Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 30 grudnia 2025 21:29
  • Data zakończenia: 30 grudnia 2025 22:08

Egzamin niezdany

Wynik: 10/40 punktów (25,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Który rodzaj układu sieciowego przedstawiono na schemacie?

Ilustracja do pytania
A. TN-S
B. TT
C. TN-C
D. IT
Odpowiedź TN-C jest prawidłowa, ponieważ w układzie tym przewód neutralny (N) i przewód ochronny (PE) są połączone w jeden przewód PEN w całej sieci. Taki układ jest korzystny w przypadku redukcji liczby żył w instalacji, co może przyczynić się do zmniejszenia kosztów i uproszczenia wykonania instalacji elektrycznej. TN-C znajduje zastosowanie w różnych obiektach, od budynków mieszkalnych po przemysłowe, gdzie istnieją odpowiednie zabezpieczenia przed porażeniem prądem. W Polsce układ TN-C jest stosowany zgodnie z normą PN-IEC 60364, która określa wymagania dotyczące instalacji elektrycznych. Ważne jest przestrzeganie zasad dotyczących układów uziemiających i ochrony przed przepięciami, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. W przypadku połączeń z ziemią w systemie TN-C, stosuje się odpowiednie rozwiązania techniczne, aby zapewnić skuteczną ochronę w przypadku awarii i minimalizować ryzyko wystąpienia niebezpiecznych napięć na obudowach urządzeń elektrycznych.

Pytanie 2

Który sposób połączenia zacisków gniazda wtyczkowego jednofazowegow instalacji mieszkaniowejpracującej w sieci TN-S jest prawidłowy?

Ilustracja do pytania
A. A.
B. B.
C. D.
D. C.
Odpowiedź A jest prawidłowa, ponieważ zgodnie z obowiązującymi normami, w instalacjach elektrycznych jednofazowych w systemie TN-S, układ podłączenia przewodów w gniazdach wtyczkowych jest szczegółowo określony. Przewód fazowy oznaczany jako L powinien być zawsze podłączony po lewej stronie, co zapewnia odpowiednią orientację dla użytkowników. Przewód neutralny N powinien znajdować się po prawej stronie, natomiast przewód ochronny PE umieszczany jest na górze. Taki układ minimalizuje ryzyko pomylenia przewodów i zwiększa bezpieczeństwo użytkowania urządzeń elektrycznych. W przypadku zastosowania niepoprawnego połączenia istnieje ryzyko zwarcia elektrycznego lub porażenia prądem. Dobrze zaprojektowana instalacja zgodna z normami nie tylko zapewnia bezpieczeństwo, ale także ułatwia konserwację i naprawy, ponieważ technicy mają jasność co do orientacji przewodów. Zastosowanie tych standardów jest kluczowe dla zachowania wysokiego poziomu bezpieczeństwa w instalacjach elektrycznych.

Pytanie 3

Które z przedstawionych narzędzi, oprócz lutownicy, jest niezbędne przy naprawie przeciętego przewodu LY przez połączenie lutowane?

Ilustracja do pytania
A. C.
B. A.
C. B.
D. D.
Wybór innej odpowiedzi, która nie wskazuje na szczypce do ściągania izolacji, może wynikać z nieporozumienia dotyczącego procesu lutowania i przygotowania przewodów. Kluczowym etapem w naprawie przewodów jest usunięcie izolacji, co jest niezbędne do zapewnienia dobrego kontaktu elektrycznego. Bez odpowiedniego narzędzia do ściągania izolacji nie będzie możliwe prawidłowe przygotowanie przewodów, co może prowadzić do nietrwałych połączeń. Ważne jest zrozumienie, że lutownica sama w sobie nie wystarcza do naprawy uszkodzonego przewodu. Wiele osób może mylnie zakładać, że lutowanie można przeprowadzić na przewodach z izolacją, co jest błędnym podejściem. Tego typu myślenie może prowadzić do uszkodzenia przewodów oraz nieefektywnych połączeń, które mogą stwarzać zagrożenie w przyszłości. Prawidłowa wiedza na temat narzędzi i technik stosowanych w elektryce jest kluczowa dla zapewnienia bezpieczeństwa oraz efektywności pracy. Warto pamiętać, że każdy profesjonalista powinien być świadomy znaczenia odpowiednich narzędzi w kontekście lutowania, ponieważ niewłaściwe przygotowanie może prowadzić do problemów z przewodnictwem elektrycznym oraz zwiększać ryzyko awarii.

Pytanie 4

Na którym rysunku przedstawiono oprawkę do źródła światła dużej mocy, nagrzewającego się do temperatur rzędu 300°C?

Ilustracja do pytania
A. D.
B. C.
C. A.
D. B.
Wybór oprawki oznaczonej innymi literami, oprócz D, może wynikać z niepełnego zrozumienia właściwości materiałowych używanych w konstrukcji opraw. Na przykład, wiele osób może sądzić, że materiały takie jak tworzywa sztuczne są wystarczające dla źródeł światła dużej mocy. Jednakże, tworzywa sztuczne mają ograniczoną odporność na wysokie temperatury i mogą się topnieć lub odkształcać w warunkach, gdzie temperatura przekracza 100°C. Ponadto, stosowanie metali do budowy opraw również nie jest zalecane, ponieważ ich właściwości przewodzenia ciepła mogą prowadzić do lokalnych przegrzań i uszkodzenia zarówno oprawki, jak i źródła światła. W praktyce, niewłaściwy dobór materiału może prowadzić do skrócenia żywotności żarówki, zwiększonego ryzyka awarii, a także potencjalnych zagrożeń dla użytkowników. Często spotykanym błędem jest również niedocenianie znaczenia odprowadzania ciepła, co w dłuższej perspektywie prowadzi do obniżenia efektywności energetycznej systemu oświetleniowego. Dlatego kluczowe jest, aby projektując oprawy do źródeł światła dużej mocy, kierować się sprawdzonymi standardami i praktykami, które zapewnią odpowiednią wydajność i bezpieczeństwo w użytkowaniu.

Pytanie 5

Działanie którego środka ochrony przeciwporażeniowej w instalacji elektrycznej o napięciu znamionowym 230 V, pozwala ocenić miernik przedstawiony na rysunku?

Ilustracja do pytania
A. Zasilania napięciem bezpiecznym.
B. Połączeń wyrównawczych.
C. Samoczynnego wyłączenia zasilania.
D. Izolacji roboczej.
Udzielając odpowiedzi na to pytanie, można było się posługiwać różnymi pojęciami związanymi z bezpieczeństwem elektrycznym, jednak niektóre z nich mogą wprowadzać w błąd. Zasilanie napięciem bezpiecznym odnosi się do systemów, które wykorzystują niższe napięcia w celu zminimalizowania ryzyka porażenia, jednak nie jest to związane z pomiarem izolacji, którego celem jest ochrona przed porażeniem w instalacjach o napięciu 230 V. Połączenia wyrównawcze są istotne w kontekście ochrony przed porażeniem, ale ich ocena wymaga innego rodzaju pomiarów, takich jak pomiar oporności połączeń. Samoczynne wyłączenie zasilania to mechanizm zabezpieczający, który działa w przypadku wykrycia nieprawidłowości w instalacji, ale także nie jest bezpośrednio związany z pomiarem izolacji roboczej. Typowym błędem jest mylenie tych pojęć i pomijanie istotności pomiarów rezystancji izolacji w kontekście bezpieczeństwa energetycznego. W rzeczywistości, zrozumienie funkcji izolacji roboczej oraz jej roli w ochronie przed porażeniem elektrycznym jest kluczowe dla każdego, kto pracuje z systemami elektrycznymi, a nieprawidłowe zrozumienie tych zagadnień może prowadzić do niebezpiecznych sytuacji podczas eksploatacji instalacji.

