych (EMC) oraz chroni przed ich przenikaniem do innych urządzeń. Przewody tego typu są odporne na drgania, wyższe temperatury i impulsy napięciowe generowane przez falownik. Dodatkowo posiadają izolację z materiałów trudnopalnych, często w klasie odporności na promieniowanie UV i oleje, co pozwala stosować je zarówno wewnątrz, jak i na zewnątrz obiektów przemysłowych. Z mojego doświadczenia wynika, że takie przewody – np. typu Ölflex Servo, BiTservo lub Helukabel Topflex – są niezbędne, aby uniknąć problemów z czujnikami, sterownikami PLC i komunikacją sieciową. Standard PN-EN 60204-1 wyraźnie zaleca stosowanie ekranowanych kabli przy połączeniach silników z falownikami właśnie ze względu na ograniczenie zakłóceń harmonicznych.

Pytanie 14

Do montażu czujnika przedstawionego na rysunku niezbędne jest użycie

Ilustracja do pytania
A. wkrętaków płaskich.
B. kluczy płaskich.
C. szczypiec Segera.
D. kluczy nasadowych.
Na zdjęciu widać czujnik indukcyjny z gwintowanym korpusem i nakrętkami montażowymi. Do jego zamocowania w otworze montażowym używa się kluczy płaskich, które pozwalają odpowiednio dokręcić nakrętki po obu stronach ścianki montażowej. Klucz płaski zapewnia dobre dopasowanie do sześciokątnych nakrętek i pozwala na kontrolę siły dokręcenia, co jest istotne, aby nie uszkodzić gwintu ani nie zdeformować czujnika. Wkrętaki czy szczypce Segera nie nadają się do tego zadania, ponieważ czujnik nie posiada żadnych śrub ani pierścieni sprężystych. Klucze nasadowe teoretycznie też mogłyby być użyte, ale w praktyce dostęp do nakrętek w obudowie maszyny bywa ograniczony, dlatego klucz płaski jest najwygodniejszym i najczęściej stosowanym narzędziem. Moim zdaniem to klasyczny przykład pytania praktycznego — widać od razu, kto faktycznie miał w rękach czujnik indukcyjny i zna jego montaż. Często stosuje się też podkładki sprężyste lub kontrnakrętki, żeby czujnik nie luzował się od drgań, ale sam montaż zawsze odbywa się właśnie przy użyciu klucza płaskiego.

Pytanie 15

Na podstawie fragmentu rysunku wykonawczego określ długość krawędzi X.

Ilustracja do pytania
A. 20 mm
B. 30 mm
C. 10 mm
D. 60 mm
Krawędź X ma długość 20 mm. Wynika to z analizy wymiarów pokazanych na rysunku technicznym. Całkowita wysokość figury to 80 mm, a dolna część ma łącznie 50 mm (20 mm + 30 mm). Oznacza to, że różnica wysokości między górną a dolną częścią wynosi 30 mm, z czego 10 mm przypada na odcinek pionowy z lewej strony (od 30 mm do 20 mm). W efekcie krawędź X, będąca poziomym odcinkiem na wysokości 50 mm, ma długość 20 mm. To typowe zadanie z odczytywania wymiarów na rysunku wykonawczym, gdzie kluczowe jest rozumienie zależności między wymiarami sumarycznymi i częściowymi. W praktyce warsztatowej taka analiza pozwala uniknąć błędów przy obróbce materiału lub frezowaniu, ponieważ wymiary pośrednie często nie są podane bezpośrednio, a wynikają z prostych obliczeń geometrycznych. Moim zdaniem to świetny przykład, że dokładne czytanie rysunku jest równie ważne, jak sama umiejętność mierzenia – w realnym świecie mechanik nie może zgadywać, musi logicznie analizować każdy wymiar.

Pytanie 16

Do bezstykowego pomiaru temperatury gniazda łożyska należy zastosować termometr

A. bimetalowy.
B. rozszerzalnościowy.
C. manometryczny.
D. pirometryczny.
Pirometryczny termometr to narzędzie, które umożliwia bezdotykowy pomiar temperatury. Działa na zasadzie detekcji promieniowania podczerwonego emitowanego przez obiekt, co pozwala na uzyskanie natychmiastowych i dokładnych odczytów. Jest szczególnie przydatny w sytuacjach, gdzie bezpośredni kontakt z mierzonym obiektem jest niemożliwy lub niebezpieczny. Przykładowo, w przemyśle pirometry są stosowane do monitorowania stanu technicznego maszyn i urządzeń, gdzie ważne jest szybkie wykrycie przegrzewania się elementów, takich jak łożyska czy silniki. Zastosowanie pirometru w takich przypadkach pozwala na uniknięcie awarii i kosztownych przestojów w produkcji. Standardy branżowe, takie jak ISO 9001, zalecają użycie pirometrów do monitorowania temperatur w krytycznych punktach procesu produkcyjnego. Pirometry są również używane w laboratoriach, gdzie precyzyjne pomiary temperatury są kluczowe dla dokładności eksperymentów. Moim zdaniem, zrozumienie działania i zastosowania pirometrów to podstawa dla każdego, kto pracuje w branży technicznej, ponieważ pozwala na skuteczne monitorowanie stanu maszyn i zapobieganie ich awariom. Warto więc zagłębić się w ten temat i poznać różne modele i technologie pirometryczne dostępne na rynku.

