Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 18 grudnia 2025 16:17
  • Data zakończenia: 18 grudnia 2025 16:48

Egzamin zdany!

Wynik: 24/40 punktów (60,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Który z podanych sposobów ochrony przed porażeniem elektrycznym pełni rolę zabezpieczenia dodatkowego w przypadku uszkodzenia instalacji elektrycznych niskonapięciowych?

A. Podwójna lub wzmocniona izolacja elektryczna
B. Umieszczenie części czynnych poza zasięgiem ręki
C. Ochronne miejscowe połączenia wyrównawcze
D. Separacja elektryczna odbiornika
Ochronne miejscowe połączenia wyrównawcze stanowią kluczowy element systemów ochrony przeciwporażeniowej, zwłaszcza w instalacjach elektrycznych niskich napięć. Działają one w celu minimalizacji różnic potencjałów między różnymi metalowymi elementami instalacji, co zmniejsza ryzyko porażenia prądem elektrycznym. W sytuacji awaryjnej, gdy dojdzie do uszkodzenia izolacji lub innej awarii, połączenia wyrównawcze zapewniają alternatywną drogę dla prądu, co przyczynia się do szybszego działania zabezpieczeń. Przykładowo, w obiektach użyteczności publicznej, takich jak szkoły czy szpitale, implementacja miejscowych połączeń wyrównawczych jest zgodna z normami PN-EN 61140, które podkreślają znaczenie zachowania niskiego poziomu ryzyka w zakresie bezpieczeństwa elektrycznego. Dobrą praktyką jest również regularne sprawdzanie stanu technicznego tych połączeń, aby zapewnić ich pełną funkcjonalność w razie potrzeby.

Pytanie 2

Która z poniższych przyczyn powoduje nagły wzrost obrotów w trakcie działania silnika bocznikowego prądu stałego?

A. Przerwa w obwodzie twornika
B. Zwarcie w uzwojeniu komutacyjnym
C. Zwarcie w obwodzie twornika
D. Przerwa w uzwojeniu wzbudzenia
Zgłębiając temat przyczyn nagłego wzrostu prędkości obrotowej silnika bocznikowego prądu stałego, warto zauważyć, że przedstawione niepoprawne odpowiedzi odnoszą się do różnych aspektów funkcjonowania silników elektrycznych. Zwarcie w obwodzie twornika może prowadzić do znacznego wzrostu prądu, co w praktyce skutkuje przeciążeniem silnika, ale nie bezpośrednio do wzrostu prędkości obrotowej. W rzeczywistości, zwarcie w obwodzie twornika powoduje spadek napięcia, co z kolei zmniejsza moment obrotowy i może prowadzić do jego uszkodzenia. Oba te zjawiska są sprzeczne z zasadami działania silników prądu stałego, w których to napięcie i przepływ prądu są kluczowe dla generowania momentu obrotowego. Z kolei zwarcie w uzwojeniu komutacyjnym, chociaż może wpływać na działanie komutatora, nie jest bezpośrednią przyczyną wzrostu prędkości obrotowej. W przypadku przerwy w obwodzie twornika, silnik w zasadzie przestaje działać, co również nie prowadzi do wzrostu prędkości. Warto zatem nieco lepiej zrozumieć mechanizmy działania silników, aby unikać mylnych interpretacji związanych z zagadnieniami elektrycznymi i ich wpływem na wydajność urządzeń. Kluczowe jest zrozumienie, jak różne komponenty silników wpływają na ich działanie oraz jakie zabezpieczenia są potrzebne, aby zminimalizować ryzyko uszkodzeń w wyniku nieprawidłowego działania.

Pytanie 3

Jakim środkiem ochrony przeciwporażeniowej zapewnia się bezpieczeństwo przed dotykiem pośrednim?

