Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 10 lutego 2026 21:04
  • Data zakończenia: 10 lutego 2026 21:56

Egzamin niezdany

Wynik: 7/40 punktów (17,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Które urządzenie przedstawiono na ilustracji?

Ilustracja do pytania
A. Czujnik zaniku i kolejności faz.
B. Wyłącznik nadprądowy dwubiegunowy.
C. Ogranicznik przepięć.
D. Wyłącznik różnicowoprądowy z członem nadprądowym.
Na ilustracji widać wyłącznik różnicowoprądowy z członem nadprądowym, czyli popularne w instalacjach mieszkaniowych urządzenie typu RCBO. Rozpoznać go można po kilku charakterystycznych elementach. Po pierwsze, na obudowie masz oznaczenie B16 – to charakterystyka i prąd znamionowy członu nadprądowego, dokładnie tak jak w zwykłym „esie”. Po drugie, pojawia się wartość IΔn = 0,03 A, czyli prąd różnicowy zadziałania 30 mA – typowa wartość dla ochrony dodatkowej przed porażeniem prądem elektrycznym. Po trzecie, jest przycisk testu „T”, który występuje w wyłącznikach różnicowoprądowych, a nie ma go w standardowych wyłącznikach nadprądowych. Dodatkowo na obudowie nadrukowany jest schemat wewnętrzny pokazujący tor fazowy i neutralny oraz przekładnik różnicowy – to klasyczny symbol RCD zintegrowanego z wyłącznikiem nadprądowym. W praktyce takie urządzenie stosuje się często do zabezpieczenia pojedynczego obwodu, np. gniazd łazienkowych, pralki, zmywarki czy obwodu zewnętrznego gniazda ogrodowego, gdzie wymagana jest jednocześnie ochrona przed przeciążeniem, zwarciem i porażeniem. Moim zdaniem to bardzo wygodne rozwiązanie projektowe, bo łączy funkcje wyłącznika nadprądowego i różnicówki w jednym module, oszczędzając miejsce w rozdzielnicy. Zgodnie z PN-HD 60364 i dobrą praktyką instalacyjną, stosowanie urządzeń różnicowoprądowych 30 mA jest standardem dla obwodów gniazd wtyczkowych w instalacjach domowych, a takie zintegrowane RCBO świetnie się w tym sprawdzają.

Pytanie 2

W systemie sieciowym typu TT wyłączenie zasilania przeprowadzane jest przy pomocy urządzenia ochronnego różnicowoprądowego. Aby ochrona była skuteczna, konieczne jest spełnienie następującej zależności

A. RA ∙ IΔn ≥ UL
B. RA ∙ IΔn > UL
C. RA ∙ IΔn < UL
D. RA ∙ IΔn ≤ UL
Odpowiedź RA ∙ IΔn ≤ UL jest prawidłowa, ponieważ odnosi się do zasad ochrony przeciwporażeniowej w instalacjach elektrycznych typu TT. W tym typie sieci, urządzenia ochronne różnicowoprądowe (RCD) mają kluczowe znaczenie dla zapewnienia bezpieczeństwa użytkowników. Zależność RA ∙ IΔn ≤ UL oznacza, że rezystancja uziemienia (RA) pomnożona przez wartość prądu różnicowego, przy którym urządzenie zaczyna działać (IΔn), musi być mniejsza lub równa poziomowi napięcia dotykowego (UL). W praktyce oznacza to, że w momencie, gdy dojdzie do uszkodzenia izolacji, a prąd różnicowy przekroczy wartość IΔn, urządzenie RCD zadziała, odcinając zasilanie i minimalizując ryzyko porażenia prądem. Standardy, takie jak PN-EN 61008, podkreślają znaczenie prawidłowego doboru wartości IΔn oraz zapewnienia odpowiedniej rezystancji uziemienia, co jest kluczowe dla bezpieczeństwa instalacji elektrycznych. Przykładem zastosowania tej zasady może być instalacja w budynku mieszkalnym, gdzie odpowiedni dobór RCD chroni domowników przed skutkami ewentualnych awarii elektrycznych.

Pytanie 3

Które określenie instalacji dotyczy ich podziału ze względu na rodzaje obiektów budowlanych?

A. Podtynkowe w rurach.
B. Prądu stałego.
C. Oświetleniowe.
D. Biurowe.
W tym pytaniu kluczowe jest zwrócenie uwagi, o jaki sposób klasyfikacji instalacji chodzi. Mamy wyraźnie zaznaczone „ze względu na rodzaje obiektów budowlanych”, czyli patrzymy na typ budynku: biurowiec, budynek mieszkalny, hala przemysłowa, magazyn, szkoła, szpital itd. To jest bardzo częsty podział w projektowaniu, bo od przeznaczenia obiektu zależą wymagania obciążeniowe, bezpieczeństwa, funkcjonalności i też późniejszej eksploatacji. Odpowiedzi takie jak „prądu stałego”, „oświetleniowe” czy „podtynkowe w rurach” są jak najbardziej spotykane w praktyce, ale opisują zupełnie inne kryteria podziału instalacji. Określenie „prądu stałego” odnosi się do rodzaju prądu, a więc do charakteru zasilania. Możemy mówić o instalacjach prądu stałego w systemach fotowoltaicznych, zasilaniu awaryjnym DC, systemach telekomunikacyjnych czy automatyki. To jest podział według rodzaju napięcia (DC/AC), a nie według typu budynku. Taka instalacja może występować zarówno w obiekcie biurowym, przemysłowym, jak i np. w infrastrukturze kolejowej. Podobnie z określeniem „oświetleniowe” – tu kryterium jest funkcjonalne: do czego instalacja służy. Instalacja oświetleniowa to ta część instalacji elektrycznej, która zasila oprawy, układy sterowania światłem, awaryjne oświetlenie ewakuacyjne itd. Może być wykonana w budynku biurowym, mieszkalnym, magazynie, praktycznie wszędzie. Podział na instalacje oświetleniowe, siłowe, gniazdowe, technologiczne nie ma nic wspólnego z rodzajem obiektu, tylko z przeznaczeniem obwodów. Określenie „podtynkowe w rurach” z kolei opisuje sposób wykonania, czyli technikę prowadzenia instalacji. Chodzi o to, że przewody są układane w rurkach instalacyjnych (peszlach lub rurach sztywnych) i przykryte tynkiem. To jest typowy wariant w ścianach murowanych. W normach i wytycznych mówi się wtedy o sposobie ułożenia przewodu, strefach instalacyjnych, doborze przekroju z uwzględnieniem warunków chłodzenia. Taki sposób montażu też może wystąpić w bardzo różnych obiektach, nie tylko w biurowcach. Typowy błąd myślowy przy takich pytaniach polega na tym, że ktoś widzi znane słowo techniczne i automatycznie zakłada, że chodzi o „rodzaj instalacji”, bez zwrócenia uwagi, według jakiego kryterium ten „rodzaj” jest definiowany. W praktyce mamy kilka równoległych podziałów: według przeznaczenia obwodów, według rodzaju prądu, według sposobu prowadzenia przewodów, według napięcia znamionowego, stref zagrożenia wybuchem i właśnie według rodzaju obiektu budowlanego. W zadaniu chodziło dokładnie o ten ostatni, dlatego jedynie określenie odnoszące się do typu budynku – czyli „biurowe” – pasuje merytorycznie do treści pytania.

Pytanie 4

Sumienny pracownik w czasie wyznaczonym na zrealizowanie działań

A. wykonuje część zleconych zadań.
B. przekracza dopuszczalne normy wykonywanych zadań.
C. wykonuje wszystkie zadania w terminie.
D. przekracza terminy wszystkich zleconych zadań.
Poprawnie – sumienny pracownik to ktoś, kto w wyznaczonym czasie wykonuje wszystkie zadania w terminie, a nie tylko ich część czy „jak się uda”. W realnej pracy technika, np. przy instalacjach elektrycznych czy przeglądach urządzeń, terminowość jest tak samo ważna jak sama jakość wykonania. Z mojego doświadczenia to właśnie połączenie dokładności i dotrzymywania terminów buduje zaufanie przełożonych i klientów. Sumienność oznacza, że pracownik potrafi zaplanować swoją pracę, dobrze ocenić czas potrzebny na wykonanie zlecenia i na bieżąco kontrolować postęp. Jeżeli ma do zrobienia kilka zadań, np. pomiary instalacji, sporządzenie protokołu i drobną naprawę, to tak nimi zarządza, żeby każde było skończone przed deadlinem, a nie zostawione „na potem”. W dobrych praktykach branżowych terminowość jest jednym z kryteriów oceny pracownika – często zapisywanym w procedurach jakości, systemach ISO czy wewnętrznych regulaminach pracy. Szef nie interesuje się tylko tym, czy zadanie jest zrobione, ale też czy zrobione jest wtedy, kiedy było potrzebne, bo od tego zależy np. bezpieczeństwo użytkowników instalacji, ciągłość produkcji czy brak przestojów. Sumienny pracownik, jeśli widzi, że może nie zdążyć, zawczasu zgłasza problem, prosi o wsparcie albo ustala priorytety z przełożonym, a nie czeka, aż termin minie. Można powiedzieć, że w branży technicznej rzetelność = wykonanie wszystkich powierzonych zadań w ustalonym czasie i zgodnie z wymaganiami technicznymi. To jest taki standard, którego się od fachowca po prostu oczekuje.