Pytanie 17

Na podstawie przedstawionego schematu wskaż stany przycisków, przy których lampka sygnalizacyjna świeci.

Ilustracja do pytania
A. S1 przyciśnięty, S2 przyciśnięty.
B. S1 nieprzyciśnięty, S2 nieprzyciśnięty.
C. S1 nieprzyciśnięty, S2 przyciśnięty.
D. S1 przyciśnięty, S2 nieprzyciśnięty.
Aby prawidłowo ocenić, kiedy lampka sygnalizacyjna się zaświeci, trzeba zrozumieć działanie obwodu elektrycznego bazującego na schemacie. W przedstawionym układzie mamy dwa przełączniki S1 i S2 oraz lampkę H1. Kluczową kwestią jest zrozumienie, jak działa otwarty i zamknięty przełącznik. Kiedy S1 jest przyciśnięty, przepuszcza prąd dalej do S2. Jeśli S2 jest nieprzyciśnięty, zamyka obwód i prąd płynie dalej do lampki H1, powodując jej świecenie. To jest typowy przykład połączenia szeregowego, gdzie obwód musi być zamknięty, aby urządzenie działało. W praktyce, taki układ mógłby być stosowany w systemach bezpieczeństwa, gdzie tylko określona kombinacja przycisków aktywuje sygnał. W automatyce przemysłowej, standardem jest używanie takich schematów do kontrolowania procesów. Pamiętaj, że zawsze powinno się projektować układy spełniające normy bezpieczeństwa i efektywności energetycznej. Z mojego doświadczenia, zrozumienie podstaw działania takich układów jest kluczowe w późniejszym projektowaniu bardziej skomplikowanych systemów.

Pytanie 18

Na podstawie tabeli wskaż jakie powinno być ustawienie sekcji przełącznika, by było możliwe sterowanie za pomocą sygnału prądowego o wartości z przedziału 0 ÷ 20 mA.

Sekcja przełącznika
1234
Sygnał sterujący0 ÷ 5 VOFFONOFFOFF
0 ÷ 10 VOFFOFFOFFOFF
0 ÷ 20 mAONOFFOFFOFF
4 ÷ 20 mAONONONON
Rodzaj odbiornikarezystancyjny----
rezystancyjno-indukcyjny
(0,7 ≤ cos φ ≤ 0,9)
----
A. 1 – OFF, 2 – ON, 3 – OFF, 4 – OFF
B. 1 – ON, 2 – OFF, 3 – OFF, 4 – OFF
C. 1 – ON, 2 – ON, 3 – ON, 4 – ON
D. 1 – OFF, 2 – OFF, 3 – OFF, 4 – OFF
Odpowiedź 2 jest prawidłowa, ponieważ dla sygnału sterującego o zakresie 0 ÷ 20 mA ustawienie sekcji przełącznika powinno być w pozycji: 1 – ON, 2 – OFF, 3 – OFF, 4 – OFF. Tabela jasno to wskazuje. Ta konkretna kombinacja ustawień przełącznika pozwala na poprawne odczytywanie i interpretację sygnału prądowego o podanym zakresie. W praktyce, sygnały 0–20 mA są szeroko stosowane w systemach automatyki przemysłowej, ponieważ są mniej podatne na zakłócenia i mogą być przesyłane na większe odległości bez znaczącej utraty jakości. Standard 0–20 mA, a także podobny 4–20 mA, jest jednym z najstarszych i najczęściej używanych protokołów w przemyśle. Przykładowo, w układach kontroli temperatury sygnał 0–20 mA może być użyty do sterowania zaworem regulacyjnym na podstawie odczytów z czujnika temperatury. Ważne jest również, aby pamiętać o odpowiednim kalibrowaniu czujników i urządzeń, aby zapewnić precyzyjne pomiary i sterowanie. Dobrą praktyką jest regularne sprawdzanie zgodności urządzeń z wymaganiami technicznymi i normami, co zapewnia niezawodność i bezpieczeństwo systemu.

Pytanie 19

Dobierz przewód do wykonania połączenia silnika 3-fazowego z przemiennikiem częstotliwości.

A. Przewód C
Ilustracja do odpowiedzi A
B. Przewód A
Ilustracja do odpowiedzi B
C. Przewód D
Ilustracja do odpowiedzi C
D. Przewód B
Ilustracja do odpowiedzi D
Dobór odpowiedniego przewodu do połączenia silnika 3-fazowego z przemiennikiem częstotliwości jest kluczowy dla zapewnienia prawidłowej pracy systemu. Przewód A to przewód przeznaczony do zastosowań przemysłowych, charakteryzuje się wysoką odpornością na wibracje, temperaturę oraz zakłócenia elektromagnetyczne. Tego typu przewody są zwykle ekranowane, co minimalizuje wpływ zakłóceń na sygnał sterujący, co w przypadku silników jest niezwykle ważne. Przewody te muszą również spełniać normy bezpieczeństwa, takie jak PN-EN 60204-1, co zapewnia ich niezawodność i zgodność z wymaganiami technicznymi. Moim zdaniem, dobrze jest także zwracać uwagę na elastyczność przewodu, co ułatwia jego montaż w trudnych warunkach. W praktyce, przewody takie są stosowane w środowiskach o wysokim stopniu zanieczyszczenia przemysłowego i mogą pracować w szerokim zakresie temperatur, co jest istotne w kontekście przemysłowym. Z mojego doświadczenia, warto również zwrócić uwagę na odpowiednie oznaczenie przewodów, co ułatwia ich identyfikację i minimalizuje ryzyko pomyłek podczas instalacji.