Pytanie 6

Całkowitą moc odbiornika trójfazowego mierzoną w układzie pomiarowym pokazanym na rysunku oblicza się ze wzoru

Ilustracja do pytania
A. \( \sqrt{3}(P_1 + P_2) \)
B. \( 3 \frac{P_1 + P_2}{2} \)
C. \( P_1 + P_2 + \frac{P_1 + P_2}{2} \)
D. \( P_1 + P_2 \)
Wybór niepoprawnej odpowiedzi może wynikać z kilku powszechnych nieporozumień dotyczących pomiarów mocy w układach trójfazowych. Na przykład, niektórzy mogą sądzić, że wystarczy zmierzyć moc jedynie jednego watomierza, co prowadzi do niedoszacowania rzeczywistej mocy całkowitej odbiornika. Takie podejście jest błędne, ponieważ nie uwzględnia różnic w prądach i napięciach w poszczególnych fazach, co jest kluczowe w przypadku układów niesymetrycznych. Inna często spotykana pomyłka to zakładanie, że moc w każdym z trzech faz jest identyczna, co jest prawdziwe tylko w idealnych warunkach symetrycznych. W rzeczywistości, w układach, gdzie występują różnice, całkowita moc musi być obliczana jako suma mocy z dwóch watomierzy, co jest praktycznym zastosowaniem zasady superpozycji. Ignorowanie tego faktu może prowadzić do błędnych wniosków na temat wydajności systemu energetycznego. Dodatkowo, wiele osób ma trudności z interpretacją wyników pomiarów, co może być spowodowane brakiem wiedzy na temat zasad działania watomierzy i ich zastosowania w różnych konfiguracjach. Kluczowe jest zrozumienie, że pomiar energii elektrycznej w systemach trójfazowych wymaga starannego podejścia i znajomości metodologii, aby unikać potencjalnych błędów i zapewnić dokładność analizy energetycznej.

Pytanie 7

Przedstawiona na ilustracji wstawka kalibrowa bezpiecznika przeznaczona jest do instalacji o napięciu znamionowym

Ilustracja do pytania
A. nie wyższym niż 500 V i wkładek topikowych o prądzie znamionowym co najmniej 63 A
B. nie wyższym niż 500 V i wkładek topikowych o prądzie znamionowym nie przekraczającym 63 A
C. co najmniej 500 V i wkładek topikowych o prądzie znamionowym co najmniej 63 A
D. co najmniej 500 V i wkładek topikowych o prądzie znamionowym nie przekraczającym 63 A
Wybrana odpowiedź jest poprawna, ponieważ na ilustracji przedstawiona jest wstawka kalibrowa bezpiecznika z oznaczeniami "63 A" oraz "500 V". Te oznaczenia wskazują, że wstawka jest przeznaczona do instalacji, w których napięcie znamionowe nie może przekraczać 500 V oraz dla wkładek topikowych o prądzie znamionowym nie przekraczającym 63 A. W praktyce, zastosowanie odpowiednich bezpieczników jest kluczowe dla zapewnienia bezpieczeństwa w systemach elektroenergetycznych oraz ochrony przed przeciążeniem i zwarciem. Standardy takie jak PN-EN 60269, które dotyczą bezpieczników, określają wymagania dotyczące ich instalacji oraz właściwości, co pozwala na ich prawidłowe zastosowanie w różnych warunkach. W przypadku stosowania wyższych napięć lub większych prądów, konieczne jest stosowanie innych typów wkładek, co zwiększa ryzyko uszkodzeń i zagrożeń. Dlatego tak ważne jest, aby podczas wyboru zabezpieczeń kierować się wskazaniami producentów oraz normami branżowymi.

Pytanie 8

Po połączeniu układu sterowania oświetlenia przekaźnikiem bistabilnym przeprowadzono kilkukrotnie próbę działania. Na podstawie diagramu działania przekaźnika i powtarzającej się tabeli działania układu można stwierdzić, że

Ilustracja do pytania
A. układ działa prawidłowo.
B. uszkodzona jest jedna z żarówek.
C. nieprawidłowo działa użyty przekaźnik.
D. występuje błąd w podłączeniu przekaźnika.
Wybór odpowiedzi dotyczącej błędów w podłączeniu przekaźnika, uszkodzenia żarówek lub prawidłowego działania układu, wskazuje na zrozumienie problematyki, jednak nie na właściwe rozpoznanie sytuacji. W pierwszym przypadku, błędne podłączenie przekaźnika mogłoby prowadzić do braku reakcji całego układu, co nie jest potwierdzone przez przedstawione dane. Jeśli diagram i tabela działania układu są zgodne, to nieprawidłowe podłączenie w tym scenariuszu wydaje się mało prawdopodobne. Kolejną możliwą mylną koncepcją jest przypisanie winy uszkodzonym żarówkom. W rzeczywistości, gdy przekaźnik działa nieprawidłowo, jego potencjalny wpływ na zasilanie żarówek może maskować problemy z ich funkcjonowaniem. Prawidłowe działanie żarówek można ocenić niezależnie, ale wiedząc, że przekaźnik jest kluczowym elementem w cyklu włączania i wyłączania, to on powinien być priorytetem w diagnostyce. Ostatnia myśl o tym, że układ działa prawidłowo, pomija fundamentalne informacje z diagramu i tabeli, które jasno wskazują na rozbieżności. Uznawanie układu za sprawny bez dokładnej analizy wszystkich komponentów, szczególnie przekaźnika, może prowadzić do fałszywych wniosków i pomijać istotną diagnostykę. Rozpoznawanie problemów w takich systemach wymaga zastosowania metodyki analizy przyczyn źródłowych, aby skutecznie zidentyfikować problem i uniknąć błędnych interpretacji wyników.

Pytanie 9

Jaką funkcję w wyłączniku nadprądowym pełni element wskazany na rysunku czerwoną strzałką?

Ilustracja do pytania
A. Styku ruchomego.
B. Komory łukowej.
C. Wyzwalacza przeciążeniowego.
D. Wyzwalacza zwarciowego.
Pojęcia związane ze stykami ruchomymi, komorami łukowymi oraz wyzwalaczami przeciążeniowymi często mylone są z funkcją wyzwalacza zwarciowego, co prowadzi do nieporozumień w zrozumieniu działania wyłączników nadprądowych. Styki ruchome są elementami, które w momencie zadziałania wyłącznika fizycznie przerywają obwód, jednak same w sobie nie mają zdolności do detekcji zwarcia. Ich rola jest czysto mechaniczna i nie obejmuje analizy prądu. Komory łukowe natomiast służą do gaszenia łuku elektrycznego, który powstaje w momencie przerywania obwodu, ale również nie mają zdolności wykrywania zwarć. Wyzwalacze przeciążeniowe, z drugiej strony, odpowiadają za zadziałanie w sytuacji długotrwałego nadmiaru prądu, co różni się od nagłego zwarcia. Często występujące nieporozumienia dotyczące tych elementów mogą wynikać z błędnej interpretacji ich funkcji. Kluczowe jest zrozumienie, że wyzwalacz zwarciowy jest wyspecjalizowanym elementem odpowiedzialnym za natychmiastowe przerwanie obwodu w przypadku niebezpiecznego wzrostu prądu, co ma fundamentalne znaczenie dla ochrony instalacji elektrycznej. Zatem, znajomość działania tych elementów oraz ich roli w systemie ochrony elektrycznej jest niezbędna dla zapewnienia bezpieczeństwa w instalacjach i umożliwienia prawidłowego doboru komponentów w zgodzie z normami branżowymi.

Pytanie 10

Do którego rodzaju ochrony przeciwporażeniowej zaliczane są środki ochrony opisane w tabeli?

1.Urządzenia ochronne różnicowoprądowe o znamionowym prądzie różnicowym nieprzekraczającym 30 mA.
2.Dodatkowe połączenia wyrównawcze ochronne.
A. Ochrony przez zastosowanie bardzo niskiego napięcia.
B. Ochrony uzupełniającej.
C. Ochrony przy uszkodzeniu (dodatkowej).
D. Ochrony podstawowej.
No, musisz przyznać, że rozróżnienie różnych rodzajów ochrony przeciwporażeniowej to ważna sprawa, jeśli chcesz mieć pewność, że wszystko działa jak należy. Kiedy mówisz o ochronie podstawowej, ochronie przy uszkodzeniu czy bardzo niskim napięciu, to czasami można się pogubić, bo myślisz, że wystarczy tylko jedna z tych metod. Ochrona podstawowa to jakby pierwsza linia obrony, ale nie zawsze wystarczy. Gdy jest zagrożenie, trzeba pomyśleć o dodatkowej ochronie. Ochrona przy uszkodzeniu, jak bezpieczniki i wyłączniki nadprądowe, też nie zawsze da sobie radę w trudnych sytuacjach. Z tego, co widziałem, ludzie czasem mylą różne typy zabezpieczeń i to może prowadzić do poważnych problemów, bo nie rozumieją, że te dodatkowe środki są naprawdę konieczne. Zrozumienie tego łączenia podstawowej i uzupełniającej ochrony jest kluczowe dla budowy bezpiecznych instalacji. Dobrze też sięgnąć do norm, żeby wiedzieć, jak to wszystko ma działać.

