Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 9 grudnia 2025 11:22
  • Data zakończenia: 9 grudnia 2025 11:46

Egzamin zdany!

Wynik: 21/40 punktów (52,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Którego z kluczy należy użyć do wykonania połączenia gwintowego śruby z gniazdem sześciokątnym?

Ilustracja do pytania
A. D.
B. B.
C. C.
D. A.
Odpowiedź A jest prawidłowa, ponieważ klucz imbusowy, pasujący do gniazda sześciokątnego, jest narzędziem odpowiednim do wykonania połączenia gwintowego śruby z gniazdem sześciokątnym. Klucze imbusowe są dedykowane do odkręcania i dokręcania śrub z gniazdem sześciokątnym wewnętrznym, co zapewnia stabilność i bezpieczeństwo połączenia. Przykładem zastosowania klucza imbusowego jest montaż mebli, gdzie śruby imbusowe są często stosowane ze względu na ich estetykę i łatwość użycia. Zgodnie z normami ISO, klucze imbusowe powinny być wykonane z materiałów odpornych na zużycie, co wydłuża ich żywotność. Dobre praktyki wskazują, że dobierając klucz do śruby, należy zwrócić uwagę na odpowiedni rozmiar oraz kształt, aby uniknąć uszkodzenia gniazda. Niewłaściwie dobrany klucz może prowadzić do strippingu śruby, co utrudni jej późniejsze wykręcanie.

Pytanie 3

Którą metodę kontroli temperatury pracy silnika przedstawiono na rysunku?

Ilustracja do pytania
A. Ultradźwiękową.
B. Segera.
C. Termometryczną.
D. Termowizyjną.
Odpowiedź "Termowizyjna" jest poprawna, ponieważ na zdjęciu przedstawiony jest aparat termowizyjny, który jest wykorzystywany do pomiaru temperatury w sposób bezkontaktowy. Technologia ta polega na detekcji promieniowania podczerwonego emitowanego przez obiekty, co pozwala na uzyskanie obrazu termicznego. Dzięki temu rozwiązaniu można w szybki sposób ocenić temperaturę różnych części silnika, co jest niezwykle istotne dla zapewnienia jego prawidłowego funkcjonowania oraz zapobiegania awariom. Metoda ta jest szczególnie przydatna w zastosowaniach przemysłowych, gdzie monitorowanie temperatury w czasie rzeczywistym pozwala na wczesne wykrywanie problemów, takich jak przegrzewanie się komponentów. Użycie kamer termograficznych jest zgodne z najlepszymi praktykami w dziedzinie diagnostyki maszyn, co czyni ją standardem w przemyśle wytwórczym i eksploatacyjnym. Przykłady zastosowań obejmują inspekcje w zakładach energetycznych, motoryzacyjnych czy w przemyśle lotniczym.

Pytanie 4

Jakie jest moment obrotowy na wale silnika synchronicznego o mocy 3,14 kW przy prędkości obrotowej 3000 obr/min?

A. 986 Nm
B. 9 420 Nm
C. 1 Nm
D. 10 Nm
W przypadku momentu obrotowego na wale silnika synchronicznego, istnieje kilka kluczowych koncepcji, które mogą prowadzić do błędnych odpowiedzi. Moment obrotowy jest miarą siły, która powoduje obrót ciała wokół osi. Odpowiedzi takie jak 986 Nm, 1 Nm, czy 9 420 Nm nie uwzględniają prawidłowego przeliczenia mocy na moment obrotowy. Często mylnie przyjmuje się, że moc silnika bezpośrednio przekłada się na moment obrotowy, co jest nieprawidłowe. Prawidłowe obliczenie wymaga uwzględnienia zarówno mocy, jak i prędkości obrotowej. Typowym błędem jest także mylenie jednostek, zwłaszcza przy konwersji mocy z kilowatów na waty, co może prowadzić do znacznych niedoszacowań lub przeszacowań momentu obrotowego. Przykładowo, odpowiedź 986 Nm sugeruje, że silnik jest znacznie bardziej mocny niż to wynika z podanych danych. Z drugiej strony, odpowiedzi takie jak 1 Nm czy 10 Nm również nie oddają rzeczywistej wartości momentu, co może wpłynąć na niewłaściwy dobór napędu w praktycznych zastosowaniach przemysłowych. Dokładne zrozumienie tych zasad jest kluczowe dla inżynierów i techników, aby unikać potencjalnych problemów w projektowaniu układów napędowych.

Pytanie 5

Podczas prac związanych z montażem mechatronicznych elementów konstrukcyjnych na znacznej wysokości, co należy założyć?

A. kask ochronny
B. buty ochronne
C. okulary ochronne
D. maskę przeciwpyłową
Kask ochronny jest kluczowym elementem wyposażenia ochronnego podczas prac na wysokości, zwłaszcza przy montażu mechatronicznych elementów konstrukcyjnych. Jego głównym zadaniem jest ochrona głowy przed urazami w przypadku upadku przedmiotów, co jest szczególnie istotne w środowiskach przemysłowych. Standardy takie jak PN-EN 397:2012 podkreślają konieczność stosowania kasków, które spełniają określone normy bezpieczeństwa. Przykładowo, w sytuacjach, gdzie mogą wystąpić spadające narzędzia lub materiały, kask może zapobiec poważnym obrażeniom lub nawet urazom śmiertelnym. Warto również zwrócić uwagę na dodatkowe funkcje kasków, takie jak możliwość montażu osłon twarzy czy słuchawek komunikacyjnych, co zwiększa komfort i bezpieczeństwo pracy. W kontekście mechatroniki, gdzie elementy są często ciężkie i wymagają precyzyjnego montażu, odpowiednia ochrona głowy staje się niezbędna.

Pytanie 6

Jaką funkcję pełni element V2 w układzie przedstawionym na rysunku?