Pytanie 20

Odpowiedź skokowa regulatora ciągłego przedstawiona na rysunku wskazuje, że w układzie regulacji zastosowano regulator typu

Ilustracja do pytania
A. PI
B. P
C. PID
D. PD
Regulator PI jest często stosowany w układach automatyki, gdzie wymagana jest korekcja błędu w sposób ciągły i precyzyjny. Na wykresie widzimy charakterystyczną odpowiedź skokową tego typu regulatora, która wskazuje na sumę proporcjonalnej i całkującej części. Część proporcjonalna, oznaczona jako K_R, odpowiada za szybkie reagowanie na zmiany, zaś część całkująca, charakteryzująca się stałą czasową T_i, wpływa na eliminację błędów ustalonych. Moim zdaniem, takie podejście jest niezwykle przydatne w układach, gdzie precyzja i stabilność są kluczowe, na przykład w systemach grzewczych lub klimatyzacyjnych. Standardy branżowe, takie jak ISA S5.1, zalecają stosowanie regulatorów PI w wielu aplikacjach przemysłowych ze względu na ich zdolność do utrzymania stabilności bez nadmiernego uchybu. W praktyce, znajomość odpowiednich parametrów regulacji umożliwia inżynierom dostosowanie układu do specyficznych wymagań operacyjnych, co jest kluczowe w dynamicznie zmieniających się środowiskach przemysłowych.

Pytanie 21

Do demontażu przekaźnika z szyny TH35 należy zastosować

Ilustracja do pytania
A. wkrętak krzyżowy.
B. wkrętak płaski.
C. klucz oczkowy.
D. klucz nasadowy.
Przekaźniki montowane na szynie TH35, znane jako szyny DIN, są standardem w instalacjach elektrycznych. Te szyny umożliwiają szybki montaż i demontaż urządzeń takich jak przekaźniki, styczniki czy automatyka przemysłowa. Użycie wkrętaka płaskiego do demontażu takiego przekaźnika to nie tylko wygodne, ale przede wszystkim bezpieczne rozwiązanie. Wynika to z konstrukcji urządzeń montowanych na tych szynach, które często posiadają specjalne zaczepy lub zatrzaski. Wkrętak płaski idealnie nadaje się do delikatnego podważenia tych zaczepów, umożliwiając szybkie i bezproblemowe zdjęcie przekaźnika bez ryzyka uszkodzenia samego urządzenia lub szyny. Moim zdaniem, znajomość tych drobnych, ale istotnych szczegółów montażowych jest kluczowa w pracy każdego elektryka. Właściwe narzędzia to podstawa efektywności i bezpieczeństwa pracy. W praktyce, często zdarza się, że narzędzia takie jak wkrętak płaski są niezastąpione, zwłaszcza gdy pracujemy w ograniczonej przestrzeni rozdzielnicy elektrycznej. Dobre praktyki mówią o stosowaniu narzędzi zgodnie z ich przeznaczeniem, co znacząco zmniejsza ryzyko uszkodzeń i zwiększa trwałość komponentów.

Pytanie 22

Na ilustracji przedstawiono

Ilustracja do pytania
A. dławik.
B. stycznik.
C. bezpiecznik.
D. przekaźnik.
Stycznik to urządzenie elektryczne, które umożliwia zdalne sterowanie obwodami elektrycznymi. Zasadniczo działa na zasadzie elektromagnesu – po podaniu napięcia na cewkę, styki ruchome są przyciągane do styków stałych, co zamyka obwód. Styczniki są kluczowe w automatyce przemysłowej, służą do załączania i wyłączania obwodów o wysokim napięciu i prądzie. Często stosuje się je w aplikacjach takich jak sterowanie silnikami, gdzie mogą pracować w trudnych warunkach środowiskowych i mechanicznych. Istnieją standardy, jak IEC 60947, które definiują parametry i wymagania dotyczące styczników. Z mojego doświadczenia, to jeden z najczęściej używanych elementów w szafach sterowniczych. Warto zauważyć, że jakość stycznika wpływa na niezawodność całego systemu, dlatego wybór odpowiedniego modelu i producenta jest istotny. Zmiana na stycznik o wyższej mocy może być konieczna, jeśli system zacznie wymagać większych prądów.

