Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik teleinformatyk
  • Kwalifikacja: INF.07 - Montaż i konfiguracja lokalnych sieci komputerowych oraz administrowanie systemami operacyjnymi
  • Data rozpoczęcia: 2 lutego 2026 13:38
  • Data zakończenia: 2 lutego 2026 13:58

Egzamin niezdany

Wynik: 17/40 punktów (42,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Przekazywanie tokena (ang. token) ma miejsce w sieci o topologii fizycznej

A. siatki
B. pierścienia
C. gwiazdy
D. magistrali
Architektura siatki to coś zupełnie innego. Tutaj urządzenia są ze sobą wzajemnie połączone, co daje dużą redundancję, ale nie ma tu żadnego żetonu do zarządzania dostępem. W tym modelu węzły komunikują się równolegle, co czasem może prowadzić do kolizji, jeśli nie ma odpowiednich protokołów. A sieć gwiazdowa? Tam mamy centralny węzeł, do którego podłączone są wszystkie inne urządzenia. To się różni od koncepcji żetonu, bo brakuje jednoznacznego mechanizmu przekazywania danych. W sieci magistrali z kolei wszystkie węzły są połączone z jednym medium transmisyjnym. I tu też nie używa się żetonu, dostęp do medium kontrolują różne protokoły, jak CSMA/CD. Generalnie, żadna z tych architektur nie ma kluczowego elementu przekazywania żetonu, co sprawia, że nie działają tak sprawnie jak sieć pierścieniowa. Rozumienie tych różnic jest naprawdę ważne, jeśli chodzi o projektowanie i wdrażanie efektywnych rozwiązań sieciowych.

Pytanie 2

W sieci o adresie 192.168.0.64/26 drukarka sieciowa powinna uzyskać ostatni adres z dostępnej puli. Który to adres?

A. 192.168.0.94
B. 192.168.0.190
C. 192.168.0.254
D. 192.168.0.126
Adres IP 192.168.0.126 jest poprawny jako ostatni dostępny adres w podsieci 192.168.0.64/26. W tym przypadku maska /26 oznacza, że pierwsze 26 bitów adresu jest używane do identyfikacji sieci, co pozostawia 6 bitów na identyfikację hostów. To oznacza, że w tej podsieci mamy 2^6 = 64 adresy, z czego 62 mogą być przypisane hostom (adresy 192.168.0.64 i 192.168.0.127 są zarezerwowane jako adres sieciowy i adres rozgłoszeniowy). Ostatni adres hosta to 192.168.0.126, który może być przypisany do drukarki. W praktyce poprawne przydzielanie adresów IP jest kluczowe dla prawidłowego działania sieci, szczególnie w środowiskach biurowych, gdzie wiele urządzeń musi komunikować się ze sobą. Zapewnienie, że urządzenia otrzymują odpowiednie adresy IP, jest istotne w kontekście zarządzania siecią oraz unikania konfliktów adresów IP. W związku z tym, planowanie adresacji IP zgodnie z zasadami subnettingu jest praktyczną umiejętnością, którą powinien opanować każdy administrator sieci.

Pytanie 3

Jakiego elementu pasywnego sieci należy użyć do połączenia okablowania ze wszystkich gniazd abonenckich z panelem krosowniczym umieszczonym w szafie rack?

A. Organizer kabli
B. Adapter LAN
C. Kabel połączeniowy
D. Przepust szczotkowy
Kabel połączeniowy jest kluczowym elementem pasywnym w infrastrukturze sieciowej, który umożliwia fizyczne połączenie różnych komponentów. W przypadku podłączenia okablowania ze wszystkich gniazd abonenckich do panelu krosowniczego w szafie rack, stosowanie kabla połączeniowego jest podstawową praktyką. Takie kable, najczęściej w standardzie Ethernet (np. Cat5e, Cat6), gwarantują odpowiednią przepustowość i jakość sygnału oraz spełniają wymagania norm dotyczących transmisji danych. Dzięki zastosowaniu kabli o odpowiednich parametrach, można zminimalizować straty sygnału oraz zakłócenia elektromagnetyczne. Istotne jest również przestrzeganie zasad organizacji okablowania, co zapewnia nie tylko estetykę, ale również ułatwia przyszłe serwisowanie i diagnostykę sieci. W kontekście organizacji sieci, ważne jest, aby odpowiednio planować układ kabli, co przyczyni się do zwiększenia efektywności i niezawodności całego systemu.

Pytanie 4

Urządzenia przedstawione na zdjęciu to

Ilustracja do pytania
A. adaptery PowerLine.
B. przełączniki.
C. bezprzewodowe karty sieciowe.
D. modemy.
Wybór modemu, przełącznika lub bezprzewodowej karty sieciowej wskazuje na istotne nieporozumienie dotyczące funkcji i zastosowań tych urządzeń w kontekście budowy sieci komputerowej. Modem, na przykład, jest urządzeniem, które łączy lokalną sieć z Internetem, konwertując sygnał cyfrowy na analogowy (i vice versa), co ma miejsce głównie w przypadku łącza telefonicznego czy kablowego. Przełącznik natomiast, to komponent sieciowy, który umożliwia komunikację pomiędzy różnymi urządzeniami w obrębie tej samej sieci lokalnej, działając na zasadzie przekazywania ramek danych do odpowiednich portów. Bezprzewodowa karta sieciowa jest z kolei potrzebna do łączenia urządzenia z siecią bezprzewodową, co różni się zasadniczo od funkcji adapterów PowerLine. Adaptery PowerLine wykorzystują istniejącą instalację elektryczną do przesyłania sygnału internetowego, co czyni je idealnym rozwiązaniem w miejscach, gdzie sygnał bezprzewodowy jest osłabiony lub gdzie trudno jest położyć dodatkowe kable. Często myli się je z innymi urządzeniami sieciowymi, ponieważ wszystkie one mają na celu zapewnienie połączenia, jednakże różnią się zasadniczo w sposobie działania i zastosowaniu. Brak zrozumienia tych różnic prowadzi do błędnych wniosków. Warto zapoznać się z dokumentacją techniczną oraz materiałami edukacyjnymi dotyczącymi tych technologii, co pomoże w lepszym zrozumieniu ich funkcji oraz wniesie wartość do praktycznych zastosowań w codziennym użytkowaniu.

Pytanie 5

Usługi na serwerze konfiguruje się za pomocą

A. role i funkcje
B. serwer kontrolujący domenę
C. Active Directory
D. panel administracyjny
Zrozumienie, że konfiguracja usług na serwerze nie może być ograniczona do samych narzędzi, jest kluczowe dla efektywnego zarządzania infrastrukturą IT. Active Directory, na przykład, jest systemem zarządzania tożsamościami i dostępem, który umożliwia centralne zarządzanie użytkownikami i zasobami w sieci. Choć ważne, to jednak nie jest narzędziem do samej konfiguracji usług, lecz bardziej do autoryzacji i uwierzytelniania, co jest tylko jednym z aspektów zarządzania serwerem. Podobnie, panel sterowania to interfejs użytkownika, który pozwala na wygodne zarządzanie różnymi ustawieniami, jednak nie odnosi się bezpośrednio do definiowania czy przypisywania ról i funkcji. Kontroler domeny, z drugiej strony, jest serwerem odpowiedzialnym za uwierzytelnianie użytkowników i komputery w sieci, lecz także nie pełni roli w konfiguracji usług w sensie przypisywania ich do serwera. Wiele osób myli rolę narzędzi administracyjnych z samą konfiguracją serwera, co może prowadzić do nieefektywnego zarządzania zasobami czy problemów z bezpieczeństwem. Kluczowym błędem jest mylenie tych pojęć i niezrozumienie, że każda usługa wymaga przypisania odpowiedniej roli, aby mogła funkcjonować prawidłowo, a sama konfiguracja jest bardziej złożona niż wybór jednego narzędzia czy funkcji.