Pytanie 11

Który licznik należy zamontować w instalacji elektrycznej, aby umożliwić przedpłatowy system rozliczania energii elektrycznej?

Ilustracja do pytania
A. C.
B. A.
C. B.
D. D.
Wybór niewłaściwego licznika do instalacji elektrycznej, jak w przypadku odpowiedzi A, C czy D, może prowadzić do poważnych problemów w zakresie zarządzania zużyciem energii. Liczniki, które nie są przystosowane do systemu przedpłatowego, nie mogą umożliwić użytkownikom wprowadzania kodów doładowujących, co jest kluczowym elementem tego systemu. Liczniki tradycyjne, które są powszechnie instalowane w domach, umożliwiają jedynie pomiar zużycia energii bez interakcji ze stroną użytkownika w zakresie przedpłat. Takie urządzenia są zgodne z innymi standardami, ale nie mają funkcjonalności, która jest istotna w kontekście nowoczesnych systemów zarządzania energią. Typowym błędem myślowym jest założenie, że każdy licznik energii może funkcyjnie zastąpić licznik przedpłatowy. Różnice te są kluczowe, szczególnie w sytuacjach, gdy użytkownicy chcą mieć większą kontrolę nad swoimi wydatkami. Aby wdrożyć skuteczny system zarządzania energią w budynkach mieszkalnych czy komercyjnych, konieczne jest zrozumienie specyfiki liczników i ich przeznaczenia. Dlatego właściwy wybór licznika, który wspiera system przedpłatowy, jest nie tylko kwestią techniczną, ale również finansową.

Pytanie 12

Którego przyrządu należy użyć do pomiarów rezystancji izolacji w instalacji elektrycznej?

Ilustracja do pytania
A. B.
B. A.
C. D.
D. C.
Wybór niewłaściwego przyrządu do pomiarów rezystancji izolacji w instalacji elektrycznej może prowadzić do poważnych konsekwencji, zarówno technicznych, jak i bezpieczeństwa. Inne urządzenia, takie jak multimetru czy omomierze, nie są przystosowane do pomiaru wysokich wartości rezystancji, jakie występują w systemach izolacji. Multimetry, które często mają zakres pomiarowy do 20 MΩ, mogą nie być w stanie dokładnie zmierzyć rezystancji izolacji, zwłaszcza w przypadku uszkodzeń lub degradacji materiałów izolacyjnych. Użycie takich przyrządów w miejsce megomierza może prowadzić do fałszywych wniosków, które w efekcie mogą zagrażać bezpieczeństwu użytkowników. W praktyce, pomiar rezystancji izolacji powinien opierać się na standardowych procedurach, które wymagają użycia specjalistycznego wyposażenia. Dodatkowo, niekiedy występuje mylne przekonanie, że pomiar o niskich wartościach rezystancji jest wystarczający do oceny stanu izolacji. W rzeczywistości, normy branżowe jasno określają, że izolacja powinna mieć bardzo wysoką rezystancję, sięgającą nawet gigaomów, aby była uznawana za bezpieczną. Prawidłowe podejście do pomiarów nie tylko wpływa na efektywność działania instalacji, ale także na bezpieczeństwo ludzi oraz mienia, co jest kluczowym aspektem pracy w każdej branży związanej z elektrycznością.

Pytanie 13

Wskaż prawidłowy schemat sterowania oświetleniem z dwóch niezależnych miejsc.

Ilustracja do pytania
A. Schemat 2.
B. Schemat 1.
C. Schemat 4.
D. Schemat 3.
Błędy w doborze schematu oświetleniowego często wynikają z braku zrozumienia zasad działania układów sterujących. Wiele osób może błędnie założyć, że zastosowanie jednego przełącznika do włączania i wyłączania oświetlenia w każdym z miejsc jest wystarczające. Takie podejście pomija kluczowy aspekt, jakim jest możliwość sterowania oświetleniem z dwóch niezależnych lokalizacji, co jest istotne w kontekście komfortu i funkcjonalności. Użytkownik może mylnie sądzić, że dowolny schemat, który umożliwia włączenie światła, będzie odpowiedni, podczas gdy niektóre z nich mogą nie umożliwiać wyłączenia go z drugiego miejsca. Ponadto, stosowanie przełączników w układach, które nie są dostosowane do pracy w trybie schodowym, może prowadzić do sytuacji, w której jedno naciśnięcie przycisku skutkuje nieprzewidzianym efektem, np. włączeniem świateł w jednym pomieszczeniu, podczas gdy w innym pozostają one wyłączone. Tego typu błędy wynikają często z niedostatecznej wiedzy na temat schematów elektrycznych oraz ich praktycznych zastosowań w różnych warunkach. Ważne jest, aby przed wykonaniem jakiejkolwiek instalacji nie tylko znać teorię, ale także rozumieć praktyczne implikacje i zastosowanie norm oraz standardów branżowych, co pozwoli uniknąć nieefektywnych rozwiązań.

Pytanie 14

Zamieszczony na rysunku zrzut ekranu przyrządu pomiarowego przedstawia wyniki pomiaru

Ilustracja do pytania
A. rezystancji izolacji przewodu w sieci jednofazowej.
B. impedancji pętli zwarcia w sieci trójfazowej.
C. rezystancji izolacji przewodu w sieci trójfazowej.
D. impedancji pętli zwarcia w sieci jednofazowej.
Wybór niepoprawnej odpowiedzi może wynikać z mylnego zrozumienia różnicy między pomiarem rezystancji izolacji a pomiarem impedancji pętli zwarcia. Impedancja pętli zwarcia jest mierzona w kontekście analizy bezpieczeństwa systemu zasilania i odnosi się do oporu, który prąd zwarciowy napotyka w trakcie zwarcia. Wartości impedancji pętli zwarcia są zazwyczaj znacznie niższe, ponieważ obejmują wszystkie elementy obwodu, w tym przewody i urządzenia ochronne. Mierzenie impedancji pętli zwarcia w sieci trójfazowej miałoby zupełnie inny kontekst i byłoby wykonywane z użyciem odmiennych technik oraz z wykorzystaniem innych jednostek miary. Ponadto, rezystancja izolacji, która jest mierzona w megaomach, stanowi kluczowy wskaźnik stanu izolacji przewodów, co jest zupełnie innym procesem niż analiza impedancji pętli zwarcia. W praktyce, technicy często mylą te pojęcia, co prowadzi do niewłaściwego stosowania metod pomiarowych i interpretacji wyników. Zrozumienie podstawowych różnic między tymi pomiarami jest kluczowe dla zapewnienia bezpieczeństwa oraz sprawności instalacji elektrycznych.

Pytanie 15

Zdjęcie przedstawia

Ilustracja do pytania
A. płytkę zaciskową.
B. listwę montażową.
C. szynę łączeniową.
D. drabinkę kablową.
Odpowiedzi, które zawierają inne elementy elektryczne, takie jak listwy montażowe, płytki zaciskowe czy drabinki kablowe, opierają się na nieporozumieniach dotyczących funkcji i zastosowania tych komponentów w instalacjach elektrycznych. Listwa montażowa, choć może wydawać się podobnym elementem, służy głównie do zamocowania innych urządzeń lub elementów instalacji, a nie do ich łączenia. Z kolei płytki zaciskowe są stosowane do bezpośredniego łączenia przewodów, co różni je od szyn łączeniowych, które centralizują połączenia neutralne, zapewniając większą efektywność i bezpieczeństwo. Drabinki kablowe, z drugiej strony, mają na celu organizację i prowadzenie przewodów w przestrzeni, co również różni się od funkcji szyn łączeniowych. Typowe błędy myślowe prowadzące do takiej pomyłki obejmują brak zrozumienia różnic między tymi komponentami, co może skutkować błędnym doborem elementów w projekcie instalacji elektrycznej. Wiedza na temat specyfiki i standardów stosowanych w branży elektrycznej jest kluczowa dla właściwego projektowania i wykonania instalacji, co przekłada się na bezpieczeństwo i efektywność działania całego systemu.

