Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Automatyk
  • Kwalifikacja: ELM.01 - Montaż, uruchamianie i obsługiwanie układów automatyki przemysłowej
  • Data rozpoczęcia: 9 grudnia 2025 15:13
  • Data zakończenia: 9 grudnia 2025 15:25

Egzamin zdany!

Wynik: 37/40 punktów (92,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W dokumentacji powykonawczej nie jest wymagane umieszczać

A. warunków gwarancji.
B. faktur lub innych dowodów zakupu z cenami.
C. certyfikatów użytych materiałów.
D. protokołów pomiarowych.
Faktury i inne dowody zakupu z cenami to dokumenty, które są istotne z punktu widzenia księgowego i finansowego, ale niekoniecznie muszą być częścią dokumentacji powykonawczej. Taka dokumentacja ma na celu przede wszystkim dostarczenie pełnych informacji technicznych dotyczących zrealizowanego projektu budowlanego lub instalacyjnego. Standardy branżowe, jak np. PN-EN 14351 czy PN-EN 1090, koncentrują się na zapewnieniu zgodności wykonanych prac z wymaganiami technicznymi i normami, dlatego też zawierają protokoły pomiarowe, certyfikaty użytych materiałów oraz warunki gwarancji. Te elementy świadczą o jakości wykonania i zgodności z przepisami. Faktury natomiast dotyczą aspektu ekonomicznego projektu i są wymagane raczej przez dział finansowy niż w kontekście odbioru technicznego. Moim zdaniem, znajomość różnicy między dokumentacją techniczną a finansową jest kluczowa w pracy inżynierskiej, ponieważ pozwala na lepsze zrozumienie potrzeb różnych działów w firmie. W codziennej praktyce warto pamiętać, że chociaż faktury są ważne dla rozliczeń, to w kontekście technicznym najważniejsza jest zgodność z projektem i normami.

Pytanie 2

Który układ łagodnego rozruchu (softstart) należy zastosować do silnika 1-fazowego prądu przemiennego o mocy 0,3 kW, jeżeli będzie on zamontowany bez dodatkowej obudowy, bezpośrednio przy silniku pracującym w środowisku wysokiego zapylenia?

Ilustracja do pytania
A. ATS01N103
B. ATS01N109
C. ATS01N212
D. ATS01N125
Wybór układu ATS01N125 jest trafny ze względu na kilka kluczowych czynników. Po pierwsze, ten model softstartu posiada obudowę o stopniu ochrony IP67, co oznacza, że jest całkowicie odporny na kurz i może być zanurzony w wodzie do pewnej głębokości. W przypadku środowisk o wysokim zapyleniu, taki poziom ochrony jest absolutnie niezbędny, aby zapewnić długotrwałą i niezawodną pracę urządzenia. Ponadto, ATS01N125 jest przystosowany do pracy z silnikami o mocy 2,2 kW przy napięciu 1x230 V, co w pełni zaspokaja wymagania dla silnika 1-fazowego o mocy 0,3 kW. Moim zdaniem, dobór odpowiedniego stopnia ochrony IP to standardowa praktyka inżynierska, która zwiększa bezpieczeństwo i trwałość instalacji. Warto również pamiętać, że stosowanie softstartów pomaga w łagodnym uruchamianiu silników, zmniejszając obciążenie mechaniczne i przedłużając żywotność całego układu. Na rynku można znaleźć wiele rozwiązań, ale zawsze warto kierować się nie tylko mocą, ale i środowiskowymi wymaganiami, aby unikać problemów z eksploatacją.

Pytanie 3

Na podstawie zamieszczonych w tabeli danych katalogowych przetwornika różnicy ciśnień dobierz zakres napięcia zasilania dla prądowego sygnału wyjściowego.

Wybrane dane katalogowe przetwornika różnicy ciśnień
Zasilanie
[V DC]
  • 15 ÷ 30 (sygn. wyj. 0 ÷ 10 V)
  • 10 ÷ 30 (sygn. wyj. 0 ÷ 5 V)
  • 5 ÷ 12 (sygn. wyj. 0 ÷ 3 V)
  • 10 ÷ 36 (sygn. wyj. 4 ÷ 20 mA)
Sygnały
wyjściowe
  • 4 ÷ 20 mA
  • 0 ÷ 10 V, 0 ÷ 5 V, 1 ÷ 5 V
  • 0 ÷ 3 V (low-power)
  • Możliwe jest również wykonanie przetworników
    z dowolnym napięciowym sygnałem wyjściowym,
    mniejszym od 0 ÷ 10 V (np. 0 ÷ 4 V, 2 ÷ 8 V itp.)
A. 5 + 12 V DC
B. 10 + 30 V DC
C. 15 + 30 V DC
D. 10 + 36 V DC
Rozważając wybór napięcia zasilania dla prądowego sygnału wyjściowego, można łatwo popełnić błąd, ignorując specyficzne wymagania przetwornika różnicy ciśnień. Napięcia takie jak 5 ÷ 12 V DC, 10 ÷ 30 V DC, czy 15 ÷ 30 V DC odnoszą się do sygnałów napięciowych, które mogą mieć inne zastosowanie i charakterystykę. Na przykład, sygnały napięciowe są bardziej podatne na zakłócenia elektromagnetyczne i spadki napięcia na dużych odległościach, co czyni je mniej odpowiednimi dla wielu aplikacji przemysłowych. Typowym błędem myślowym jest traktowanie wszystkich sygnałów wyjściowych jako równorzędnych pod względem wymagań zasilania. W rzeczywistości, każdy typ sygnału ma swoje unikalne wymagania zasilania, które muszą być dokładnie przestrzegane. W branży automatyki, gdzie precyzja i niezawodność są kluczowe, ignorowanie tych specyfikacji może prowadzić do błędnych odczytów, a w konsekwencji do niepoprawnego działania całego systemu. Poprawne zrozumienie specyfikacji przetwornika i odpowiednie dopasowanie parametrów zasilania są kluczowe dla osiągnięcia optymalnej wydajności systemu. Takie niedopasowanie może skutkować także zwiększonym zużyciem energii, co obniża efektywność kosztową instalacji. Dlatego zrozumienie i przestrzeganie szczegółowych specyfikacji producenta jest nie tylko dobrą praktyką, ale wręcz koniecznością w profesjonalnym projektowaniu systemów automatyki.

Pytanie 4

Elektronarzędzie, którym można wykonywać precyzyjną obróbkę mechaniczną polegającą na frezowaniu i szlifowaniu powierzchni, przedstawiono

A. Elektronarzędzie 4
Ilustracja do odpowiedzi A
B. Elektronarzędzie 1
Ilustracja do odpowiedzi B
C. Elektronarzędzie 2
Ilustracja do odpowiedzi C
D. Elektronarzędzie 3
Ilustracja do odpowiedzi D
Wybrałeś odpowiedź numer dwa, która przedstawia narzędzie znane jako miniszlifierka. To urządzenie jest idealne do precyzyjnej obróbki mechanicznej, takiej jak frezowanie, szlifowanie, grawerowanie czy polerowanie. Miniszlifierki są często używane w modelarstwie, jubilerstwie, a także w elektronice do prac wymagających dużej precyzji. Dzięki możliwości zamontowania różnych końcówek, takich jak frezy, tarcze szlifierskie, czy kamienie polerskie, narzędzie to jest bardzo wszechstronne. W praktyce, miniszlifierki pozwalają na osiągnięcie dokładności, która jest nieosiągalna dla większych narzędzi, co jest kluczowe w wielu branżach. Standardy branżowe zalecają stosowanie miniszlifierek w miejscach trudno dostępnych, gdzie wymagana jest precyzyjna obróbka materiału. Zapewnienie odpowiedniej prędkości obrotowej i dobór właściwych akcesoriów są kluczowe, aby osiągnąć zamierzony efekt i zachować bezpieczeństwo pracy. Miniszlifierki są również bardzo popularne wśród hobbystów, co dodatkowo świadczy o ich funkcjonalności i niezawodności.