Pytanie 6

Zgodnie z normą PN-EN 50174 dopuszczalna łączna długość kabla połączeniowego pomiędzy punktem abonenckim a komputerem i kabla krosowniczego (A+C) wynosi

Ilustracja do pytania
A. 10 m
B. 3 m
C. 6 m
D. 5 m
Wybór długości kabla mniejszej niż 10 metrów, jak 3, 5 lub 6 metrów, wynika z powszechnego błędnego przekonania, że krótsze kable zawsze skutkują lepszą jakością sygnału. W rzeczywistości, norma PN-EN 50174 jasno określa, że maksymalna długość kabla połączeniowego wynosi 10 metrów, co jest optymalnym rozwiązaniem zarówno dla jakości sygnału, jak i elastyczności instalacji. Zbyt krótkie kable mogą ograniczać możliwości rozbudowy sieci w przyszłości, co jest istotne w kontekście dynamicznego rozwoju technologii i zmieniających się potrzeb użytkowników. Często przyczyną błędnego wyboru długości kabla jest także niewłaściwe zrozumienie zasad działania sygnałów elektrycznych i optycznych w kablach. W przypadku kabli sieciowych, takich jak kable Ethernet, wartość maksymalnej długości oznacza, że nawet przy pełnym obciążeniu sieci, sygnał będzie utrzymywany na odpowiednim poziomie bez strat jakości. Ponadto, długość kabla powinna być zawsze dostosowana do konkretnej konfiguracji środowiska oraz zastosowania, co nie jest możliwe przy użyciu standardowych skrótów myślowych. Dlatego kluczowe jest zapoznanie się z obowiązującymi normami oraz wytycznymi, aby zapewnić nie tylko optymalne działanie sieci, ale także przyszłą możliwość rozwoju infrastruktury.

Pytanie 7

Protokół ARP (Address Resolution Protocol) pozwala na konwersję logicznych adresów z poziomu sieci na rzeczywiste adresy z poziomu

A. transportowej
B. fizycznej
C. aplikacji
D. łącza danych
Protokół ARP (Address Resolution Protocol) jest kluczowym elementem w sieciach komputerowych, który umożliwia mapowanie adresów IP (warstwa sieciowa) na adresy MAC (Media Access Control) w warstwie łącza danych. Protokół ten działa w lokalnych sieciach Ethernet, gdzie urządzenia muszą poznać fizyczny adres MAC, aby móc nawiązać połączenie z innym urządzeniem, którego adres IP znają. Przykładem praktycznym zastosowania ARP jest sytuacja, gdy komputer A chce wysłać dane do komputera B. Komputer A, znając adres IP komputera B, wysyła zapytanie ARP w sieci, aby uzyskać odpowiadający adres MAC. Odpowiedź w formie adresu MAC pozwala na zbudowanie ramki Ethernet, którą komputer A może wysłać do komputera B. Zrozumienie działania ARP jest istotne dla administratorów sieci, ponieważ nieprawidłowe konfiguracje lub ataki ARP spoofing mogą prowadzić do problemów z bezpieczeństwem i wydajnością sieci. ARP jest częścią zestawu protokołów TCP/IP, co czyni go fundamentalnym w kontekście komunikacji w sieciach nowoczesnych.

Pytanie 8

Jaki jest prefiks lokalnego adresu dla łącza (Link-Local Address) w IPv6?

A. fe80/10
B. fc00/7
C. fec0/10
D. ff00/8
Odpowiedź 'fe80/10' jest poprawna, ponieważ jest to prefiks przydzielony adresom lokalnym łącza (Link-Local Addresses) w protokole IPv6. Adresy te są używane do komunikacji w sieciach lokalnych i nie są routowalne w Internecie. Prefiks 'fe80' oznacza, że adresy te mają zakres od 'fe80::' do 'febf:ffff:ffff:ffff:ffff:ffff:ffff:ffff'. Adresy lokalne łącza są automatycznie przypisywane do interfejsów sieciowych, co umożliwia urządzeniom w tej samej sieci lokalnej komunikację bez konieczności konfiguracji serwera DHCP. Przykład zastosowania to komunikacja między urządzeniami w domowej sieci lokalnej, gdzie urządzenia mogą wykrywać się nawzajem i przesyłać dane bez dodatkowej konfiguracji. W kontekście standardów, adresy te są zgodne z dokumentem RFC 4862, który definiuje zasady dotyczące autokonfiguracji adresów IPv6.

Pytanie 9

Jaka jest kolejność przewodów we wtyku RJ45 zgodnie z sekwencją połączeń T568A?

Kolejność 1Kolejność 2Kolejność 3Kolejność 4
1. Biało-niebieski
2. Niebieski
3. Biało-brązowy
4. Brązowy
5. Biało-zielony
6. Zielony
7. Biało-pomarańczowy
8. Pomarańczowy
1. Biało-pomarańczowy
2. Pomarańczowy
3. Biało-zielony
4. Niebieski
5. Biało-niebieski
6. Zielony
7. Biało-brązowy
8. Brązowy
1. Biało-brązowy
2. Brązowy
3. Biało-pomarańczowy
4. Pomarańczowy
5. Biało-zielony
6. Niebieski
7. Biało-niebieski
8. Zielony
1. Biało-zielony
2. Zielony
3. Biało-pomarańczowy
4. Niebieski
5. Biało-niebieski
6. Pomarańczowy
7. Biało-brązowy
8. Brązowy
Ilustracja do pytania
A. Kolejność 4
B. Kolejność 1
C. Kolejność 3
D. Kolejność 2
Błędne odpowiedzi mogą wynikać z kilku typowych nieporozumień dotyczących normy T568A i ogólnych zasad połączeń sieciowych. Często mylone są kolory przewodów oraz ich kolejność w wtyku RJ45. Na przykład, niektórzy mogą zapominać o znaczeniu kolorów, co prowadzi do zamiany miejscami przewodów zielonych z pomarańczowymi. Tego typu błędy mogą skutkować niesprawnymi połączeniami, a nawet uszkodzeniem sprzętu. Również, wielu użytkowników nie zwraca uwagi na różnice między standardami T568A i T568B, co może prowadzić do chaosu w instalacjach, zwłaszcza w dużych biurach, gdzie wiele osób pracuje nad tym samym systemem. Nieprawidłowe połączenie może także wprowadzić zakłócenia, co jest szczególnie problematyczne w sytuacjach, gdy sieć obsługuje wrażliwe dane lub aplikacje wymagające dużej przepustowości. Podczas konfigurowania sieci ważne jest, aby dokładnie trzymać się specyfikacji i zrozumieć, jak poszczególne kolory przewodów wpływają na działanie całego systemu. Jeśli nie jesteśmy pewni poprawnej kolejności, warto skonsultować się z dokumentacją lub specjalistą, aby uniknąć typowych pułapek, które mogą spowodować problemy w przyszłości.

Pytanie 10

Jaką maksymalną liczbę komputerów można zaadresować adresami IP w klasie C?

A. 256 komputerów
B. 254 komputery
C. 255 komputerów
D. 252 komputery
Adresy IP klasy C mają strukturę, która pozwala na podział sieci na mniejsze segmenty, co jest idealne w przypadku małych sieci lokalnych. Klasa C posiada 24 bity dla identyfikacji sieci i 8 bitów dla identyfikacji hostów. Wartość 2^8 daje nam 256 możliwych adresów dla hostów. Jednak z tych adresów należy odjąć dwa: jeden jest zarezerwowany dla adresu sieci, a drugi dla adresu rozgłoszeniowego (broadcast). Dlatego maksymalna liczba komputerów, które można zaadresować w sieci klasy C wynosi 254. W praktyce takie sieci są często stosowane w biurach oraz małych organizacjach, gdzie liczy się efektywne wykorzystanie dostępnych adresów IP. Umożliwia to łatwe zarządzanie urządzeniami, a także zwiększa bezpieczeństwo poprzez ograniczenie dostępu do pozostałych segmentów sieci. W branży IT, zgodnie z normami IETF, zaleca się staranne planowanie adresacji IP, aby uniknąć konfliktów i zapewnić płynność działania sieci.

Pytanie 11

Które z poniższych urządzeń sieciowych umożliwia segmentację sieci na poziomie warstwy 3 modelu OSI?

A. Punkt dostępowy (Access Point)
B. Switch
C. Router
D. Repeater (regenerator sygnału)
Wiele osób myli funkcje podstawowych urządzeń sieciowych, co prowadzi do błędnych założeń dotyczących segmentacji. <strong>Switch</strong> działa głównie w warstwie drugiej modelu OSI, czyli warstwie łącza danych. Jego głównym zadaniem jest przełączanie ramek w obrębie jednej sieci lokalnej (VLAN), a nie segmentacja na poziomie IP. Co prawda, istnieją switche warstwy trzeciej, które potrafią segmentować ruch na poziomie sieciowym, ale standardowo przyjmuje się, że switch nie jest urządzeniem do segmentacji warstwy trzeciej. <strong>Repeater</strong> to urządzenie jeszcze prostsze – działa w warstwie pierwszej i służy tylko do wzmacniania sygnału, bez jakiejkolwiek analizy czy rozdzielania ruchu. Nie wprowadza żadnej segmentacji ani logiki sieciowej. <strong>Punkt dostępowy</strong> (Access Point) odpowiada za umożliwienie urządzeniom bezprzewodowym dołączenie do sieci lokalnej, również operuje na niższych warstwach (głównie warstwa druga i warstwa fizyczna). Nie segmentuje ruchu IP, przekazuje jedynie sygnał dalej do sieci przewodowej. Typowym błędem jest mylenie funkcji tych urządzeń, zwłaszcza gdy w praktyce wiele z nich bywa zintegrowanych w jednym sprzęcie domowym (np. router Wi-Fi z wbudowanym switchem i access pointem). Jednak w kontekście profesjonalnych sieci, każde z tych urządzeń ma jasno określoną rolę i tylko router (lub zaawansowany switch L3) umożliwia segmentację na poziomie warstwy trzeciej. Z mojego doświadczenia wynika, że rozumienie tych różnic jest kluczowe przy projektowaniu wydajnej i bezpiecznej infrastruktury sieciowej, bo pomyłki na tym etapie mogą prowadzić do poważnych problemów z bezpieczeństwem, wydajnością czy zarządzaniem ruchem.