Pytanie 5

W celu zabezpieczenia przed bezpośrednim kontaktem (ochrona podstawowa) w instalacjach elektrycznych w gospodarstwach domowych wykorzystuje się

A. połączenia wyrównawcze
B. urządzenia II klasy ochronności
C. izolowanie miejsca pracy
D. izolowanie części czynnych
Izolowanie części czynnych to spoko sposób na ochronę przed bezpośrednim dotykiem. Chodzi o to, żeby zastosować dobre materiały izolacyjne, które oddzielają elementy elektryczne od ludzi i zwierząt. Na przykład, można używać obudów z materiałów, które nie przewodzą prądu – to uniemożliwia przypadkowy kontakt z kablami czy elementami sterującymi. Jak wiadomo, w instalacjach elektrycznych trzeba pamiętać o normach PN-IEC 61140 i PN-EN 60439, które mówią, jak dobrze chronić się przed dotykiem. W domach, gdzie ludzie najczęściej nie mają dużej wiedzy o elektryczności, dobre izolowanie tych części jest naprawdę ważne. Dzięki temu można znacząco zmniejszyć ryzyko porażenia prądem, co jest istotne, zwłaszcza tam, gdzie są dzieci albo starsze osoby.

Pytanie 6

Oprawa oświetleniowa pokazana na zdjęciu jest przeznaczona do zamontowania żarówki z trzonkiem

Ilustracja do pytania
A. E14
B. GU10
C. E27
D. MR16
Oprawa oświetleniowa przedstawiona na zdjęciu jest przeznaczona do zamontowania żarówki z trzonkiem GU10, co można stwierdzić na podstawie analizy wizualnej. Trzonek GU10 charakteryzuje się dwoma bolcami zakończonymi małymi wypustkami, co jest typowe dla tego standardu. W praktyce, żarówki GU10 są powszechnie stosowane w oświetleniu punktowym, halogenowym oraz LED, zapewniając dużą wydajność świetlną oraz możliwość łatwej wymiany. Warto zwrócić uwagę na to, że zastosowanie odpowiednich żarówek w danej oprawie oświetleniowej jest kluczowe dla zapewnienia optymalnego działania systemu oświetleniowego oraz bezpieczeństwa użytkowania. W profesjonalnych instalacjach oświetleniowych, takich jak biura czy przestrzenie komercyjne, standard GU10 jest często preferowany ze względu na różnorodność dostępnych źródeł światła oraz ich łatwość w montażu i demontażu, co sprzyja serwisowaniu. Zastosowanie odpowiednich standardów trzonków pozwala także na lepsze zarządzanie energią i efektywność kosztową, co jest istotne w kontekście nowoczesnych rozwiązań oświetleniowych.

Pytanie 7

Jaka jest wymagana wartość rezystancji izolacji przewodów przy pomiarach odbiorczych instalacji elektrycznej o napięciu znamionowym badanego obwodu U ≤ 500 V? 

A. ≥ 1 MΩ
B. < 1 MΩ
C. ≥ 0,5 MΩ
D. < 0,5 MΩ
W przypadku rezystancji izolacji bardzo łatwo wpaść w pułapkę myślenia „byle nie było zwarcia, to jest dobrze”. To błędne podejście. Same wartości typu 0,5 MΩ czy mniej mogą komuś wydawać się jeszcze „duże”, bo przecież to setki tysięcy omów, ale z punktu widzenia bezpieczeństwa instalacji niskiego napięcia to po prostu za mało. Normy dotyczące instalacji elektrycznych w budynkach, takie jak PN‑HD 60364, jasno określają, że dla obwodów o napięciu znamionowym do 500 V minimalna dopuszczalna rezystancja izolacji przy pomiarze odbiorczym wynosi 1 MΩ. To nie jest wartość „umowna”, tylko wynik doświadczeń i analizy ryzyka porażeniowego oraz pożarowego. Zbyt niska rezystancja izolacji oznacza zwiększony prąd upływu. W praktyce może to powodować m.in. nieprawidłowe działanie wyłączników różnicowoprądowych (fałszywe zadziałania), nagrzewanie się izolacji w miejscach zawilgocenia, a w skrajnych przypadkach nawet iskrzenie i lokalne przegrzania. Odpowiedzi sugerujące wartości poniżej 1 MΩ zakładają, że „pół megaoma też wystarczy”, bo przecież to nadal wysoka rezystancja. Tyle że normy są tutaj jednoznaczne – 0,5 MΩ to wartość niewystarczająca przy odbiorze instalacji o napięciu do 500 V. Jest to typowy błąd myślowy: patrzymy na liczbę w oderwaniu od kontekstu norm i nie bierzemy pod uwagę, że instalacja ma działać bezpiecznie przez lata, w warunkach wilgoci, zanieczyszczeń i starzenia się izolacji. Jeśli już na starcie mamy rezystancję izolacji w okolicach 0,5 MΩ, to po kilku latach eksploatacji może ona spaść jeszcze niżej, co będzie poważnym problemem. Drugi błąd to odwrócenie znaku nierówności – wartości typu „< 1 MΩ” czy „< 0,5 MΩ” w ogóle nie opisują wymagań normowych, tylko raczej stan, który powinien skłonić do szukania uszkodzeń. W dobrych praktykach branżowych przyjmuje się, że nowa instalacja powinna mieć rezystancję izolacji zdecydowanie powyżej wartości minimalnej, a wynik w pobliżu granicy traktuje się jako sygnał ostrzegawczy. Dlatego przy projektowaniu, montażu i odbiorze nie wystarczy kierować się intuicją, trzeba znać konkretne wartości graniczne z norm i umieć je zastosować w praktyce pomiarowej.

Pytanie 8

W instalacji elektrycznej, której schemat przedstawiono na rysunku, po wykonanym montażu włączono pierwszy klawisz łącznika i wszystkie żarówki się tylko żarzyły, natomiast po włączeniu drugiego klawisza, przy włączonym pierwszym, zaświeciły się cztery żarówki. W celu ustalenia przyczyny nieprawidłowego działania instalacji należy sprawdzić poprawność połączeń przewodów do zacisków

Ilustracja do pytania
A. gniazda wtyczkowego.
B. łącznika.
C. puszki zasilającej.
D. żyrandola.
Błędne podejście do analizy problemu może prowadzić do mylnych wniosków i nieefektywnego rozwiązania problemów w instalacji elektrycznej. Wskazanie na łącznik jako źródło problemu z pewnością jest nieprecyzyjne, ponieważ działanie łącznika powinno być zgodne z jego przeznaczeniem, a ewentualne usterki w tym obszarze zazwyczaj objawiają się innym rodzajem awarii, np. brakiem działania całej instalacji. Podobnie, puszka zasilająca czy gniazdo wtyczkowe pełnią kluczowe funkcje w instalacji, ale w omawianym przypadku, ich poprawność działania nie jest wystarczającym wyjaśnieniem. Oparcie się na tych elementach w kontekście problemu nieprawidłowego działania żarówek jest błędne, ponieważ nie uwzględnia specyfiki obwodu, który powinien być analizowany jako całość. Typowym błędem rozumowania jest przenoszenie odpowiedzialności na elementy, które w rzeczywistości nie mają wpływu na zaobserwowane zjawisko. Właściwa diagnoza problemu wymaga szczegółowego zrozumienia interakcji pomiędzy poszczególnymi komponentami instalacji, co w tym przypadku jednoznacznie wskazuje na żyrandol jako miejsce potencjalnych usterek, a nie na elementy zasilające czy łączące.

Pytanie 9

Który z wymienionych rodzajów wkładek topikowych powinien być użyty do zabezpieczenia przed zwarciem jednofazowego silnika indukcyjnego klatkowego?