Pytanie 5

Który element silnika tłokowego wskazuje strzałka?

Ilustracja do pytania
A. Korbowód.
B. Dźwignię.
C. Wodzik.
D. Wał korbowy.
Wał korbowy to kluczowy element silnika tłokowego, który przekształca ruch posuwisto-zwrotny tłoka w ruch obrotowy. Dzięki temu możemy wytwarzać moment obrotowy wykorzystywany do napędu pojazdu. Wał korbowy jest zwykle wykonany z wytrzymałych materiałów, takich jak stal stopowa, aby sprostać obciążeniom dynamicznym i zmiennym, jakie działają na silnik podczas pracy. W konstrukcji silnika wał korbowy jest połączony z korbowodem, który łączy go bezpośrednio z tłokiem. Wał korbowy musi być doskonale wyważony, aby zapobiec drganiom, które mogłyby prowadzić do uszkodzenia innych komponentów. W praktyce, wał korbowy jest podparty na łożyskach ślizgowych, co zmniejsza tarcie i zapewnia płynność ruchu. Warto również wspomnieć o nowoczesnych rozwiązaniach, jak zastosowanie materiałów kompozytowych w produkcji wałów korbowych, co jest trendem w przemyśle motoryzacyjnym, dążącym do zmniejszenia masy silnika i poprawy jego efektywności. Z mojego doświadczenia, dobrze zaprojektowany wał korbowy wpływa znacząco na żywotność i osiągi silnika.

Pytanie 6

Element zaznaczony na ilustracji strzałką, posiadający jedno uzwojenie, umożliwiający w zależności od konstrukcji obniżanie lub podwyższanie wartości napięcia przemiennego, to

Ilustracja do pytania
A. opornik dekadowy.
B. silnik prądu stałego.
C. multimetr cyfrowy.
D. autotransformator.
Autotransformator to bardzo ciekawe urządzenie, które często znajduje zastosowanie w laboratoriach i różnych systemach elektrycznych. Ma jedno uzwojenie, które pełni zarówno funkcję pierwotną, jak i wtórną. Dzięki temu jest bardziej kompaktowy i efektywny kosztowo niż standardowy transformator dwuuzwojeniowy. Często używa się go do regulacji napięcia przemiennego w sposób płynny. To znaczy, że możesz precyzyjnie dostosować napięcie wyjściowe do swoich potrzeb, co jest niezwykle przydatne w sytuacjach, gdy wymagana jest zmienna wartość napięcia, np. w testach laboratoryjnych czy w zasilaniu urządzeń elektrycznych o różnych wymaganiach. W praktyce autotransformatory są używane w przemyśle do zasilania maszyn o różnych standardach napięcia oraz w systemach przesyłowych do regulacji poziomów napięcia. Co ciekawe, pomimo swojej prostoty, autotransformatory muszą być używane z odpowiednią ostrożnością. Dobry projekt i odpowiednie zabezpieczenia to klucz do ich bezpiecznego użycia. Warto też pamiętać, że zgodnie z normami, ich stosowanie powinno uwzględniać specyficzne wymagania systemów elektrycznych, aby uniknąć przeciążeń i uszkodzeń.

Pytanie 7

W której przemysłowej sieci komunikacyjnej stosowane jest urządzenie przedstawione na rysunku?

Ilustracja do pytania
A. DeviceNet
B. Profinet
C. Modbus
D. Profibus
To urządzenie to switch przemysłowy, wykorzystywany w sieciach Profinet. Profinet to nowoczesny otwarty standard przemysłowy, który opiera się na technologii Ethernetu. Jest to jeden z najczęściej wykorzystywanych protokołów w automatyce przemysłowej. Umożliwia integrację systemów automatyki z IT, co jest kluczowe w erze Przemysłu 4.0. Switche takie jak ten zarządzają ruchem danych w sieci, co pozwala na szybki i niezawodny przesył informacji między urządzeniami. Dzięki temu można łatwo monitorować i kontrolować procesy produkcyjne. Standard Profinet zapewnia wysoką wydajność i niezawodność, a także łatwość integracji z innymi systemami. Co ciekawe, Profinet obsługuje również przesył danych w czasie rzeczywistym, co jest niezbędne w wielu aplikacjach przemysłowych. Moim zdaniem, znajomość tego standardu to podstawa dla każdego inżyniera automatyki, zwłaszcza w kontekście rosnącego znaczenia sieci przemysłowych.

Pytanie 8

Który miernik należy zastosować w miejscu oznaczonym literą X na schemacie elektrycznym przedstawionym na rysunku?

Ilustracja do pytania
A. Woltomierz.
B. Amperomierz.
C. Omomierz.
D. Częstotliwościomierz.
Świetnie, wybrałeś amperomierz! To prawidłowy wybór, bo w miejscu oznaczonym literą X chcemy zmierzyć natężenie prądu płynącego przez rezystory R2 i R3, które są połączone szeregowo. Amperomierz to przyrząd, który włączamy w obwód szeregowo, tak aby prąd płynął przez niego, co pozwala na dokładny pomiar. Moim zdaniem, to jedno z podstawowych zastosowań amperomierza, bo często chcemy wiedzieć, jaki prąd płynie przez konkretne elementy obwodu. Ważne jest, aby pamiętać, że amperomierz ma bardzo mały opór własny, co minimalizuje wpływ na obwód. Standardy branżowe, takie jak IEC, podkreślają konieczność właściwego podłączenia amperomierzy, aby uniknąć błędów pomiarowych. W praktyce, amperomierze są nieodzowne w diagnostyce i utrzymaniu systemów elektrycznych, zarówno w elektronice konsumenckiej, jak i w systemach przemysłowych. Dobrze, że o tym pamiętasz!

Pytanie 9

Urządzenie połączone ze sterownikiem PLC, oznaczone ADMC-1801, pełni w układzie przedstawionym na rysunku funkcję

Ilustracja do pytania
A. modułu wyjściowego.
B. modułu wejściowego.
C. zasilacza sterownika PLC.
D. interfejsu komunikacyjnego.
Urządzenie oznaczone jako ADMC-1801 działa jako moduł wejściowy w systemie PLC. W kontekście automatyki przemysłowej, moduły wejściowe mają kluczowe znaczenie, ponieważ umożliwiają sterownikowi PLC odbieranie sygnałów z otoczenia, takich jak temperatury, ciśnienia lub stanów przełączników. W tym przypadku, ADMC-1801 jest połączony z czujnikiem PT100, co wskazuje na pomiar temperatury. Moduły wejściowe przetwarzają sygnały analogowe lub cyfrowe na format, który może być zrozumiany przez PLC. To zgodne z dobrymi praktykami branżowymi, które zalecają użycie dedykowanych modułów do konkretnych typów sygnałów, co optymalizuje dokładność i niezawodność systemu. W praktyce, umiejętne korzystanie z modułów wejściowych pozwala na precyzyjne sterowanie procesami technologicznymi, co z kolei przekłada się na zwiększoną efektywność produkcji i minimalizację błędów. Moim zdaniem, zrozumienie roli takich modułów to podstawa w automatyce, bo pozwala na lepsze projektowanie i implementowanie systemów automatyki, zgodnie z normami takimi jak IEC 61131.