A. Umieszczenia elementów z napięciem poza zasięgiem ręki
B. Samoczynnego szybkiego wyłączenia napięcia
C. Izolowania części czynnych
D. Instalowania osłon i barier
Odpowiedź "Samoczynnego szybkiego wyłączenia napięcia" jest prawidłowa, ponieważ stanowi kluczowy element zabezpieczeń w instalacjach elektrycznych, mający na celu ochronę przed dotykiem pośrednim. Dotyk pośredni występuje, gdy osoba styka się z przewodzącymi elementami, które nie są bezpośrednio pod napięciem, ale stają się naładowane wskutek awarii izolacji. Samoczynne szybkie wyłączenie napięcia zapewnia, że w momencie wykrycia nieprawidłowości, np. zwarcia z przewodem ziemnym, nastąpi automatyczne odcięcie zasilania w sposób najszybszy możliwy, minimalizując ryzyko porażenia. Praktyczne zastosowanie tej metody można zauważyć w systemach ochrony, takich jak wyłączniki różnicowoprądowe (RCD), które są zgodne z normami PN-EN 61008 i PN-EN 61009. Ich działanie opiera się na ciągłej kontroli prądu różnicowego i błyskawicznej reakcji na jego wzrost, co skutecznie chroni użytkowników przed skutkami porażenia prądem. Dodatkowo, szybkie wyłączenie napięcia należy do najlepszych praktyk w projektowaniu instalacji elektrycznych, co podkreślają różne wytyczne oraz normy ochrony przeciwporażeniowej.

Pytanie 4

Na wartość impedancji pętli zwarcia w systemie TN-C wpływ mają

A. metoda ułożenia przewodów w instalacji
B. przekrój żył przewodów
C. liczba przewodów umieszczonych w korytkach
D. materiał izolacyjny przewodów
Wartość impedancji pętli zwarcia w sieci TN-C jest kluczowym parametrem, który wpływa na bezpieczeństwo instalacji elektrycznej. Przekrój żył przewodów ma bezpośredni wpływ na oporność elektryczną i tym samym na impedancję pętli zwarcia. Im większy przekrój przewodów, tym mniejsza ich oporność, co prowadzi do niższej wartości impedancji pętli. To z kolei pozytywnie wpływa na czas zadziałania zabezpieczeń nadprądowych, co jest zgodne z wymaganiami normy PN-IEC 60364. W praktyce, odpowiednio dobrany przekrój przewodów zapewnia, że w przypadku zwarcia prąd zwarciowy będzie na tyle wysoki, aby zadziałały zabezpieczenia, minimalizując ryzyko uszkodzeń oraz pożaru. Właściwy dobór przekroju żył jest szczególnie ważny w instalacjach o dużym obciążeniu, gdzie niewłaściwe wartości impedancji mogą prowadzić do awarii systemu.

Pytanie 5

W tabeli przedstawiono parametry znamionowe silnika. Do jakiego rodzaju pracy jest on przeznaczony?

Typ silnikaSEh 80-4CF
Moc1,1 kW
Prędkość obrotowa1400 obr/min
ObudowaAluminium
Napięcie zasilania230 V, 50 Hz
Stopień ochronyIP 54
Rodzaj pracyS2
Sprawność74%
Pojemność kondensatora pracy30 μF
Pojemność kondensatora rozruchowego75 μF
A. Dorywczej.
B. Ciągłej.
C. Przerywanej z rozruchem.
D. Przerywanej z hamowaniem elektrycznym.
Silnik oznaczony jako przeznaczony do pracy dorywczej (S2) jest zaprojektowany do pracy przez określony czas, po którym konieczne jest schłodzenie. Przykładem zastosowania takiego silnika mogą być urządzenia, które pracują w cyklach, np. pompy, wentylatory czy maszyny przemysłowe, które nie wymagają ciągłej eksploatacji. W praktyce oznacza to, że silnik może pracować w trybie dorywczym przez kilka minut do kilku godzin, w zależności od jego parametrów znamionowych, a następnie musi zostać wyłączony, aby uniknąć przegrzania. Standardy normatywne, takie jak IEC 60034-1, definiują takie klasy pracy silników elektrycznych, co zapewnia, że inżynierowie projektujący systemy napędowe mogą odpowiednio dobierać silniki do wymagań aplikacji. Wiedza o tych oznaczeniach jest kluczowa dla zapewnienia efektywności energetycznej oraz długowieczności urządzeń, co ma bezpośredni wpływ na koszty eksploatacji.

Pytanie 6

Jakie jest prawidłowe postępowanie w przypadku podejrzenia obecności napięcia na obudowie urządzenia elektrycznego?