A. aM
B. gR
C. aL
D. gG
Wybór niewłaściwych typów wkładek topikowych dla zabezpieczenia jednofazowego silnika indukcyjnego klatkowego jest często wynikiem niepełnego zrozumienia ich właściwości i zastosowań. Wkładki typu gG są przeznaczone do ogólnej ochrony obwodów elektrycznych, ale nie są optymalne dla silników, ponieważ mogą nie być w stanie skutecznie zareagować na nagłe przeciążenia i zwarcia, które są typowe dla rozruchu silników. Z kolei wkładki gR, choć przeznaczone do ochrony przed przeciążeniami, nie są dostosowane do specyficznych potrzeb silników, a ich czas reakcji może prowadzić do uszkodzeń. Wkładki typu aL, które są przeznaczone do ograniczenia prądów rozruchowych, również nie zapewniają odpowiedniego zabezpieczenia przed zwarciem, co może skutkować poważnymi uszkodzeniami silnika. Istotnym błędem myślowym jest założenie, że każda wkładka topikowa będzie spełniać te same funkcje niezależnie od kontekstu zastosowania. Odpowiedni dobór wkładek, takich jak aM, uwzględniający zarówno moment rozruchowy, jak i charakterystykę obciążeń, jest kluczowy dla zapewnienia trwałości i niezawodności pracy silników elektrycznych.

Pytanie 10

Który licznik należy zamontować w instalacji elektrycznej, aby umożliwić przedpłatowy system rozliczania energii elektrycznej?

Ilustracja do pytania
A. A.
B. D.
C. C.
D. B.
Wybór niewłaściwego licznika do instalacji elektrycznej, jak w przypadku odpowiedzi A, C czy D, może prowadzić do poważnych problemów w zakresie zarządzania zużyciem energii. Liczniki, które nie są przystosowane do systemu przedpłatowego, nie mogą umożliwić użytkownikom wprowadzania kodów doładowujących, co jest kluczowym elementem tego systemu. Liczniki tradycyjne, które są powszechnie instalowane w domach, umożliwiają jedynie pomiar zużycia energii bez interakcji ze stroną użytkownika w zakresie przedpłat. Takie urządzenia są zgodne z innymi standardami, ale nie mają funkcjonalności, która jest istotna w kontekście nowoczesnych systemów zarządzania energią. Typowym błędem myślowym jest założenie, że każdy licznik energii może funkcyjnie zastąpić licznik przedpłatowy. Różnice te są kluczowe, szczególnie w sytuacjach, gdy użytkownicy chcą mieć większą kontrolę nad swoimi wydatkami. Aby wdrożyć skuteczny system zarządzania energią w budynkach mieszkalnych czy komercyjnych, konieczne jest zrozumienie specyfiki liczników i ich przeznaczenia. Dlatego właściwy wybór licznika, który wspiera system przedpłatowy, jest nie tylko kwestią techniczną, ale również finansową.

Pytanie 11

Jaki jest prawidłowy sposób postępowania w przypadku wykrycia uszkodzenia izolacji przewodu zasilającego?

A. Owinięcie uszkodzonego miejsca taśmą izolacyjną.
B. Zapewnienie dodatkowego uziemienia uszkodzonego przewodu.
C. Natychmiastowe odłączenie zasilania i wymiana przewodu.
D. Kontynuowanie użytkowania do czasu planowanej konserwacji.
Pozostałe odpowiedzi zawierają błędne przekonania i niebezpieczne praktyki, które mogą prowadzić do poważnych zagrożeń. Zapewnienie dodatkowego uziemienia uszkodzonego przewodu jest niewłaściwe, ponieważ nie rozwiązuje problemu uszkodzonej izolacji. Izolacja służy do zabezpieczenia przewodów przed przypadkowym kontaktem i zwarciem, a dodatkowe uziemienie nie przywraca jej pierwotnej funkcji. Używanie taśmy izolacyjnej do owijania uszkodzonego miejsca również nie jest zalecane. Taśma izolacyjna może być stosowana jedynie jako tymczasowe rozwiązanie w sytuacjach awaryjnych, z pełnym zrozumieniem, że nie przywraca pełnej funkcjonalności i bezpieczeństwa przewodu. Takie podejście może być zwodnicze, sugerując fałszywą formę ochrony. Kontynuowanie użytkowania uszkodzonego przewodu do czasu planowanej konserwacji jest szczególnie nieodpowiedzialne. Ignorowanie uszkodzeń izolacji może prowadzić do zwarć i porażeń prądem, zagrażając bezpieczeństwu osób oraz innych urządzeń podłączonych do instalacji. Takie podejście jest w absolutnej sprzeczności z dobrymi praktykami inżynierskimi, które kładą nacisk na natychmiastowe usuwanie potencjalnych zagrożeń.

Pytanie 12

Wyzwalacz elektromagnetyczny wyłącznika toru prądowego, przedstawiamy na schemacie blokowym jak na rysunku, oznacza się na schemacie elektrycznym symbolem graficznym

Ilustracja do pytania
A. B.
B. D.
C. A.
D. C.
Wybór innej odpowiedzi, niż oznaczenie "B", może prowadzić do nieporozumień w zakresie identyfikacji wyzwalaczy elektromagnetycznych. Odpowiedzi, które nie są zgodne z definicją i standardami schematów elektrycznych, mogą wywołać szereg problemów związanych z interpretacją projektów elektronicznych. Na przykład, nieprawidłowe symbole mogą prowadzić do błędów w instalacji i eksploatacji urządzeń. W schematach elektrycznych każdy symbol ma swoje unikalne znaczenie, a ich niewłaściwe zrozumienie może skutkować nieefektywnymi rozwiązaniami oraz stwarzaniem zagrożeń dla bezpieczeństwa. Przy projektowaniu obwodów zabezpieczeń, istotne jest, aby każdy komponent był jednoznacznie zidentyfikowany, ponieważ nawet małe błędy mogą prowadzić do poważnych konsekwencji. Ponadto, korzystanie z nieautoryzowanych lub mylnych symboli może być sprzeczne z obowiązującymi normami branżowymi, co może skutkować problemami prawnymi w przypadku awarii. Dlatego kluczowe jest, aby na każdym etapie projektowania oraz realizacji prac korzystać z poprawnych symboli i wytycznych, które odpowiadają rzeczywistym funkcjom urządzeń w obwodzie elektrycznym.

Pytanie 13

Jakiego pomiaru w instalacji należy dokonać, aby zweryfikować podstawową ochronę przed porażeniem prądem?

A. Prądu zadziałania wyłącznika RCD
B. Rezystancji izolacji
C. Czasu działania wyłącznika RCD
D. Rezystancji uziemienia
Mierzenie prądu zadziałania wyłącznika RCD oraz czasu jego zadziałania są istotnymi czynnikami w kontekście ochrony przeciwporażeniowej, ale nie są bezpośrednio związane z pomiarem izolacji. RCD, czyli wyłącznik różnicowoprądowy, ma na celu wykrywanie prądów upływowych, które mogą prowadzić do porażenia prądem, jednak jego skuteczność nie zastępuje pomiaru rezystancji izolacji. Mierzenie rezystancji uziemienia jest również ważne, ponieważ zapewnia dobrą drogę powrotną dla prądu w sytuacji awaryjnej, ale nie dostarcza informacji o stanie izolacji przewodów. Typowym błędem myślowym jest mylenie różnych aspektów ochrony elektrycznej i skupienie się wyłącznie na funkcjonowaniu RCD, co może prowadzić do niepełnego zrozumienia zagadnienia ochrony przeciwporażeniowej. Aby zapewnić pełne bezpieczeństwo, konieczne jest jednoczesne uwzględnienie różnych parametrów instalacji, a nie ograniczanie się tylko do jednego z nich. Dlatego kluczowe jest, aby nie tylko polegać na pomiarach RCD, ale również regularnie kontrolować rezystancję izolacji, co jest zgodne z najlepszymi praktykami w branży elektrycznej.

Pytanie 14

Które z przedstawionych narzędzi najlepiej nadaje się do wyznaczania tras przebiegu przewodów przed montażem instalacji elektrycznej w pomieszczeniu o dużej powierzchni?