Pytanie 10

Urządzenie przedstawione na ilustracji to

Ilustracja do pytania
A. sterownik PLC.
B. panel operatorski.
C. zasilacz impulsowy.
D. koncentrator sieciowy.
To urządzenie to rzeczywiście sterownik PLC, co jest skrótem od Programmable Logic Controller. PLC to podstawowe narzędzie w automatyce przemysłowej, które służy do sterowania maszynami i procesami. W praktyce, PLC jest wykorzystywany do realizacji funkcji logicznych, czasowych, zliczania i sekwencyjnych, które są niezbędne w kontrolowaniu złożonych systemów produkcyjnych. Moim zdaniem, największą zaletą PLC jest jego elastyczność - można go łatwo zaprogramować i dostosować do różnych aplikacji, co znacznie ułatwia pracę inżynierów automatyki. Warto również podkreślić, że PLC są projektowane z myślą o pracy w trudnych warunkach przemysłowych, co oznacza, że są odporne na wstrząsy, wibracje i zakłócenia elektromagnetyczne. Standardy, takie jak IEC 61131, definiują języki programowania dla PLC, co ułatwia naukę i przenoszenie wiedzy między różnymi platformami. W praktyce, sterowniki PLC znajdują zastosowanie w różnych branżach, od produkcji samochodów po przemysł spożywczy, wszędzie tam, gdzie potrzebna jest precyzyjna i niezawodna kontrola procesów. To naprawdę niesamowite, jak wszechstronne są te urządzenia!

Pytanie 11

Który zawór rozdzielający należy zamontować w układzie elektropneumatycznym przedstawionym na rysunku?

Liczba cewek1212
Typ zaworu4/24/35/25/2
Biegunowość zasilaniadowolnadowolnadowolnadowolna
Zawór1234
Ilustracja do pytania
A. 4
B. 1
C. 2
D. 3
Wybór zaworu numer 4 jest właściwy, ponieważ w układzie elektropneumatycznym przedstawionym na schemacie wymagane jest użycie zaworu typu 5/2 z dwiema cewkami. Tego typu zawory pozwalają na precyzyjne sterowanie ruchem siłownika, co jest kluczowe w systemach, które wymagają dwukierunkowego działania. Zawory 5/2 z dwiema cewkami stosuje się w bardziej zaawansowanych aplikacjach, gdzie potrzeba większej kontroli nad siłownikiem. Dwie cewki umożliwiają przełączanie pomiędzy dwoma stanami roboczymi, co jest istotne w kontekście pracy z zaawansowanymi systemami automatyki. Z mojego doświadczenia, takie rozwiązanie jest standardem w branży przemysłowej, szczególnie tam, gdzie liczy się niezawodność i precyzja działania. Dodatkowo, zawory te pozwalają na łatwe przełączanie biegunowości, co zwiększa ich uniwersalność. W praktyce, zastosowanie tego typu zaworu w układach pneumatycznych zwiększa efektywność i bezpieczeństwo pracy, minimalizując jednocześnie ryzyko awarii. To także zgodne z dobrymi praktykami inżynierskimi, które zalecają użycie zaworów 5/2 w systemach wymagających niezawodnego sterowania kierunkiem przepływu powietrza.

Pytanie 12

Urządzenie, którego schemat przedstawiono na rysunku, pracuje w sposób oscylacyjny. Który zawór należy zamontować w miejscu oznaczonym X, aby prędkość wysuwania tłoczyska siłownika była większa od prędkości wsuwania?

Ilustracja do pytania
A. Progowy.
B. Dławiąco-zwrotny.
C. Przełącznik obiegu.
D. Podwójnego sygnału.
Odpowiedź dławiąco-zwrotny jest prawidłowa, ponieważ ten zawór pozwala na regulację przepływu cieczy lub powietrza w jednym kierunku, jednocześnie umożliwiając swobodny przepływ w przeciwnym. W kontekście siłowników dwustronnego działania, taki zawór umożliwia precyzyjne dostosowanie prędkości wysuwania tłoczyska, co jest kluczowe w wielu aplikacjach przemysłowych oraz automatyce. Dzięki temu można zwiększyć efektywność i precyzję działania maszyn. Instalacja zaworu dławiąco-zwrotnego to standardowa praktyka w systemach pneumatycznych i hydraulicznych, gdzie kontrola prędkości ruchu jest istotna. Praktyczne zastosowanie takiego rozwiązania można znaleźć w liniach produkcyjnych, gdzie różne fazy operacji muszą być zsynchronizowane. Ten zawór jest również często wykorzystywany w maszynach CNC, gdzie precyzyjne sterowanie elementami roboczymi jest niezbędne. Dzięki zastosowaniu zaworów dławiąco-zwrotnych można również zmniejszyć zużycie energii poprzez optymalizację przepływu, co jest ważne z punktu widzenia ekonomii produkcji i ochrony środowiska.

Pytanie 13

Aby przekaźnik czasowy PCU-504 realizował funkcję opóźnionego załączenia po czasie 2 minut, kolejno przełączniki P1, P2 i P3 powinny być ustawione w następujących pozycjach:

Ilustracja do pytania
A. P1 – 1, P2 – 1, P3 – A10
B. P1 – 1, P2 – 2, P3 – B0,1
C. P1 – 2, P2 – 1, P3 – B10
D. P1 – 2, P2 – 2, P3 – A0,1
Ustawienia przekaźnika czasowego PCU-504 są kluczowe dla jego prawidłowego działania w funkcji opóźnionego załączenia. Zastosowanie opcji P1 – 2, P2 – 1, P3 – B10 oznacza, że ustawiamy 2 na pokrętle jednostek, 1 na dziesiątkach oraz wybieramy funkcję opóźnionego załączenia z mnożnikiem 10. Opóźnienie wynosi 2 minuty, co jest wynikiem ustawienia wartości 2 na pokrętle jednostek, a wartość 10 na pokrętle mnożnika (B10 na P3). Funkcja opóźnionego załączenia jest przydatna w wielu zastosowaniach, na przykład w systemach oświetleniowych czy wentylacyjnych, gdzie chcemy uniknąć nagłych skoków mocy. W praktyce, takie ustawienia pomagają w utrzymaniu stabilności systemu oraz zmniejszają obciążenie mechaniczne urządzeń. Standardy instalacji elektrycznych zalecają stosowanie przekaźników czasowych do ochrony obwodów przed przeciążeniem. Z mojego doświadczenia, poprawne ustawienie tych pokręteł może znacząco zwiększyć wydajność i żywotność systemu. Pamiętajcie, że właściwa konfiguracja to podstawa w automatyce przemysłowej, dlatego zawsze warto dokładnie analizować instrukcje i specyfikacje sprzętu.

Pytanie 14

Przedstawiony fragment programu realizuje funkcję

Ilustracja do pytania
A. AND
B. NOR
C. OR
D. NAND
Odpowiedź OR jest poprawna, ponieważ program zrealizowany w języku drabinkowym (Ladder Diagram) wykorzystuje operację OR, która jest logicznym lub. Instrukcja LD (Load) ładuje wartość wejścia X1:I0.0, a następnie instrukcja OR dodaje do tego wartość wejścia X2:I0.1. Wynik operacji jest zapisywany w wyjściu Y1:Q0.0 za pomocą instrukcji ST (Store). Logika OR działa w ten sposób, że wynik jest prawdą, jeśli przynajmniej jedno z wejść jest prawdą. Praktyczne zastosowanie takiego schematu można znaleźć w automatyce przemysłowej, na przykład kiedy chcemy uruchomić maszynę, jeśli jeden z dwóch różnych czujników wykryje określony stan. Standardy programowania PLC, takie jak IEC 61131-3, wskazują na stosowanie drabinkowych schematów do tworzenia czytelnych logik dla techników. Logika OR jest jednym z podstawowych bloków budujących bardziej złożone systemy automatyki, gdzie często wymagana jest elastyczność w reagowaniu na wiele warunków wejściowych. Moim zdaniem w automatyce przemysłowej umiejętność czytania i interpretacji takich prostych programów jest kluczowa do szybkiego diagnozowania i naprawy systemów.