A. Natychmiastowe wyłączenie zasilania
B. Odłączenie uziemienia, co jest niebezpieczne i niewłaściwe
C. Zmiana przewodów, chociaż to nie rozwiązuje problemu napięcia na obudowie
D. Podłączenie dodatkowego obciążenia, co może pogorszyć sytuację
W przypadku podejrzenia obecności napięcia na obudowie urządzenia elektrycznego, najlepszym i najbezpieczniejszym działaniem jest natychmiastowe odłączenie zasilania. Jest to zgodne z podstawowymi zasadami bezpieczeństwa elektrycznego i normami BHP. Gdy urządzenie elektryczne ma napięcie na obudowie, może to oznaczać uszkodzenie izolacji lub inny problem techniczny, który stwarza ryzyko porażenia prądem. Szybkie odłączenie zasilania eliminuje to ryzyko i pozwala na dalsze, bezpieczne działania. Po odłączeniu zasilania należy również upewnić się, że urządzenie jest odpowiednio uziemione, aby uniknąć podobnych problemów w przyszłości. Następnie można przystąpić do diagnostyki i naprawy urządzenia przez wykwalifikowanego specjalistę, co jest zgodne z dobrą praktyką w branży elektrycznej. Ważne jest również, by regularnie sprawdzać stan techniczny urządzeń elektrycznych i ich uziemienia, aby uniknąć takich sytuacji w przyszłości. Moim zdaniem, wiedza o bezpiecznym postępowaniu w takich sytuacjach powinna być podstawą w każdej edukacji technicznej.

Pytanie 7

Wkładka topikowa przedstawiona na rysunku, zabezpieczająca jeden z obwodów elektrycznych w pewnym pomieszczeniu, zapewnia skuteczną ochronę

Ilustracja do pytania
A. urządzeń energoelektronicznych tylko przed skutkami przeciążeń.
B. przewodów elektrycznych tylko przed skutkami zwarć.
C. przewodów elektrycznych przed skutkami zwarć i przeciążeń.
D. urządzeń energoelektronicznych przed skutkami zwarć i przeciążeń.
Wybór odpowiedzi sugerującej, że wkładka topikowa zabezpiecza tylko przed skutkami zwarć lub wyłącznie przed przeciążeniami, jest niepoprawny, ponieważ nie odzwierciedla rzeczywistego działania tego elementu. Wkładka topikowa działa jako zabezpieczenie zarówno przed przeciążeniem, jak i zwarciem, które są dwoma różnymi, ale równie istotnymi zagrożeniami dla instalacji elektrycznych. Przeciążenie następuje, gdy prąd w obwodzie przekracza wartość nominalną, co może prowadzić do przegrzania przewodów, a w rezultacie ich uszkodzenia. Z kolei zwarcie generuje nagły wzrost prądu, co również stwarza ryzyko pożaru lub uszkodzenia urządzeń elektrycznych. Propozycja, że wkładka topikowa chroni jedynie urządzenia energoelektroniczne, jest również myląca, ponieważ jej funkcją jest ochrona całego obwodu elektrycznego, a nie tylko poszczególnych urządzeń. Dobrze zaprojektowana instalacja elektryczna powinna uwzględniać zastosowanie odpowiednich wkładek topikowych, które zapewnią ochronę przed oboma rodzajami zagrożeń. Niestety, brak zrozumienia roli wkładek topikowych w instalacjach elektrycznych prowadzi do zagrożeń, które można by uniknąć poprzez właściwe dobranie zabezpieczeń oraz ich zastosowanie zgodnie z obowiązującymi normami.

Pytanie 8

Które z poniższych działań nie są przypisane do zadań eksploatacyjnych osób obsługujących urządzenia elektryczne?