Ilustracja do pytania
A. Zmniejsza prędkość wsuwania tłoka siłownika.
B. Zwiększa prędkość wysuwania tłoka siłownika.
C. Zmniejsza prędkość wysuwania tłoka siłownika.
D. Zwiększa prędkość wsuwania tłoka siłownika.
Odpowiedź, że element V2 zwiększa prędkość wsuwania tłoka siłownika, jest prawidłowa z powodu działania zaworu szybkiego spustu, który ma kluczowe znaczenie w układzie pneumatycznym. Zawór V2 umieszczony na linii powrotnej siłownika pozwala na błyskawiczne odprowadzenie powietrza z komory siłownika, co przyspiesza ruch tłoka w kierunku wsuwania. W praktyce, wykorzystanie takiego zaworu jest zgodne z dobrymi praktykami inżynieryjnymi, ponieważ pozwala na zwiększenie efektywności cyklu pracy maszyn pneumatycznych. W wielu zastosowaniach przemysłowych, takich jak automatyka produkcyjna, szybkie wprowadzanie tłoka do pozycji roboczej jest kluczowe dla zwiększenia wydajności linii produkcyjnej. Stosując zawór szybkiego spustu, można zredukować czas cyklu operacyjnego, co bezpośrednio przekłada się na oszczędności czasu i kosztów operacyjnych, a także zwiększa ogólną efektywność systemu. Ponadto, znajomość zasad działania takich elementów jak V2 jest niezbędna przy projektowaniu i serwisowaniu układów pneumatycznych, co czyni tę wiedzę niezastąpioną w pracy inżynierów i techników.

Pytanie 7

Efektor zainstalowany na końcu ramienia robota przede wszystkim pełni funkcję

A. przemieszczania obiektu w przestrzeni
B. chronienia ramienia robota przed przeciążeniem
C. chwytania obiektu z odpowiednią siłą
D. ochrony ramienia robota przed kolizjami z operatorem
Wybór innych opcji, takich jak zabezpieczanie ramienia robota przed kolizją z operatorem, przemieszczanie elementu w przestrzeni czy zabezpieczanie ramienia robota przed przeciążeniem, wskazuje na niepełne zrozumienie roli efektora w systemie robotycznym. Zabezpieczanie ramienia przed kolizją z operatorem jest ważnym aspektem bezpieczeństwa, jednak nie jest to funkcjonalność efektora, lecz systemów zabezpieczeń, takich jak czujniki obecności czy osłony, które chronią ludzi w otoczeniu robotów. Przemieszczanie elementów w przestrzeni jest efektem działania robota, ale to nie efektor jest odpowiedzialny za tę funkcję – to ramię robota wykonuje ruchy, natomiast efektor ma jedynie za zadanie uchwycić obiekt. Z kolei zabezpieczanie ramienia przed przeciążeniem to aspekt konstrukcyjny, związany z systemami monitorowania obciążenia i nie jest typową funkcją efektora. Typowym błędem myślowym jest mylenie zadań, jakie pełni efektor z innymi funkcjami robota, co prowadzi do niezrozumienia jego głównej roli, jaką jest chwytanie obiektów, co z kolei jest kluczowe dla efektywności procesów automatyzacji.

Pytanie 8

Jaki czujnik powinno się wykorzystać do pomiaru wartości natężenia pola magnetycznego?

A. Tensometryczny
B. Hallotronowy
C. Ultradźwiękowy
D. Pojemnościowy
Wybór nieodpowiednich czujników do pomiaru pola magnetycznego może prowadzić do poważnych pomyłek w analizie i diagnostyce. Czujniki tensometryczne, na przykład, są przeznaczone do mierzenia sił i odkształceń, a więc nie mają zastosowania w detekcji pól magnetycznych. Działają na zasadzie zmian oporu elektrycznego w odpowiedzi na deformację mechaniczną, co czyni je skutecznymi w zastosowaniach takich jak pomiar siły wywieranej na strukturę, ale nie w pomiarze pól magnetycznych. Z kolei czujniki pojemnościowe mierzą zmiany pojemności elektrycznej wynikające z obecności obiektów w ich polu działania. Używane są często w czujnikach dotykowych i systemach wykrywania obecności, ale nie nadają się do pomiaru natężenia pola magnetycznego. Czujniki ultradźwiękowe opierają się na zasadzie odbicia fal dźwiękowych i są stosowane w detekcji odległości oraz w systemach automatyzacji, ale także nie mają zastosowania w detekcji pól magnetycznych. Dlatego ważne jest zrozumienie, który czujnik najlepiej odpowiada wymaganiom danej aplikacji, aby zapewnić dokładność i niezawodność pomiarów. Wybór odpowiedniego czujnika powinien opierać się na specyfikacji technicznej oraz wymaganiach konkretnego zastosowania w branży.

Pytanie 9

Olej mineralny wzbogacony składnikami, które poprawiają właściwości antykorozyjne oraz odporność na starzenie, a także z dodatkami zwiększającymi smarność, oznaczany jest jakim symbolem?

A. HVLP
B. HL
C. H
D. HLP
Wybór złych symboli olejów może sporo namieszać w ich właściwościach względem potrzeb. Na przykład, symbol HVLP mówi o olejach hydraulicznych, które mają dobre właściwości smarujące, ale brakuje im tych dodatków antykorozyjnych. Również symbol HL informuje o olejach, które nie mają dodatków przeciwutleniających ani poprawiających smarność, co ogranicza ich użycie w trudniejszych warunkach. Znowu, oznaczenie H dotyczy olejów hydraulicznych, które nie mówią nic więcej o ich specyficznych właściwościach. Często myli się te symbole i ich zastosowanie, co może prowadzić do poważnych problemów w hydraulikach, jak przegrzewanie czy korozja. Dlatego tak ważne jest, aby znać różnice między tymi oznaczeniami i wiedzieć, jak je stosować w praktyce w przemyśle.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Podaj właściwą sekwencję montażu składników w układzie przygotowania sprężonego powietrza, zaczynając od strony złożonego systemu pneumatycznego.