Pytanie 12

Jakie narzędzie należy zastosować do zakończenia kabli UTP w module keystone z wkładkami typu 110?

A. Wkrętaka krzyżakowego
B. Zaciskarki do wtyków RJ45
C. Wkrętaka płaskiego
D. Narzędzia uderzeniowego
Zastosowanie nieodpowiednich narzędzi do zarabiania końcówek kabla UTP w module keystone ze stykami typu 110 może prowadzić do wielu problemów, w tym do słabej jakości połączeń i awarii systemów. Wkrętak krzyżakowy, mimo że jest przydatny w wielu zastosowaniach, nie jest w stanie zapewnić odpowiedniego połączenia pomiędzy przewodami a stykami. Jego głównym przeznaczeniem jest dokręcanie lub odkręcanie śrub, co jest zupełnie inną funkcją niż mechaniczne wciśnięcie żył w styk. Zaciskarka do wtyków RJ45, na którą wielu może pomyśleć, jest narzędziem przeznaczonym do innego rodzaju połączeń, zazwyczaj stosowanych z wtykami RJ45, a nie do modułów keystone. Wkrętak płaski również nie jest odpowiedni, ponieważ nie ma mechanizmu uderzeniowego, który jest kluczowy w tym kontekście. Użycie niewłaściwego narzędzia może prowadzić do problemów z transmisją danych, takich jak zakłócenia sygnału czy niestabilność połączeń, co może negatywnie wpłynąć na całą infrastrukturę sieciową. W związku z tym, dla uzyskania wysokiej jakości i niezawodnych połączeń, kluczowe jest stosowanie narzędzia uderzeniowego zgodnie z ustalonymi standardami branżowymi.

Pytanie 13

Jaką rolę odgrywa ISA Server w systemie operacyjnym Windows?

A. Pełni funkcję firewalla
B. Stanowi system wymiany plików
C. Służy do rozwiązywania nazw domenowych
D. Działa jako serwer stron internetowych
Podczas analizy odpowiedzi, które nie są zgodne z prawidłowym określeniem funkcji ISA Server, warto zwrócić uwagę na ich nieścisłości. Wskazanie, że ISA Server jest serwerem stron internetowych, jest mylące, ponieważ jego głównym celem nie jest hostowanie witryn, lecz zapewnienie bezpieczeństwa i zarządzania ruchem w sieci. Choć ISA Server może wspierać usługi HTTP, to nie jest dedykowanym serwerem webowym, jak np. IIS (Internet Information Services). Kolejną mylącą interpretacją jest stwierdzenie, że ISA Server rozwiązuje nazwy domenowe. Rozwiązywanie nazw domenowych to funkcjonalność związana głównie z serwerami DNS, a nie z ISA Server, który służy do monitorowania i kontrolowania ruchu sieciowego. Trzeci typ odpowiedzi sugerujący, że ISA Server jest systemem wymiany plików, również jest daleki od prawdy. Systemy wymiany plików, takie jak SMB (Server Message Block), służą do transferu danych między komputerami, co jest zupełnie inną funkcjonalnością, niż ta, którą oferuje ISA Server. Takie nieprawidłowe odpowiedzi często wynikają z zamieszania pomiędzy różnymi rolami serwerów w infrastrukturze IT. Kluczowym błędem myślowym jest deformacja pojęć związanych z funkcjami serwerów, co prowadzi do przypisywania niewłaściwych zadań konkretnym technologiom. Warto zatem zrozumieć, że ISA Server ma na celu przede wszystkim bezpieczeństwo i kontrolę dostępu do zasobów sieciowych, a nie pełnienie ról związanych z hostingiem stron, rozwiązaniem nazw czy wymianą plików.

Pytanie 14

Użytkownicy z grupy Pracownicy nie mają możliwości drukowania dokumentów za pomocą serwera wydruku na systemie operacyjnym Windows Server. Przydzielone mają tylko uprawnienia "Zarządzanie dokumentami". Co należy wykonać, aby rozwiązać ten problem?

A. Należy dla grupy Pracownicy anulować uprawnienia "Zarządzanie dokumentami"
B. Należy dla grupy Administratorzy usunąć uprawnienia "Drukuj"
C. Należy dla grupy Pracownicy przypisać uprawnienia "Drukuj"
D. Należy dla grupy Administratorzy anulować uprawnienia "Zarządzanie drukarkami"
Aby umożliwić użytkownikom z grupy Pracownicy drukowanie dokumentów, niezbędne jest nadanie im odpowiednich uprawnień. Uprawnienie 'Drukuj' jest kluczowe, ponieważ pozwala na wysyłanie dokumentów do drukarki. W przypadku, gdy użytkownik ma przydzielone wyłącznie uprawnienia 'Zarządzanie dokumentami', może jedynie zarządzać już wydrukowanymi dokumentami, ale nie ma możliwości ich drukowania. Standardową praktyką w zarządzaniu dostępem do zasobów jest stosowanie zasady minimalnych uprawnień, co oznacza, że użytkownik powinien mieć tylko te uprawnienia, które są niezbędne do wykonywania jego zadań. W sytuacji, gdy użytkownicy nie mogą drukować, kluczowe jest zrozumienie, że ich ograniczenia w zakresie uprawnień są główną przyczyną problemu. Nadanie uprawnienia 'Drukuj' użytkownikom z grupy Pracownicy pozwoli im na wykonywanie niezbędnych operacji, co jest zgodne z najlepszymi praktykami zarządzania systemami operacyjnymi i serwerami wydruku.

Pytanie 15

Jaką wiadomość przesyła klient DHCP w celu przedłużenia dzierżawy?

A. DHCPDISCOVER
B. DHCPREQUEST
C. DHCPNACK
D. DHCPACK
Odpowiedzi DHCPDISCOVER, DHCPNACK i DHCPACK nie są właściwe w kontekście odnowy dzierżawy IP. Komunikat DHCPDISCOVER jest pierwszym sygnałem wysyłanym przez klienta, gdy poszukuje dostępnych serwerów DHCP w sieci. Jego celem jest rozpoczęcie procesu uzyskiwania adresu IP, a nie odnowienia istniejącej dzierżawy. Z kolei DHCPNACK jest używany przez serwer, aby poinformować klienta o tym, że jego żądanie zostało odrzucone, na przykład gdy klient próbuje odnowić dzierżawę na adres IP, który nie jest już dostępny. Komunikat ten sygnalizuje, że klient musi wysłać nowe żądanie w celu uzyskania innego adresu IP. Natomiast DHCPACK jest potwierdzeniem, które serwer DHCP wysyła do klienta, aby potwierdzić przydzielenie lub odnowienie adresu IP. Chociaż DHCPACK pojawia się w procesie odnowy, to nie jest to komunikat wysyłany przez klienta. Typowe błędy myślowe polegają na pomyleniu ról komunikatów w protokole DHCP oraz braku zrozumienia, że każdy komunikat ma swoją specyfikę i cel w kontekście wymiany informacji pomiędzy klientem a serwerem. Zrozumienie tych komunikatów jest kluczowe dla efektywnego zarządzania sieciami, co jest szczególnie istotne w środowiskach, gdzie wiele urządzeń korzysta z dynamicznego przydzielania adresów IP.

Pytanie 16

Jakie urządzenie powinno być użyte do połączenia komputerów, aby mogły działać w różnych domenach rozgłoszeniowych?