Pytanie 23

Aby sprawdzić ciągłość połączeń elektrycznych, należy podłączyć przewody pomiarowe do zacisków

Ilustracja do pytania
A. VΩ i COM i ustawić pokrętło w pozycji V
B. mA i COM i ustawić pokrętło w pozycji A
C. VΩ i COM i ustawić pokrętło w pozycji Ω
D. 10A i COM i ustawić pokrętło w pozycji Ω
Sprawdzenie ciągłości połączeń elektrycznych za pomocą multimetru to podstawowa umiejętność w elektronice i elektrotechnice. Aby to zrobić poprawnie, musisz podłączyć przewody pomiarowe do zacisków VΩ i COM, a pokrętło ustawić w pozycji Ω. Dlaczego? Ponieważ tryb omomierza (Ω) pozwala na pomiar rezystancji. W trybie ciągłości miernik wysyła niewielki prąd przez obwód i mierzy, czy jest on zamknięty, co oznacza, że rezystancja powinna być bliska zeru. Jest to szczególnie użyteczne przy szukaniu przerw w przewodach, sprawdzaniu bezpieczników czy diagnozowaniu połączeń lutowanych. W praktyce, dobrym zwyczajem jest także upewnienie się, że przewody pomiarowe są nieuszkodzone, a styki czyste, by uzyskać wiarygodny odczyt. Multimetry cyfrowe często emitują sygnał dźwiękowy, gdy połączenie jest ciągłe. Pamiętanie o tych zasadach nie tylko zwiększa bezpieczeństwo, ale także skuteczność pracy z urządzeniami elektronicznymi. Z mojego doświadczenia wynika, że wielu początkujących zapomina o odpowiednim ustawieniu pokrętła, co prowadzi do błędnych odczytów.

Pytanie 24

Do którego przyłącza zaworu hydraulicznego należy podłączyć zbiornik z cieczą hydrauliczną?

Ilustracja do pytania
A. B
B. A
C. P
D. T
Przyłącze T w zaworze hydraulicznym jest przeznaczone do podłączenia zbiornika z cieczą hydrauliczną. To przyłącze, zwane także portem powrotu, umożliwia odprowadzenie cieczy powracającej do zbiornika z systemu hydraulicznego, po tym jak wykonała swoje zadanie, np. przesunięcie tłoka w siłowniku. Jest to kluczowe dla utrzymania prawidłowego obiegu cieczy i zapobiegania nadmiernemu ciśnieniu w układzie. W praktyce, prawidłowe podłączenie zbiornika do przyłącza T pozwala na efektywne działanie całego systemu i uniknięcie awarii spowodowanych zbyt dużym ciśnieniem. Moim zdaniem, znajomość tego typu detali jest niezbędna dla każdego, kto chce pracować z hydrauliką, ponieważ błędne podłączenie może prowadzić do poważnych problemów. Standardy branżowe wyraźnie wskazują na konieczność stosowania się do opisanych zasad przy projektowaniu i konserwacji systemów hydraulicznych.

Pytanie 25

Który symbol graficzny oznacza przekładnię zębatą?

A.
Ilustracja do odpowiedzi A
B.
Ilustracja do odpowiedzi B
C.
Ilustracja do odpowiedzi C
D.
Ilustracja do odpowiedzi D
Poprawna jest odpowiedź przedstawiająca symbol przekładni zębatej. Na rysunku technicznym taki symbol oznacza dwa współpracujące koła zębate, które przenoszą moment obrotowy z jednego wału na drugi. Linie prostopadłe i krótkie poprzeczne kreski pokazują położenie osi i zazębienie. W praktyce konstrukcyjnej stosuje się ten zapis w schematach kinematycznych, gdzie nie pokazuje się kształtu zębów, tylko sposób przeniesienia napędu. Przekładnie zębate są bardzo powszechne – można je spotkać w skrzyniach biegów, mechanizmach obrabiarek, napędach bram czy robotach przemysłowych. Ich główną zaletą jest duża sprawność i możliwość przenoszenia dużych momentów przy niewielkich stratach energii. W dokumentacji technicznej obowiązują normy PN-EN ISO, które określają dokładnie wygląd symboli, dzięki czemu każdy inżynier lub technik może zrozumieć rysunek niezależnie od kraju. Moim zdaniem dobrze jest zapamiętać ten symbol, bo pojawia się on w większości schematów maszynowych.

Pytanie 26

Na schemacie układu sterowania wskaż, dla którego odcinka przewodu została błędnie wpisana wartość rezystancji.

Ilustracja do pytania
A. S1:4/WE2 ∞
B. V0:A2/V1:A2 0,1
C. S0:2/WE1 0,1
D. WY1/V0:A1 0,1
Wartość rezystancji dla odcinka S1:4/WE2 została wpisana jako nieskończoność (∞), co oznacza, że obwód jest otwarty. W praktyce, taka wartość wskazuje na brak połączenia elektrycznego, czyli że przewód nie przewodzi prądu. W układzie sterowania, szczególnie w przypadku przewodów łączących elementy takie jak przełączniki czy sterowniki PLC, poprawna rezystancja powinna być bardzo niska, zbliżona do zera, aby zapewnić prawidłowe działanie systemu. Otwarty obwód uniemożliwi działanie komponentów, które powinny być zasilane lub kontrolowane przez ten przewód. W praktyce, jeśli napotkasz nieskończoną rezystancję, powinieneś sprawdzić, czy przewód jest poprawnie podłączony lub czy nie został przerwany. Standardy branżowe wymagają od techników, aby regularnie sprawdzali rezystancję w przewodach jako część konserwacji prewencyjnej, co pozwala uniknąć przestojów wynikających z niewłaściwego działania systemu.