Pytanie 16

Który wyłącznik jest oznaczony symbolem CLS6-B6/2?

A. Dwubiegunowy podnapięciowy
B. Dwubiegunowy instalacyjny nadprądowy
C. Dwubiegunowy przepięciowy
D. Dwubiegunowy różnicowoprądowy
Wybór jednego z pozostałych wyłączników, takich jak różnicowoprądowy, podnapięciowy lub przepięciowy, wynika z nieporozumienia dotyczącego ich podstawowych funkcji i zastosowań. Różnicowoprądowy wyłącznik dwubiegunowy jest używany do detekcji różnicy prądów między przewodem fazowym a neutralnym, co zapobiega porażeniom elektrycznym, ale nie chroni przed przeciążeniem. Z kolei podnapięciowy wyłącznik jest odpowiedzialny za automatyczne odłączenie obwodu w przypadku zbyt niskiego napięcia, co w praktyce może być użyteczne w systemach wymagających stabilności zasilania, ale nie ma zastosowania do ochrony przed nadprądami. Przepięciowy wyłącznik dwubiegunowy służy do ochrony przed przepięciami, takimi jak te wywołane uderzeniem pioruna, jednak nie pełni funkcji ochrony przed przeciążeniem. Zrozumienie tych różnic jest kluczowe dla prawidłowego doboru zabezpieczeń w instalacjach elektrycznych. Typowe błędy myślowe prowadzące do wybory niewłaściwego wyłącznika obejmują mylenie funkcji ochronnych oraz brak znajomości specyfikacji technicznych danego urządzenia. Dlatego też konieczne jest zapoznanie się z dokumentacją oraz normami regulującymi te urządzenia, aby zapewnić bezpieczeństwo i efektywność instalacji elektrycznej.

Pytanie 17

Którą wstawkę kalibrową należy zastosować do podstawy bezpiecznikowej przeznaczonej dla wkładki topikowej typu D, o oznaczeniu literowym gL i parametrach katalogowych Un = 500 V, In = 25 A?

Ilustracja do pytania
A. Wstawkę 4.
B. Wstawkę 1.
C. Wstawkę 3.
D. Wstawkę 2.
Dobranie wstawki kalibrowej to ważna sprawa, bo ma bezpośredni wpływ na bezpieczeństwo obwodów elektrycznych. Gdy mamy do czynienia z bezpiecznikiem typu D gL, musimy zwrócić uwagę na napięcie i prąd znamionowy. Na przykład, używając wstawki 25A 500V, mamy pewność, że jest to zgodne z wymaganiami dla prądu 25 A i napięcia 500 V. Dzięki temu bezpiecznik działa jak należy i chroni całą instalację przed przeciążeniami oraz zwarciami. Z mojego doświadczenia, to poprawne dobranie elementów zabezpieczających sprawia, że systemy elektryczne stają się bardziej niezawodne. A to w wielu branżach, jak budownictwo czy przemysł, jest naprawdę na wagę złota. Nie zapominaj też o normach IEC 60269, bo one pomagają mieć pewność, że wszystko działa zgodnie z najlepszymi praktykami.

Pytanie 18

Do jakiej kategorii zaliczają się kable współosiowe?

A. Grzewczych
B. Kabelkowych
C. Telekomunikacyjnych
D. Oponowych
Przewody współosiowe, znane również jako kable koncentryczne, są kluczowym elementem w systemach telekomunikacyjnych. Ich budowa składa się z centralnego przewodu, który jest otoczony dielektrykiem, a następnie metalową osłoną. Taka konstrukcja pozwala na przesyłanie sygnałów radiowych i telewizyjnych z minimalnymi zakłóceniami, co jest szczególnie ważne w telekomunikacji. Przewody współosiowe są powszechnie wykorzystywane w instalacjach telewizyjnych, sieciach komputerowych oraz w systemach audio, gdzie istotna jest jakość przesyłanych danych. Zgodnie z normami branżowymi, takie jak ANSI/TIA-568, przewody te muszą spełniać określone standardy dotyczące tłumienia sygnału i zakłóceń elektromagnetycznych, co gwarantuje ich niezawodność. Stosowanie przewodów współosiowych w telekomunikacji jest także uzasadnione ich łatwością w instalacji oraz dużą odpornością na uszkodzenia mechaniczne, co czyni je preferowanym rozwiązaniem w wielu aplikacjach.

Pytanie 19

Jakie napięcie należy stosować podczas określania rezystancji izolacji w obwodach SELV lub PELV?

A. 250 V
B. 750 V
C. 1000 V
D. 500 V
Wybór wyższych wartości napięcia pomiarowego, takich jak 1000 V, 500 V czy 750 V, jest niewłaściwy w kontekście obwodów SELV i PELV. Te obwody, które są projektowane z myślą o bezpieczeństwie, nie powinny być testowane przy użyciu napięć, które mogą prowadzić do sytuacji niebezpiecznych dla użytkowników. Przy pomiarze rezystancji izolacji w instalacjach niskonapięciowych, takich jak SELV i PELV, zastosowanie wyższego napięcia pomiarowego może nie tylko prowadzić do uszkodzeń izolacji, ale także stwarzać ryzyko porażenia prądem elektrycznym. W rzeczywistości, zastosowanie napięć wyższych niż 250 V w takich instalacjach nie jest zgodne z normami bezpieczeństwa. Często błędnie przyjmuje się, że wyższe napięcie pomiarowe pozwala na dokładniejszą ocenę stanu izolacji, co jest mylnym przekonaniem. W rzeczywistości, pomiary w wyższych zakresach napięć mogą dawać fałszywe wyniki, ponieważ mogą powodować uszkodzenia materiałów izolacyjnych, które w normalnych warunkach pracy nie występują. Stąd też kluczowe jest przestrzeganie standardów oraz dobrych praktyk, aby zapewnić bezpieczeństwo i niezawodność instalacji elektrycznych.

Pytanie 20

Która z wymienionych list czynności opisuje w jakiej kolejności demontuje się elementy stojana silnika indukcyjnego z uzwojeniem wsypywanym w celu jego przezwojenia?

1odcięcie połączeń czołowychodcięcie połączeń czołowychusunięcie izolacji żłobkowejusunięcie uzwojenia
2usunięcie izolacji żłobkowejusunięcie uzwojeniaodcięcie połączeń czołowychodcięcie połączeń czołowych
3usunięcie uzwojeniausunięcie izolacji żłobkowejusunięcie uzwojeniausunięcie izolacji żłobkowej
ABCD
A. A.
B. C.
C. B.
D. D.
Wybór niewłaściwej odpowiedzi często wynika z niepełnego zrozumienia procesu demontażu stojana silnika indukcyjnego. Wiele osób może pomylić kolejność czynności, co prowadzi do nieprawidłowych praktyk. Na przykład, jeśli demontaż rozpoczyna się od usunięcia uzwojenia przed odcięciem połączeń czołowych, naraża to technika na niebezpieczeństwo, ponieważ może dojść do niezamierzonego kontaktu z prądem. Kolejnym częstym błędem jest pomijanie etapu odcięcia zasilania, co jest kluczowe dla zapewnienia bezpieczeństwa. Bezpieczeństwo przy pracy z urządzeniami elektrycznymi powinno być zawsze na pierwszym miejscu. Ważne jest, aby również zrozumieć, że niewłaściwa kolejność demontażu może prowadzić do uszkodzenia elementów silnika, co z kolei zwiększa koszty naprawy i przestojów w pracy. Każda z tych czynności ma swoje uzasadnienie w kontekście mechaniki oraz elektryki i jest zgodna z obowiązującymi normami i standardami bezpieczeństwa, takimi jak normy IEC (Międzynarodowej Komisji Elektrotechnicznej). Dlatego kluczowe jest, aby przed przystąpieniem do demontażu, każdy technik był dokładnie przeszkolony w zakresie procedur demontażu i był świadomy zagrożeń związanych z niewłaściwym postępowaniem.

Pytanie 21

W jaki sposób powinna odbywać się wymiana nożowych wkładek topikowych w bezpiecznikach przemysłowych?