Ilustracja do pytania
A. Narzędzie 3.
B. Narzędzie 1.
C. Narzędzie 2.
D. Narzędzie 4.
W tym zadaniu chodzi głównie o dopasowanie narzędzia do skali pracy. W małym pokoju klasyczna poziomica bańkowa sprawdzi się całkiem nieźle, ale w dużym pomieszczeniu zaczyna się robić kłopot. Trzeba ją ciągle przesuwać, przenosić punkty, łatwo o narastające błędy i różnice poziomów. Dlatego wybór zwykłej poziomnicy aluminiowej, nawet bardzo dokładnej, nie jest optymalny przy planowaniu długich, prostych tras przewodów na ścianach czy pod sufitami. Wiele osób kieruje się przyzwyczajeniem – "zawsze tak robiłem" – i bierze to, co zna z małych robót. To typowy błąd myślowy: skupienie się na samym pomiarze poziomu, a nie na zasięgu i wygodzie przenoszenia linii na większą odległość. Narzędzia pokazane na ilustracjach 1, 3 i 4 to różne odmiany poziomic bańkowych (w tym elektroniczne czy o większej długości), ale nadal wymagają fizycznego przykładania do podłoża. Przy dużej hali albo długim korytarzu prowadzenie trasy przewodów w ten sposób jest czasochłonne i zwiększa ryzyko rozjechania się linii, szczególnie gdy trasy muszą być idealnie równoległe i na tej samej wysokości w wielu punktach pomieszczenia. Dobra praktyka montażu instalacji elektrycznych mówi, że przed wykonaniem bruzd, mocowaniem koryt i rur instalacyjnych należy możliwie szybko i precyzyjnie wyznaczyć wszystkie linie odniesienia. Do tego służą właśnie poziomice laserowe, które rzucają stabilną linię na całą długość ściany czy nawet kilku ścian naraz. Pozostałe narzędzia z obrazka, choć przydatne przy wielu pracach wykończeniowych, nie zapewniają takiej efektywności i powtarzalności przy pracy na dużych powierzchniach. W praktyce zawodowej coraz rzadziej projektuje się trasy na dużych obiektach tylko z użyciem klasycznej poziomnicy – to po prostu mniej ergonomiczne rozwiązanie.

Pytanie 15

Naciśnięcie przycisku TEST na wyłączniku różnicowoprądowym, imituje

A. przepięcie
B. uszkodzenie przewodu
C. przeciążenie
D. upływ prądu
Przyciśnięcie przycisku TEST na wyłączniku różnicowoprądowym nie symuluje przeciążenia, ponieważ przeciążenie związane jest z sytuacją, w której obciążenie prądowe przewyższa maksymalne dopuszczalne wartości dla danego obwodu. W takich sytuacjach działają zabezpieczenia nadprądowe, takie jak bezpieczniki lub wyłączniki automatyczne, które mają za zadanie przerwać obwód, aby zapobiec przegrzaniu przewodów i potencjalnym pożarom. Wciśniecie przycisku TEST nie dotyczy również przepięcia, które jest skutkiem nagłych wzrostów napięcia, na przykład podczas wyładowań atmosferycznych. Przepięcia są zazwyczaj niwelowane przez urządzenia ochronne, takie jak ograniczniki przepięć, a nie przez wyłączniki różnicowoprądowe. Wreszcie, wciśnięcie przycisku TEST nie dotyczy przerwy przewodu, co jest sytuacją, w której prąd nie przepływa w obwodzie z powodu uszkodzenia przewodu. Tego rodzaju problem nie jest związany z funkcją różnicowoprądową, ponieważ RCD działa na podstawie różnicy prądów między przewodami fazowymi a neutralnym, a nie na podstawie ich ciągłości. Zrozumienie tych różnic jest kluczowe dla prawidłowego użytkowania i ochrony instalacji elektrycznych.

Pytanie 16

Na którym rysunku przedstawiono schemat montażowy zgodny z przedstawionym planem instalacji?

Ilustracja do pytania
A. B.
B. A.
C. D.
D. C.
Wybór odpowiedzi, która nie jest zgodna z planem instalacji, może wynikać z kilku błędnych założeń dotyczących montażu i podłączenia instalacji elektrycznych. Wiele osób myli pojęcia dotyczące przewodów PE, N i L, co prowadzi do nieprawidłowych wniosków. Przykładowo, w niepoprawnych schematach może występować niewłaściwe połączenie przewodu neutralnego z fazowym, co stwarza ryzyko zwarcia oraz uszkodzenia urządzeń elektrycznych. Często spotykaną pomyłką jest również brak odpowiedniego uziemienia, które jest kluczowe dla bezpieczeństwa. Bezpośrednie połączenie przewodów do gniazda wtyczkowego bez uwzględnienia zasadności ich rozmieszczenia może prowadzić do nieefektywności pracy urządzeń oraz zwiększonego ryzyka porażenia prądem. Ważne jest, aby pamiętać, że każdy element instalacji musi być zgodny z odpowiednimi normami, takimi jak normy PN-EN 60364, które precyzują zasady projektowania oraz montażu. Wiedza na temat symboliki i oznaczeń w schematach montażowych jest kluczowa dla zrozumienia, jak prawidłowo zrealizować instalację. Pomocne może być również zapoznanie się z wytycznymi dotyczącymi bezpieczeństwa, które podkreślają znaczenie zachowania odpowiednich odstępów pomiędzy przewodami, aby uniknąć zakłóceń oraz potencjalnych zagrożeń.

Pytanie 17

Jaką z wymienionych czynności kontrolnych należy przeprowadzić po zainstalowaniu trójfazowego silnika elektrycznego?

A. Weryfikacja symetrii napięcia zasilającego
B. Mierzenie temperatury stojana
C. Sprawdzenie kierunku obrotów wału silnika
D. Mierzenie prędkości obrotowej
Pomiar temperatury stojana, pomiar prędkości obrotowej oraz sprawdzenie symetrii napięcia zasilającego to ważne czynności, jednakże nie są one krytycznymi krokami po montażu silnika elektrycznego. Pomiar temperatury stojana może być istotny w kontekście monitorowania stanu silnika w trakcie jego pracy, ale nie ma bezpośredniego związku z poprawnym montażem i pierwszym uruchomieniem silnika. W przypadku nowo zamontowanego silnika, kluczową kwestie stanowi kierunek obrotów, który powinien być zweryfikowany przed przejściem do dalszych testów eksploatacyjnych. Niezrozumienie tej hierarchii czynności może prowadzić do błędnych działań, takich jak uruchomienie silnika w niewłaściwym kierunku. Z kolei pomiar prędkości obrotowej, choć również istotny, jest bardziej związany z wydajnością silnika w kontekście jego pracy, a nie z weryfikacją samego montażu. Sprawdzenie symetrii napięcia zasilającego, choć może być ważne w kontekście zapewnienia równomiernej pracy silnika, również nie powinno być priorytetem w pierwszej kolejności po montażu. Zrozumienie, które czynności są kluczowe w danych etapach instalacji i uruchamiania silnika, jest niezbędne dla uniknięcia późniejszych problemów oraz zapewnienia bezpieczeństwa w procesie eksploatacji.

Pytanie 18

Jakie optymalne odległości X, Y i Z należy zachować, trasując przebieg przewodów instalacji podtynkowej, przedstawionej na rysunku?

Ilustracja do pytania
A. A.
B. C.
C. B.
D. D.
Wybór błędnej odpowiedzi może wynikać z niedostatecznej wiedzy na temat zasad dotyczących zachowywania odpowiednich odległości przy trasowaniu przewodów instalacji elektrycznych. Wiele osób może mylnie sądzić, że mniejsze odległości są wystarczające, co prowadzi do potencjalnych problemów w przyszłości. Przyjęcie niewłaściwych odległości, na przykład mniejszych niż zalecane, naraża instalację na uszkodzenia mechaniczne. Może to skutkować zwarciem, a nawet pożarem, gdyż przewody będą narażone na wpływ narzędzi oraz innych elementów konstrukcyjnych podczas późniejszych prac. Przykładowo, zbyt bliskie umiejscowienie przewodów w stosunku do krawędzi ścian może prowadzić do ich uszkodzenia podczas montażu mebli lub osprzętu, co jest częstym błędem w trakcie projektowania instalacji. Ponadto, niewłaściwe podejście do zachowania dystansu może ograniczyć dostępność instalacji do ewentualnych napraw oraz konserwacji, co generuje dodatkowe trudności i koszty w dłuższej perspektywie. Warto pamiętać, że przestrzeganie zasad dotyczących odległości nie tylko wpływa na bezpieczeństwo, ale także na komfort codziennego użytkowania budynku. Każda instalacja elektryczna powinna być zaplanowana zgodnie z obowiązującymi normami, co zapewnia nie tylko ochronę przed zagrożeniami, ale również zwiększa trwałość całego systemu.