Pytanie 15

Na rysunku przedstawiono schemat blokowy regulatora

Ilustracja do pytania
A. PD
B. PI
C. P
D. PID
Świetnie, że wskazałeś PID jako poprawną odpowiedź! Ten schemat blokowy rzeczywiście pokazuje regulator PID, który składa się z trzech członów: proporcjonalnego (P), całkującego (I) i różniczkującego (D). Każdy z tych członów odpowiada za określony aspekt działania regulatora. Proporcjonalny człon (Kp) reaguje proporcjonalnie do błędu, co pozwala na szybkie reagowanie na zmiany. Całkujący człon (1/TiS) eliminuje uchyb ustalony przez sumowanie błędu w czasie, co jest kluczowe, gdy potrzebujemy wysokiej precyzji i dokładności. Różniczkujący człon (TdS) z kolei przewiduje przyszłe zachowanie układu na podstawie szybkości zmiany błędu, co pomaga w tłumieniu oscylacji i nadmiernych przeregulowań. W praktyce, PID jest stosowany w różnych branżach, od przemysłu chemicznego po systemy sterowania temperaturą, ponieważ pozwala na precyzyjne i stabilne sterowanie. Ciekawe jest to, że odpowiednie dostrojenie tych trzech parametrów (Kp, Ti, Td) może znacząco poprawić wydajność systemu. Warto również wspomnieć, że w dziedzinie automatyki istnieją różne metody konfiguracji PID, jak Ziegler-Nichols czy Cohen-Coon, które pomagają w ustalaniu optymalnych wartości tych parametrów.

Pytanie 16

Przedstawione na rysunkach narzędzia służą do

Ilustracja do pytania
A. zaciskania wtyków RJ45.
B. cięcia przewodów.
C. zaciskania końcówek tulejkowych.
D. ściągania izolacji.
Dobrze, że wybrałeś tę odpowiedź. Narzędzia przedstawione na rysunkach to zaciskarki do końcówek tulejkowych. W praktyce, takie tulejkowe końcówki są używane do zabezpieczenia końcówek przewodów, co zapobiega ich strzępieniu się i zapewnia lepsze połączenie elektryczne. To niezwykle ważne w instalacjach elektrycznych, gdzie zależy nam na trwałości i bezpieczeństwie połączeń. Zaciskarki umożliwiają precyzyjne i mocne zaciśnięcie tulejki na przewodzie, co jest zgodne ze standardami branżowymi, takimi jak normy IEC czy DIN. Prawidłowo zaciśnięta tulejka zapewnia nie tylko mechaniczne, ale i elektryczne bezpieczeństwo połączenia, co jest kluczowe w zapobieganiu awariom i stratom energii. Warto pamiętać, że używanie odpowiednich narzędzi i technik w pracy z przewodami jest jednym z fundamentów profesjonalizmu w branży elektrycznej. Zaciskarki tego typu mogą mieć regulowany mechanizm zaciskowy, co pozwala na dostosowanie do różnych rozmiarów tulejek, a ich ergonomiczna konstrukcja ułatwia pracę nawet w trudnych warunkach.

Pytanie 17

Na podstawie fragmentu karty katalogowej zaworu elektromagnetycznego określ maksymalne wartości ciśnienia roboczego i temperatury medium.

Fragment karty katalogowej
Typ modułu pneumatykizawór elektromagnetyczny
GwintBSP 3/4"
Średnica zewnętrzna przewodu20 mm
Ciśnienie robocze0.1÷16 bar
Temperatura pracymax. 50°C
Temperatura medium maks.90°C
Napięcie zasilania24 V DC
Klasa szczelnościIP65
Materiał korpusumosiądz
Materiał uszczelnieniakauczuk NBR
Podłączenie elektryczneDIN 43650 typ A
A. Ciśnienie robocze 16 barów i temperatura 50°C
B. Ciśnienie robocze 16 barów i temperatura 90°C
C. Ciśnienie robocze 10 barów i temperatura 90°C
D. Ciśnienie robocze 0,1 bara i temperatura 50°C
Maksymalne wartości ciśnienia roboczego i temperatury medium w zaworach elektromagnetycznych są kluczowe dla ich prawidłowego funkcjonowania i trwałości. W podanym fragmencie karty katalogowej znajdziemy informację, że ciśnienie robocze wynosi od 0,1 do 16 barów, co oznacza, że zawór może pracować z ciśnieniem nawet do 16 barów. To ważne, bo różne aplikacje w przemyśle wymagają różnych poziomów ciśnienia, a zawory muszą być w stanie spełnić te wymagania. Jeżeli chodzi o temperaturę medium, tutaj maksymalna wartość wynosi 90°C. Oznacza to, że ciecz lub gaz przepływające przez zawór mogą mieć temperaturę do 90°C, co jest istotne przy zastosowaniach w miejscach, gdzie medium może być gorące, na przykład w systemach grzewczych lub przemysłowych procesach chemicznych. Ważne jest, aby zawsze sprawdzać te parametry przed doborem zaworu do konkretnego zastosowania, ponieważ przekroczenie dopuszczalnych wartości może prowadzić do uszkodzenia zaworu i potencjalnych awarii w systemie. Warto też zwrócić uwagę na standardy branżowe, które regulują dobór i zastosowanie zaworów elektromagnetycznych, takie jak normy PN-EN dotyczące armatury przemysłowej.

Pytanie 18

W sterowniku PLC wejścia analogowe oznaczane są symbolem literowym

A. Q
B. AI
C. I
D. AQ
Oznaczenia AQ, Q i I dotyczą innych rodzajów sygnałów w systemach PLC, co może prowadzić do mylnych interpretacji, jeśli ktoś nie jest z nimi dobrze zaznajomiony. AQ to skrót od 'Analog Output', co oznacza wyjścia analogowe. To jest zupełnie inna kategoria, bo wyjścia analogowe wysyłają sygnały do urządzeń, które z kolei mogą sterować innymi elementami systemu, jak np. zaworami proporcjonalnymi. Symboł Q odnosi się do wyjść cyfrowych, które w praktyce są używane do sterowania urządzeniami na zasadzie włącz/wyłącz, jak przekaźniki czy lampki kontrolne. Z kolei I to oznaczenie dla wejść cyfrowych, które służą do odbierania sygnałów dwustanowych, czyli takich, które mogą być tylko w stanie włączonym lub wyłączonym. Błędne przyporządkowanie symboli do funkcji może wynikać z braku doświadczenia lub niedokładnej wiedzy na temat specyfikacji technicznych urządzeń PLC. W codziennej pracy inżyniera automatyka prawidłowe rozróżnienie tych symboli jest kluczowe, ponieważ pomyłka może doprowadzić do nieprawidłowego działania systemu, a w konsekwencji – do awarii lub nieefektywności w procesach produkcyjnych. Dlatego tak ważne jest zrozumienie i poprawne stosowanie owych oznaczeń zgodnie z powszechnie przyjętymi standardami w automatyce przemysłowej. Dbanie o precyzję w tej kwestii jest nie tylko dobrą praktyką, ale też kluczowym elementem sukcesu w zarządzaniu systemami automatyki.

Pytanie 19

Który blok czasowy należy zastosować w programie, by realizował on bezpośrednio zależności czasowe przedstawione na rysunku?

Ilustracja do pytania
A. TONR
B. TP
C. TON
D. TOF
Zastosowanie bloku czasowego TON w programowaniu PLC jest kluczowe, gdy chcemy opóźnić włączenie sygnału o określony czas. Na rysunku widać, że sygnał wyjściowy pojawia się z opóźnieniem po aktywacji sygnału wejściowego. TON, czyli Timer On-Delay, idealnie nadaje się do takich zadań. Działa on na zasadzie odliczania czasu od momentu wykrycia sygnału wejściowego, po czym aktywuje sygnał wyjściowy. Jest to standardowy blok czasowy w wielu systemach automatyki, zgodny z normami takimi jak IEC 61131-3. W praktyce, TON stosuje się często w aplikacjach, gdzie konieczne jest zapewnienie stabilności procesu poprzez eliminację chwilowych zakłóceń. Na przykład w systemach transportu taśmowego, gdzie ważne jest, aby taśma ruszyła dopiero po pełnym załadunku. Użycie TON minimalizuje ryzyko błędów związanych z niekontrolowanym uruchomieniem urządzeń. Dobre praktyki zalecają również uwzględnianie marginesu czasowego w programowaniu, by uwzględnić ewentualne opóźnienia w komunikacji między urządzeniami. Moim zdaniem, taki timer jest niezbędnym narzędziem w arsenale każdego automatyka, zapewniając zarówno bezpieczeństwo, jak i efektywność operacyjną systemu.