A. Smarownica, manometr, reduktor, filtr powietrza
B. Filtr powietrza, manometr, reduktor, smarownica
C. Reduktor, manometr, filtr powietrza, smarownica
D. Manometr, reduktor, smarownica, filtr powietrza
Wybór innej kolejności montażu elementów składowych w zespole przygotowania sprężonego powietrza prowadzi do wielu problemów funkcjonalnych oraz technicznych. Na przykład, umieszczając manometr przed reduktorem, możemy wprowadzać odczyty ciśnienia, które nie będą odzwierciedlały rzeczywistego ciśnienia roboczego w systemie, ponieważ nie uwzględniają one redukcji ciśnienia, jaką wprowadza reduktor. Taki błąd może prowadzić do nieprawidłowych ustawień, które w rezultacie obniżają efektywność pracy narzędzi pneumatycznych. Ponadto montaż filtra powietrza na początku układu, jak sugerują niektóre odpowiedzi, może spowodować, że zanieczyszczenia będą wprowadzane do smarownicy, co może negatywnie wpłynąć na jej działanie oraz na jakość smarowania. To z kolei może prowadzić do szybszego zużycia narzędzi i komponentów. Kluczowym aspektem jest również zrozumienie, że każdy z elementów ma swoje specyficzne funkcje i powinien być zamontowany w odpowiedniej kolejności, aby system działał optymalnie. Nieprzemyślana kolejność montażu elementów składowych może skutkować także zwiększeniem kosztów serwisowania i napraw, a także obniżeniem efektywności energetycznej całego systemu. Dlatego tak ważne jest, aby stosować się do ustalonych standardów i dobrych praktyk w zakresie instalacji systemów sprężonego powietrza.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Jaką wartość można zarejestrować korzystając z enkodera absolutnego jednoobrotowego?

A. Moment obrotowy
B. Przesunięcie kątowe
C. Przyspieszenie
D. Ciśnienie
Przyspieszenie, moment obrotowy oraz ciśnienie to wielkości, które nie są bezpośrednio mierzone przez enkodery absolutne jednoobrotowe, co może prowadzić do nieporozumień w kontekście ich zastosowań. Przyspieszenie odnosi się do zmiany prędkości obiektu w czasie i jest mierzonym parametrem, który można określić przy użyciu akcelerometrów, a nie enkoderów. Chociaż enkodery mogą być używane w systemach, które również mierzą przyspieszenie, same w sobie nie są w stanie tego dokonać. Moment obrotowy jest wielkością, która opisuje siłę działającą na obiekt w celu jego obrotu. Enkodery mogą dostarczać informacji o położeniu, ale ich funkcja nie obejmuje bezpośredniego pomiaru momentu obrotowego, który wymaga pomiaru siły oraz promienia działania. Z kolei ciśnienie jest parametrem fizycznym, mierzonym za pomocą czujników ciśnienia, a nie enkoderów. Typowe błędy myślowe w tym kontekście obejmują mylenie funkcji pomiarowych różnych urządzeń oraz niewłaściwe przypisanie ich do różnych zastosowań w automatyce. Kluczowym zrozumieniem jest to, że enkodery absolutne jednoobrotowe są projektowane z myślą o pomiarze kąta, a nie innych wielkości fizycznych, co jest fundamentalnym aspektem ich technologii i zastosowania.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

W systemie mechatronicznym znajduje się 18 czujników cyfrowych, 4 przetworniki analogowe oraz 11 elementów wykonawczych działających w trybie dwustanowym. Jaką konfigurację modułowego sterownika PLC należy zastosować do zarządzania tym układem?

A. DI32/DO16 oraz AI4
B. DI16/DO16 oraz AI2
C. DI16/DO8 oraz AI4
D. DI32/DO8 oraz AI2
Wybór złej konfiguracji w systemie PLC może naprawdę narobić kłopotów. Na przykład, DI16/DO16 oraz AI2 to kiepski pomysł, bo mają za mało wejść. W twoim układzie potrzeba przynajmniej 18 wejść, więc DI16 będzie niewystarczające. A te 2 analogowe na AI2? No, raczej nie podepniesz wszystkich 4 przetworników, co może spowodować, że nie będziesz mógł monitorować ważnych parametrów. Możesz pomyśleć, że DI32/DO8 oraz AI2 to dobry plan, bo DI32 ma odpowiednią liczbę wejść, ale 8 wyjść cyfrowych to za mało, żeby obskoczyć 11 elementów wykonawczych. To może być frustrujące, bo układ może nie działać jak należy. Podobna sytuacja jest z DI16/DO8 oraz AI4 – znowu te 16 wejść to za mało na wszystkie czujniki. Generalnie, dobierając konfigurację sterowników PLC, dobrze jest mieć na uwadze nadmiarowość i elastyczność, bo wtedy system łatwiej dostosować do przyszłych potrzeb.

Pytanie 17

Symbol graficzny oznacza zawór

Ilustracja do pytania
A. maksymalny.
B. redukcyjny.
C. przełączający.
D. dławiący.
Wybór odpowiedzi niewłaściwych może prowadzić do poważnych konsekwencji w zrozumieniu funkcji różnych rodzajów zaworów. Zawór redukcyjny, mimo że również odgrywa ważną rolę w systemach hydraulicznych, nie jest tym samym co zawór maksymalny. Jego główną funkcją jest obniżenie ciśnienia, a nie jego ograniczanie. W systemach, w których ciśnienie musi być precyzyjnie utrzymywane na pewnym poziomie, zawór redukcyjny nie zapobiega nadmiernemu wzrostowi ciśnienia, co jest kluczową funkcją zaworu maksymalnego. Kolejna koncepcja, zawór przełączający, służy do zmiany kierunku przepływu medium w układzie, a nie do ograniczania ciśnienia, co czyni go nieodpowiednim w tym kontekście. Zawór dławiący, z drugiej strony, reguluje przepływ poprzez zwężenie, co może prowadzić do spadku ciśnienia, ale również nie ma na celu zabezpieczenia maksymalnego poziomu ciśnienia. Zrozumienie tych różnic jest kluczowe dla prawidłowego projektowania systemów hydraulicznych i pneumatycznych, a niewłaściwe interpretacje mogą prowadzić do nieefektywności lub uszkodzenia sprzętu. Dlatego warto zwrócić uwagę na właściwe oznaczenia i symbole zaworów w dokumentacji technicznej oraz podczas praktycznego użytkowania.

Pytanie 18

Którą metodę sprawdzania instalacji elektrycznej urządzeń mechatronicznych przedstawiono na rysunku?