A. Mostu
B. Koncentratora
C. Rutera
D. Regeneratora
Ruter jest urządzeniem, które odgrywa kluczową rolę w łączeniu różnych domen rozgłoszeniowych, co pozwala na efektywną komunikację między różnymi sieciami. W przeciwieństwie do mostu czy koncentratora, które operują na warstwie drugiej modelu OSI (warstwie łącza danych), ruter funkcjonuje na warstwie trzeciej (warstwa sieci). Jego zadaniem jest zarządzanie ruchem danych pomiędzy różnymi sieciami, co oznacza, że pakiety danych mogą być kierowane do odpowiednich adresów IP, co jest istotne w przypadku, gdy komputery są w różnych podsieciach. Dzięki temu, ruter potrafi zrozumieć, kiedy dane powinny zostać wysłane do innej sieci, a kiedy pozostają w obrębie tej samej. Przykładowo, w dużych organizacjach, które mają różne lokalizacje geograficzne, rutery umożliwiają komunikację między nimi poprzez sieci WAN. Praktyczne zastosowanie ruterów obejmuje nie tylko łączenie lokalnych sieci, ale także umożliwiają one stosowanie zaawansowanych funkcji, takich jak QoS (Quality of Service), które pomagają w zarządzaniu ruchem sieciowym, co jest kluczowe w przypadku aplikacji wymagających niskich opóźnień, jak np. wideokonferencje. W kontekście standardów, rutery muszą być zgodne z protokołami, takimi jak IP (Internet Protocol) oraz muszą wspierać różnorodne protokoły routingu, co czyni je nieodzownym elementem nowoczesnych infrastruktur sieciowych.

Pytanie 17

Ile domen rozgłoszeniowych istnieje w sieci o schemacie przedstawionym na rysunku, jeżeli przełączniki pracują w drugiej warstwie modelu ISO/OSI z konfiguracją domyślną?

Ilustracja do pytania
A. 9
B. 7
C. 5
D. 11
Wybór błędnej odpowiedzi może wynikać z nieporozumienia dotyczącego roli przełączników w sieci. Często myli się liczbę domen rozgłoszeniowych z innymi parametrami sieci, takimi jak liczba urządzeń czy liczba portów w przełącznikach. Użytkownicy mogą przyjąć założenie, że przełączniki w sieci tworzą mniej domen, ponieważ nie uwzględniają pełnego zrozumienia, jak działają ramki rozgłoszeniowe w warstwie drugiej. Przełączniki te są skonstruowane tak, aby każda ramka trafiała do wszystkich urządzeń w danej domenie, co oznacza, że ​​każdy dodatkowy przełącznik tworzy nową, osobną domenę. Jeśli ktoś zatem zidentyfikuje tylko 5, 9 lub 11 domen jako odpowiedź, może to sugerować, że nie dostrzega on wpływu wszystkich przełączników dostępnych w schemacie. Prawidłowa analiza schematów sieciowych wymaga zrozumienia, że liczba domen rozgłoszeniowych zależy bezpośrednio od liczby przełączników, a nie od ich konfiguracji czy liczby dołączonych urządzeń. To podejście jest zgodne z najlepszymi praktykami w zakresie projektowania sieci, które zakładają, że każda zmiana w topologii sieci powinna być dokładnie przemyślana pod kątem jej wpływu na segmentację ruchu i efektywność operacyjną całego systemu.

Pytanie 18

Po zainstalowaniu roli usług domenowych Active Directory na serwerze Windows, możliwe jest

A. automatyczne przypisywanie adresów IP komputerom w sieci
B. udostępnienie użytkownikom witryny internetowej
C. centralne zarządzanie użytkownikami oraz komputerami
D. współdzielenie plików znajdujących się na serwerze
Wytyczne dotyczące ról i usług w systemach Windows są kluczowe dla skutecznego zarządzania infrastrukturą IT. W kontekście omawianego pytania, pierwsze podejście do udostępniania witryn internetowych nie jest bezpośrednio związane z rolą Active Directory. Chociaż można hostować witryny internetowe na serwerach Windows, sama rola AD DS koncentruje się na zarządzaniu tożsamością, a nie na publikacji treści. Kolejne, dotyczące współużytkowania plików, jest również mylące; AD DS nie zajmuje się bezpośrednio udostępnianiem plików, lecz raczej zarządza dostępem do zasobów, co nie oznacza automatyzacji ich udostępniania. Wreszcie, automatyczne przydzielanie adresów IP należy do roli serwera DHCP, a nie Active Directory. Odpowiedzi, które łączą funkcje AD DS z innymi rolami, mogą wynikać z nieporozumienia co do obszaru działania usług Windows Server. Kluczowe jest zrozumienie specyfiki każdej roli i jej funkcji, aby uniknąć takich nieporozumień. Odpowiednie przypisanie ról i zrozumienie ich właściwej funkcjonalności jest zgodne z najlepszymi praktykami w administrowaniu systemami, co z kolei zapewnia sprawniejsze zarządzanie infrastrukturą sieciową.

Pytanie 19

Komputery K1 i K2 nie mogą się komunikować. Adresacja urządzeń jest podana w tabeli. Co należy zmienić, aby przywrócić komunikację w sieci?

UrządzenieAdresMaskaBrama
K110.0.0.2255.255.255.12810.0.0.1
K210.0.0.102255.255.255.19210.0.0.1
R1 (F1)10.0.0.1255.255.255.128
R1 (F2)10.0.0.101255.255.255.192
Ilustracja do pytania
A. Adres bramy dla K1.
B. Maskę w adresie dla K2.
C. Adres bramy dla K2.
D. Maskę w adresie dla K1.
Wybór niewłaściwego adresu bramy dla K2 może wydawać się logiczny, lecz jest to zrozumienie, które nie uwzględnia zasadności adresowania w sieciach. Na przykład, zmiana adresu bramy dla K1 nie rozwiąże problemu, ponieważ K1 jest właściwie skonfigurowany w swojej podsieci i ma poprawny adres bramy. W rzeczywistości, cała komunikacja w sieci IP opiera się na koncepcji podsieci i adresów bramowych, które muszą współdziałać, aby umożliwić przesyłanie pakietów danych. Dla K2, który należy do innej podsieci z powodu przypisania mu maski 255.255.255.192, kluczowe jest, aby jego adres bramy znajdował się w tej samej podsieci. Zmiana maski dla K1 lub K2 na inne wartości nie naprawi sytuacji, ponieważ nie zmieni to faktu, że adresy IP są zdefiniowane w różnych podsieciach. Typowym błędem w analizie adresów IP jest zakładanie, że zmiana parametrów na jednym urządzeniu automatycznie wpłynie na inne. W praktyce, aby zapewnić poprawną komunikację, należy zadbać o to, aby wszystkie urządzenia, które mają się komunikować, znajdowały się w tej samej podsieci lub miały właściwie skonfigurowane adresy bram, co jest fundamentalną zasadą w inżynierii sieciowej. Bez tego, komunikacja między urządzeniami będzie niemożliwa, co jest krytycznym aspektem projektowania i zarządzania sieciami komputerowymi.

Pytanie 20

Który standard protokołu IEEE 802.3 powinien być użyty w środowisku z zakłóceniami elektromagnetycznymi, gdy dystans między punktem dystrybucji a punktem abonenckim wynosi 200 m?

A. 10Base2
B. 100Base–T
C. 100Base–FX
D. 1000Base–TX
Wybór 1000Base-TX, 100Base-T oraz 10Base2 jako standardów do zastosowania w środowisku z silnymi zakłóceniami elektromagnetycznymi jest niewłaściwy z kilku kluczowych powodów. 1000Base-TX, mimo że obsługuje prędkości do 1 Gb/s, korzysta z miedzi, co czyni go podatnym na zakłócenia elektromagnetyczne, szczególnie na dłuższych dystansach. W przypadku instalacji na 200 m w otoczeniu o dużych zakłóceniach, jakość sygnału może ulec pogorszeniu, co prowadzi do problemów z niezawodnością połączenia. 100Base-T również oparty jest na skrętce miedzianej i oferuje jedynie prędkość do 100 Mb/s, co w obliczu zakłóceń nie jest wystarczające do efektywnego przesyłania danych. 10Base2, z kolei, jest technologią opartą na koncentrycznej, cienkiej miedzi, która ma ograniczony zasięg do 200 m i nie jest w stanie wykrywać i eliminować zakłóceń, co czyni ją nieodpowiednią dla nowoczesnych aplikacji sieciowych. Warto zauważyć, że wybierając standardy sieciowe, należy kierować się nie tylko prędkością, ale także odpornością na zakłócenia oraz możliwościami transmisyjnymi, co pojawia się w przypadku światłowodów. Niezrozumienie tych zasad może prowadzić do wyboru niewłaściwych technologii, a tym samym do nieefektywnego funkcjonowania sieci.