A. Przy użyciu kombinerek, pod napięciem
B. Za pomocą kombinerek w braku napięcia
C. Uchwytem izolacyjnym pod obciążeniem
D. Uchwytem izolacyjnym bez obciążenia
Wymiana nożowych wkładek topikowych przy użyciu kombinerek lub innych narzędzi metalowych pod napięciem jest skrajnie niebezpieczna i niezgodna z zasadami bezpieczeństwa. W przypadku pierwszej opcji, korzystanie z kombinerek pod napięciem naraża technika na ryzyko porażenia prądem, co może prowadzić do poważnych obrażeń lub nawet śmierci. Narzędzia metalowe, gdy są używane w obecności napięcia, stają się przewodnikami prądu, co zwiększa ryzyko kontaktu z przewodami pod napięciem. Z kolei wymiana wkładek pod obciążeniem również jest niewłaściwa, ponieważ prowadzi do potencjalnych krótkich spięć, które mogą uszkodzić instalację elektryczną oraz zagrażać życiu ludzi. Dodatkowo, próba pracy pod obciążeniem może powodować iskrzenie i inne nieprzewidywalne zjawiska, co znacznie podnosi stopień ryzyka. W kontekście wymiany wkładek topikowych, kluczowym punktem jest upewnienie się, że obwód jest wolny od obciążenia oraz że używa się odpowiednich narzędzi, jak uchwyty izolacyjne, które zapobiegają przypadkowemu kontaktowi z energią elektryczną. Takie podejście jest zgodne z praktykami bezpieczeństwa w pracy ze sprzętem elektrycznym, które są opisane w normach branżowych, jak na przykład IEC 60364, które podkreślają znaczenie pracy w bezpiecznych warunkach.

Pytanie 22

Do którego z rodzajów trzonków źródeł światła przeznaczona jest oprawka przedstawiona na ilustracji?

Ilustracja do pytania
A. MR11
B. E27
C. G9
D. GU10
Oprawka E27, którą widzisz na obrazku, to jedna z tych, które najczęściej spotyka się w domach i różnych lokalach. Ten duży gwint E27 sprawia, że montaż żarówek jest prosty jak dwa razy dwa. A jakbyś pomyślał o różnych rodzajach żarówek, to znajdziesz tu sporo opcji, jak energooszczędne czy LED – każdy sobie coś dobrego wybierze. Te oprawki są chętnie używane w lampach sufitowych, kinkietach i takich wolnostojących lampach, które dodają trochę charakteru. Ich popularność wynika z tego, że są wszędzie dostępne i pasują do różnych projektów oświetleniowych. Jak wymieniasz źródło światła, E27 to świetny wybór, bo wpasujesz to właściwie wszędzie, dzięki standardowym wymiarom.

Pytanie 23

Podczas inspekcji świeżo zrealizowanej instalacji elektrycznej nie ma potrzeby weryfikacji

A. wartości natężenia oświetlenia na stanowiskach pracy
B. rozmieszczenia tablic informacyjnych i ostrzegawczych
C. wyboru zabezpieczeń oraz urządzeń
D. wyboru i oznakowania przewodów
Podczas inspekcji nowo wykonanej instalacji elektrycznej, sprawdzenie rozmieszczenia tablic ostrzegawczych i informacyjnych, doboru zabezpieczeń i aparatury oraz doboru i oznaczenia przewodów jest kluczowe. Te elementy są fundamentalne dla zapewnienia bezpieczeństwa użytkowników oraz prawidłowego funkcjonowania instalacji. Tablice ostrzegawcze i informacyjne stanowią istotny element systemu bezpieczeństwa, informując pracowników o potencjalnych zagrożeniach. Odpowiedni dobór zabezpieczeń, takich jak wyłączniki nadprądowe czy różnicowoprądowe, ma na celu ochronę przed skutkami zwarć oraz przeciążeń, co jest wymagane przez normy elektryczne, jak PN-IEC 60364. Oznaczenie przewodów pozwala uniknąć pomyłek w podłączeniach, co może prowadzić do poważnych awarii lub zagrożeń. Istotne jest zrozumienie, że każde z tych działań jest ściśle związane z bezpieczeństwem i funkcjonalnością instalacji. Wiele osób może nie doceniać roli tych detali, skupiając się jedynie na wydajności energetycznej czy estetyce, co może prowadzić do krytycznych błędów w ocenie gotowości instalacji do eksploatacji. W rzeczywistości, zaniedbanie któregokolwiek z wymienionych aspektów może skutkować poważnymi konsekwencjami zarówno w kontekście bezpieczeństwa, jak i przepisów prawa budowlanego oraz norm branżowych.

Pytanie 24

Parametry techniczne którego stycznika z tabeli odpowiadają stycznikowi przedstawionemu na ilustracji?

StycznikZnamionowy prąd pracyLiczba styków NOLiczba styków NC
1.31 A40
2.31 A31
3.40 A31
4.40 A40
Ilustracja do pytania
A. Stycznika 3.
B. Stycznika 1.
C. Stycznika 4.
D. Stycznika 2.
Odpowiedzi niepoprawne wynikają z kilku powszechnych błędów myślowych, które mogą prowadzić do mylnych wniosków. Wiele osób może sugerować, że inne styczniki z tabeli mają podobne parametry, jednak kluczowe jest dokładne zwrócenie uwagi na oznaczenia i specyfikacje techniczne. Przykładowo, stycznik 2 ma inny prąd nominalny, co czyni go niewłaściwym wyborem. Jest to częsty błąd w ocenie, gdzie koncentruje się wyłącznie na liczbie styków, a nie na ich charakterystyce oraz innych istotnych parametrach, takich jak prąd roboczy czy napięcie. Podobne pomyłki można zauważyć przy ocenie stycznika 1 i 4, które również różnią się specyfikacjami od stycznika przedstawionego na ilustracji. W takich przypadkach warto zwrócić uwagę na szczegóły, które odgrywają kluczową rolę w zapewnieniu optymalnego działania urządzeń. W kontekście projektowania instalacji elektrycznych, znajomość dokładnych parametrów styczników oraz ich zgodności z normami, takimi jak IEC 60947, jest niezbędna do osiągnięcia bezpiecznych i efektywnych rozwiązań. Pominięcie tych kryteriów może prowadzić do awarii systemu oraz zwiększenia ryzyka uszkodzeń sprzętu.

Pytanie 25

Określ w kolejności od lewej strony nazwy narzędzi przedstawionych na rysunku.

Ilustracja do pytania
A. Szczypce do zaciskania końcówek, szczypce uniwersalne, wskaźnik napięcia, obcinaczki czołowe, szczypce do ściągania izolacji, wkrętak izolowany płaski.
B. Obcinaczki boczne, przyrząd do ściągania izolacji, szczypce do zaciskania końcówek, szczypce uniwersalne, wkrętak izolowany, wskaźnik napięcia.
C. Obcinaczki czołowe, przyrząd do ściągania izolacji, szczypce uniwersalne, wskaźnik napięcia, szczypce do zaciskania końcówek, wkrętak izolowany płaski.
D. Szczypce uniwersalne, przyrząd do ściągania izolacji, obcinaczki boczne, szczypce do zaciskania końcówek, wkrętak izolowany, wskaźnik napięcia.
Obcinaczki boczne to pierwsze narzędzie na zdjęciu. Mają ostrza skierowane ku sobie, co fajnie ułatwia precyzyjne cięcie drutów i kabli. W branży elektrycznej i podczas domowych napraw to naprawdę przydatne narzędzie. Potem mamy przyrząd do ściągania izolacji, który jest bardzo ważny, kiedy przygotowujemy przewody do połączeń elektrycznych. Dzięki niemu można łatwo usunąć izolację, nie uszkadzając rdzenia przewodu, co jest kluczowe. Dalej są szczypce do zaciskania końcówek, które są super przydatne, bo mocują końcówki kablowe na stałe. To bardzo ważne, żeby połączenia były niezawodne. Słyszałeś o szczypcach uniwersalnych? Te zajmują czwarte miejsce. Są mega wszechstronne i można ich używać do różnych zadań – od cięcia po chwytanie rzeczy. I nie zapomnijmy o wkrętaku izolowanym, bo to ważne narzędzie do pracy przy elektryce. Jest odporny na przebicie prądu. Na końcu mamy wskaźnik napięcia, który jest kluczowy dla bezpieczeństwa. Pozwala sprawdzić, czy jest napięcie, zanim zaczniemy jakąkolwiek robotę.

Pytanie 26

Jakim z podanych rodzajów przewodów powinno się zasilić jednofazowy ruchomy odbiornik?