Ilustracja do pytania
A. Stroboskopową.
B. Oscyloskopową.
C. Ultradźwiękową.
D. Termowizyjną.
Odpowiedź 'Termowizyjna' jest prawidłowa, ponieważ przedstawia ona jedną z najnowocześniejszych metod oceny stanu instalacji elektrycznej urządzeń mechatronicznych. Kamera termowizyjna, widoczna na rysunku, umożliwia wizualizację rozkładu temperatury w obiektach, co jest kluczowe w diagnostyce. W praktyce, metoda ta pozwala na identyfikację przegrzewających się elementów, co jest często pierwszym sygnałem o potencjalnych awariach, takich jak zwarcia czy uszkodzenia izolacji. Termowizja jest szeroko stosowana w przemyśle, gdzie regularne monitorowanie temperatury jest kluczowe dla utrzymania urządzeń w dobrym stanie. Zgodnie z normami ISO 18434, stosowanie metod termograficznych w utrzymaniu ruchu jest uznawane za najlepszą praktykę. Dzięki termowizji można wykrywać problemy zanim spowodują one poważne uszkodzenia, co w dłuższej perspektywie znacząco obniża koszty utrzymania i zwiększa bezpieczeństwo operacji.

Pytanie 19

Przyłącze T zaworu hydraulicznego przedstawionego na rysunku należy podłączyć do

Ilustracja do pytania
A. siłownika jednostronnego działania.
B. zbiornika oleju.
C. pompy.
D. siłownika dwustronnego działania.
Wybór miejsca do podłączenia przyłącza T w zaworze hydraulicznym to sprawa, która może wprowadzić w niezłe kłopoty. Kiedy mówimy o siłownikach jednostronnego działania, to pamiętaj, że działają one tylko w jednym kierunku. Ich cykl roboczy wymaga, żeby olej wracał do zbiornika, a jak podłączysz przyłącze T do takiego siłownika, może dojść do zablokowania obiegu oleju. No i wtedy robi się niebezpiecznie, bo ciśnienie idzie w górę i system może nie wytrzymać. Jeśli chodzi o pompę, to też nie jest dobre miejsce na odprowadzanie oleju – ona ma za zadanie zasysać go z zbiornika. Podłączenie T do pompy? O nie, to może zaszkodzić całym systemowi. A siłownik dwustronnego działania, choć ma ruch w dwóch kierunkach, również potrzebuje odpowiedniego odprowadzania oleju, więc jego podłączenie do T też nie jest najlepszym pomysłem. Często takie błędy wynikają z braku wiedzy na temat działania hydrauliki, dlatego warto się z tym zapoznać, żeby uniknąć takich problemów.

Pytanie 20

Przekaźnik czasowy z nastawą dwóch czasów realizuje funkcję A ustawioną potencjometrem konfiguracyjnym FUNC, której odpowiada diagram pracy przedstawiony na rysunku. Oznacza to realizację przez przekaźnik funkcji

Ilustracja do pytania
A. opóźnionego załączenia.
B. opóźnionego wyłączenia.
C. opóźnionego załączania cyklicznego.
D. opóźnionego wyłączania cyklicznego.
Wybór opóźnionego załączenia, opóźnionego załączania cyklicznego lub opóźnionego wyłączania cyklicznego jako odpowiedzi wskazuje na pewne nieporozumienia w interpretacji funkcji przekaźnika czasowego. Opóźnione załączenie odnosi się do sytuacji, w której przekaźnik aktywuje się po określonym czasie od momentu podania sygnału na wejściu. Możliwość ta jest przydatna w aplikacjach, w których wymagane jest opóźnienie w rozpoczęciu działania urządzenia, na przykład w systemach alarmowych. W kontekście pytania, jednak, nie pasuje do opisanego zachowania przekaźnika, który nie pozostaje w stanie włączonym po upływie czasów, ale wyłącza się po czasie t1. Z kolei opóźnione załączanie cykliczne sugeruje, że przekaźnik wykonuje określony cykl załączania i wyłączania, co nie ma miejsca w przypadku opisanego diagramu. Funkcja ta mogłaby znaleźć zastosowanie w urządzeniach, które muszą działać w trybie cyklicznym, co w tym przypadku nie jest spełnione. Z kolei opóźnione wyłączenie sugeruje, że urządzenie będzie włączone przez pewien czas, a następnie wyłączone, co rzeczywiście odpowiada funkcji opóźnionego wyłączenia. Dlatego kluczowe jest zrozumienie różnicy między tymi funkcjami, aby uniknąć błędnych interpretacji wynikających z nieprawidłowego rozumienia schematu pracy urządzenia. W praktyce, precyzyjne określenie rodzajów funkcji przekaźnika czasowego jest niezwykle ważne dla zapewnienia prawidłowego działania systemów automatyki, co jest zgodne z najlepszymi praktykami w branży.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Do spawania metali za pomocą łuku elektrycznego wykorzystuje się zasilacz o

A. niskim napięciu i małym prądzie
B. niskim napięciu i dużym prądzie
C. wysokim napięciu i dużym prądzie
D. wysokim napięciu i małym prądzie
Rozumienie, jakie parametry prądu są właściwe do spawania metali, to mega ważna sprawa, jeśli chcesz dobrze wykonywać swoją robotę. Odpowiedzi, które sugerują niskie napięcie i mały prąd, są zwykle błędne, bo mały prąd po prostu nie da rady stopić materiału. Efekt? Możesz mieć niepełne spoiny i kłopoty z całą konstrukcją. A z wysokim napięciem i dużym prądem to już w ogóle trzeba uważać, bo można przegrzać materiał, co wprowadzi deformacje i pogorszy właściwości mechaniczne. Czasem są też problemy przy wysokim napięciu i małym prądzie, bo nie uzyskasz wystarczającej temperatury do skutecznego spawania. Niestety, dużo ludzi myśli, że wyższe napięcie zawsze jest lepsze, ale tak nie jest. Różne metody spawania wymagają różnych ustawień, które powinny być dostosowane do konkretnych warunków i materiałów. To jest zgodne z najlepszymi praktykami w branży, takimi jak normy AWS czy ISO. Dobrze dobrane parametry prądowe są kluczem do osiągnięcia jakości spoiny i jej długowieczności, co w przemyśle ma ogromne znaczenie.

Pytanie 23

Na podstawie zamieszczonych danych technicznych wybierz model zasilacza do układu elektropneumatycznego, w którym cewki elektrozaworów przystosowane są do zasilania napięciem stałym o wartości 24 V.