Pytanie 27

Element przedstawione na rysunku to

Ilustracja do pytania
A. czujnik pojemnościowy.
B. termometr rtęciowy.
C. czujnik rezystancyjny.
D. pirometr.
To świetnie, że rozpoznajesz czujnik rezystancyjny. Te czujniki, zwane także RTD (Resistance Temperature Detector), są szeroko stosowane w przemyśle do precyzyjnych pomiarów temperatury. Ich działanie opiera się na zależności rezystancji metalu od temperatury. Najczęściej spotykane są czujniki wykonane z platyny, takie jak Pt100, Pt500 czy Pt1000, gdzie liczby oznaczają wartość rezystancji w omach przy 0°C. Czujniki te są cenione za swoją dokładność i stabilność pomiarową. Są stosowane tam, gdzie wymagana jest wysoka precyzja, jak w przemyśle chemicznym, farmaceutycznym czy w laboratoriach badawczych. Ich kalibracja i zgodność z międzynarodowymi standardami, np. IEC 60751, zapewniają spójność i wiarygodność pomiarów. Dodatkowo, dzięki zastosowaniu różnych materiałów na osłonę, mogą być stosowane w trudnych warunkach środowiskowych. Takie czujniki mogą pracować w szerokim zakresie temperatur, co czyni je niezwykle uniwersalnymi narzędziami pomiarowymi.

Pytanie 28

Który język programowania sterowników PLC wykorzystano w projekcie przedstawionym na rysunku

Ilustracja do pytania
A. SFC
B. IL
C. FBD
D. LD
Język LD, czyli Ladder Diagram, jest jednym z najpopularniejszych sposobów programowania sterowników PLC. Jego struktura przypomina schemat drabinkowy, co ułatwia zrozumienie logiki działania programu. Na przedstawionym rysunku widać poziome linie z elementami przypominającymi styki oraz cewki – to charakterystyczne dla LD. Ten język bazuje na zasadach działania tradycyjnych układów przekaźnikowych, co sprawia, że jest intuicyjny dla elektryków i automatyków. W praktyce LD jest używany do sterowania procesami przemysłowymi, gdzie kluczowa jest logika sekwencyjna. Standardy takie jak IEC 61131-3 zalecają stosowanie LD, co podkreśla jego znaczenie w branży. LD pozwala na łatwe implementowanie funkcji takich jak blokady czy logika czasowa, co jest nieocenione w złożonych systemach sterowania. Dzięki prostocie i czytelności LD ułatwia diagnostykę i konserwację systemów w terenie, co z mojego doświadczenia jest dużym plusem w codziennej pracy inżyniera.

Pytanie 29

Na schemacie przedstawiono

Ilustracja do pytania
A. przetwornik pomiarowy prądu lub napięcia AC.
B. przetwornik napięcia AC na prąd AC.
C. regulowany wzmacniacz napięć lub prądów zmiennych.
D. konwerter łącza szeregowego na łącze światłowodowe.
Na schemacie widzimy konwerter, który zamienia klasyczne łącze szeregowe RS-232 na łącze światłowodowe. Po lewej stronie oznaczenia TxD i RxD wskazują na typowy interfejs komunikacji szeregowej, natomiast po prawej znajdują się symbole nadajnika i odbiornika światłowodowego (FO – Fiber Optic). Urządzenie to umożliwia przesyłanie danych w formie impulsów świetlnych, co pozwala na transmisję na duże odległości bez zakłóceń elektromagnetycznych i bez konieczności galwanicznego połączenia między urządzeniami. Zasilanie w szerokim zakresie (24–240 V AC/DC) sugeruje zastosowanie przemysłowe – typowe dla automatyki, sterowników PLC i systemów monitoringu. Moim zdaniem to przykład nowoczesnego podejścia do komunikacji, które łączy prostotę RS-232 z niezawodnością światłowodu. W praktyce takie konwertery montuje się w szafach sterowniczych, by połączyć odległe stanowiska pomiarowe lub serwery. Dzięki nim można znacznie wydłużyć zasięg transmisji (nawet do kilku kilometrów) i uniezależnić się od szumów elektrycznych obecnych w fabrykach.

Pytanie 30

Na rysunku przedstawiono

Ilustracja do pytania
A. zespół przygotowania powietrza.
B. zawór odcinający.
C. elektrozawór.
D. blok rozdzielający.
To, co widzisz na rysunku, to typowy zespół przygotowania powietrza. Składa się z kilku kluczowych elementów: filtr, regulator ciśnienia oraz smarownica. Filtr ma za zadanie usuwać zanieczyszczenia z powietrza, takie jak kurz czy wilgoć, co jest niezwykle ważne w zapewnieniu prawidłowego działania narzędzi pneumatycznych. Regulator ciśnienia pozwala na utrzymanie stałego ciśnienia w systemie, co jest kluczowe dla stabilnej pracy urządzeń. Natomiast smarownica dodaje mgiełkę oleju do przepływającego powietrza, co zmniejsza tarcie i zużycie ruchomych części narzędzi pneumatycznych, wydłużając ich żywotność. Takie zespoły są powszechnie stosowane w warsztatach samochodowych, w przemyśle czy na liniach produkcyjnych. Znajomość ich działania jest kluczowa dla każdego technika zajmującego się systemami pneumatycznymi, ponieważ zapewnia to nie tylko niezawodność, ale także bezpieczeństwo pracy. Praktyka pokazuje, że regularne przeglądy i konserwacja tego typu urządzeń znacząco wpływają na wydajność całego systemu pneumatycznego.