Pytanie 21

Jaką rolę należy zainstalować na serwerze, aby umożliwić centralne zarządzanie stacjami roboczymi w sieci obsługiwanej przez Windows Serwer?

A. Usługi domenowe Active Directory
B. Usługi polityki sieciowej oraz dostępu do sieci
C. Serwer Aplikacji
D. Dostęp zdalny
Usługi domenowe Active Directory (AD DS) odgrywają kluczową rolę w centralnym zarządzaniu stacjami roboczymi w sieci opartej na systemach Windows. Active Directory umożliwia administratorom zarządzanie użytkownikami, komputerami oraz zasobami w sieci w sposób scentralizowany. Dzięki AD DS można tworzyć i zarządzać kontami użytkowników, grupami, a także implementować zasady bezpieczeństwa. Przykładowo, przy użyciu GPO (Group Policy Objects) można definiować zasady dotyczące bezpieczeństwa, które będą automatycznie stosowane do wszystkich stacji roboczych w domenie, co znacznie upraszcza zarządzanie i zwiększa bezpieczeństwo. Dodatkowo, zastosowanie Active Directory wspiera proces autoryzacji i uwierzytelniania użytkowników, co jest niezbędne w środowiskach korporacyjnych. W kontekście standardów branżowych, wykorzystanie AD DS jest zalecane przez Microsoft jako najlepsza praktyka w zakresie zarządzania infrastrukturą IT, co potwierdza jego powszechne przyjęcie w organizacjach na całym świecie.

Pytanie 22

Hosty A i B nie komunikują się z hostem C, między hostami A i B komunikacja jest prawidłowa. Co jest przyczyną braku komunikacji między hostami A i C oraz B i C?

Ilustracja do pytania
A. Adresy IP należą do różnych podsieci.
B. Host C ma źle ustawioną bramę domyślną.
C. Switch, do którego są podpięte hosty, jest wyłączony.
D. Adres IP hosta C jest adresem rozgłoszeniowym.
Analizując pozostałe odpowiedzi, można zauważyć szereg merytorycznych błędów. W przypadku stwierdzenia, że host C ma źle ustawioną bramę domyślną, warto zauważyć, że nawet jeśli brama domyślna byłaby poprawnie skonfigurowana, hosty A i B wciąż nie mogłyby komunikować się z hostem C z powodu różnicy w podsieciach. Same ustawienia bramy dotyczą jedynie tego, jak pakiety wychodzą z danej podsieci, ale nie eliminują różnic w adresacji. Również stwierdzenie, że switch, do którego są podpięte hosty, jest wyłączony, jest błędne, ponieważ komunikacja między hostami A i B jest prawidłowa, co sugeruje, że switch działa poprawnie. Ponadto, adres IP hosta C jako adres rozgłoszeniowy jest mylącą koncepcją; adresy rozgłoszeniowe mają specyficzne zastosowania w sieciach i nie mogą być przypisane do pojedynczych hostów. Adres rozgłoszeniowy dla podsieci 192.168.31.0/24 to 192.168.31.255, a nie adres przypisany do hosta. Kluczowe jest, aby zrozumieć, że komunikacja w sieci wymaga nie tylko prawidłowej konfiguracji adresów IP, ale także właściwego planowania architektury sieci, aby zapewnić możliwość komunikacji między różnymi segmentami.

Pytanie 23

Administrator zauważył wzmożony ruch w sieci lokalnej i podejrzewa incydent bezpieczeństwa. Które narzędzie może pomóc w identyfikacji tego problemu?

A. Aplikacja McAfee
B. Komenda ipconfig
C. Komenda tracert
D. Program Wireshark
Program Wireshark to zaawansowane narzędzie do analizy ruchu sieciowego, które umożliwia szczegółowe monitorowanie i diagnostykę problemów w sieci lokalnej. Jego główną zaletą jest możliwość przechwytywania pakietów danych przesyłanych przez sieć, co pozwala administratorom na dokładną analizę protokołów oraz identyfikację nieprawidłowości, takich jak nadmierny ruch. Wireshark pozwala na filtrowanie ruchu według różnych kryteriów, co umożliwia skupienie się na podejrzanych aktywnościach. Przykładowo, można zidentyfikować nieautoryzowane połączenia lub anomalie w komunikacji. Dzięki wizualizacji danych, administratorzy mogą szybko dostrzegać wzorce ruchu, które mogą wskazywać na włamanie. W branży IT, korzystanie z narzędzi takich jak Wireshark jest zgodne z dobrymi praktykami w zakresie zarządzania bezpieczeństwem sieci, umożliwiając proaktywne wykrywanie zagrożeń oraz usprawnianie działania sieci.

Pytanie 24

Który z protokołów przesyła pakiety danych użytkownika bez zapewnienia ich dostarczenia?

A. HTTP
B. TCP
C. UDP
D. ICMP
Wybór TCP jako odpowiedzi na pytanie o protokół przesyłający datagramy użytkownika bez gwarancji dostarczenia jest nieprawidłowy. TCP (Transmission Control Protocol) jest protokołem zapewniającym niezawodność transmisji poprzez mechanizmy takie jak numerowanie sekwencyjne, potwierdzenia odbioru oraz retransmisje. Oznacza to, że TCP jest zaprojektowany tak, aby dostarczać dane w sposób uporządkowany i gwarantować ich dostarczenie do odbiorcy, co sprawia, że jest idealnym rozwiązaniem dla aplikacji wymagających wysokiej niezawodności, takich jak przesyłanie plików czy przeglądanie stron internetowych. Wybór ICMP (Internet Control Message Protocol) również nie jest trafny, ponieważ ten protokół jest używany do przesyłania komunikatów kontrolnych i diagnostycznych w sieciach, a nie do przesyłania datagramów użytkownika. Z kolei HTTP (Hypertext Transfer Protocol) jest protokołem warstwy aplikacji opartym na TCP, służącym do przesyłania danych w Internecie, co również nie odpowiada na pytanie. Typowym błędem w tego typu zagadnieniach jest mylenie protokołów transportowych z protokołami aplikacyjnymi, co prowadzi do nieporozumień w kontekście ich funkcjonalności i zastosowań. Kluczowe jest zrozumienie, że wybór odpowiedniego protokołu ma istotne znaczenie dla wydajności i niezawodności komunikacji sieciowej, dlatego ważne jest, aby dobrze rozumieć różnice między nimi.

Pytanie 25

Jaki port jest używany przez protokół FTP (File Transfer Protocol) do przesyłania danych?

A. 20
B. 25
C. 69
D. 53
Wybór jakiegokolwiek innego portu spośród wymienionych nie jest zgodny z standardami działania protokołu FTP. Port 25 jest powszechnie używany do wysyłania wiadomości e-mail przy użyciu protokołu SMTP (Simple Mail Transfer Protocol). W kontekście FTP wybór portu 25 może prowadzić do błędów, ponieważ nie jest on przeznaczony do transferu plików, a jego użycie w tym celu niepoprawnie sugeruje, że protokół FTP można stosować w kontekście e-maili. Port 69 jest zarezerwowany dla protokołu TFTP (Trivial File Transfer Protocol), który jest uproszczoną wersją FTP; jednakże TFTP nie zapewnia funkcjonalności i kontroli, które oferuje FTP, a jego użycie jest ograniczone do prostych transferów plików w lokalnych sieciach. Port 53 jest zarezerwowany dla protokołu DNS (Domain Name System) i jest wykorzystywany do rozwiązywania nazw domen na adresy IP. Jego mylne przypisanie do FTP świadczy o braku zrozumienia podstawowego działania protokołów sieciowych oraz ich specyfikacji. Zrozumienie, które porty są odpowiednie dla określonych protokołów, jest kluczowe dla efektywnej administracji siecią i zabezpieczeń, dlatego ważne jest, aby zawsze odnosić się do oficjalnych standardów, takich jak RFC (Request for Comments), które regulują te kwestie.

Pytanie 26

Na którym rysunku przedstawiono topologię gwiazdy?

Ilustracja do pytania
A. 4.
B. 2.
C. 3.
D. 1.
Topologia gwiazdy to jeden z najpopularniejszych układów sieci komputerowych, w którym wszystkie urządzenia końcowe są połączone z jednym centralnym punktem, najczęściej switchem lub hubem. Na rysunku 4 widoczna jest wyraźna struktura, w której każdy komputer jest połączony bezpośrednio z centralnym urządzeniem, co umożliwia łatwe zarządzanie siecią oraz minimalizuje ryzyko awarii. W przypadku uszkodzenia jednego z kabli, tylko jedno połączenie jest zagrożone, co czyni topologię gwiazdy bardziej odporną na problemy w porównaniu do topologii magistrali, gdzie awaria jednego elementu może wpłynąć na całą sieć. Z praktycznego punktu widzenia, ta topologia jest często stosowana w biurach i organizacjach, gdzie wymagana jest elastyczność w dodawaniu nowych urządzeń oraz prostota diagnostyki problemów. Warto również wspomnieć, że implementacja topologii gwiazdy wspiera standardy takie jak IEEE 802.3 i 802.11, co pozwala na łatwą integrację z innymi technologiami sieciowymi.