Pytanie 19

Wybierz zestaw narzędzi koniecznych do zamocowania listew instalacyjnych w natynkowej instalacji elektrycznej z użyciem kołków szybkiego montażu?

A. Osadzak gazowy, wkrętak, obcinaczki
B. Wiertarka z zestawem wierteł, szczypce płaskie, piła
C. Osadzak gazowy, młotek, obcinaczki
D. Wiertarka z zestawem wierteł, młotek, piła
Analizując błędne odpowiedzi, można zauważyć, że nie wszystkie narzędzia wymienione w odpowiedziach są odpowiednie do zamocowania listew instalacyjnych natynkowej instalacji elektrycznej. Na przykład, osadzak gazowy jest narzędziem przeznaczonym do wykonywania otworów w materiałach budowlanych, jednak jego użycie w kontekście kołków szybkiego montażu może być zbędne, a w niektórych przypadkach nawet niebezpieczne, zwłaszcza gdy jest stosowany przez osoby niedoświadczone. Wkrętaki i obcinaczki, choć przydatne w wielu sytuacjach, nie są kluczowymi narzędziami do montażu listew, a ich obecność w zestawie może wprowadzać w błąd co do właściwego doboru narzędzi. Ponadto, piła jako narzędzie tnące, choć może być użyteczna w przypadku przycinania listew, nie jest kluczowym narzędziem dla montażu kołków, co sugeruje, że odpowiedzi te nie uwzględniają wszystkich aspektów procesu instalacyjnego. Typowym błędem myślowym jest zakładanie, że każde narzędzie może być użyte do wielu zadań, co nie zawsze jest prawdą i może prowadzić do nieefektywności oraz zwiększonego ryzyka uszkodzeń. Zrozumienie specyfiki narzędzi i ich zastosowań jest kluczowe w pracy instalatora, a wybór odpowiednich narzędzi powinien opierać się na praktycznym doświadczeniu oraz znajomości standardów branżowych.

Pytanie 20

Jakie oznaczenie powinno być umieszczone na puszce instalacyjnej, która ma być użyta do połączenia uszkodzonego przewodu YDYo 5x4 mm2 w obszarze myjni samochodowej?

A. IP43 5x4 mm2
B. IP54 4x4 mm2
C. IP45 5x6 mm2
D. IP56 5x4 mm2
Prawidłowa odpowiedź, IP56 5x4 mm2, odnosi się do odpowiednich standardów ochrony przed pyłem i wodą, które są kluczowe w środowisku myjni samochodowych. Oznaczenie IP56 wskazuje na wysoką odporność na kurz oraz możliwość ochrony przed silnymi strumieniami wody, co jest istotne w kontekście pracy w mokrym środowisku. W przypadku połączeń elektrycznych w takich miejscach, szczególnie przy przewodach o przekroju 5x4 mm2, ważne jest, aby wybrać elementy spełniające normy bezpieczeństwa. W praktyce, zastosowanie puszki z oznaczeniem IP56 zapewnia, że instalacja będzie chroniona przed niekorzystnymi warunkami zewnętrznymi, co przekłada się na dłuższą żywotność komponentów oraz mniejsze ryzyko awarii. Standardy takie jak IEC 60529 definiują klasyfikację ochrony, co pozwala na dobór odpowiednich materiałów w zależności od specyfiki danego miejsca. W przypadku myjni, wytrzymałość na działanie wody oraz odporność na pył są niezbędne dla zapewnienia niezawodności i bezpieczeństwa eksploatacji urządzeń elektrycznych.

Pytanie 21

Który z przedstawionych rdzeni stosowany jest do produkcji transformatora toroidalnego?

Ilustracja do pytania
A. D.
B. C.
C. B.
D. A.
Wybór innej odpowiedzi, jak A, B lub D, może wynikać z braku zrozumienia kluczowych cech rdzeni stosowanych w transformatorach toroidalnych. Rdzenie oznaczone innymi literami nie mają kształtu pierścienia, co jest fundamentalną cechą rdzeni toroidalnych. Na przykład, rdzenie prostokątne lub cylindryczne, które mogą być sugerowane przez inne odpowiedzi, są często stosowane w standardowych transformatorach, ale charakteryzują się wyższymi stratami energetycznymi z powodu tzw. efektu bocznego strumienia, który prowadzi do rozpraszania energii. To zjawisko jest niezwykle istotne w kontekście projektowania efektywnych systemów zasilania. Wybór niewłaściwego rdzenia może również wpłynąć na gabaryty urządzenia, co w przypadku zastosowań wymagających kompaktowych rozmiarów, jak w elektronice użytkowej, ma kluczowe znaczenie. Warto zwrócić uwagę na typowe błędy myślowe, takie jak zbyt ogólne podejście do klasyfikacji rdzeni, co może prowadzić do niepoprawnych wniosków. Aby poprawnie zrozumieć, dlaczego rdzeń toroidalny jest najlepszym wyborem, ważne jest, aby zwrócić uwagę na jego zastosowanie w kontekście specyfikacji technicznych oraz efektywności energetycznej, co jest kluczowe w nowoczesnym projektowaniu urządzeń elektronicznych.

Pytanie 22

Który z wymienionych czynników nie wpływa na dopuszczalne obciążenie długotrwałe przewodów stosowanych w instalacji elektrycznej?

A. Długość zamontowanych przewodów
B. Metoda ułożenia przewodów
C. Przekrój poprzeczny przewodów
D. Rodzaj materiału izolacyjnego
Przekrój poprzeczny żył, rodzaj materiału izolacji oraz sposób ułożenia przewodów są elementami, które mają istotny wpływ na dopuszczalną obciążalność długotrwałą instalacji elektrycznej. Przekrój poprzeczny żył wpływa na opór przewodów; im większy przekrój, tym mniejszy opór, co przekłada się na możliwość przewodzenia większych prądów bez przegrzewania się. Z kolei materiał izolacji ma kluczowe znaczenie dla wydolności cieplnej przewodów; różne materiały mają różne właściwości termiczne i dielektryczne, co w praktyce wpływa na bezpieczeństwo użytkowania. Sposób ułożenia przewodów również jest istotny – na przykład, przewody ułożone w szczelnych kanałach mogą wymagać zmniejszenia dopuszczalnej obciążalności ze względu na ograniczony przepływ powietrza i trudności w odprowadzaniu ciepła. Typowe błędy myślowe obejmują mylenie długości przewodów z ich zdolnością do przewodzenia prądu. Choć długa trasa kablowa może zwiększać spadek napięcia, nie wpływa na maksymalną wartość prądu, jaki przewody mogą bezpiecznie przewodzić. Dlatego istotne jest, aby projektując instalacje, kierować się zaleceniami zawartymi w normach oraz wytycznymi branżowymi, aby uniknąć nieprawidłowych wniosków dotyczących obciążalności przewodów.

Pytanie 23

Rysunek przedstawia sposób zainstalowania urządzenia ochronnego różnicowoprądowego w sieci typu

Ilustracja do pytania
A. TT
B. TN-C-S
C. TN-S
D. IT
Wybór odpowiedzi spośród pozostałych typów sieci może prowadzić do nieporozumień związanych z zasadami ich działania. Sieci TN-S charakteryzują się tym, że przewód neutralny i przewód ochronny są oddzielone, co jest zupełnie inną koncepcją niż izolacja stosowana w sieciach IT. Użytkownicy mogą błędnie myśleć, że w sieci TN-S urządzenia różnicowoprądowe są tak samo efektywne jak w IT, jednak w przypadku awarii izolacji, prąd upływowy w sieci TN-S może spowodować poważniejsze konsekwencje. Podobnie sieci TN-C-S, które łączą funkcję przewodów neutralnych i ochronnych, są bardziej narażone na zjawiska związane z prądami upływowymi, co stawia pod znakiem zapytania ich bezpieczeństwo. Z kolei w sieciach TT, gdzie przewód neutralny i ochronny są oddzielne, istnieje większe ryzyko wystąpienia różnicy potencjałów między ziemią a neutralnym przewodem, co może prowadzić do niebezpiecznych sytuacji. Błędem jest zakładanie, że wszystkie te systemy zapewniają taki sam poziom ochrony jak sieci IT; każdy typ ma swoje unikalne właściwości i zastosowania, które powinny być starannie rozważane w kontekście wymagań bezpieczeństwa. W przypadku sieci IT, kluczowe jest zrozumienie ich struktury oraz właściwego zastosowania, aby uniknąć niebezpieczeństw związanych z awariami. Warto również zaznaczyć, że w sieciach TN i TT instalacje różnicowoprądowe są często mniej skuteczne w detekcji uszkodzeń, co może prowadzić do większych zagrożeń dla użytkowników i urządzeń.