Pytanie 31

Przedstawione na rysunkach narzędzia służą do

Ilustracja do pytania
A. zaciskania tulejek.
B. zaciskania wtyków RJ-45.
C. ściągania izolacji.
D. zaciskania wtyków RJ-11.
To narzędzie, które widzisz na rysunku, to klasyczna szczypce do ściągania izolacji. Działa na zasadzie automatycznego zacisku, co pozwala na precyzyjne usunięcie izolacji z przewodów bez uszkadzania samego rdzenia. W praktyce, narzędzia tego typu są nieocenione przy przygotowywaniu przewodów do lutowania czy montażu w złączach elektrycznych. W branży elektroinstalacyjnej, szczególnie przy pracy z okablowaniem elektrycznym, standardem jest używanie właśnie takich ściągaczy. Moim zdaniem, to niezastąpiona pomoc przy większych projektach, gdzie liczy się zarówno czas, jak i precyzja. Z mojego doświadczenia, odpowiednie ściąganie izolacji to klucz do bezpiecznego i efektywnego połączenia elektrycznego. Warto znać różne typy takich narzędzi, ponieważ niektóre przystosowane są do specyficznych rodzajów przewodów. Pamiętaj, by zawsze dobierać narzędzie do średnicy i rodzaju przewodu, aby uniknąć uszkodzeń i zapewnić trwałość połączeń.

Pytanie 32

Który przyrząd należy zastosować, aby zmierzyć z dokładnością 0,1 mm otwory o średnicy Φ10 wykonane pod montaż czujników indukcyjnych?

A. Suwmiarkę uniwersalną.
B. Mikrometr zewnętrzny.
C. Czujnik zegarowy.
D. Przymiar kreskowy.
Suwmiarka uniwersalna to narzędzie, które świetnie się sprawdza do mierzenia otworów z dokładnością do 0,1 mm. Jest to bardzo wszechstronne urządzenie, które dzięki swojej budowie pozwala na szybkie i dokładne pomiary zarówno zewnętrznych, jak i wewnętrznych wymiarów. W przypadku otworów o średnicy Φ10, suwmiarka pozwala na precyzyjne zmierzenie ich średnicy dzięki specjalnym szczękom pomiarowym umieszczonym na końcu ramion. Moim zdaniem, suwmiarka to podstawowe narzędzie w każdym warsztacie, ale trzeba pamiętać, by stosować ją zgodnie z zaleceniami producenta, ponieważ niewłaściwe użytkowanie może prowadzić do błędnych odczytów. Warto również zaznaczyć, że suwmiarki są dostępne w różnych wersjach - cyfrowej i analogowej. W przemyśle standardem jest stosowanie suwmiarki cyfrowej ze względu na łatwość odczytu i eliminację błędów związanych z interpretacją skali. Pamiętaj też, że dokładność pomiaru zależy nie tylko od narzędzia, ale również od umiejętności i doświadczenia osoby mierzącej.

Pytanie 33

W której pozycji ustawią się tłoczyska siłowników 1A1 i 2A1 po włączeniu zasilania układu sprężonym powietrzem przy niewzbudzonych cewkach Y1 i Y2?

Ilustracja do pytania
A. Tłoczyska obu siłowników wysuną się.
B. Tłoczysko siłownika 1A1 nie wysunie się, a tłoczysko siłownika 2A1 wysunie się.
C. Tłoczysko siłownika 1A1 wysunie się, a tłoczysko siłownika 2A1 nie wysunie się.
D. Tłoczyska obu siłowników pozostaną wsunięte.
Siłownik 1A1 nie wysunie się z powodu braku zasilania cewki Y1, co pozostawia zawór 1V1 w pozycji, która odcina dopływ powietrza do siłownika 1A1. To jest zgodne z zasadą działania zaworów rozdzielających, które kierują przepływem medium w zależności od stanu cewek. W praktyce oznacza to, że siłownik pozostanie w pozycji wsuniętej, co jest często stosowane w sytuacjach, gdzie bezpieczeństwo wymaga, aby ruch nie został wykonany bez wyraźnego sygnału sterującego. Z kolei siłownik 2A1 wysunie się, ponieważ zawór 2V1, w stanie niewzbudzonym, umożliwia przepływ powietrza, co powoduje ruch tłoczyska. Taka konstrukcja jest używana w systemach, gdzie natychmiastowe działanie siłowników jest wymagane, np. do szybkiego uruchamiania procesów produkcyjnych. Standardy pneumatyki przemysłowej, takie jak ISO 1219, opisują właśnie takie układy jako podstawowe dla zrozumienia sterowania pneumatycznego. Dzięki temu możemy lepiej zaplanować i kontrolować procesy, minimalizując ryzyko błędów i zwiększając efektywność produkcji.

Pytanie 34

Którym z przedstawionych na rysunkach miernikiem należy się posłużyć przy testowaniu okablowania strukturalnego?