Pytanie 20

Tabliczka znamionowa przedstawiona na rysunku, to tabliczka znamionowa

Ilustracja do pytania
A. silnika prądu przemiennego.
B. transformatora.
C. silnika prądu stałego.
D. kondensatora.
Tabliczka znamionowa, którą widzimy, to klasyczna tabliczka silnika prądu przemiennego. Jest to ważny element, który zawiera kluczowe informacje o specyfikacji technicznej urządzenia. Na tej tabliczce znajdziemy między innymi dane dotyczące napięcia, mocy, prędkości obrotowej oraz częstotliwości. Te parametry są istotne dla poprawnego podłączenia i eksploatacji silnika. W przypadku silników prądu przemiennego, zgodnie z dobrymi praktykami, warto zwrócić uwagę na współczynnik mocy (cos φ), który wpływa na efektywność energetyczną urządzenia. Moim zdaniem, takie tabliczki są nie tylko praktyczne, ale wręcz niezbędne w procesie instalacji i konserwacji. W praktyce zawodowej często spotykamy się z sytuacjami, gdzie dokładne odczytanie tych informacji potrafi zaoszczędzić wiele problemów. Silniki prądu przemiennego są szeroko stosowane w przemyśle, od napędów maszyn po wentylatory, dlatego zrozumienie ich specyfikacji to podstawa.

Pytanie 21

Do montażu czujnika przedstawionego na rysunku niezbędne jest użycie

Ilustracja do pytania
A. kluczy nasadowych.
B. kluczy płaskich.
C. szczypiec Segera.
D. wkrętaków płaskich.
Wkrętaki płaskie są używane głównie do śrub z nacięciem prostym, więc ich zastosowanie do montażu tego czujnika jest nieodpowiednie. Czujnik na zdjęciu posiada gwintowaną nakrętkę, która wymaga użycia klucza, a nie wkrętaka. Użycie wkrętaka w tej sytuacji mogłoby prowadzić do uszkodzenia nakrętki lub obudowy czujnika. Klucze nasadowe, choć również stosowane do nakrętek, wymagają dostępu osiowego, co w przypadku montażu w wąskich przestrzeniach może być utrudnione. Klucze płaskie, w przeciwieństwie do nasadowych, są bardziej uniwersalne w zastosowaniu do nakrętek zewnętrznych. Szczypce Segera służą do obsługi pierścieni osadczych sprężynowych, a nie do gwintowanych połączeń, więc są zupełnie nieadekwatne do tego zadania. Użycie niewłaściwego narzędzia nie tylko komplikuje montaż, ale także niesie ryzyko uszkodzenia, co jest częstym błędem popełnianym przez osoby nieuwzględniające specyfikacji technicznych narzędzi. W branży technicznej kluczowe jest stosowanie się do zaleceń producenta i wykorzystywanie narzędzi zgodnych z normami, aby zapewnić trwałość i funkcjonalność montowanych elementów.

Pytanie 22

Który termometr należy zastosować do bezkontaktowego pomiaru temperatury?

A. Rezystancyjny.
B. Pirometryczny.
C. Dylatacyjny.
D. Termoelektryczny.
Pirometryczny termometr to urządzenie, które doskonale nadaje się do bezkontaktowego pomiaru temperatury. Wykorzystuje on promieniowanie podczerwone emitowane przez badany obiekt, co umożliwia precyzyjne określenie temperatury bez potrzeby fizycznego kontaktu. To rozwiązanie jest niezwykle użyteczne w sytuacjach, gdy dostęp do mierzonego obiektu jest utrudniony lub niebezpieczny, na przykład w przemyśle hutniczym, gdzie temperatura powierzchni metali jest bardzo wysoka. Pirometry są również standardem w medycynie, szczególnie w kontekście szybkiego monitorowania temperatury ciała. W porównaniu do tradycyjnych metod, pirometryczne pomiary są szybkie i eliminują ryzyko zanieczyszczenia krzyżowego. Z mojego doświadczenia, pirometry są nie tylko praktyczne, ale także niezastąpione w wielu zastosowaniach. Ich zdolność do zdalnego pomiaru sprawia, że są preferowaną metodą w wielu branżach, od produkcji przemysłowej po ochronę zdrowia. Pomiar temperatury metodą bezkontaktową to także zgodność z wytycznymi bezpieczeństwa i higieny pracy, co jest niezmiernie ważne w wielu sektorach przemysłowych. Dodatkowo, pirometry zgodne z normami ISO i CE są gwarancją dokładności i jakości pomiarów.

Pytanie 23

Przedstawione na rysunkach narzędzia służą do

Ilustracja do pytania
A. ściągania izolacji.
B. zaciskania tulejek.
C. zaciskania wtyków RJ-45.
D. zaciskania wtyków RJ-11.
To narzędzie, które widzisz na rysunku, to klasyczna szczypce do ściągania izolacji. Działa na zasadzie automatycznego zacisku, co pozwala na precyzyjne usunięcie izolacji z przewodów bez uszkadzania samego rdzenia. W praktyce, narzędzia tego typu są nieocenione przy przygotowywaniu przewodów do lutowania czy montażu w złączach elektrycznych. W branży elektroinstalacyjnej, szczególnie przy pracy z okablowaniem elektrycznym, standardem jest używanie właśnie takich ściągaczy. Moim zdaniem, to niezastąpiona pomoc przy większych projektach, gdzie liczy się zarówno czas, jak i precyzja. Z mojego doświadczenia, odpowiednie ściąganie izolacji to klucz do bezpiecznego i efektywnego połączenia elektrycznego. Warto znać różne typy takich narzędzi, ponieważ niektóre przystosowane są do specyficznych rodzajów przewodów. Pamiętaj, by zawsze dobierać narzędzie do średnicy i rodzaju przewodu, aby uniknąć uszkodzeń i zapewnić trwałość połączeń.

Pytanie 24

Do pomiaru temperatury należy zastosować przyrząd pomiarowy przedstawiony na rysunku oznaczonym literą

A. Przyrząd 2.
Ilustracja do odpowiedzi A
B. Przyrząd 1.
Ilustracja do odpowiedzi B
C. Przyrząd 4.
Ilustracja do odpowiedzi C
D. Przyrząd 3.
Ilustracja do odpowiedzi D
Przyrząd przedstawiony na pierwszym zdjęciu to termometr bimetaliczny, służący do pomiaru temperatury. Zakres wskazań na skali podany jest w stopniach Celsjusza (°C), co jednoznacznie wskazuje na jego zastosowanie. Wewnątrz obudowy znajduje się spiralny element bimetaliczny złożony z dwóch metali o różnym współczynniku rozszerzalności cieplnej. Pod wpływem zmiany temperatury element ten wygina się, powodując obrót wskazówki. Tego typu termometry stosowane są w przemyśle, w instalacjach grzewczych, chłodniczych, a także w laboratoriach, ponieważ są proste w obsłudze i odporne na wstrząsy. Ich zaletą jest brak konieczności zasilania elektrycznego, a odczyt jest natychmiastowy. Moim zdaniem to klasyczny przykład niezawodnego przyrządu – prosty mechanicznie, a jednocześnie bardzo trwały. W codziennej praktyce warto pamiętać, że dokładność pomiaru zależy od właściwego montażu czujnika – końcówka pomiarowa musi znajdować się w pełnym kontakcie z medium, którego temperaturę mierzymy.