Dane techniczne

ModelMDR-40-5MDR-40-12MDR-40-24MDR-40-48
WyjścieNapięcie wyjściowe DC5V12V24V48V
Prąd znamionowy6A3,33A1,7A0,83A
Zakres prądu0-6A0~3,33A0-1,7A0-0,83A
Moc znamionowa30W40W40W40W
Tętnienia i szumy (max.)2)80mVp-p120mVp-p150mVp-p200mVp-p
Regulacja napięcia5-6V12-15V24-30V48-56V
Tolerancja napięcia3)±2,0%±1,0%±1,0%±1,0%
Tolerancja napięcia przy
zmianach zasilania
±1,0%±1,0%±1,0%±1,0%
Tolerancja napięcia przy
zmianach obciążenia
±5,0%±3,0%±3,0%±2,0%
Czas ustalania, narastania500ms, 30ms/230VAC500ms, 30ms/115VAC przy znamionowym obciążeniu
Czas podtrzymania50ms/230VAC20ms/115VAC przy znamionowym obciążeniu
WejścieZakres napięcia85-264VAC120-370VDC
Zakres częstotliwości47-63 Hz
Sprawność (typ.)78%86%88%88%
A. MDR-40-5
B. MDR-40-48
C. MDR-40-12
D. MDR-40-24
Model zasilacza MDR-40-24 jest właściwy dla układu elektropneumatycznego z cewkami elektrozaworów zaprojektowanymi do zasilania napięciem stałym 24 V. W kontekście aplikacji przemysłowych, takie zasilacze są kluczowe, ponieważ zapewniają stabilne i niezawodne napięcie, co jest niezbędne do prawidłowego działania elektrozaworów. Użycie odpowiedniego zasilacza wpływa bezpośrednio na wydajność systemu pneumatycznego, a także na jego bezpieczeństwo, zapobiegając uszkodzeniom komponentów z powodu niewłaściwego napięcia. Przykładowo, w systemach automatyki przemysłowej, wybór zasilacza zgodnego z wymaganiami napięciowymi cewki elektrozaworów gwarantuje, że siłowniki będą mogły działać w odpowiednich parametrach. Stosując zasilacz MDR-40-24, spełniamy normy wydajności i niezawodności, co jest zgodne z najlepszymi praktykami w dziedzinie automatyki oraz elektropneumatyki.

Pytanie 24

Na schemacie przedstawionym na rysunku element opisany D5 jest diodą

Ilustracja do pytania
A. Zenera.
B. prostowniczą.
C. pojemnościową.
D. tunelową.
Element D5 na schemacie jest diodą Zenera, co można zidentyfikować poprzez charakterystyczny symbol tej diody, gdzie linia równoległa do strzałki wskazuje kierunek przewodzenia. Dioda Zenera jest używana do stabilizacji napięcia w obwodach elektronicznych, co czyni ją niezwykle użytecznym komponentem w aplikacjach wymagających precyzyjnego zarządzania napięciem. Działa ona zarówno w kierunku przewodzenia, jak i zaporowym, co pozwala na utrzymanie stałego poziomu napięcia po przekroczeniu tzw. napięcia Zenera. W praktyce, diody Zenera są powszechnie stosowane w zasilaczach stabilizowanych, gdzie pomagają w eliminacji szumów oraz zapewniają stabilność napięcia, co jest kluczowe w wielu zastosowaniach, jak na przykład w sprzęcie audio czy komputerach. Zastosowanie diod Zenera w układach regulacji napięcia jest zgodne z dobrymi praktykami inżynierskimi, gdzie niezawodność i stabilność są priorytetami.

Pytanie 25

Symbol graficzny którego siłownika, z bezstykową sygnalizacją położenia tłoka jest przedstawiony na rysunku?

Ilustracja do pytania
A. Pneumatycznego dwustronnego działania z hamowaniem dwustronnym.
B. Hydraulicznego dwustronnego działania z hamowaniem jednostronnym.
C. Hydraulicznego dwustronnego działania z hamowaniem dwustronnym.
D. Pneumatycznego dwustronnego działania z hamowaniem jednostronnym.
Poprawna odpowiedź to pneumatyczny siłownik dwustronnego działania z hamowaniem dwustronnym, co znajduje odzwierciedlenie w symbolice graficznej. Siłownik tego typu umożliwia ruch tłoka w obu kierunkach, co jest jednoznacznie oznaczone dwoma strzałkami. Bezstykowa sygnalizacja położenia tłoka sugeruje zastosowanie czujników, które są kluczowe w nowoczesnych systemach automatyzacji, zapewniając precyzyjne monitorowanie pozycji. Hamowanie dwustronne, przedstawione przez prostokąty z przekątnymi liniami, jest szczególnie istotne w kontekście bezpieczeństwa operacji, ponieważ pozwala na kontrolowane zatrzymywanie tłoka zarówno w ruchu w przód, jak i w tył. Tego typu siłowniki znajdują zastosowanie w różnych dziedzinach przemysłu, w tym w automatyzacji procesów produkcyjnych oraz w robotyce. Użycie pneumatyki zamiast hydrauliki, co sugeruje brak lini falistych, może zredukować ciężar systemu oraz koszty eksploatacji, co jest zgodne z najlepszymi praktykami w projektowaniu maszyn. Warto również dodać, że zgodnie z normą ISO 4414, zastosowanie odpowiednich rozwiązań pneumatycznych jest kluczowe dla poprawy efektywności energetycznej oraz bezpieczeństwa w pracy.

Pytanie 26

Czym charakteryzuje się filtr dolnoprzepustowy?

A. przepuszcza sygnały sinusoidalne o częstotliwości wyższej od częstotliwości granicznej
B. wzmacnia sygnały sinusoidalne o częstotliwości niższej od częstotliwości granicznej
C. tłumi sygnały sinusoidalne o częstotliwości niższej od częstotliwości granicznej
D. przepuszcza sygnały sinusoidalne o częstotliwości niższej od częstotliwości granicznej
Filtr dolnoprzepustowy jest urządzeniem, które umożliwia przechodzenie sygnałów o częstotliwości mniejszej od określonej częstotliwości granicznej, skutecznie tłumiąc sygnały o wyższych częstotliwościach. Użycie filtrów dolnoprzepustowych jest powszechne w systemach audio, gdzie pozwalają one na eliminację niepożądanych wysokoczęstotliwości, co skutkuje czystszych dźwiękiem. Przykładem praktycznego zastosowania jest użycie filtrów w subwooferach, które mają za zadanie reprodukcję niskich częstotliwości. W zastosowaniach telekomunikacyjnych filtry dolnoprzepustowe są wykorzystywane w celu eliminacji zakłóceń wysokoczęstotliwościowych, umożliwiając lepszą jakość sygnału. Ponadto, filtry te są integralną częścią wielu układów elektronicznych, na przykład w systemach pomiarowych, gdzie są używane do wygładzania sygnałów oraz eliminacji szumów. W praktyce inżynieryjnej, dobór filtrów dolnoprzepustowych opiera się na analizie częstotliwościowej oraz parametrach projektowych, co jest zgodne z zasadami dobrych praktyk w dziedzinie elektroniki i telekomunikacji.