A.
Ilustracja do odpowiedzi A
B.
Ilustracja do odpowiedzi B
C.
Ilustracja do odpowiedzi C
D.
Ilustracja do odpowiedzi D
Do testowania okablowania strukturalnego należy użyć specjalistycznego miernika sieciowego Fluke Networks CableIQ. To urządzenie zostało zaprojektowane właśnie do kwalifikacji i diagnostyki kabli miedzianych w instalacjach komputerowych i teleinformatycznych. Pozwala sprawdzić, czy dany odcinek przewodu spełnia wymagania dla transmisji 10BASE-T, 100BASE-TX, 1000BASE-T lub VoIP. Miernik ten wykonuje testy ciągłości, mapy połączeń, długości żył, a także wykrywa błędy takie jak zwarcia, przerwy, zamiany par czy przesłuchy. Co więcej, potrafi określić jakość toru transmisyjnego – czyli tzw. kwalifikację kabla – bez potrzeby używania certyfikatora. W praktyce Fluke Networks to standard w branży telekomunikacyjnej i instalatorskiej; dzięki prostemu interfejsowi i automatycznym raportom jest niezastąpiony przy odbiorach sieci LAN. Moim zdaniem to najlepsze rozwiązanie do pracy w terenie – szybkie, dokładne i odporne na błędy użytkownika.

Pytanie 35

W której pozycji ustawią się tłoczyska siłowników 1A1 i 2A1 po włączeniu zasilania układu sprężonym powietrzem przy niewzbudzonych cewkach Y1 i Y2?

Ilustracja do pytania
A. Tłoczysko siłownika 1A1 wysunie się, a tłoczysko siłownika 2A1 nie wysunie się.
B. Tłoczyska obu siłowników wysuną się.
C. Tłoczysko siłownika 1A1 nie wysunie się, a tłoczysko siłownika 2A1 wysunie się.
D. Tłoczyska obu siłowników pozostaną wsunięte.
Poprawna odpowiedź to: tłoczysko siłownika 1A1 nie wysunie się, a tłoczysko siłownika 2A1 wysunie się. Wynika to z analizy położenia zaworów w stanie spoczynku, czyli przy niewzbudzonych cewkach Y1 i Y2. Zawór 1V1 (sterujący siłownikiem 1A1) w pozycji podstawowej blokuje dopływ powietrza do komory wysuwu – dlatego tłoczysko pozostaje schowane. Natomiast zawór 2V1 (sterujący siłownikiem 2A1) w swojej pozycji spoczynkowej podaje ciśnienie na stronę wysuwu, przez co siłownik 2A1 się wysuwa. Sprężyna przy zaworze 2V1 ustawia go w pozycji, w której port 1 jest połączony z portem 2. W praktyce oznacza to, że po podaniu zasilania sprężonym powietrzem, bez aktywacji elektromagnesów, tylko siłownik 2A1 zostaje zasilony od strony tłoczyska i wykonuje ruch. Moim zdaniem to klasyczny przykład układu, który pokazuje znaczenie pozycji spoczynkowej zaworu oraz kierunku działania sprężyn – coś, co często umyka początkującym automatykom. W rzeczywistych aplikacjach takie rozwiązanie stosuje się np. do automatycznego ustawienia elementu w pozycji startowej po uruchomieniu maszyny.

Pytanie 36

Określ przeznaczenie urządzenia przedstawionego na rysunku.

Ilustracja do pytania
A. Wizualizacja przebiegu procesu.
B. Zasilanie układu sterowania.
C. Programowanie układu.
D. Pomiar wielkości procesowych.
Urządzenie, które widzisz, to panel HMI, czyli interfejs człowiek-maszyna. Jest to podstawowe narzędzie w systemach automatyki przemysłowej do wizualizacji przebiegu procesu. Tego typu panele, jak ten na zdjęciu, umożliwiają operatorom interakcję z systemami sterowania procesem. Za ich pomocą można monitorować parametry procesu, wizualizować dane w czasie rzeczywistym oraz podejmować decyzje operacyjne w oparciu o wizualizowane informacje. Moim zdaniem, panel HMI jest fundamentem każdego nowoczesnego systemu automatyki, bo pozwala na szybkie diagnozowanie i reagowanie na nieprawidłowości w procesie. W praktyce, panele HMI są używane w wielu gałęziach przemysłu, od produkcji po energetykę. Z mojego doświadczenia, dobry interfejs HMI zgodny z normami, jak ISO 9241, ułatwia pracę operatorom, a dobrze zaprojektowana wizualizacja ogranicza ryzyko błędów ludzkich. Warto też wspomnieć, że niektóre panele HMI oferują możliwość zdalnego dostępu, co jest ogromnym ułatwieniem w czasach wzmożonej automatyzacji i potrzeby szybkiego reagowania na sytuacje awaryjne.