Pytanie 27

Maksymalny promień zgięcia przy montażu kabla U/UTP kategorii 5E powinien wynosić

A. cztery średnice kabla
B. sześć średnic kabla
C. osiem średnic kabla
D. dwie średnice kabla
Dopuszczalny promień zgięcia kabla U/UTP kat. 5E wynoszący osiem średnic kabla jest kluczowym parametrem, który zapewnia prawidłowe działanie i trwałość instalacji sieciowych. Zgniatanie lub zginanie kabla w mniejszych promieniach może prowadzić do uszkodzenia struktury przewodów, co z kolei wpływa na ich właściwości elektryczne i może powodować zwiększenie strat sygnału. W praktyce oznacza to, że podczas instalacji należy zwracać szczególną uwagę na sposób prowadzenia kabli, aby nie przekraczać tego dopuszczalnego promienia. Przykładowo, jeśli średnica kabla wynosi 5 mm, to minimalny promień zgięcia powinien wynosić 40 mm. Przestrzeganie tych norm jest zgodne z międzynarodowymi standardami, takimi jak ISO/IEC 11801, które definiują wymagania dotyczące instalacji kabli komunikacyjnych. Dobre praktyki w tym zakresie obejmują również zastosowanie odpowiednich uchwytów i prowadników kablowych, które pomogą w utrzymaniu właściwego promienia zgięcia w trakcie instalacji, co z kolei przyczynia się do zmniejszenia ryzyka awarii i zapewnienia stabilności połączeń sieciowych.

Pytanie 28

Jaki argument komendy ipconfig w systemie Windows przywraca konfigurację adresów IP?

A. /flushdns
B. /displaydns
C. /release
D. /renew
Wybór innych parametrów polecenia ipconfig może prowadzić do nieporozumień co do ich funkcji. Parametr /flushdns, na przykład, jest używany do czyszczenia pamięci podręcznej DNS, co jest przydatne w przypadku problemów z rozwiązywaniem nazw domen. Często mylnie sądzi się, że to może pomóc w odnowieniu adresu IP, ale w rzeczywistości to działania związane z DNS, a nie z samym przydzieleniem adresu IP. Z kolei parametr /release służy do zwolnienia aktualnie przypisanego adresu IP, co może być pożądane, gdy chcemy, aby komputer przestał używać swojego obecnego adresu IP, ale nie odnawia on adresu. Wprowadza to zamieszanie, ponieważ użytkownicy mogą myśleć, że zwolnienie IP automatycznie je odnawia, co jest błędne. Ostatni parametr, /displaydns, wyświetla zawartość pamięci podręcznej DNS, co jest zupełnie innym procesem i nie ma żadnego wpływu na adresację IP. Warto zaznaczyć, że niepoprawne zrozumienie tych parametrów może prowadzić do frustracji, gdyż użytkownicy próbują rozwiązać problemy z siecią, wybierając niewłaściwe narzędzia. Kluczowym błędem w tym kontekście jest niezrozumienie różnicy między zarządzaniem adresami IP a zarządzaniem pamięcią podręczną DNS, co jest fundamentalne w praktyce administracji sieciami.

Pytanie 29

Dwie stacje robocze w tej samej sieci nie mogą się nawzajem komunikować. Która z poniższych okoliczności może być prawdopodobną przyczyną tego problemu?

A. Różne bramy domyślne stacji roboczych
B. Tożsame nazwy użytkowników
C. Identyczne adresy IP stacji roboczych
D. Inne systemy operacyjne stacji roboczych
Odpowiedź, że takie same adresy IP stacji roboczych są przyczyną problemów w komunikacji, jest prawidłowa. Gdy dwa urządzenia w tej samej sieci lokalnej mają przypisane identyczne adresy IP, występuje konflikt adresów, co uniemożliwia poprawną wymianę danych. W standardzie IPv4, każdy adres IP musi być unikalny w danej sieci. W sytuacji konfliktu, urządzenia mogą odbierać wzajemne pakiety, ale nie będą w stanie wysyłać danych do siebie, co skutkuje brakiem komunikacji. Praktycznie, aby unikać takich sytuacji, organizacje powinny stosować system zarządzania adresami IP, jak DHCP, który automatycznie przydziela unikalne adresy IP do urządzeń w sieci. Istotne jest również regularne monitorowanie i weryfikacja konfiguracji sieci, aby upewnić się, że nie występują dublujące się adresy IP. W przypadku większych sieci, należy stosować subnetting, co również ułatwia zarządzanie adresami IP i minimalizuje ryzyko konfliktów.

Pytanie 30

Jaki będzie całkowity koszt brutto materiałów zastosowanych do wykonania odcinka okablowania łączącego dwie szafki sieciowe wyposażone w panele krosownicze, jeżeli wiadomo, że zużyto 25 m skrętki FTP cat. 6A i dwa moduły Keystone? Ceny netto materiałów znajdują się w tabeli, stawka VAT na materiały wynosi 23%.

Materiałj.m.Cena
jednostkowa
netto
Skrętka FTP cat. 6Am.3,50 zł
Moduł Keystone FTP RJ45szt.9,50 zł
A. 119,31 zł
B. 131,00 zł
C. 106,50 zł
D. 97,00 zł
W przypadku niepoprawnych odpowiedzi, kluczowym błędem jest często nieuwzględnienie całkowitego kosztu netto materiałów lub błędne ich zsumowanie. Na przykład, odpowiedź o wartości 97,00 zł wskazuje na zaniżenie kosztów, co może wynikać z pominięcia jednego z elementów, takich jak skrętka lub moduły Keystone. Z kolei odpowiedź 106,50 zł może sugerować, że respondent dodał jedynie koszt skrętki, nie uwzględniając kosztu modułów. Odpowiedzi takie jak 119,31 zł mogą powstawać na skutek błędnego obliczania wartości podatku VAT, gdzie respondent nieprawidłowo pomnożył lub dodał procent VAT do netto. Te błędy myślowe mogą wynikać z braku zrozumienia procesu kalkulacji cen czy też podstawowych zasad dotyczących obliczania kosztów i podatków. W praktyce, nie tylko należy znać ceny materiałów, ale również umiejętnie operować kalkulacjami finansowymi, aby uniknąć pułapek prowadzących do błędnych wniosków. Zastosowanie się do dobrych praktyk w zakresie obliczeń kosztów projektów instalacyjnych jest niezbędne dla efektywności i przejrzystości finansowej, co jest kluczowe w branży technologii informacyjnej i komunikacyjnej.

Pytanie 31

Adres IP (ang. Internet Protocol Address) to

A. indywidualny numer produkcyjny urządzenia.
B. logiczny adres komputera.
C. jedyną nazwą symboliczną urządzenia.
D. fizyczny adres komputera.
Wybór odpowiedzi, która definiuje adres IP jako unikatową nazwę symboliczną urządzenia, jest nieprecyzyjny, ponieważ w rzeczywistości adres IP nie jest nazwą, lecz adresem logicznym, który przypisywany jest w sposób numeryczny. Nazwy symboliczne są związane z systemami DNS (Domain Name System), które przekształcają zrozumiałe dla ludzi nazwy domen w zrozumiałe dla maszyn adresy IP. Kolejna błędna koncepcja to uznawanie adresu IP za adres fizyczny komputera; w rzeczywistości adres fizyczny odnosi się do adresu MAC (Media Access Control), który jest przypisany do sprzętu sieciowego i nie zmienia się w trakcie jego użytkowania. Adres IP jest zmienny i może być przypisany dynamicznie przez serwer DHCP. Z kolei uznawanie adresu IP za unikatowy numer fabryczny urządzenia wprowadza w błąd, ponieważ taki numer odnosi się do konkretnego sprzętu, a nie do jego interakcji w sieci. Te pomyłki często wynikają z nieporozumień dotyczących różnicy między koncepcjami adresowania logicznego i fizycznego. Zrozumienie tych różnic jest kluczowe dla efektywnego zarządzania sieciami i poprawnego interpretowania funkcji adresów IP w komunikacji internetowej. Współczesne praktyki sieciowe opierają się na zrozumieniu, jak adresy IP są wykorzystywane w routingach, co jest niezbędne do optymalizacji wydajności i bezpieczeństwa sieci.