Pytanie 25

Wartość temperatury wskazana przez termometr przedstawiony na rysunku wynosi

Ilustracja do pytania
A. 19°C
B. 18°C
C. 8°C
D. 9°C
Prawidłowo: 18°C. Na termometrze cieczowym odczyt wykonuje się na wysokości górnej krawędzi menisku słupa cieczy (rtęci lub alkoholu). Skala bywa opisana co 10°C grubszymi kreskami (np. 10, 20), a pomiędzy nimi znajdują się równomierne podziałki drobne. Jeśli między 10 a 20 widzisz 10 równych kresek, to każda odpowiada 1°C; jeśli jest ich 5 – to 2°C. Menisk w rysunku zatrzymuje się dokładnie przy znaku odpowiadającym 18°C – poniżej 20, wyraźnie powyżej 17, bez „zawieszenia” na 19. Dobra praktyka pomiarowa (WMO/ISO 7726) zaleca odczyt w osi wzroku, bez kąta, żeby uniknąć błędu paralaksy, oraz podanie wyniku z rozdzielczością równą najmniejszej działce. W technice HVAC i automatyce od 18°C startuje często nastawa komfortu nocnego; w chłodnictwie domowym 18°C to już poza zakresem bezpiecznego przechowywania żywności, co ma znaczenie szkoleniowe. Moim zdaniem warto nawykowo sprawdzać: etykiety liczby (10, 20, 30…), liczbę działek pośrednich i pozycję menisku. I drobiazg, ale ważny: nie dotykamy palcami zbiorniczka podczas odczytu – można podgrzać i przekłamać wynik. W laboratoriach stosuje się też korektę na rozszerzalność szkła i cieczy, ale w szkolnym odczycie wystarczy rzetelne policzenie działek i proste oko, serio.

Pytanie 26

Do pomiaru temperatury w systemie automatyki użyto elementów oznaczonych jako Pt100 z przetwornikami pomiarowymi posiadającymi sygnał wyjściowy 4÷20 mA. Oznacza to, że w urządzeniu pomiarowym zastosowano czujniki

A. bimetalowe.
B. termoelektryczne.
C. rezystancyjne półprzewodnikowe.
D. rezystancyjne metalowe.
Odpowiedź, że czujniki Pt100 są rezystancyjnymi metalowymi czujnikami, jest całkowicie poprawna. Pt100 to jeden z najpopularniejszych typów czujników temperatury stosowanych w przemyśle, a ich nazwa pochodzi od platyny (Pt) używanej w ich konstrukcji oraz wartości nominalnej oporu 100 omów w temperaturze 0°C. Czujniki rezystancyjne, znane również jako RTD (Resistance Temperature Detector), działają na zasadzie zmiany oporu elektrycznego wraz ze zmianą temperatury. Platyna jest wykorzystywana w tych czujnikach ze względu na jej stabilność chemiczną, liniowość charakterystyki oraz dokładność pomiaru. Przetworniki z sygnałem wyjściowym 4–20 mA są standardem w przemyśle, ponieważ umożliwiają precyzyjne przesyłanie wartości pomiarowej na duże odległości z minimalnymi stratami. Dzięki temu, w systemach automatyki, można dokładnie monitorować i kontrolować procesy technologiczne. Warto też wspomnieć, że dzięki specjalnym wersjom czujników Pt100 można mierzyć temperatury w zakresie od -200°C do 850°C, co czyni je niezwykle wszechstronnymi. Moim zdaniem, pracując w automatyce, warto wiedzieć, jakie czujniki są stosowane w różnych aplikacjach, ponieważ każda sytuacja wymaga innego podejścia i narzędzi, a wiedza o działaniu i specyfikacji czujników Pt100 to podstawa w wielu branżach technologicznych.

Pytanie 27

Na schemacie zespołu przygotowania powietrza, symbolem X oznaczono

Ilustracja do pytania
A. filtr.
B. manometr.
C. smarownicę.
D. zawór.
Manometr to urządzenie służące do pomiaru ciśnienia w systemach pneumatycznych. Na schemacie oznaczony symbolem przypominającym zegar, jest kluczowym elementem w diagnostyce i utrzymaniu systemów. Bez dokładnego pomiaru ciśnienia trudno ocenić, czy system działa poprawnie – zbyt wysokie ciśnienie może prowadzić do awarii, a zbyt niskie wpływa na efektywność pracy. W praktyce manometry są umieszczane w strategicznych miejscach, aby zapewnić stały nadzór nad parametrami systemu. Istnieją różne typy manometrów, w tym analogowe oraz cyfrowe – każde z nich ma swoje zastosowania, ale zasada działania pozostaje taka sama. Dobre praktyki branżowe wskazują na regularną kalibrację tych urządzeń, co zapewnia dokładność pomiarów, a tym samym bezpieczeństwo i wydajność pracy całego układu pneumatycznego. Warto również pamiętać, że manometry mogą być wyposażone w różne rodzaje przyłączy, co pozwala na ich elastyczne stosowanie w różnych konfiguracjach systemowych.

Pytanie 28

Odpowiedź skokowa regulatora ciągłego przedstawiona na rysunku wskazuje, że w układzie regulacji zastosowano regulator typu

Ilustracja do pytania
A. PI
B. P
C. PD
D. PID
Odpowiedź PI wskazuje na regulator proporcjonalno-całkujący. Na wykresie widzimy charakterystyczny skok, a następnie liniowy przyrost w czasie. To typowe dla PI, który reaguje zarówno na bieżący błąd, jak i jego całkę w czasie. Dlatego jest skuteczny w eliminowaniu uchybu ustalonego. Zastosowanie regulatora PI znajdziesz w systemach, gdzie wymagana jest stabilność i precyzja, jak w regulacji temperatury pieca czy prędkości silnika. W praktyce PI jest często używany, bo łączy prostotę P z eliminacją błędu stałego przez I. Standardy branżowe często zalecają PI w procesach, gdzie nie są potrzebne szybkie reakcje na zakłócenia, jak w przypadku PD lub PID. PI daje stabilność w systemach z długimi czasami odpowiedzi. Z mojego doświadczenia, PI jest nieoceniony w aplikacjach, gdzie precyzja jest kluczowa, a zakłócenia mają charakter wolno zmieniający się.

Pytanie 29

Przedstawiony na rysunku czujnik jest przeznaczony do detekcji

Ilustracja do pytania
A. temperatury.
B. ciśnienia.
C. pola magnetycznego.
D. napiężeń.
To, co widzisz na zdjęciu, to czujnik typu kontaktron, który służy do detekcji pola magnetycznego. Kontaktrony są powszechnie używane w różnych zastosowaniach, takich jak systemy alarmowe, gdzie wykrywają obecność lub ruch drzwi i okien. Działają na zasadzie magnetycznego zamknięcia obwodu - kiedy w pobliżu znajdzie się magnes, dwie metalowe blaszki wewnątrz szklanej obudowy stykają się, zamykając obwód elektryczny. W przemyśle te czujniki są również stosowane do wykrywania pozycji maszyn czy robotów, a także w urządzeniach takich jak liczniki rowerowe, gdzie magnes zamocowany na kole zamyka obwód kontaktronu z każdą pełną rewolucją. Co ciekawe, kontaktrony są bardzo niezawodne, ponieważ nie mają mechanicznych części ruchomych, co zmniejsza ryzyko awarii. Moim zdaniem, to niesamowite, że coś tak prostego w konstrukcji może być tak użyteczne w tylu dziedzinach.

Pytanie 30

Który typ złącza przedstawiono na ilustracji?