Pytanie 27

Aby zmierzyć naprężenia normalne (ściśnięcia, rozciągnięcia), należy użyć

A. tensometru
B. termometru
C. tachometru
D. pirometru
Tensometr jest urządzeniem służącym do pomiaru naprężeń normalnych, takich jak ściskanie i rozciąganie. Działa na zasadzie pomiaru odkształceń, które następnie przelicza na wartości naprężeń zgodnie z zasadą Hooke'a. Dzięki temu, tensometry są niezwykle ważne w inżynierii mechanicznej i materiałowej, gdzie precyzyjne pomiary naprężeń są kluczowe dla oceny wytrzymałości materiałów oraz konstrukcji. Przykłady zastosowania tensometrów obejmują badania wytrzymałościowe elementów konstrukcyjnych, takich jak belki, stropy czy mosty. W standardach takich jak ISO 9513 określono metody kalibracji tensometrów, co pozwala na uzyskanie wiarygodnych wyników. Dobre praktyki w stosowaniu tensometrów obejmują również ich odpowiedni dobór do rodzaju materiału oraz warunków pomiarowych, co zapewnia rzetelność i dokładność uzyskanych wyników. Dodatkowo, stosowane są różne typy tensometrów, w tym tensometry foliowe, które umożliwiają pomiary na różnorodnych powierzchniach, co zwiększa ich wszechstronność w zastosowaniach inżynieryjnych.

Pytanie 28

Skrót THT (Through-Hole Technology) odnosi się do metody montażu

A. zaciskowego
B. skręcanego
C. powierzchniowego
D. przewlekanego
Skrót THT (Through-Hole Technology) odnosi się do technologii montażu komponentów elektronicznych, w której elementy są umieszczane w otworach wykonanych w płytce drukowanej. Ta technika montażu jest szczególnie popularna w przypadku komponentów o większych rozmiarach, takich jak kondensatory elektrolityczne, złącza czy elementy pasywne. Przykładem zastosowania THT są urządzenia elektroniczne, które wymagają wysokiej wytrzymałości mechanicznej, takie jak zasilacze czy moduły czołowe w systemach audio. W praktyce, podczas montażu THT, komponenty są najpierw wstawiane do otworów, a następnie lutowane od spodu płytki, co zapewnia trwałe i solidne połączenie. W branży stosuje się standardy IPC (Institute for Interconnecting and Packaging Electronic Circuits), które określają zasady dotyczące jakości i trwałości takich połączeń. Technologia THT, mimo rosnącej popularności montażu powierzchniowego (SMT), pozostaje kluczowa w wielu aplikacjach, gdzie wymagane są wytrzymałe połączenia oraz łatwość naprawy lub wymiany komponentów.

Pytanie 29

Wartością tarcia wewnętrznego cieczy dla oleju smarnego jest

A. lepkość
B. gęstość
C. utlenianie
D. smarność
Lepkość jest miarą oporu, jaki ciecz stawia podczas przepływu i jest kluczowym parametrem w ocenie właściwości olejów smarowych. Wysoka lepkość oznacza, że ciecz jest bardziej gęsta i oporna na przepływ, co jest korzystne w zastosowaniach wymagających skutecznego smarowania. Przykładowo, oleje silnikowe muszą mieć odpowiednią lepkość, aby skutecznie chronić silnik przed zużyciem oraz zapewniać odpowiednie smarowanie w różnych temperaturach pracy. Standardy, takie jak SAE, określają klasyfikacje lepkości, co pozwala na wybór odpowiedniego oleju do konkretnego zastosowania. Na przykład, olej 10W-40 ma różne właściwości lepkości w niskich i wysokich temperaturach, co czyni go wszechstronnym wyborem dla wielu silników. Ponadto, lepkość wpływa na inne parametry, takie jak temperatura krzepnięcia i przewodność cieplna, co jest istotne w kontekście efektywności energetycznej urządzeń mechanicznych.

Pytanie 30

Jaką metodę należy wykorzystać do połączenia szkła z metalem?

A. Klejenie
B. Spawanie
C. Nitowanie
D. Zgrzewanie
Klejenie to najskuteczniejsza metoda łączenia szkła z metalem ze względu na różnice w ich właściwościach fizycznych i chemicznych. Szkło jest materiałem kruchym, a metal - plastycznym, co sprawia, że tradycyjne metody, takie jak zgrzewanie czy spawanie, mogą prowadzić do uszkodzenia szkła. Klejenie wykorzystuje specjalistyczne kleje, które tworzą mocne, elastyczne połączenie, a także mogą dostosować się do różnic w rozszerzalności cieplnej obu materiałów. W praktyce, odpowiednie kleje epoksydowe lub akrylowe są często stosowane do takich aplikacji, umożliwiając trwałe i estetyczne łączenie. W branży budowlanej i w przemyśle, klejenie szkła do metalowych elementów jest powszechnie stosowane w oknach strukturalnych, elewacjach oraz w produkcji mebli. Dobrą praktyką jest również stosowanie gruntów, które poprawiają adhezję kleju do powierzchni, co zwiększa trwałość i odporność połączenia na różne czynniki zewnętrzne. Takie podejście jest zgodne z normami ISO dotyczących klejenia i pozwala na uzyskanie wysokiej jakości połączeń.