Pytanie 32

Jakie protokoły sieciowe są typowe dla warstwy internetowej w modelu TCP/IP?

A. IP, ICMP
B. TCP, UDP
C. DHCP, DNS
D. HTTP, FTP
Wybór protokołów DHCP, DNS, TCP, UDP oraz HTTP, FTP jako odpowiedzi na pytanie o zestaw protokołów charakterystycznych dla warstwy internetowej modelu TCP/IP pokazuje pewne nieporozumienia dotyczące struktury modelu TCP/IP i funkcji poszczególnych protokołów. DHCP (Dynamic Host Configuration Protocol) i DNS (Domain Name System) operują na wyższych warstwach modelu, odpowiednio w warstwie aplikacji oraz warstwie transportowej. DHCP służy do dynamicznego przydzielania adresów IP w sieci, natomiast DNS odpowiada za tłumaczenie nazw domen na adresy IP. Z kolei TCP (Transmission Control Protocol) i UDP (User Datagram Protocol) to protokoły warstwy transportowej, które są odpowiedzialne za przesyłanie danych między aplikacjami, a nie za ich adresowanie i routowanie. TCP zapewnia niezawodne, połączeniowe przesyłanie danych, podczas gdy UDP oferuje szybszą, ale mniej niezawodną transmisję bez nawiązywania połączenia. HTTP (Hypertext Transfer Protocol) i FTP (File Transfer Protocol) są przykładami protokołów aplikacyjnych, używanych do przesyłania dokumentów i plików w sieci. Każdy z wymienionych protokołów ma swoją specyfikę i zastosowanie, ale nie pełnią one funkcji charakterystycznych dla warstwy internetowej, co może prowadzić do zamieszania w zakresie architektury sieci. Kluczowym błędem w rozumieniu pytania jest mylenie warstw modelu TCP/IP oraz nieprecyzyjne rozróżnienie funkcji protokołów w tych warstwach.

Pytanie 33

Które z komputerów o adresach IPv4 przedstawionych w tabeli należą do tej samej sieci?

KomputerAdres IPv4
1172.50.12.1/16
2172.70.12.1/16
3172.70.50.1/16
4172.80.50.1/16
A. 1 i 2
B. 2 i 4
C. 2 i 3
D. 3 i 4
Odpowiedź 2 i 3 jest poprawna, ponieważ oba adresy IP, 172.70.0.0 i 172.70.1.0, mają tę samą część sieciową zgodnie z maską /16, co oznacza, że ich pierwsze 16 bitów jest identyczne. W praktyce, adresy IP w tej samej sieci mogą komunikować się bezpośrednio, co jest kluczowe w projektowaniu i zarządzaniu infrastrukturą sieciową. Użycie maski /16 pozwala na utworzenie dużej liczby adresów hostów w tej samej podsieci, co jest ważne dla organizacji z wieloma urządzeniami. Rozumienie, jak adresowanie IP działa w kontekście różnych masek, jest niezbędne do skutecznego konfigurowania sieci i zapewnienia ich wydajności. W przypadku adresów 1 i 2 lub 3 i 4, różnice w pierwszych 16 bitach adresów IP wskazują, że znajdują się one w różnych sieciach, co uniemożliwia im komunikację bez pomocy routera. Takie podstawowe zasady adresowania IP są fundamentalne dla architektury sieci i powinny być znane każdemu profesjonalistowi w tej dziedzinie.

Pytanie 34

Co oznacza skrót WAN?

A. rozległą sieć komputerową
B. prywatną sieć komputerową
C. miejską sieć komputerową
D. lokalną sieć komputerową
Skrót WAN oznacza Wide Area Network, co w tłumaczeniu na polski oznacza rozległą sieć komputerową. WAN to typ sieci, który łączy komputery i urządzenia w dużym zasięgu geograficznym, obejmującym miasta, regiony, a nawet kraje. Zastosowanie WAN jest powszechne w dużych organizacjach oraz korporacjach, które potrzebują komunikować się między oddziałami rozrzuconymi na dużym obszarze. Przykłady zastosowania WAN obejmują sieci bankowe, które łączą różne placówki, oraz systemy informatyczne w przedsiębiorstwach międzynarodowych. W kontekście standardów, WAN zazwyczaj korzysta z protokołów takich jak MPLS (Multi-Protocol Label Switching) i Frame Relay, które zapewniają efektywną transmisję danych na dużą skalę. Dobrą praktyką w zarządzaniu WAN jest wykorzystanie rozwiązań typu SD-WAN (Software-Defined Wide Area Network), które umożliwiają lepsze zarządzanie ruchem sieciowym oraz zwiększają bezpieczeństwo połączeń. Zrozumienie koncepcji WAN jest kluczowe dla projektowania nowoczesnych, rozproszonych architektur sieciowych, które odpowiadają na potrzeby globalnych organizacji.

Pytanie 35

Fragment pliku httpd.conf serwera Apache wygląda następująco:

Listen 8012
Server Name localhost:8012

Aby zweryfikować prawidłowe funkcjonowanie strony WWW na serwerze, należy wprowadzić w przeglądarkę

A. http://localhost:8012
B. http://localhost:8080
C. http://localhost
D. http://localhost:apache
Odpowiedzi http://localhost:8080, http://localhost:apache oraz http://localhost są błędne, bo żaden z tych adresów nie wskazuje na odpowiedni port, na którym działa Apache. Port 8080 niby jest popularny jako alternatywa dla HTTP, ale w tym przypadku nie jest on zdefiniowany w pliku konfiguracyjnym, co może wprowadzać w błąd. Niektórzy mogą myśleć, że porty 80 czy 443 to jedyne, które istnieją, a to nieprawda, bo wiele aplikacji działa na innych portach. W http://localhost:apache jest błąd, bo 'apache' to nie port ani adres, więc przeglądarka się nie połączy. A http://localhost w ogóle nie zawiera numeru portu, więc łączy się domyślnie z portem 80, co też nie jest zgodne z konfiguracją serwera. Ważne jest, żeby pamiętać, że musimy wpisywać zarówno nazwę hosta, jak i port, jeśli serwer działa na niestandardowym porcie. W przeciwnym razie fala frustracji może być nieunikniona, bo użytkownicy nie będą mogli znaleźć serwera.

Pytanie 36

W celu zwiększenia bezpieczeństwa sieci firmowej administrator wdrożył protokół 802.1X. Do czego służy ten protokół?

A. Zapewnia szyfrowanie transmisji danych wyłącznie w warstwie aplikacji.
B. Realizuje dynamiczne przydzielanie adresów IP w sieci lokalnej.
C. Służy do kontroli dostępu do sieci na poziomie portów przełącznika, umożliwiając uwierzytelnianie urządzeń przed przyznaniem im dostępu do sieci.
D. Monitoruje i analizuje przepustowość łącza internetowego w firmie.
<strong>Protokół 802.1X</strong> to kluczowy element bezpieczeństwa nowoczesnych sieci komputerowych, szczególnie tych wykorzystywanych w środowiskach korporacyjnych i instytucjonalnych. Jego głównym zadaniem jest kontrola dostępu do sieci na najniższym poziomie, czyli na porcie przełącznika (lub punkcie dostępowym w przypadku sieci bezprzewodowych). Mechanizm ten wymaga, aby każde urządzenie próbujące połączyć się z siecią przeszło proces uwierzytelniania, zanim uzyska dostęp do zasobów sieciowych. Najczęściej wykorzystuje się tu serwer RADIUS do weryfikacji tożsamości użytkownika lub urządzenia, co znacząco redukuje ryzyko nieautoryzowanego dostępu. Z mojego doświadczenia wdrożenie 802.1X to nie tylko podstawa zgodności z politykami bezpieczeństwa (np. ISO 27001), ale także skuteczny sposób na ograniczenie tzw. ataków typu „plug and play”, gdzie ktoś podpina nieautoryzowane urządzenie do wolnego portu. W praktyce, np. w dużych biurach czy na uczelniach, 802.1X umożliwia granularne zarządzanie dostępem i szybkie wycofanie uprawnień, jeśli pracownik opuszcza firmę. To rozwiązanie bardzo często łączy się z innymi technologiami, jak VLAN czy NAC (Network Access Control), co pozwala na jeszcze większą kontrolę i automatyzację procesów bezpieczeństwa. Najważniejsze, że 802.1X działa jeszcze zanim system operacyjny uzyska pełny dostęp do sieci, co czyni go wyjątkowo skutecznym narzędziem prewencji.