Ilustracja do pytania
A. USB
B. RJ-45
C. HDMI
D. RS-232
Złącze przedstawione na ilustracji to klasyczne złącze RS-232, czyli interfejs komunikacji szeregowej używany od wielu lat w technice komputerowej i automatyce. Widoczna na rysunku wtyczka ma 9 pinów (DB-9), które odpowiadają za różne sygnały transmisji danych, m.in. RxD (odbiór danych), TxD (nadawanie danych), GND (masa), RTS/CTS (sterowanie przepływem). Standard RS-232 wykorzystuje napięcia w zakresie od -12 V do +12 V, co odróżnia go od nowszych standardów logicznych TTL (0–5 V). Dawniej był to podstawowy sposób łączenia komputerów z modemami, drukarkami czy sterownikami PLC. Dziś nadal spotykany w serwisie przemysłowym i urządzeniach embedded, gdzie niezawodność i prostota są ważniejsze niż prędkość. Z mojego doświadczenia RS-232 to wciąż nieoceniony interfejs diagnostyczny – łatwy do uruchomienia, odporny na zakłócenia i możliwy do obsługi nawet przez prosty terminal. Współczesne laptopy nie mają już tych portów, ale stosuje się przejściówki USB–RS232, by zachować kompatybilność z klasycznym sprzętem.

Pytanie 31

Na rysunku przedstawiono schemat blokowy regulatora

Ilustracja do pytania
A. P
B. PI
C. PID
D. PD
Regulator PID, czyli Proporcjonalno-Całkująco-Różniczkujący, to jeden z najczęściej stosowanych regulatorów w przemyśle. Schemat, który właśnie widzisz, przedstawia wszystkie trzy elementy składowe tego regulatora: składową proporcjonalną, całkującą i różniczkującą. K_p odpowiada za reakcję proporcjonalną, która jest proporcjonalna do bieżącego błędu. Element 1/T_i s to część całkująca, która sumuje błędy w czasie, co pomaga zredukować błąd ustalony. T_d s to składowa różniczkująca, która przewiduje przyszłe błędy na podstawie tempa zmian. W praktyce PID jest niezastąpiony tam, gdzie wymagana jest precyzyjna kontrola – w systemach HVAC, w automatyce przemysłowej, a nawet w robotyce. Dobór właściwych parametrów K_p, T_i, T_d jest kluczowy i często wymaga tuningu metodą Zieglera-Nicholsa lub metodą prób i błędów. Moim zdaniem, każda osoba zajmująca się automatyką powinna dobrze znać zastosowanie i działanie regulatorów PID.

Pytanie 32

Która z przedstawionych tabliczek znamionowych opisuje silnik elektryczny przeznaczony do pracy ciągłej?

Ilustracja do pytania
A. Tabliczka 2.
B. Tabliczka 3.
C. Tabliczka 4.
D. Tabliczka 1.
Silnik opisany na tabliczce 1 jest przeznaczony do pracy ciągłej, co oznacza, że jest zaprojektowany do pracy przez długi czas bez przerw. Informację tę można znaleźć w oznaczeniu 'S1', które w standardach międzynarodowych, takich jak IEC 60034, wskazuje na ciągłą pracę. Tego typu silniki są często stosowane w aplikacjach, gdzie wymagana jest stabilność i niezawodność przez dłuższe okresy, na przykład w taśmociągach czy pompowaniu wody. Charakteryzują się dobrą sprawnością energetyczną oraz trwałością, co jest kluczowe w zastosowaniach przemysłowych. Standardy takie jak IEC 60034 definiują klasy ochrony IP, które w przypadku tego silnika wynoszą IP54, co oznacza ochronę przed pyłem oraz rozpryskami wody. To istotne w wielu środowiskach przemysłowych. Moim zdaniem, wybór silnika do pracy ciągłej powinien uwzględniać również czynniki takie jak koszty eksploatacji i konserwacji, co w dłuższej perspektywie przekłada się na oszczędności i wydajność operacyjną.

Pytanie 33

Czujnik indukcyjny służy do detekcji elementów

A. plastikowych.
B. szklanych.
C. metalowych.
D. drewnianych.
Czujnik indukcyjny to jedno z najczęściej stosowanych urządzeń w automatyce przemysłowej. Jego głównym zadaniem jest wykrywanie obecności metalowych obiektów. Działa na zasadzie zmiany pola elektromagnetycznego generowanego przez cewkę wewnątrz czujnika. Gdy metalowy przedmiot znajdzie się w polu działania czujnika, następuje zmiana indukcyjności, co jest interpretowane jako sygnał obecności. Taka technologia jest niezwykle przydatna w środowiskach produkcyjnych, gdzie detekcja metalowych elementów jest kluczowa, na przykład w systemach montażowych czy liniach produkcyjnych. W przeciwieństwie do czujników optycznych, czujniki indukcyjne są odporne na zabrudzenia i kurz, co czyni je idealnym rozwiązaniem w trudnych warunkach przemysłowych. Normy takie jak IEC 60947-5-2 określają wymagania dotyczące czujników zbliżeniowych, zapewniając ich niezawodność i bezpieczeństwo w zastosowaniach przemysłowych. Moim zdaniem, wiedza o tych czujnikach to podstawa dla każdego, kto chce zrozumieć współczesną automatykę. Dzięki temu można lepiej projektować systemy, które są bardziej wydajne i mniej podatne na awarie.

Pytanie 34

Elektronarzędzie, którym można wykonywać precyzyjną obróbkę mechaniczną polegającą na frezowaniu i szlifowaniu powierzchni, przedstawiono na ilustracji

A.
Ilustracja do odpowiedzi A
B.
Ilustracja do odpowiedzi B
C.
Ilustracja do odpowiedzi C
D.
Ilustracja do odpowiedzi D
To elektronarzędzie w odpowiedzi numer 2 to miniaturowa szlifierka, znana jako multi-tool lub dremel. Jest idealna do precyzyjnej obróbki, takiej jak frezowanie, szlifowanie, polerowanie czy nawet cięcie drobnych elementów. Dzięki swojej wszechstronności znajduje zastosowanie w modelarstwie, rzemiosłach artystycznych oraz w drobnych pracach naprawczych. To narzędzie ma możliwość wymiany końcówek, co pozwala na dostosowanie go do konkretnej pracy. Dremel jest bardzo popularny w warsztatach domowych, ale również w profesjonalnych. Umożliwia pracę z różnymi materiałami, od drewna, przez metal, po tworzywa sztuczne. Warto pamiętać, że korzystanie z niego wymaga pewnej wprawy i ostrożności, ponieważ jego prędkość obrotowa jest wysoka. Stosowanie odpowiednich końcówek i właściwych prędkości obrotowych jest kluczowe, aby uniknąć przegrzewania materiału i zapewnić idealne wykończenie. Z mojego doświadczenia, użycie takiego narzędzia znacząco przyspiesza drobne prace i pozwala na osiągnięcie wysokiej precyzji w obróbce.

Pytanie 35

W układzie regulacji temperatury zastosowano czujnik Pt500. Jaką wartość rezystancji czujnika w temperaturze 0 °C pokaże omomierz?

A. 500 Ω
B. 100 Ω
C. 1 000 Ω
D. 0 Ω
Czujnik Pt500 to popularny typ czujnika rezystancyjnego wykonanego z platyny, który ma rezystancję nominalną 500 Ω przy temperaturze 0 °C. Platyna jest stosowana ze względu na jej stabilność chemiczną i liniowy przyrost rezystancji wraz ze wzrostem temperatury, co czyni ją idealnym materiałem do precyzyjnych pomiarów temperatury. W praktyce oznacza to, że czujnik Pt500 będzie miał wartość 500 Ω w temperaturze zera stopni Celsjusza. Dlaczego to takie ważne? W inżynierii i automatyzacji, precyzyjne pomiary temperatury są kluczowe dla utrzymania procesów produkcyjnych w odpowiednich warunkach. Czujniki Pt500 są stosowane w wielu aplikacjach, od kontroli klimatyzacji po zaawansowane procesy przemysłowe, ponieważ oferują wysoką dokładność i stabilność pomiarów. Ich zastosowanie jest szeroko zgodne ze standardami przemysłowymi, gdzie stabilność i niezawodność są priorytetami. Warto pamiętać, że rezystancja czujnika zmienia się zgodnie z wzrostem temperatury, co pozwala na precyzyjne określenie aktualnych warunków termicznych. To sprawia, że są one wyjątkowo przydatne w środowiskach wymagających dokładnego monitorowania temperatury.