A. YDY 3×1,5 mm2
B. LGu 3×1,5 mm2
C. OMYp 3×1,5 mm2
D. YDYt 3×1,5 mm2
YDYt 3×1,5 mm2, YDY 3×1,5 mm2 oraz LGu 3×1,5 mm2 to inne typy przewodów, które mają różne zastosowania, lecz nie są odpowiednie do zasilania jednofazowego odbiornika ruchomego. Przewód YDYt, będący wersją przewodu YDY z dodatkowym ekranem, przeznaczony jest głównie do instalacji stałych i nie jest przystosowany do dużych ruchów oraz narażeń mechanicznych. Stosowanie go w aplikacjach ruchomych może prowadzić do uszkodzeń mechanicznych, co z czasem może skutkować awarią lub zagrożeniem bezpieczeństwa. Podobnie, przewód YDY, mimo że jest powszechnie używany w instalacjach elektrycznych, nie zapewnia elastyczności wymaganej w przypadku przewodów zasilających mobilne urządzenia. Z kolei przewód LGu, który jest przeznaczony do instalacji wewnętrznych oraz jako przewód sygnałowy, nie spełnia standardów dotyczących zasilania urządzeń, które są narażone na ruch i zmienne warunki pracy. Użycie tych typów przewodów w aplikacjach, które wymagają mobilności, może prowadzić do ich uszkodzenia, a w konsekwencji do problemów z bezpieczeństwem i niezawodnością zasilania. Wybór niewłaściwego typu przewodu w obszarze zasilania ruchomych odbiorników elektrycznych jest typowym błędem, który wynika z braku zrozumienia różnic pomiędzy przewodami przeznaczonymi do instalacji stałych i mobilnych.

Pytanie 27

Oznaczenie YDYn 4x2,5 mm2 znajdujące się na izolacji dotyczy przewodu

A. oponowego
B. natynkowego
C. samonośnego
D. podtynkowego
Wybór innych odpowiedzi może wynikać z nieporozumień dotyczących klasyfikacji przewodów elektrycznych. Przewody natynkowe są zazwyczaj instalowane w sposób widoczny, na powierzchni ścian, co nie odpowiada charakterystyce przewodów samonośnych, które są przeznaczone do wieszania bez dodatkowego wsparcia. Z kolei przewody oponowe, które są elastyczne i strukturalnie dostosowane do ciężkich warunków, nie są przeznaczone do instalacji na zewnątrz bez dodatkowych osłon, co czyni je nieodpowiednimi do zastosowań samonośnych. Przewody podtynkowe, jak sama nazwa wskazuje, muszą być montowane w murach, co również odróżnia je od przewodów samonośnych. Kluczową różnicą jest to, że przewody samonośne muszą być przystosowane do pracy w warunkach atmosferycznych, co jest potwierdzone odpowiednimi atestami i normami. W rozumieniu tych kategorii, można zauważyć, że mylenie ich zastosowań prowadzi do praktycznych problemów w instalacjach elektrycznych, takich jak uszkodzenia mechaniczne czy niewłaściwe zasilanie urządzeń. Właściwy dobór przewodu jest kluczowy dla zapewnienia bezpieczeństwa i efektywności systemów elektrycznych.

Pytanie 28

Który środek ochrony przeciwporażeniowej przy uszkodzeniu zastosowano w układzie przedstawionym na schemacie?

Ilustracja do pytania
A. Połączenie wyrównawcze.
B. Samoczynne wyłączenie zasilania.
C. Separację odbiornika.
D. Użycie odbiorników II klasy ochronności.
Wybór połączenia wyrównawczego, separacji odbiornika lub użycia odbiorników II klasy ochronności jako środków ochrony przeciwporażeniowej nie jest wystarczający w kontekście przedstawionego układu. Połączenie wyrównawcze, chociaż ważne, ma na celu jedynie zminimalizowanie różnicy potencjałów na obudowie urządzeń, a nie automatyczne przerwanie obwodu. W przypadku uszkodzenia izolacji, połączenie wyrównawcze nie zapewni szybkiej reakcji, co może prowadzić do niebezpiecznych sytuacji. Separacja odbiornika również nie jest skuteczną metodą w przypadku awarii, ponieważ choć eliminuje ryzyko porażenia w pewnych warunkach, nie uniemożliwia bezpośredniego kontaktu z napięciem. Z kolei odbiorniki II klasy ochronności, choć zapewniają dodatkową warstwę ochrony, wymagają ciągłej kontroli i nie są wystarczające, gdy wystąpi awaria. Ważne jest, aby pamiętać, że w sytuacjach awaryjnych, takich jak uszkodzenie izolacji, kluczowe jest natychmiastowe odcięcie zasilania, co realizuje samoczynne wyłączenie zasilania. Wybór niewłaściwych środków ochrony często wynika z niepełnego zrozumienia ich funkcji oraz odpowiednich norm bezpieczeństwa, co może prowadzić do poważnych konsekwencji dla użytkowników systemu. Zrozumienie różnic między tymi metodami jest kluczowe dla zapewnienia skutecznej ochrony przed porażeniem prądem elektrycznym.

Pytanie 29

Zmierzono różnicowy prąd zadziałania wyłączników różnicowoprądowych w instalacji elektrycznej. Jaki wniosek można wyciągnąć z pomiarów przedstawionych w tabeli?

Nr wyłącznikaOznaczenieRóżnicowy prąd zadziałania
IP 304 40-30-AC25 mA
IIP 304 40-100-AC70 mA
IIIP 302 25-30-AC12 mA
A. Wszystkie wyłączniki nadają się do dalszej eksploatacji.
B. Wyłącznik nr II nie nadaje się do dalszej eksploatacji.
C. Żaden wyłącznik nie nadaje się do dalszej eksploatacji.
D. Wyłącznik nr III nie nadaje się do dalszej eksploatacji.
Wyłącznik różnicowoprądowy, zwany także wyłącznikiem RCD, jest kluczowym elementem ochrony w instalacjach elektrycznych. Jego podstawowym zadaniem jest wykrywanie prądów różnicowych, które mogą wskazywać na nieprawidłowości w obwodzie, takie jak zwarcia doziemne. Zgodnie z normą PN-EN 61008-1, wyłącznik powinien zadziałać przy prądzie różnicowym wynoszącym 50% jego wartości nominalnej, co dla wyłącznika nr III wynosi 15 mA (50% z 30 mA). Zmierzona wartość zadziałania tego wyłącznika wynosząca 12 mA jest poniżej wspomnianego progu, co oznacza, że nie zadziałał on w sytuacji, gdy powinien. W praktyce, użycie wyłącznika, który nie spełnia tych norm, stwarza zagrożenie dla użytkowników, ponieważ nie zapewnia on odpowiedniej ochrony przed porażeniem prądem elektrycznym. Dlatego wyłącznik nr III nie nadaje się do dalszej eksploatacji i powinien być wymieniony na nowy, aby zagwarantować bezpieczeństwo instalacji elektrycznej.

Pytanie 30

Jaki przewód na schemacie montażowym instalacji elektrycznej oznacza się symbolem przedstawionym na rysunku?

Ilustracja do pytania
A. Neutralny.
B. Wyrównawczy.
C. Ochronny.
D. Uziemiający.
Niepoprawne odpowiedzi mogą wynikać z błędnych skojarzeń dotyczących funkcji i oznaczeń przewodów w instalacjach elektrycznych. Odpowiedź "Uziemiający" może być mylnie wybrana przez osoby, które nie rozróżniają pomiędzy funkcjami przewodów. Uziemiający przewód rzeczywiście ma na celu odprowadzenie prądu do ziemi, jednak jego oznaczenie jest inne i nie jest to samo co przewód ochronny PE. Warto zaznaczyć, że przewód neutralny, oznaczany często jako N, służy do prowadzenia prądu powracającego do źródła, a jego rola jest zupełnie inna – nie ma on funkcji ochronnej. Wybór odpowiedzi "Wyrównawczy" również może wprowadzać w błąd, gdyż przewody wyrównawcze mają na celu wyrównanie potencjałów w różnych częściach instalacji, co nie odpowiada funkcji przewodu ochronnego, który ma chronić przed porażeniem. Typowe błędy myślowe obejmują mylenie funkcji przewodów oraz brak znajomości standardów dotyczących oznaczeń. Dlatego ważne jest, aby dokładnie zapoznać się z normami branżowymi i edukować się w zakresie oznaczeń, co przyczyni się do lepszego zrozumienia instalacji elektrycznych oraz zwiększy bezpieczeństwo ich użytkowania.