Pytanie 37

Rekord typu MX w serwerze DNS

A. przechowuje alias dla nazwy domeny
B. przechowuje nazwę serwera
C. mapuje nazwę domeny na adres IP
D. mapuje nazwę domenową na serwer pocztowy
Niepoprawne odpowiedzi sugerują różne błędne zrozumienia funkcji, jakie pełnią rekordy DNS. Na przykład, stwierdzenie, że rekord MX przechowuje alias nazwy domenowej, jest mylące, ponieważ aliasowanie jest funkcją rekordów CNAME (Canonical Name), które wskazują na inną nazwę domeny. Rekord MX nie zajmuje się aliasowaniem, lecz jasno i precyzyjnie wskazuje na serwer pocztowy, który ma obsługiwać przychodzące wiadomości. Inna nieprawidłowa koncepcja dotyczy twierdzenia, że rekord MX mapuje nazwę domenową na adres IP. Rekordy DNS, które pełnią tę funkcję, nazywane są rekordami A (Address) lub AAAA (dla adresów IPv6). Rekordy MX nie zawierają adresu IP, lecz wskazują na nazwę hosta, która może być powiązana z adresem IP, ale to oddzielny proces. Zrozumienie tych różnic jest kluczowe dla poprawnej konfiguracji usług internetowych i pocztowych. Często pojawia się też nieporozumienie dotyczące tego, co oznacza przechowywanie nazwy serwera. Rekordy typu A lub AAAA odpowiadają za mapowanie nazw domenowych do konkretnych adresów IP, a nie rekordy MX. Dlatego ważne jest, aby w kontekście konfiguracji DNS zrozumieć, jaki typ rekordu jest odpowiedni do danego zadania, co może zapobiec wielu problemom związanym z dostarczaniem e-maili i poprawnym działaniem domeny.

Pytanie 38

Administrator Active Directory w domenie firma.local zamierza ustanowić mobilny profil dla wszystkich użytkowników. Powinien on być przechowywany na serwerze serwer1, w katalogu pliki, który jest udostępniony w sieci jako dane$. Który z parametrów w ustawieniach profilu użytkownika spełnia te wymagania?

A. \firma.local\dane\%username%
B. \serwer1\pliki\%username%
C. \serwer1\dane$\%username%
D. \firma.local\pliki\%username%
Wybrane odpowiedzi nie spełniają wymogów dotyczących lokalizacji profilu mobilnego użytkownika. Dla przykładu, \firma.local\dane\%username% wskazuje na lokalizację, która nie jest zgodna z wymaganiami, ponieważ domena nie wskazuje na zdalny serwer, lecz na zasoby lokalne w sieci. Taki schemat nie jest praktykowany w firmach, które potrzebują centralnego zarządzania danymi użytkowników. W przypadku \serwer1\pliki\%username%, również nie jest to poprawne, ponieważ odnosi się do folderu 'pliki', który nie jest zdefiniowany jako ukryty (z pomocą dolara w nazwie), co może wpłynąć na bezpieczeństwo przechowywanych danych. Foldery ukryte są często wykorzystywane do przechowywania wrażliwych informacji, więc brak tego aspektu w tej odpowiedzi jest znaczącym niedopatrzeniem. Z kolei \firma.local\pliki\%username% również nie jest odpowiednią ścieżką, ponieważ nie odnosi się do żadnego z wymaganych serwerów czy folderów i wprowadza użytkowników w błąd, sugerując, że foldery są lokalizowane w domenie, co jest sprzeczne z ideą mobilnych profili użytkowników. Kluczowym błędem w myśleniu przy wyborze tych odpowiedzi jest brak zrozumienia, że mobilne profile muszą być przechowywane na serwerach zdalnych oraz że foldery ukryte są zalecane dla zwiększenia bezpieczeństwa. W każdej organizacji powinny być przestrzegane zasady dotyczące centralnego zarządzania danymi, co czyni odpowiednią odpowiedź kluczowym elementem w codziennym zarządzaniu systemem.

Pytanie 39

Fragment specyfikacji którego urządzenia sieciowego przedstawiono na ilustracji?

L2 Features• MAC Address Table: 8K
• Flow Control
   • 802.3x Flow Control
   • HOL Blocking Prevention
• Jumbo Frame up to 10,000 Bytes
• IGMP Snooping
   • IGMP v1/v2 Snooping
   • IGMP Snooping v3 Awareness
   • Supports 256 IGMP groups
   • Supports at least 64 static multicast addresses
   • IGMP per VLAN
   • Supports IGMP Snooping Querier
• MLD Snooping
   • Supports MLD v1/v2 awareness
   • Supports 256 groups
   • Fast Leave
• Spanning Tree Protocol
   • 802.1D STP
   • 802.1w RSTP
• Loopback Detection
• 802.3ad Link Aggregation
   • Max. 4 groups per device/8 ports per group (DGS-1210-08P)
   • Max. 8 groups per device/8 ports per group (DGS-1210-
     16/24/24P)
   • Max. 16 groups per device/8 ports per group (DGS-1210-48P)
• Port Mirroring
   • One-to-One, Many-to-One
   • Supports Mirroring for Tx/Rx/Both
• Multicast Filtering
   • Forwards all unregistered groups
   • Filters all unregistered groups
• LLDP, LLDP-MED
A. Przełącznik.
B. Zapora sieciowa.
C. Koncentrator.
D. Ruter.
Przełącznik, jako urządzenie sieciowe funkcjonujące na warstwie drugiej modelu OSI, jest kluczowym elementem w zarządzaniu ruchem danych w sieciach lokalnych. Na ilustracji widoczne są istotne funkcje, takie jak MAC Address Table, która pozwala na efektywne kierowanie pakietów danych do odpowiednich odbiorców na podstawie adresów MAC urządzeń. Flow Control zapewnia kontrolę nad przepływem danych, co zapobiega utracie pakietów w przypadku przeciążenia sieci. Jumbo Frame umożliwia przesyłanie większych ram, co zwiększa wydajność w przypadku transferów dużych plików. IGMP Snooping jest używany do zarządzania ruchem multicastowym, co jest istotne w aplikacjach takich jak strumieniowanie wideo. Przełączniki obsługują również protokoły VLAN i STP, co pozwala na tworzenie odseparowanych sieci w ramach jednej infrastruktury oraz zapobieganie pętli w sieci. W praktyce przełączniki są powszechnie wykorzystywane w biurach i centrach danych do łączenia serwerów, komputerów oraz innych urządzeń końcowych, co czyni je fundamentalnym elementem współczesnych sieci komputerowych.

Pytanie 40

Firma zamierza stworzyć lokalną sieć komputerową, która będzie obejmować serwer, drukarkę oraz 10 stacji roboczych bez kart Wi-Fi. Połączenie z Internetem zapewnia ruter z wbudowanym modemem ADSL oraz czterema portami LAN. Które z wymienionych urządzeń sieciowych jest wymagane, aby sieć mogła prawidłowo funkcjonować i uzyskać dostęp do Internetu?

A. Przełącznik 8 portowy
B. Access Point
C. Przełącznik 16 portowy
D. Wzmacniacz sygnału bezprzewodowego
Wybór przełącznika 16 portowego jako niezbędnego urządzenia do budowy lokalnej sieci komputerowej jest uzasadniony z kilku powodów. Przełącznik (switch) to kluczowy element infrastruktury sieciowej, który umożliwia komunikację pomiędzy różnymi urządzeniami w sieci. W tym przypadku, mając 10 stacji roboczych, serwer i drukarkę, potrzebujemy co najmniej 12 portów do podłączenia wszystkich tych urządzeń. Przełącznik 16 portowy zapewnia wystarczającą liczbę portów, co dostosowuje się do przyszłych potrzeb rozbudowy sieci. Standardowe praktyki zalecają stosowanie przełączników w lokalnych sieciach komputerowych, aby zapewnić efektywne zarządzanie ruchem danych oraz zminimalizować kolizje. Dzięki technologii Ethernet, przełączniki są w stanie przesyłać dane z dużą prędkością, co jest kluczowe w przypadku intensywnego korzystania z sieci, np. podczas drukowania lub przesyłania dużych plików. Dodatkowo, przełączniki mogą obsługiwać różne protokoły, co umożliwia integrację z różnymi urządzeniami oraz systemami. Wybór przełącznika jako podstawowego urządzenia podkreśla znaczenie jego roli w zapewnieniu stabilności i wydajności całej sieci, a także umożliwia zarządzanie przepustowością oraz bezpieczeństwem ruchu sieciowego.