Pytanie 24

Bruzdownicę wykorzystuje się podczas realizacji instalacji

A. prefabrykowanej.
B. wiązanej.
C. podtynkowej.
D. natynkowej.
Wykorzystanie bruzdownicy w instalacjach wiązkowych, natynkowych lub prefabrykowanych jest nieadekwatne i opiera się na błędnym zrozumieniu specyfiki tych systemów. Instalacje wiązkowe, z założenia, polegają na używaniu kabli w formie zorganizowanych wiązek, które są montowane na powierzchni, co eliminuje potrzebę wykonywania rowków w ścianach. W tym przypadku, kable są często prowadzone po ścianach, co jest zwane instalacją natynkową. Takie podejście nie wymaga przecinania materiałów budowlanych ani stosowania bruzdownicy. W kontekście prefabrykowanych instalacji, które są montowane za pomocą gotowych elementów, również nie zachodzi potrzeba korzystania z bruzdownicy. Prefabrykaty są projektowane w taki sposób, aby ułatwić szybki i efektywny montaż, co sprawia, że cięcie w ścianach nie jest konieczne. Typowe błędy myślowe prowadzące do takich nieprawidłowych wniosków obejmują mylenie różnych technik instalacyjnych oraz brak zrozumienia ich zastosowania w praktyce. Zrozumienie różnic pomiędzy tymi systemami jest kluczowe dla efektywnego planowania i realizacji instalacji elektrycznych i hydraulicznych, co w konsekwencji wpływa na bezpieczeństwo i estetykę wykonania.

Pytanie 25

Który z przedstawionych na rysunkach zestawów narzędzi należy dobrać do montażu elementów mieszkaniowych instalacji elektrycznych?

Ilustracja do pytania
A. D.
B. C.
C. B.
D. A.
Zestaw narzędzi oznaczony literą C to właściwy wybór do montażu elementów mieszkaniowych instalacji elektrycznych, ponieważ zawiera narzędzia izolowane. Narzędzia te mają specjalną powłokę, która minimalizuje ryzyko porażenia prądem, co jest kluczowe, gdy pracujemy z instalacjami elektrycznymi. Przykładowo, obcęgi i szczypce izolowane pozwalają na precyzyjne manipulowanie przewodami bez obawy o kontakt z napięciem. Standardy bezpieczeństwa, takie jak normy IEC 60900, definiują wymagania dotyczące narzędzi używanych w środowiskach elektrycznych, w tym wymagania dotyczące izolacji. Ponadto, dobór narzędzi zgodnych z tymi normami jest często wymogiem w profesjonalnych pracach elektrycznych, co zapewnia nie tylko bezpieczeństwo, ale również efektywność pracy. Zastosowanie odpowiednich narzędzi może znacząco zwiększyć komfort oraz bezpieczeństwo w trakcie realizacji zadań montażowych.

Pytanie 26

Jaką liczbę klawiszy oraz zacisków ma tradycyjny jeden łącznik świecznikowy?

A. Jeden klawisz i trzy niezależne zaciski
B. Dwa klawisze i cztery niezależne zaciski
C. Jeden klawisz i cztery niezależne zaciski
D. Dwa klawisze i trzy niezależne zaciski
Wybierając inne odpowiedzi, można natknąć się na powszechne nieporozumienia dotyczące budowy i funkcji łączników świecznikowych. Na przykład, odpowiedzi sugerujące jeden klawisz i cztery zaciski mogą prowadzić do mylnego przekonania, że łącznik może obsługiwać więcej niż jedno źródło światła w niezależny sposób, co jest technicznie niemożliwe bez dodatkowych komponentów. Takie rozwiązanie nie tylko nie spełnia podstawowych założeń konstrukcyjnych, ale także może generować niebezpieczeństwo związane z przeciążeniem obwodu. Ponadto, odpowiedzi zawierające dwa klawisze i cztery zaciski wydają się logiczne na pierwszy rzut oka, jednak w rzeczywistości, w kontekście klasycznego pojedynczego łącznika, technologia wymaga tylko trzech zacisków dla właściwego podłączenia. W praktyce, mylenie liczby zacisków oraz klawiszy może skutkować błędnym doborem komponentów w instalacji elektrycznej, co może prowadzić do problemów z bezpieczeństwem oraz funkcjonalnością oświetlenia. Wiedza na temat standardowych rozwiązań w instalacjach elektrycznych jest kluczowa, aby uniknąć takich pułapek i zapewnić odpowiednią wydajność oraz bezpieczeństwo w użytkowaniu.

Pytanie 27

Źródło światła pokazane na zdjęciu to lampa

Ilustracja do pytania
A. halogenowa.
B. rtęciowa.
C. sodowa.
D. rtęci owo-żarowa.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Lampa halogenowa, jaką widzisz na zdjęciu, jest doskonałym przykładem nowoczesnego źródła światła, które charakteryzuje się wyższą efektywnością energetyczną oraz dłuższą żywotnością w porównaniu do tradycyjnych żarówek. Jej budowa składa się z małej bańki, w której znajduje się drucik wolframowy, oraz ze specjalnego naczynia kwarcowego lub szklanego wypełnionego gazem halogenowym, co pozwala na regenerację wolframu i zmniejsza jego parowanie. Dzięki temu, lampa halogenowa emituje jasne i naturalne światło, które jest doskonałe do oświetlenia wnętrz oraz zastosowań w oświetleniu akcentującym. Warto dodać, że lampy halogenowe są powszechnie stosowane w domach, biurach oraz w oświetleniu wystawowym, a ich zastosowanie w przemyśle i motoryzacji jest również znaczące. Przemiany w sektorze oświetleniowym wskazują na rosnącą popularność źródeł LED, jednak lampy halogenowe pozostają cenione za swoje unikalne właściwości w określonych zastosowaniach, takich jak reflektory czy lampy punktowe.

Pytanie 28

Zdjęcie przedstawia przewód

Ilustracja do pytania
A. YDYn 3x1,5 500 V
B. YDY 3x1,5 750 V
C. YLY 3x1,5 500 V
D. YDYp 3x1,5 750 V

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przewód przedstawiony na zdjęciu to przewód typu YDYp 3x1,5 750 V, co można rozpoznać po zastosowaniu symboliki w oznaczeniach. Oznaczenie 'Y' wskazuje na materiał izolacji, w tym przypadku poliwinitowy. Druga litera 'D' oznacza, że przewód wykonany jest z drutu miedzianego, co zapewnia jego dużą przewodność elektryczną. Z kolei 'Y' ponownie odnosi się do dodatkowej warstwy izolacji, a 'p' oznacza, że przewód ma formę płaską. Taki typ przewodu jest często wykorzystywany w instalacjach elektrycznych w budynkach, gdzie występuje potrzeba oszczędności miejsca oraz estetyki. Przewody płaskie, jak YDYp, są idealne do układania w ścianach, podłogach, czy w innych przestrzeniach, gdzie ich rozmiar pozwala na łatwe ukrycie. Napięcie znamionowe 750 V czyni je odpowiednim rozwiązaniem do wielu standardowych aplikacji, co czyni je zgodnym z normami PN-EN 50525, dotyczącymi przewodów elektrycznych. Wybór właściwego przewodu ma kluczowe znaczenie dla bezpieczeństwa i efektywności instalacji elektrycznej, dlatego znajomość ich właściwości jest niezbędna w pracy elektryka.

Pytanie 29

Który rodzaj maszyny wirującej przedstawiono na rysunku?

Ilustracja do pytania
A. Indukcyjną klatkową.
B. Synchroniczną jawnobiegunową.
C. Synchroniczną z biegunami utajonymi.
D. Komutatorową prądu przemiennego.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Maszyna przedstawiona na rysunku to synchroniczna maszyna jawnobiegunowa, co można zauważyć dzięki wyraźnym biegunom magnetycznym oznaczonym jako S i N. W takich maszynach, w przeciwieństwie do maszyn z biegunami utajonymi, bieguny są wyraźnie widoczne na wirniku. W kontekście zastosowań, maszyny synchroniczne jawnobiegunowe są powszechnie wykorzystywane w energetyce, na przykład w generatorach prądu przemiennego w elektrowniach. Ich główną zaletą jest możliwość utrzymania stałej prędkości obrotowej niezależnie od obciążenia, co czyni je idealnymi do zastosowań wymagających wysokiej stabilności. Dodatkowo, maszyny te cechują się wysoką sprawnością i zdolnością do pracy w szerokim zakresie prędkości, co sprawia, że są wykorzystywane w aplikacjach takich jak napędy elektryczne w transporcie czy w przemyśle. Wiedza na temat maszyn synchronicznych jawnobiegunowych jest kluczowa dla inżynierów zajmujących się projektowaniem systemów energetycznych, ponieważ ich zrozumienie pozwala na efektywne wykorzystanie takich maszyn w różnych konfiguracjach sieciowych.