Pytanie 31

Do czynności przygotowawczych, które pozwalają na późniejszy poprawny montaż nowego paska klinowego w przekładni pasowej, nie należy

A. weryfikacji wymiarów
B. oceny stopnia zużycia
C. kontroli czystości paska
D. sprawdzenia poziomu naprężenia
Weryfikacja wymiarów, ocena stopnia zużycia oraz kontrola czystości paska są kluczowymi etapami przygotowań do montażu nowego paska klinowego i powinny być wykonywane, aby zapewnić prawidłowe funkcjonowanie przekładni pasowej. Weryfikacja wymiarów polega na sprawdzeniu, czy nowe komponenty są zgodne z wymiarami wymaganymi przez producenta, co jest istotne dla prawidłowego działania układu. Jeśli wymiary są niewłaściwe, może to prowadzić do niewłaściwego dopasowania, co wpływa na efektywność całego systemu. Ocena stopnia zużycia jest również niezwykle istotna; zużyte elementy mogą nie tylko wpływać na sprawność paska, ale również na jego żywotność. W praktyce oznacza to, że mechanicy powinni regularnie monitorować stan przekładni pasowej, aby zminimalizować ryzyko awarii. Kontrola czystości paska jest szczególnie ważna, ponieważ zanieczyszczenia mogą powodować uszkodzenie zarówno paska, jak i kół pasowych. Zanieczyszczenia mogą prowadzić do nadmiernego tarcia, co zwiększa ryzyko przegrzania i uszkodzenia. Dlatego ważne jest, aby każdy z tych kroków był integralną częścią procesu montażu, gdyż pomijanie ich może prowadzić do poważnych problemów eksploatacyjnych i zwiększonej awaryjności urządzeń.

Pytanie 32

Do pracy związanej z lutowaniem elementów dyskretnych na płytce drukowanej powinno się założyć

A. okulary ochronne
B. fartuch ochronny
C. obuwie ochronne z gumową podeszwą
D. rękawice odporne na wysoką temperaturę
Zakładanie rękawic żaroodpornych, butów ochronnych na podeszwie gumowej lub okularów ochronnych, choć w niektórych sytuacjach ma swoje uzasadnienie, nie zapewnia kompleksowej ochrony, jaką oferuje fartuch ochronny. Rękawice żaroodporne są przeznaczone do ochrony rąk przed wysoką temperaturą, co w kontekście lutowania nie jest kluczowe, ponieważ lutowanie wiąże się z precyzyjną pracą narzędziami. Rękawice mogą ograniczać czucie i precyzję, co w przypadku lutowania elementów dyskretnych jest niezwykle istotne. Buty ochronne na podeszwie gumowej mogą chronić stopy przed upadkiem ciężkich przedmiotów, ale nie oferują ochrony odzieży, co czyni je niewystarczającymi w tej konkretnej sytuacji. Okulary ochronne są istotne w kontekście ochrony oczu, lecz nie chronią reszty ciała, co jest kluczowe w przypadku pracy z gorącymi materiałami. Kluczowym błędem w myśleniu jest pomijanie znaczenia kompleksowej ochrony odzieżowej, która powinna obejmować nie tylko konkretne części ciała, ale także całe ubranie, które minimalizuje ryzyko kontaktu z niebezpiecznymi substancjami. W kontekście standardów bezpieczeństwa, takie podejście do ochrony nie spełnia wymagań dotyczących odzieży roboczej określonych w normach BHP.

Pytanie 33

Aby sprawdzić stan bezpieczników, znaleźć niedokręcone złącza oraz zidentyfikować przegrzane elementy instalacji bez konieczności wyłączania zasilania, należy wykorzystać

A. miernik parametrów instalacji
B. miernik uniwersalny
C. miernik RLC
D. kamerę termowizyjną
Miernik parametrów instalacji, miernik uniwersalny oraz miernik RLC są narzędziami, które służą do pomiaru różnych wielkości elektrycznych, jednak nie są one odpowiednie do bezdotykowego sprawdzania stanu instalacji w kontekście wykrywania przegrzanych elementów czy niedokręconych złącz. Miernik parametrów instalacji może jedynie monitorować napięcie, prąd i inne parametry w trakcie pracy, co wymaga wyłączenia zasilania i fizycznego dostępu do urządzeń. Z kolei miernik uniwersalny, mimo że oferuje szeroki zakres pomiarów, również wymaga bezpośredniego kontaktu z badanym obwodem, co może stwarzać dodatkowe ryzyko dla techników. Miernik RLC, który jest specjalizowany w pomiarze rezystancji, indukcyjności i pojemności, nie oferuje funkcji termograficznych, co ogranicza jego zastosowanie w kontekście oceny temperatury. Typowe błędy myślowe prowadzące do wyboru tych narzędzi to mylenie ich funkcji z monitorowaniem stanu technicznego bez wyłączania zasilania. Użytkownicy mogą błędnie sądzić, że wystarczy zmierzyć podstawowe parametry, by zidentyfikować problemy, podczas gdy w rzeczywistości wymaga to bardziej zaawansowanych metod inspekcji, takich jak wykorzystanie kamer termograficznych, które zapewniają wizualizację różnic temperatur w czasie rzeczywistym.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Z informacji o parametrach wynika, że cewka elektrozaworu jest przeznaczona do pracy z napięciem przemiennym o wartości 230 V. Jaką wartość ona reprezentuje?

A. średnia napięcia wyznaczona dla półokresu
B. średnia napięcia wyznaczona dla okresu
C. maksymalna napięcia podzielona przez √2
D. maksymalna napięcia podzielona przez √3
Odpowiedź wskazująca, że napięcie 230 V jest maksymalnym napięciem podzielonym przez √2 jest prawidłowa, ponieważ w przypadku napięcia przemiennego, wartość skuteczna (RMS) jest kluczowym parametrem. Wartość skuteczna napięcia przemiennego jest definiowana jako wartość napięcia, która dostarcza taką samą moc średnią jak napięcie stałe. W przypadku sygnału sinusoidalnego, wartość skuteczna jest uzyskiwana poprzez podział maksymalnego napięcia przez pierwiastek kwadratowy z dwóch (√2). W praktyce, w instalacjach elektrycznych, napięcie 230 V odnosi się do wartości skutecznej, co jest standardem w Europie. Dlatego cewki elektrozaworów zaprojektowane do pracy przy napięciu 230 V są przystosowane do napięcia o maksymalnej wartości 325 V (230 V × √2). Zastosowanie tego parametru jest istotne w kontekście projektowania systemów zasilania, gdzie należy uwzględnić zarówno wartości skuteczne, jak i maksymalne, aby zapewnić prawidłowe działanie urządzeń i uniknąć uszkodzeń. Warto zwrócić uwagę, że przestrzeganie tych norm jest kluczowe dla bezpieczeństwa i niezawodności instalacji elektrycznych.