A. Monitorowanie urządzeń w trakcie pracy
B. Włączanie i wyłączanie urządzeń
C. Realizowanie przeglądów niewymagających demontażu
D. Przeprowadzanie oględzin wymagających demontażu
Uruchamianie i zatrzymywanie urządzeń, wykonywanie przeglądów niewymagających demontażu oraz nadzorowanie urządzeń w czasie pracy to działania, które są integralną częścią procesu eksploatacji urządzeń elektrycznych. Nieprawidłowe postrzeganie tych czynności jako zadań eksploatacyjnych może prowadzić do nieefektywnego zarządzania urządzeniami oraz potencjalnych zagrożeń dla bezpieczeństwa. Uruchamianie i zatrzymywanie urządzeń powinno być wykonywane z zachowaniem szczególnej ostrożności, zgodnie z procedurami operacyjnymi, aby zminimalizować ryzyko awarii lub uszkodzeń. W przypadku przeglądów niewymagających demontażu, pracownicy powinni znać zasady inspekcji wizualnej, które pomagają w wykrywaniu potencjalnych usterek, co jest kluczowe dla zapewnienia ciągłości operacyjnej. Nadzorowanie urządzeń w czasie pracy ma na celu monitorowanie ich stanu technicznego oraz identyfikację wszelkich nieprawidłowości, które mogą prowadzić do awarii. Warto przy tym pamiętać, że zbyt często myli się eksploatację z konserwacją, co prowadzi do błędnych decyzji. Różnice te są istotne, ponieważ wymagana jest różna wiedza i umiejętności do efektywnego wykonania każdego z tych zadań. Zrozumienie tych różnic pozwala na lepsze wykorzystanie zasobów oraz podnosi standardy bezpieczeństwa w zakładzie.

Pytanie 9

Wirnik w szlifierce uległ uszkodzeniu. Na schemacie z dokumentacji techniczno-ruchowej jest on oznaczony numerem

A. 35
B. 9
C. 12
D. 50
Wybór odpowiedzi 12, 50 lub 35 jest błędny, ponieważ nie odpowiada rzeczywistemu oznaczeniu wirnika szlifierki zawartemu w dokumentacji techniczno-ruchowej. Często zdarza się, że technicy i operatorzy nie zwracają dostatecznej uwagi na szczegóły w dokumentacji, co prowadzi do identyfikacji niewłaściwych części. Na przykład, numer 12 może być związany z inną częścią maszyny, taką jak wałek napędowy, co jest typowym błędem myślowym przy zbyt szybkim przeszukiwaniu dokumentacji bez dokładnej analizy. Numer 50 mógłby odnosić się do innego modelu szlifierki lub odrębnego rodzaju obrabiarki, co pokazuje, jak ważne jest zrozumienie kontekstu oznaczeń w dokumentacji. Ponadto, numer 35 nie jest związany z wirnikiem, co może prowadzić do poważnych problemów w przypadku wymiany uszkodzonej części. W takich sytuacjach, nieodpowiednie oznaczenie może skutkować wykorzystaniem niewłaściwych komponentów, co z kolei wprowadza ryzyko awarii maszyny. Dlatego tak kluczowe jest przeszkolenie w zakresie czytania i interpretacji dokumentacji technicznej, aby unikać takich pomyłek. Znajomość standardów branżowych i dobrych praktyk jest istotna, aby zapewnić prawidłowe funkcjonowanie maszyn oraz bezpieczeństwo ich użytkowania.

Pytanie 10

Jaka powinna być minimalna wartość natężenia prądu przy pomiarze ciągłości przewodu ochronnego?

A. 400 mA
B. 200 mA
C. 100 mA
D. 500 mA
Minimalna wartość natężenia prądu podczas wykonywania pomiaru ciągłości przewodu ochronnego wynosząca 200 mA jest określona przez normy, takie jak PN-EN 61557-4. Pomiary te mają na celu potwierdzenie, że przewody ochronne są w stanie zapewnić odpowiednią ochronę przed porażeniem elektrycznym. Wartość ta została ustalona na podstawie doświadczeń inżynieryjnych i badań, które wykazały, że natężenie prądu na poziomie 200 mA jest wystarczające do wykrycia ewentualnych wad w izolacji przewodów, a jednocześnie jest na tyle bezpieczne, aby nie stanowić zagrożenia dla osób wykonujących pomiar. W praktyce, podczas testów, jeśli wartość ta nie zostanie osiągnięta, może to sugerować problemy z przewodem ochronnym, co może prowadzić do niebezpiecznych sytuacji w instalacji elektrycznej. Regularne wykonywanie takich pomiarów jest kluczowe dla zapewnienia bezpieczeństwa użytkowników oraz zgodności z przepisami. Prawidłowe pomiary ciągłości przewodów ochronnych powinny być częścią regularnego serwisu i konserwacji instalacji elektrycznej, aby zapewnić ich prawidłowe funkcjonowanie.