Pytanie 30

Na rysunku przedstawiono

Ilustracja do pytania
A. pomiar impedancji pętli zwarcia.
B. badanie skuteczności ochrony podstawowej.
C. pomiar rezystancji izolacji przewodów ochronnych.
D. sprawdzanie ciągłości przewodów ochronnych.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Sprawdzanie ciągłości przewodów ochronnych stanowi niezwykle istotny element zapewnienia bezpieczeństwa w instalacjach elektrycznych. Na przedstawionym rysunku widzimy schemat, w którym zaznaczone są kluczowe elementy, takie jak przewód ochronny PE oraz przewód ochronno-neutralny PEN, a także przyrząd pomiarowy, który jest wykorzystywany do tego typu testów. Sprawdzanie ciągłości przewodów ochronnych polega na pomiarze oporu elektrycznego pomiędzy końcami przewodów ochronnych, co pozwala na upewnienie się, że są one prawidłowo połączone i nie mają przerw. W praktyce, taki pomiar jest kluczowy przed oddaniem do użytku nowej instalacji elektrycznej oraz podczas regularnych przeglądów technicznych. Zgodnie z normą PN-EN 60204-1, ciągłość przewodów ochronnych powinna być sprawdzana w regularnych odstępach czasu, co jest niezbędne dla zapewnienia ochrony przed porażeniem prądem elektrycznym. Takie działania pomagają w wykrywaniu potencjalnych zagrożeń i zapewniają bezpieczeństwo użytkowników instalacji.

Pytanie 31

Jakie gniazdo instalacyjne oznacza się na schematach symbolem graficznym przedstawionym na rysunku?

Ilustracja do pytania
A. Telekomunikacyjne.
B. Z wyłącznikiem.
C. Z transformatorem separacyjnym.
D. Ze stykiem ochronnym.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Gniazdo instalacyjne ze stykiem ochronnym, które zostało przedstawione na rysunku, jest kluczowym elementem w zapewnieniu bezpieczeństwa w instalacjach elektrycznych. Styk ochronny jest zaprojektowany w celu minimalizacji ryzyka porażenia prądem elektrycznym, a jego obecność w gniazdach jest zgodna z normami bezpieczeństwa, takimi jak PN-EN 60309. Dzięki zastosowaniu gniazd ze stykiem ochronnym, użytkownicy mogą korzystać z urządzeń elektrycznych z większym poczuciem bezpieczeństwa, szczególnie w środowiskach, gdzie istnieje ryzyko kontaktu z wodą lub mokrymi powierzchniami, na przykład w łazienkach czy kuchniach. W praktyce, gniazda te są powszechnie stosowane w obiektach komercyjnych i przemysłowych, gdzie stosowane są maszyny i urządzenia wymagające dużej mocy, co czyni je niezbędnym elementem w każdej instalacji elektrycznej. Warto również zwrócić uwagę na to, że gniazda ze stykiem ochronnym są często stosowane z przedłużaczami i innymi urządzeniami, co przyczynia się do ich większej uniwersalności i funkcjonalności w różnych zastosowaniach elektrycznych.

Pytanie 32

Który układ połączeń watomierza jest zgodny ze schematem pomiarowym pokazanym na rysunku?

Ilustracja do pytania
A. A.
B. D.
C. C.
D. B.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź C jest poprawna, ponieważ odzwierciedla prawidłowy układ połączeń watomierza zgodny z zasadami pomiaru mocy czynnej w obwodach jednofazowych. W tej konfiguracji cewka prądowa jest połączona szeregowo z obciążeniem, co umożliwia pomiar prądu płynącego przez obciążenie. Z kolei cewka napięciowa jest połączona równolegle z obciążeniem, co pozwala na pomiar napięcia na tym obciążeniu. Dzięki temu, watomierz może dokładnie obliczyć moc czynną, stosując wzór P=U*I*cos(φ), gdzie φ to kąt przesunięcia fazowego między prądem a napięciem. Takie połączenie jest zgodne z normami IEC 60051 oraz IEC 62053, które definiują wymagania dotyczące pomiarów mocy. W praktyce poprawnie skonfigurowany watomierz w obwodzie jednofazowym jest kluczowy do monitorowania i zarządzania zużyciem energii, co ma istotne znaczenie w kontekście efektywności energetycznej i zarządzania kosztami w przedsiębiorstwach oraz gospodarstwach domowych.

Pytanie 33

Którego typu gniazda elektrycznego dotyczy symbol graficzny przedstawiony na ilustracji?

Ilustracja do pytania
A. Jednofazowego ze stykiem ochronnym.
B. Trójfazowego ze stykiem ochronnym.
C. Trójfazowego bez styku ochronnego.
D. Jednofazowego bez styku ochronnego.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to "Jednofazowego ze stykiem ochronnym". Symbol graficzny przedstawiony na ilustracji rzeczywiście odpowiada gniazdu jednofazowemu, co można zidentyfikować dzięki obecności trzech kluczowych elementów. Linia pionowa oznacza fazę, pozioma reprezentuje przewód neutralny, a półokrąg wskazuje na styk ochronny. Stosowanie gniazd jednofazowych ze stykiem ochronnym jest istotne w kontekście bezpieczeństwa elektrycznego, gdyż zapewniają one dodatkową ochronę przed porażeniem prądem elektrycznym. W praktyce, takie gniazda są powszechnie stosowane w gospodarstwach domowych oraz biurach, gdzie istnieje ryzyko kontaktu użytkownika z elementami przewodzącymi prąd. Standardy krajowe, takie jak PN-EN 60309, podkreślają znaczenie stosowania gniazd z zabezpieczeniem, zwłaszcza w środowiskach o dużym ryzyku, takich jak warsztaty czy miejsca pracy z zastosowaniem maszyn elektrycznych. Wiedza o tych standardach jest kluczowa dla odpowiedniego doboru sprzętu elektrycznego oraz zapewnienia bezpieczeństwa użytkowników.

Pytanie 34

Wyłącznik różnicowoprądowy reagujący na prądy różnicowe przemienne, jednopołówkowe ze składową stałą do 6 mA i na prądy wyprostowane, oznaczony jest symbolem graficznym

Ilustracja do pytania
A. A.
B. D.
C. B.
D. C.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłącznik różnicowoprądowy, który reaguje na prądy różnicowe przemienne, jednopołówkowe ze składową stałą do 6 mA oraz na prądy wyprostowane, jest kluczowym elementem w systemach elektroenergetycznych, zapewniającym ochronę przed porażeniem prądem elektrycznym. Oznaczenie, które widzisz w odpowiedzi A, jest zgodne z normami obowiązującymi w branży elektrycznej, w tym z normą IEC 61008-1, która określa wymagania dotyczące wyłączników różnicowoprądowych. Użycie symbolu graficznego z sinusoidą oraz prostą linią z poziomymi kreskami poniżej, wskazuje na jego zdolność do detekcji prądów różnicowych, co jest istotne w kontekście ochrony instalacji elektrycznych. Praktyczne zastosowanie takich wyłączników obejmuje zarówno budynki mieszkalne, gdzie zabezpieczają użytkowników przed zagrożeniem, jak i obiekty przemysłowe, gdzie minimalizują ryzyko uszkodzenia sprzętu. Ich dobór i prawidłowe oznaczenie w dokumentacji technicznej są fundamentalne dla zapewnienia bezpieczeństwa i zgodności z regulacjami prawnymi.

Pytanie 35

Jakie narzędzia są konieczne do wytyczenia trasy instalacji przewodów elektrycznych montowanych na powierzchni?