Pytanie 37

Do zamontowania na szynie DIN przedstawionego na rysunku sterownika wystarczy użyć

Ilustracja do pytania
A. młotka.
B. klucza nasadowego.
C. wkrętaka płaskiego.
D. nitownicy.
Do montażu sterownika na szynie DIN używa się wkrętaka płaskiego, ponieważ większość sterowników ma specjalne zatrzaski, które można regulować lub zabezpieczać za pomocą takiego narzędzia. Szyny DIN to standardowe elementy montażowe w automatyce przemysłowej, które umożliwiają szybkie i pewne mocowanie urządzeń. Wkrętak płaski jest idealny do tego zadania, ponieważ pozwala na precyzyjne operowanie zatrzaskami bez ryzyka uszkodzenia urządzenia czy szyny. W praktyce, gdy montujesz sterownik na szynie, musisz jedynie delikatnie nacisnąć na zatrzaski, umożliwiając ich prawidłowe osadzenie. To podstawowe narzędzie w skrzynce każdego elektryka czy automatyka. Dzięki temu rozwiązaniu, montaż i demontaż są szybkie i nie wymagają dużego nakładu siły. Ważne jest też, aby używać narzędzi zgodnych ze standardami bezpieczeństwa, co minimalizuje ryzyko wypadków w miejscu pracy. Szyny DIN zapewniają także porządek i estetykę w rozdzielniach elektrycznych, co jest kluczowe w utrzymaniu systemów przemysłowych w dobrym stanie.

Pytanie 38

Na rysunku przedstawiono program sterowniczy realizujący funkcję logiczną

Ilustracja do pytania
A. AND
B. OR
C. NAND
D. XNOR
Na rysunku widzimy schemat, który realizuje funkcję logiczną NAND. To jest dość popularna operacja w logice cyfrowej, szczególnie w układach sterowania przemysłowego. Operacja NAND jest kombinacją operacji AND i NOT - daje wynik prawdziwy, jeżeli przynajmniej jeden z jej wejść jest fałszywy. W praktyce oznacza to, że wyjście będzie wyłączone tylko wtedy, gdy oba wejścia są w stanie wysokim (1). Ten rodzaj logiki jest często stosowany w projektowaniu zabezpieczeń, gdzie konieczne jest wyłączenie systemu w przypadku odczytu niepożądanych stanów na wejściach. W codziennej pracy inżynierskiej, bramka NAND jest uważana za jedną z najczęściej używanych, bo pozwala na realizację dowolnej funkcji logicznej przy użyciu odpowiednich kombinacji. Dodatkowo, z mojego doświadczenia, w układach sterowania PLC, stosowanie NAND jest efektywne i oszczędza miejsce oraz zasoby, co jest zgodne z dobrymi praktykami projektowania.

Pytanie 39

Wskaż oznaczenie literowe gwintu metrycznego.

A. W
B. S
C. Tr
D. M
Gwinty metryczne to jedne z najczęściej stosowanych gwintów w przemyśle, zarówno w Polsce, jak i na świecie. Oznacza się je literą 'M', co pochodzi od 'metryczny'. Podstawową cechą gwintu metrycznego jest jego kształt: trójkątny profil z kątem wierzchołkowym 60°, który zapewnia dobre właściwości mechaniczne, takie jak wytrzymałość i trwałość. Gwinty te są normowane według standardu ISO, co ułatwia ich szerokie zastosowanie w produkcji masowej i umożliwia wymienność elementów. Przykładowo, śruby z gwintem metrycznym są używane w motoryzacji, budownictwie czy elektronice, gdzie precyzja i niezawodność są kluczowe. Warto też wspomnieć, że gwinty metryczne mogą być dostępne w różnych podziałkach, takich jak drobnozwojowe czy zwykłe, co pozwala na ich dopasowanie do specyficznych potrzeb projektowych. Dodatkowo, wybór gwintu metrycznego może wpływać na łatwość montażu i demontażu elementów konstrukcyjnych, co jest istotne w kontekście konserwacji i serwisu. Moim zdaniem, znajomość tych systemów jest niezbędna dla każdego inżyniera mechanika czy technika budowlanego, bo to podstawa w pracy z elementami złącznymi.

Pytanie 40

Które narzędzie należy zastosować do nacięcia gwintu w otworze?

A. Narzędzie 1.
Ilustracja do odpowiedzi A
B. Narzędzie 2.
Ilustracja do odpowiedzi B
C. Narzędzie 4.
Ilustracja do odpowiedzi C
D. Narzędzie 3.
Ilustracja do odpowiedzi D
Poprawna odpowiedź to narzędzie 1 – czyli gwintownik. Służy ono do nacinania gwintów wewnętrznych w otworach, dzięki czemu można wkręcać w nie śruby lub wkręty o odpowiednim profilu gwintu. Gwintownik ma charakterystyczne rowki wzdłużne, które odprowadzają wióry powstające podczas skrawania metalu. W praktyce stosuje się zwykle zestaw trzech gwintowników: zdzierak, pośredni i wykańczak – każdy pogłębia gwint coraz bardziej, aż do uzyskania pełnego profilu. Podczas pracy należy używać odpowiedniego środka smarującego, np. oleju do gwintowania, który poprawia jakość powierzchni i wydłuża żywotność narzędzia. Z mojego doświadczenia wynika, że kluczowe jest utrzymanie osi gwintownika idealnie w jednej linii z otworem – nawet niewielkie odchylenie powoduje, że śruba nie wchodzi płynnie lub zrywa gwint. W przemyśle mechaniczno-montażowym gwintowniki są podstawowym narzędziem w produkcji elementów z otworami gwintowanymi.