Pytanie 36

Które oznaczenie powinien zawierać przewód jeżeli jego płaszcz ochronny jest wykonany z polichlorku winylu odpornego na wysokie temperatury?

Ilustracja do pytania
A. N4
B. N2
C. V3
D. V2
Oznaczenie V2 jest kluczowe, gdy mówimy o przewodach, których płaszcz ochronny wykonany jest z polichlorku winylu odpornego na wysokie temperatury. To oznaczenie wskazuje, że materiał ten jest przygotowany do pracy w trudniejszych warunkach, gdzie temperatura może znacząco wzrosnąć. Polichlorek winylu, popularnie znany jako PVC, jest powszechnie stosowany w przemyśle elektrycznym ze względu na swoje właściwości izolacyjne i odporność chemiczną. Kiedy wybieramy przewód do zastosowań wymagających wyższej odporności termicznej, taki jak w instalacjach przemysłowych lub w miejscach narażonych na działanie promieniowania cieplnego, przewody oznaczone V2 spełniają te wymagania. Często spotyka się je w systemach oświetleniowych, w pobliżu urządzeń grzewczych, czy w instalacjach na dachach budynków. Ważne jest, aby przestrzegać odpowiednich norm i standardów, takich jak PN-EN czy VDE, które szczegółowo opisują wymagania dla materiałów przewodów w różnych zastosowaniach. Dzięki temu możemy zapewnić bezpieczeństwo i niezawodność naszych instalacji. V2 to gwarancja, że instalacja wytrzyma ekstremalne warunki bez ryzyka uszkodzeń.

Pytanie 37

Na rysunku przedstawiono symbol graficzny

Ilustracja do pytania
A. wzmacniacza operacyjnego.
B. separatora.
C. przepływomierza.
D. przetwornika pomiarowego.
Przetwornik pomiarowy to urządzenie niezbędne w systemach automatyki i pomiarów, które przekształca jedną formę sygnału w inną. Może to być np. zamiana sygnału analogowego na cyfrowy lub przetwarzanie wielkości fizycznej, jak temperatura, na sygnał elektryczny. Moim zdaniem, to kluczowy element, który pozwala na integrację i automatyzację procesów przemysłowych. Przetworniki są powszechnie stosowane w systemach monitoringu i kontroli, gdzie precyzyjne dane są nieodzowne dla optymalizacji procesów. W praktyce, przy wyborze przetwornika, warto zwrócić uwagę na jego dokładność, zakres pomiarowy oraz kompatybilność z innymi elementami systemu. Przykładowo, w przemyśle chemicznym, przetwornik może mierzyć stężenie substancji i przekazywać te dane do systemu zarządzania produkcją. Standardy takie jak IEC i ANSI definiują wytyczne dotyczące konstrukcji i działania przetworników, co zapewnia ich niezawodność i bezpieczeństwo w różnych aplikacjach. Z tego powodu, prawidłowe zrozumienie funkcji i specyfikacji przetworników jest kluczowe dla specjalistów zajmujących się projektowaniem systemów pomiarowych.

Pytanie 38

Wskaż stany logiczne wejść I2 i I3 sterownika w układzie przedstawionym na rysunku przy wsuniętym tłoczysku i poprawnej pracy czujników.

Ilustracja do pytania
A. I2 = 0, I3 = 0.
B. I2 = 1, I3 = 1.
C. I2 = 0, I3 = 1.
D. I2 = 1, I3 = 0.
Odpowiedź, że I2 = 1, I3 = 0, jest prawidłowa z kilku powodów. W układach automatyki pneumatycznej, czujniki takie jak B1 i B2 monitorują położenie elementów wykonawczych, tutaj siłownika. Przy wsuniętym tłoczysku, czujnik B1 powinien być aktywowany, co oznacza, że na wejściu I2 pojawia się stan wysoki (1). Czujnik B2, z kolei, monitoruje położenie wysuniętego tłoczyska, a ponieważ tłoczysko jest wsunięte, B2 pozostaje nieaktywny, co oznacza stan niski (0) na wejściu I3. Praktycznym zastosowaniem takiego układu jest kontrolowanie sekwencji pracy maszyny, gdzie kluczowe jest, aby kolejne kroki były podejmowane tylko wtedy, gdy poprzednie zostały prawidłowo zakończone. Standardy branżowe, takie jak IEC 61131 dotyczące programowania sterowników PLC, zalecają precyzyjne monitorowanie stanów wejść i wyjść, aby zapewnić bezpieczną i efektywną pracę systemu. Moim zdaniem, zrozumienie, jak działa taka logika, jest fundamentem w projektowaniu stabilnych i niezawodnych systemów automatyki. Warto także zwrócić uwagę na to, że stan czujnika B1 jako aktywny przy wsuniętym tłoczysku to dobra praktyka, która pomaga w łatwym diagnozowaniu ewentualnych problemów.

Pytanie 39

Którego z przedstawionych na rysunkach mierników należy użyć w celu sprawdzenia poprawności wskazań sygnału wyjściowego +Q1 analogowego łącznika krańcowego?

Ilustracja do pytania
A.
Ilustracja do odpowiedzi A
B.
Ilustracja do odpowiedzi B
C.
Ilustracja do odpowiedzi C
D.
Ilustracja do odpowiedzi D
Ta odpowiedź jest prawidłowa, ponieważ miernik o zakresie do 15 V idealnie pasuje do pomiaru sygnału wyjściowego +Q1 analogowego łącznika krańcowego. W przypadku układów, które operują w zakresie do 10 V, jak to przedstawiono na schemacie, wybór miernika z zakresem do 15 V zapewnia odpowiednią precyzję i bezpieczeństwo pomiaru. Dlaczego to ważne? Ponieważ miernik powinien mieć zakres nieco większy niż maksymalna wartość sygnału, aby uniknąć przeciążenia i zapewnić dokładny odczyt. W praktyce często zaleca się, aby zakres miernika wynosił około 120% maksymalnej wartości mierzonej, co w tym przypadku jest spełnione. Dobre praktyki w branży wskazują na znaczenie wyboru odpowiednio skalowanego miernika, aby minimalizować błędy pomiarowe i ryzyko uszkodzenia sprzętu. Warto pamiętać, że wybór odpowiedniego miernika jest kluczowy w uzyskiwaniu wiarygodnych i powtarzalnych wyników, co jest istotne w kontekście utrzymania ruchu i diagnostyki systemów automatyki przemysłowej.

Pytanie 40

Kolejność dokręcania śrub mocujących płytę jest następująca:

Ilustracja do pytania
A. 4 – 3 – 2 – 1
B. 4 – 3 – 1 – 2
C. 1 – 3 – 4 – 2
D. 1 – 2 – 3 – 4
Prawidłowa kolejność dokręcania to 1–3–4–2. W praktyce technicznej oznacza to, że śruby dokręca się na krzyż, czyli naprzemiennie po przekątnej. Dzięki temu docisk płyty do powierzchni jest równomierny, a naprężenia w materiale rozkładają się symetrycznie. Taki sposób montażu zapobiega wykrzywieniu lub pęknięciu płyty, a także nieszczelnościom w połączeniu – szczególnie gdy pod spodem znajduje się uszczelka. Z mojego doświadczenia wynika, że warto najpierw dokręcać śruby lekko, z momentem wstępnym, a dopiero potem dociągnąć je końcowo momentem zalecanym przez producenta (np. wg normy ISO 898-1). W mechanice, hydraulice i motoryzacji ten sposób jest standardem przy montażu głowic silników, kołnierzy czy obudów przekładni. Równomierne dokręcanie na krzyż to niby drobiazg, ale decyduje o trwałości całego połączenia.