A. Ołówek traserski, przymiar kreskowy, rysik
B. Kątownik, ołówek traserski, sznurek traserski
C. Kątownik, młotek, punktak
D. Ołówek traserski, poziomnica, przymiar taśmowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Ołówek traserski, poziomnica i przymiar taśmowy to świetny wybór! Te narzędzia naprawdę są niezbędne, gdy chodzi o trasowanie drogi do układania przewodów natynkowych. Ołówek traserski pozwala na dokładne oznaczanie punktów i linii, co jest podstawą do dalszej roboty. Poziomnica zaś to must-have, żeby upewnić się, że wszystko jest równo i w odpowiednich nachyleniach. To ważne, bo estetyka i funkcjonalność idą w parze. Przymiar taśmowy z kolei umożliwia precyzyjne mierzenie, co też jest kluczowe, żeby dobrze rozmieścić przewody na ścianach. W branży mamy różne standardy, jak normy PN-IEC, które podkreślają, jak ważna jest dokładność i planowanie przy instalacjach elektrycznych. Używanie właściwych narzędzi zwiększa wydajność, a także zmniejsza ryzyko błędów, które mogą skończyć się problemami, jak zwarcia czy uszkodzenia sprzętu. Na przykład, korzystając z poziomnicy przy układaniu przewodów, mamy pewność, że będą one prosto, co będzie miało znaczenie przy montażu osprzętu elektrycznego.

Pytanie 36

Który z wymienionych parametrów można zmierzyć przedstawionym przyrządem?

Ilustracja do pytania
A. Impedancję pętli zwarcia.
B. Czas wyłączenia wyłącznika nadprądowego.
C. Rezystancję izolacji.
D. Rezystancję uziemienia.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar impedancji pętli zwarcia jest kluczowym zadaniem w zapewnieniu bezpieczeństwa instalacji elektrycznych. Miernik wielofunkcyjny, jak ten przedstawiony na zdjęciu, jest zaprojektowany do wykonywania tych pomiarów zgodnie z normą PN-EN 61557-3, która dotyczy pomiarów w instalacjach elektrycznych. Pomiar ten ma na celu ocenę skuteczności zabezpieczeń przeciwporażeniowych, co jest niezbędne do oceny ryzyka wystąpienia awarii. W praktyce, impedancja pętli zwarcia pozwala na określenie, jak szybko zabezpieczenie (np. wyłącznik nadprądowy) zareaguje na zwarcie. Niskie wartości impedancji świadczą o sprawności zabezpieczeń, a także minimalizują ryzyko uszkodzenia instalacji oraz zapewniają bezpieczeństwo użytkowników. Wartości tej impedancji można mierzyć w różnych punktach instalacji, co pozwala na identyfikację słabych miejsc w systemie ochrony. Dlatego umiejętność używania mierników do pomiaru impedancji pętli zwarcia jest niezbędna dla elektryków oraz specjalistów zajmujących się instalacjami elektrycznymi.

Pytanie 37

Jaka powinna być minimalna liczba przewodów w miejscach X oraz Y na schemacie instalacji, aby po jej wykonaniu możliwe było załączanie oświetlenia ze wszystkich łączników?

Ilustracja do pytania
A. X - 4 szt., Y - 4 szt.
B. X - 5 szt., Y - 4 szt.
C. X - 4 szt., Y - 5 szt.
D. X - 5 szt., Y - 5 szt.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź, czyli 4 przewody w miejscu X i 5 w miejscu Y, wynika z analizy struktury instalacji oświetleniowej z łącznikami schodowymi i krzyżowymi. W miejscu X, 4 przewody są niezbędne, aby umożliwić prawidłowe połączenie pomiędzy łącznikami schodowymi, gdzie wymagane są dwa przewody zwrotne, faza oraz przewód neutralny. Warto podkreślić, że stosowanie odpowiedniej liczby przewodów jest kluczowe dla bezpieczeństwa i funkcjonalności instalacji. W miejscu Y konieczność wykorzystania 5 przewodów wynika z tego, że wymaga ono połączeń między łącznikiem schodowym a krzyżowym. W tym przypadku również potrzebna jest faza, przewód neutralny, przewód zwrotny oraz dwa przewody do komunikacji między łącznikiem krzyżowym a pozostałymi. Praktyczne zastosowanie tych zasad znajduje potwierdzenie w normach IEC dotyczących instalacji elektrycznych, które zalecają stosowanie odpowiednich ilości przewodów w zależności od funkcji i układu łączników. Prawidłowe zrozumienie tych zasad jest niezbędne do projektowania bezpiecznych i efektywnych systemów oświetleniowych.

Pytanie 38

Jakie źródło światła przedstawiono na rysunku?

Ilustracja do pytania
A. Lampę indukcyjną.
B. Lampę metalohalogenkową.
C. Żarówkę halogenową.
D. Świetlówkę kompaktową.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Świetlówka kompaktowa, przedstawiona na zdjęciu, charakteryzuje się unikalnym kształtem, który opiera się na zwiniętej rurze zawierającej gaz fluorescencyjny, co pozwala na efektywne generowanie światła. W przeciwieństwie do tradycyjnych żarówek, świetlówki kompaktowe oferują znacznie wyższą efektywność energetyczną, co przekłada się na dłuższy czas życia oraz niższe zużycie energii. Używane są powszechnie w domach oraz biurach jako odpowiednik standardowych żarówek, zwłaszcza w sytuacjach, gdy zależy nam na oszczędności energii. Dodatkowo, świetlówki kompaktowe są często stosowane w ogrodach i na zewnątrz budynków, ponieważ oferują wysoką jakość światła przy niskim poborze mocy. Warto również zauważyć, że ich ograniczona emisja ciepła sprawia, że są bezpieczniejsze w użytkowaniu, zwłaszcza w zamkniętych przestrzeniach. Zgodnie z normami energetycznymi, ich zastosowanie przyczynia się do zmniejszenia emisji dwutlenku węgla, co jest zgodne z globalnymi dążeniami do ochrony środowiska.

Pytanie 39

Ogranicznik przepięć klasy D, który można zainstalować w systemie elektrycznym o maksymalnym napięciu 1000 V, instaluje się w

A. gniazdach elektrycznych, puszkach w instalacji oraz bezpośrednio w urządzeniach.
B. rozgałęzieniach systemu elektrycznego w budynku oraz w rozdzielnicach dla mieszkań.
C. niskonapięciowych liniach elektroenergetycznych.
D. złączach oraz miejscach, gdzie instalacja wchodzi do budynku z systemem piorunochronnym, zasilanego z linii napowietrznej.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Ograniczniki przepięć klasy D są zaprojektowane do montażu w miejscach, gdzie mogą wystąpić nagłe wzrosty napięcia, na przykład w gniazdach wtyczkowych, puszkach instalacyjnych oraz w bezpośrednich aplikacjach w urządzeniach. Ich głównym zadaniem jest ochrona wrażliwych komponentów elektronicznych przed skutkami przepięć, które mogą pojawić się w wyniku wyładowań atmosferycznych, włączania i wyłączania obciążeń czy zakłóceń w sieci elektrycznej. W praktyce oznacza to, że ich instalacja w gniazdach jest kluczowa, gdyż tam najczęściej podłączane są urządzenia wymagające ochrony, takie jak komputery, telewizory czy sprzęt audio. Aby zapewnić skuteczność działania ograniczników, należy je montować jak najbliżej miejsc, w których są używane urządzenia, co minimalizuje długość połączeń i potencjalne straty związane z przewodnictwem. Zgodność z normami PN-IEC 61643-11 oraz PN-EN 60950-1 podkreśla znaczenie ich stosowania w instalacjach niskiego napięcia.

Pytanie 40

Którego z przedstawionych narzędzi należy użyć do zamontowania zworek w tabliczce silnikowej?

Ilustracja do pytania
A. C.
B. D.
C. B.
D. A.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór klucza oczkowego, oznaczonego jako 'C.', do montażu zworek w tabliczce silnikowej jest uzasadniony. Klucz oczkowy jest narzędziem, które idealnie pasuje do standardowych nakrętek stosowanych w takich aplikacjach. Użycie klucza o odpowiednim rozmiarze zapewnia pewny chwyt i minimalizuje ryzyko uszkodzenia nakrętek. W praktyce, przy montażu zworek, klucz oczkowy umożliwia łatwe i precyzyjne dokręcanie, co jest kluczowe dla zapewnienia prawidłowego działania silnika oraz bezpieczeństwa całego układu elektrycznego. Warto zauważyć, że nienałożenie odpowiedniej siły na nakrętki może prowadzić do ich poluzowania się w trakcie eksploatacji, co z kolei może powodować awarie lub uszkodzenia. Korzystając z dobrze dobranego narzędzia, zgodnego z wytycznymi producenta, możemy również zwiększyć efektywność prac i zmniejszyć ryzyko wystąpienia problemów eksploatacyjnych. Dlatego też, znajomość i umiejętność stosowania właściwych narzędzi jest kluczowa w pracy z instalacjami elektrycznymi.