Pytanie 37

Po przesunięciu suwaka potencjometru z pozycji "c" do pozycji "a" wartość prądu płynącego w obwodzie

Ilustracja do pytania
A. zmaleje i będzie równa 6 mA
B. wzrośnie i będzie równa 4 mA
C. zmaleje i będzie równa 4 mA
D. wzrośnie i będzie równa 6 mA
Przesunięcie suwaka potencjometru z pozycji "c" do pozycji "a" skutkuje wyłączeniem rezystancji potencjometru z obwodu, co prowadzi do zmniejszenia całkowitej rezystancji obwodu. Przy stałym napięciu zasilania, zgodnie z prawem Ohma (I = U/R), mniejsza rezystancja powoduje wzrost prądu. W tym przypadku, całkowita rezystancja obwodu po przesunięciu suwaka wynosi 4kΩ. Przy standardowym napięciu 24V, obliczamy prąd: I = 24V / 4000Ω = 0,006A, co odpowiada 6 mA. Taka zmiana prądu jest istotna w kontekście obwodów elektronicznych, gdzie precyzyjne regulowanie wartości prądu ma kluczowe znaczenie dla poprawnej pracy urządzeń. Przykładem zastosowania może być układ audio, w którym regulacja głośności odbywa się za pomocą potencjometru. Zmniejszenie rezystancji prowadzi do większego prądu, co z kolei wpływa na głośność emitowanego dźwięku. Takie zasady są fundamentem w projektowaniu układów elektronicznych i są szeroko stosowane w praktyce inżynierskiej.

Pytanie 38

Na rysunku przedstawiono połączenie uzwojeń silnika na tabliczce zaciskowej w

Ilustracja do pytania
A. gwiazdę.
B. trójkąt.
C. podwójną gwiazdę.
D. zygzak.
Odpowiedź "trójkąt" jest jak najbardziej na miejscu! To dlatego, że w tej konfiguracji uzwojeń silnika końce łączą się w sposób, który zamyka obwód, co pozwala silnikowi asynchronicznemu działać sprawnie. Na tabliczce zaciskowej mamy oznaczenia U1, V1, W1 dla końców uzwojeń, a U2, V2, W2 to ich początki. Połączenie w trójkąt wygląda tak, że łączymy U1 z W2, V1 z U2 i W1 z V2. Dzięki temu silnik działa na pełnej mocy i obciążenie faz jest równomierne. Warto pamiętać, żeby przy podłączaniu silników stosować się do standardów, takich jak IEC, bo to naprawdę ma znaczenie w różnych aplikacjach. Wiedza o połączeniach silników jest niezbędna, gdy chodzi o instalacje, diagnostykę czy konserwację elektryki.

Pytanie 39

Watomierz jest urządzeniem do pomiaru mocy

A. chwilowej
B. pozornej
C. biernej
D. czynnej
Pomiar mocy w systemach elektrycznych może być mylący, zwłaszcza gdy chodzi o różne rodzaje mocy, takie jak moc bierna, moc pozorna czy moc chwilowa. Nieprawidłowe zrozumienie tych pojęć prowadzi do błędnych wniosków na temat funkcji watomierza. Moc bierna, mierzona w warunkach przemysłowych, to moc, która nie wykonuje pracy, ale jest niezbędna do utrzymania pola elektromagnetycznego w elementach takich jak silniki czy transformatory. To rodzaj energii, która krąży w systemie, ale nie przyczynia się do wytwarzania użytecznej pracy, co wyklucza ją z pomiarów watomierzy, które skupiają się na mocy czynnej. Kolejną koncepcją jest moc pozorna, będąca wektorem mocy biernej i czynnej, wyrażana w woltoamperach (VA). Moc chwilowa, z kolei, jest mocą zmieniającą się w czasie, stanowiącą natychmiastowy pomiar energii, ale nie odpowiada pełnemu zużyciu energii w dłuższym okresie. Typowe błędy w rozumieniu pomiaru mocy często wynikają z braku znajomości tych pojęć, co może prowadzić do nieefektywnego zarządzania energią oraz nieprawidłowych analiz zużycia, które nie uwzględniają rzeczywistego wykorzystania energii. W związku z tym kluczowe jest rozróżnienie tych typów mocy, aby móc prawidłowo interpretować wyniki pomiarów i podejmować świadome decyzje dotyczące zarządzania energią.

Pytanie 40

Silnik krokowy dysponuje 4 uzwojeniami wzbudzającymi, z których każde ma 8 nabiegunników. Jakie będzie przesunięcie kątowe silnika przypadające na pojedynczy krok przy sterowaniu jednym uzwojeniem?

A. 11°15'
B. 5°38'
C. 2°49'
D. 22°30'
Odpowiedzi 22°30', 2°49' i 5°38' zawierają błędne obliczenia, które mogą wynikać z nieprawidłowego rozumienia działania silników krokowych oraz zasadności ich podziału na kroki. Odpowiedź 22°30' może sugerować, że osoba myśli o 18 krokach na obrót, co jest nieprawidłowe w kontekście tego silnika. Taki błąd może prowadzić do nieefektywnego stosowania silników krokowych w aplikacjach wymagających wysokiej precyzji. Z kolei opcja 2°49' sugeruje bardzo dużą liczbę kroków na pełny obrót, co z kolei implikuje, że liczba uzwojeń i nabiegunników została źle zinterpretowana. Odpowiedź 5°38' również wskazuje na zrozumienie mechanizmu działania silnika, ale z niewłaściwym wyliczeniem kroków na obrót, co może prowadzić do błędnych ustawień w systemach automatyzacji. Kluczowym aspektem przy pracy z silnikami krokowymi jest świadomość tego, że każde uzwojenie i nabiegunnik wpływa na dokładność i wydajność mechanizmu. W przemyśle i automatyce, gdzie precyzja jest krytyczna, błędy w obliczeniach mogą prowadzić do poważnych konsekwencji w procesach technologicznych, dlatego istotne jest, by dobrze rozumieć sposób obliczania kątów przesunięcia w silnikach krokowych.