Pytanie 31

Wkładka topikowa przedstawiona na ilustracji przeznaczona jest do zabezpieczenia chronionego przewodu przed skutkami

Ilustracja do pytania
A. wyłącznie zwarć jedynie w obwodach prądu przemiennego.
B. wyłącznie zwarć w obwodach prądu stałego i przemiennego.
C. zwarć i przeciążeń w obwodach prądu stałego i przemiennego.
D. zwarć i przeciążeń jedynie w obwodach prądu przemiennego.
Wkładka topikowa, której użycie pokazano na ilustracji, jest kluczowym elementem zabezpieczenia obwodów elektrycznych przed niebezpiecznymi sytuacjami, takimi jak zwarcia i przeciążenia. Odpowiedź wskazująca na jej zdolność do pracy zarówno w obwodach prądu stałego, jak i przemiennego jest prawidłowa, ponieważ wkładki te są projektowane z myślą o szerokim zastosowaniu w różnych systemach elektrycznych. W praktyce oznacza to, że wkładki mogą być stosowane w instalacjach domowych, przemysłowych oraz w urządzeniach elektronicznych, gdzie ochrona przed nadmiernym prądem jest kluczowa. W przypadku wykrycia zbyt wysokiego natężenia prądu, wkładka topikowa przerywa obwód, co zapobiega uszkodzeniom urządzeń i pożarom. Zgodnie z normami dotyczącymi ochrony obwodów, takimi jak IEC 60269, wkładki topikowe powinny być dobierane odpowiednio do charakterystyki zabezpieczanego obwodu, co podkreśla znaczenie ich właściwego doboru i zastosowania w praktyce.

Pytanie 32

Który element stosowany do sterowania w domowej instalacji elektrycznej przedstawiono na rysunku?

Ilustracja do pytania
A. Regulator oświetlenia.
B. Przekaźnik bistabilny.
C. Przekaźnik priorytetowy.
D. Sterownik rolet.
Pomimo atrakcyjności pozostałych odpowiedzi, żaden z wymienionych elementów nie pasuje do opisu przekaźnika priorytetowego. Regulator oświetlenia jest urządzeniem służącym do dostosowywania natężenia światła w pomieszczeniach, co jest istotne w kontekście oszczędności energetycznej, ale nie ma on funkcji zarządzania priorytetami zasilania. Sterownik rolet z kolei jest dedykowany do automatyzacji otwierania i zamykania rolet, co ma na celu poprawę komfortu użytkowania oraz ochronę przed słońcem, lecz nie ma zastosowania w kontekście zarządzania priorytetami zasilania. Przekaźnik bistabilny, mimo że jest elementem wykorzystywanym w automatyce do przełączania stanów, nie posiada mechanizmu rozróżniania priorytetów dla różnych urządzeń elektrycznych. Wszyscy odpowiadający mogą mylnie sądzić, że elementy te mogą pełnić podobne funkcje, jednak kluczowe różnice funkcjonalne sprawiają, że odpowiedzi te są błędne. Zrozumienie tych różnic jest kluczowe dla projektowania i wdrażania skutecznych systemów automatyki budynkowej, które są zgodne z najlepszymi praktykami branżowymi.

Pytanie 33

Wskaż prawidłowy schemat sterowania oświetleniem z dwóch niezależnych miejsc?

Ilustracja do pytania
A. Schemat 4.
B. Schemat 3.
C. Schemat 2.
D. Schemat 1.
Często, jak się wybiera zły schemat do sterowania oświetleniem, to wynika to z niezrozumienia podstaw, jak działają przełączniki schodowe i do czego służą. Schematy bez przełączników schodowych nie mogą zapewnić pełnej funkcji, której potrzebujemy, żeby włączać światło z dwóch miejsc. Na przykład te, które mają standardowe przełączniki jednobiegunowe, pozwalają tylko na włączenie lub wyłączenie światła z jednego punktu, co uniemożliwia operowanie z drugiego miejsca. Błąd logiczny często bierze się z mylenia, jak działają przełączniki i jakie mają możliwości. Jeśli zastosujemy złe schematy, to może to prowadzić do złego okablowania, co nie tylko utrudnia korzystanie, ale też może być niebezpieczne. Przy projektowaniu instalacji oświetleniowych warto przestrzegać norm i standardów branżowych, jak PN-EN 60669-1, które mówią o bezpiecznym i efektywnym korzystaniu z układów. Dlatego przed wyborem schematu warto dokładnie przeanalizować jego funkcjonalność i zastosowanie w praktyce.

Pytanie 34

Na którym rysunku przedstawiono poprawny sposób podłączenia dwóch wyłączników RCD zgodnie ze schematem?

Ilustracja do pytania
A. A.
B. C.
C. D.
D. B.
Schematy przedstawione w odpowiedziach A, B i D zawierają poważne błędy w podejściu do podłączania wyłączników RCD, które mogą prowadzić do niebezpieczeństw w eksploatacji instalacji elektrycznej. W przypadku odpowiedzi A, wyłączniki RCD są połączone w sposób, który nie oddziela obwodów, co narusza zasadę zapewnienia niezależnej ochrony. Taki układ może prowadzić do sytuacji, w której awaria w jednym obwodzie spowoduje wyłączenie zasilania w obu, co jest niepraktyczne i niebezpieczne. W odpowiedzi B, połączenie RCD nie zapewnia właściwego odseparowania obwodów, co jest kluczowe w lokalizacjach o zwiększonym ryzyku, jak łazienki. Odpowiedź D z kolei również nie spełnia wymagań dotyczących ochrony, ponieważ nie uwzględnia specyficznych potrzeb bezpieczeństwa w różnych pomieszczeniach. W każdej z tych odpowiedzi brak jest zrozumienia podstawowych zasad dotyczących ochrony przed porażeniem elektrycznym, co może prowadzić do poważnych konsekwencji zdrowotnych. W kontekście norm PN-IEC 61008, kluczowe jest, aby każdy obwód był chroniony oddzielnie, co nie tylko zwiększa bezpieczeństwo, ale także ułatwia identyfikację problemów w instalacji. Niezrozumienie tego aspektu prowadzi do błędnych wniosków i, co gorsza, do niebezpiecznych układów elektrycznych.

Pytanie 35

Który łącznik przedstawiono na rysunku?

Ilustracja do pytania
A. Podwójny krzyżowy.
B. Dwubiegunowy.
C. Świecznikowy.
D. Podwójny schodowy.
Wybór odpowiedzi, która nie jest prawidłowa, często wynika z nieporozumienia dotyczącego funkcji różnorodnych rodzajów łączników elektrycznych. Na przykład, łącznik dwubiegunowy jest zaprojektowany do włączania i wyłączania jednego obwodu elektrycznego, co nie odpowiada funkcjonalności łącznika podwójnego schodowego, który umożliwia kontrolę dwóch niezależnych obwodów. Inna niepoprawna odpowiedź, łącznik świecznikowy, jest stosowany w instalacjach oświetleniowych, ale jego zastosowanie jest ograniczone do sterowania jednym źródłem światła w różnych punktach z jednego miejsca. Z kolei łącznik podwójny krzyżowy służy do bardziej zaawansowanej konfiguracji, gdzie możliwe jest sterowanie jednym źródłem światła z trzech lub więcej miejsc, jednak nie jest odpowiedni dla prostych instalacji schodowych. Użytkownicy, wybierając te błędne odpowiedzi, mogą mylić funkcje różnych łączników lub nie mieć pełnej wiedzy na temat ich zastosowania. Kluczowe jest zrozumienie, że w przypadku schodów, gdzie bezpieczeństwo i wygoda są priorytetami, zastosowanie łącznika podwójnego schodowego jest najbardziej odpowiednie. Właściwa instalacja zgodna z przepisami i standardami bezpieczeństwa zapewnia efektywne i bezpieczne oświetlenie, co może być pomijane w przypadku niewłaściwego doboru łączników.

Pytanie 36

Podczas wymiany uszkodzonego gniazda wtykowego w instalacji podtynkowej, prowadzonej w rurach karbowanych, zauważono, że w wyniku poluzowania zacisku, izolacja jednego z przewodów na długości kilku centymetrów straciła swoją elastyczność i zmieniła kolor. Jak powinno się naprawić to uszkodzenie?

A. Polakierować uszkodzoną izolację przewodu
B. Nałożyć gumowy wąż na uszkodzoną izolację przewodu
C. Wymienić wszystkie przewody na nowe o większym przekroju
D. Wymienić uszkodzony przewód na nowy o takim samym przekroju
Nałożenie gumowego wężyka na uszkodzoną izolację przewodu może wydawać się szybkim i prostym rozwiązaniem, jednak w rzeczywistości jest to bardzo niewłaściwe podejście. Tego typu naprawy są tymczasowe i nie eliminują podstawowego problemu, jakim jest uszkodzenie izolacji. Izolacja przewodów jest kluczowa dla bezpieczeństwa instalacji elektrycznych, a jej uszkodzenie może prowadzić do nieprzewidywalnych konsekwencji. Polakierowanie uszkodzonej izolacji nie tylko nie przywróci jej pierwotnych właściwości, ale może również zainicjować reakcje chemiczne, które dodatkowo osłabią izolację. Wymiana wszystkich przewodów na nowe o większym przekroju nie jest uzasadniona, ponieważ przewody muszą być dobrane zgodnie z obciążeniem instalacji oraz wymaganiami projektowymi. Takie podejście może prowadzić do nadmiernych kosztów oraz problemów ze zgodnością z obowiązującymi normami. Właściwe zarządzanie instalacjami elektrycznymi polega na precyzyjnym diagnozowaniu problemów i podejmowaniu kroków, które usuwają źródła ryzyka, a nie na powierzchownych naprawach. Dlatego kluczowym elementem w pracy z instalacjami elektrycznymi jest dążenie do całkowitego rozwiązania problemów, a nie ich maskowania.

Pytanie 37

Według którego schematu należy podłączyć miernik parametrów RCD w celu pomiaru prądu wyzwolenia i czasu zadziałania wyłącznika różnicowoprądowego?

Ilustracja do pytania
A. B.
B. A.
C. C.
D. D.
Podłączenie miernika parametrów RCD według innych schematów niż C może prowadzić do błędnych wyników pomiarów lub całkowitego braku zadziałania urządzenia. W przypadkach, gdy miernik nie jest prawidłowo podłączony do przewodów L, N oraz PE, nie jest w stanie zarejestrować wartości prądu upływu, co jest kluczowe dla oceny działania wyłącznika różnicowoprądowego. Na przykład, podłączenie miernika tylko do przewodu L lub N może spowodować, że pomiary będą niekompletne, a tym samym nieodpowiednie dla oceny bezpieczeństwa instalacji. Wiele osób błędnie zakłada, że wystarczy podłączyć miernik w sposób nieprzemyślany, co prowadzi do subiektywnej oceny jego możliwości. Jest to niezgodne z zasadami pomiarów elektrycznych i stanowi poważne naruszenie ogólnych zasad bezpieczeństwa. W praktyce, nieprawidłowe podłączenie może skutkować brakiem odpowiedzi RCD na prąd upływu, co jest bezpośrednim zagrożeniem dla użytkowników. Zrozumienie, jak poprawnie podłączyć miernik, jest kluczowe dla właściwej oceny oraz wyeliminowania potencjalnych zagrożeń związanych z użytkowaniem instalacji elektrycznych. Kluczowe jest również zapoznanie się z odpowiednimi normami oraz wytycznymi, które regulują procedury pomiarowe, aby uniknąć typowych błędów w analizach parametrów elektrycznych.

Pytanie 38

Jaką metodę należy zastosować do bezpośredniego pomiaru rezystancji przewodów?

A. watomierz oraz amperomierz
B. analogowy omomierz
C. amperomierz oraz woltomierz
D. cyfrowy watomierz
Omomierz analogowy jest specjalistycznym narzędziem pomiarowym, które pozwala na dokładne mierzenie rezystancji przewodów. Jego działanie opiera się na zastosowaniu prądu stałego, który przepływa przez przewód, a następnie mierzy spadek napięcia. W oparciu o te dane oblicza się wartość rezystancji zgodnie z prawem Ohma, które mówi, że R = U/I, gdzie R to rezystancja, U to napięcie, a I to natężenie prądu. W praktyce omomierze są często wykorzystywane do lokalizacji i diagnozy usterek w instalacjach elektrycznych, oceny stanu przewodów w urządzeniach oraz podczas wykonywania przeglądów technicznych. Stosowanie omomierza analogowego ma swoje zalety, takie jak prostota obsługi oraz bezpośrednie odczyty na skali, co może być korzystne w przypadku szybkich pomiarów. Dobrym przykładem zastosowania omomierza jest kontrola przewodów uziemiających, gdzie niska rezystancja jest kluczowa dla bezpieczeństwa systemów elektrycznych, co jest zgodne z normami PN-EN 62305 dotyczącymi ochrony odgromowej i uziemień.

Pytanie 39

Jakie elementy nie są kontrolowane podczas oględzin urządzeń napędowych w czasie ich postoju?

A. stanu pierścieni ślizgowych oraz komutatorów
B. poziomu drgań i skuteczności układu chłodzenia
C. ustawienia zabezpieczeń i stanu osłon części wirujących
D. stanu przewodów ochronnych oraz ich połączeń
W kontekście oględzin urządzeń napędowych w czasie postoju, istotne jest zrozumienie zakresu przeglądów i ich celów. Sprawdzanie stanu przewodów ochronnych i ich podłączenia to kluczowy aspekt zapewnienia bezpieczeństwa. Przewody te pełnią istotną rolę w ochronie operatorów przed porażeniem prądem elektrycznym oraz awariami urządzeń. Oprócz tego, poziom drgań jest ważnym wskaźnikiem stanu mechanicznego urządzeń; nadmierne drgania mogą wskazywać na niewłaściwe wyważenie, zużycie łożysk lub inne problemy, które mogą prowadzić do krytycznych awarii. Układ chłodzenia także zasługuje na szczególną uwagę, ponieważ jego nieprawidłowe działanie może prowadzić do przegrzewania się maszyn i ich uszkodzeń, co wymagałoby kosztownych napraw. Z kolei kontrola ustawienia zabezpieczeń oraz stanu osłon części wirujących jest kluczowa dla ochrony personelu i zapobiegania wypadkom. Często pomija się te aspekty, co prowadzi do niebezpiecznych sytuacji. Prawidłowe podejście do oględzin urządzeń napędowych wymaga zatem kompleksowej analizy wszystkich wymienionych elementów, aby zapewnić nieprzerwaną operacyjność i bezpieczeństwo. Zatem zrozumienie, które elementy wymagają regularnych kontroli, a które są mniej krytyczne, jest niezbędne dla efektywnego zarządzania bezpieczeństwem i wydajnością urządzeń.

Pytanie 40

Do których zacisków przekaźnika zmierzchowego przedstawionego na schemacie należy podłączyć czujnik światła?

Ilustracja do pytania
A. L i 10
B. 7 i 9
C. N i 12
D. 10 i 12
Błędne odpowiedzi sugerują nieprawidłowe podejście do podłączania czujnika światła do przekaźnika zmierzchowego. Zaciski L i 10 oraz 10 i 12 są często używane do zasilania przekaźnika i nie są przeznaczone do podłączania czujników światła. Istotne jest, aby zrozumieć, że każdy zacisk na przekaźniku ma swoje przypisane funkcje, a ich niewłaściwe użycie może prowadzić do awarii systemu lub błędnego działania urządzeń. Ponadto, podłączanie czujnika do niewłaściwych zacisków może skutkować brakiem reakcji na zmiany w natężeniu światła, co neguje zasadę automatyzacji. Często popełnianym błędem jest zakładanie, że wszystkie zaciski są uniwersalne, co jest mylnym przekonaniem. W rzeczywistości, każdy system ma swoje specyfikacje, które należy ścisłe przestrzegać, aby zapewnić optymalne działanie. W przemyśle elektrycznym istnieją standardy dotyczące podłączania i konfiguracji sprzętu, które nie mogą być ignorowane. Wiedza na temat oznaczeń zacisków i ich funkcji jest kluczowa dla prawidłowego montażu i użytkowania urządzeń elektrycznych.