Pytanie 11

W systemach z stycznikami kategorii użytkowania DC-6 mogą być wykorzystywane

A. żarówki
B. lampy rtęciowe
C. lampy sodowe
D. świetlówki
Wybór świetlówek, lamp sodowych i lamp rtęciowych jako potencjalnych odpowiedzi na to pytanie jest mylący, ponieważ te typy źródeł światła mają różne właściwości, które wpływają na ich zastosowanie w układach prądu stałego, takich jak DC-6. Świetlówki, chociaż szeroko stosowane w oświetleniu, wymagają specjalnych układów elektronicznych do uruchamiania, co czyni je nieodpowiednimi dla prostych styczników stosowanych w układach DC-6. Dodatkowo, ich działanie opiera się na zjawisku wyładowania elektrycznego w gazie, co w połączeniu z prądem stałym może prowadzić do niestabilności i niewłaściwego działania. Lampy sodowe i rtęciowe z kolei są projektowane głównie z myślą o pracy w obwodach prądu przemiennego, a ich zastosowanie w systemach prądu stałego może prowadzić do przegrzewania się i uszkodzenia, ze względu na różnice w charakterystyce obciążeniowej. Te błędne podejścia wynikają z braku zrozumienia, jak różne źródła światła reagują na różne typy prądów oraz jakie są wymagania techniczne dla ich prawidłowego działania. Kluczowe jest, aby przy doborze elementów w instalacjach elektrycznych, opierać się na ich specyfikacjach technicznych oraz normach branżowych, aby zapewnić bezpieczeństwo i efektywność działania całego systemu oświetleniowego.

Pytanie 12

Co należy zrobić w przypadku przeciążenia silnika elektrycznego podczas pracy?

A. Zwiększyć napięcie zasilające
B. Zredukować obciążenie lub sprawdzić wyłączniki termiczne
C. Zastosować dodatkowy filtr harmonicznych
D. Zwiększyć długość przewodów zasilających
W przypadku przeciążenia silnika elektrycznego kluczowe jest szybkie zidentyfikowanie i zredukowanie obciążenia, które może być przyczyną problemu. Przeciążenie często wynika z nadmiernego zapotrzebowania na moc, co prowadzi do przegrzania i potencjalnego uszkodzenia silnika. Standardy branżowe zalecają, aby regularnie monitorować obciążenie silników i odpowiednio reagować na wszelkie nieprawidłowości. Dodatkowo, sprawdzenie wyłączników termicznych to dobra praktyka, która pozwala na wykrycie i zapobieganie dalszym uszkodzeniom. Wyłączniki termiczne są zabezpieczeniem, które automatycznie odłącza zasilanie w przypadku wykrycia nadmiernego wzrostu temperatury, co chroni silnik przed uszkodzeniem. Regularna konserwacja i kontrola tych elementów jest niezbędna, aby zapewnić bezpieczną i efektywną pracę silników elektrycznych. Praktyczne zastosowanie tej wiedzy pozwala na dłuższą żywotność urządzeń i zmniejszenie ryzyka kosztownych napraw.

Pytanie 13

Który z wymienionych aparatów łączeniowych niskiego napięcia przedstawiono na ilustracji?

Ilustracja do pytania
A. Odłącznik.
B. Rozłącznik izolacyjny.
C. Stycznik.
D. Wyłącznik silnikowy.
Zrozumienie zadań i funkcji różnych aparatów łączeniowych niskiego napięcia jest kluczowe w dziedzinie elektrotechniki. Stycznik, na przykład, jest urządzeniem przeznaczonym do automatycznego włączania i wyłączania obwodów elektrycznych, ale nie zapewnia izolacji w takim samym stopniu jak rozłącznik izolacyjny. Dzięki swojej konstrukcji stycznik może być używany w aplikacjach, gdzie wymagane jest częste cykliczne włączanie i wyłączanie, co nie jest zgodne z funkcją rozłącznika izolacyjnego. Z kolei odłącznik jest urządzeniem, które służy do rozłączania obwodu, ale nie zawsze gwarantuje pełne odizolowanie od źródła zasilania. Warto zauważyć, że niektóre odłączniki mogą nie mieć funkcji wizualnej kontroli styków, co czyni je mniej bezpiecznymi w praktyce. Wyłącznik silnikowy natomiast, choć również służy do ochrony silników przed przeciążeniem, nie jest przeznaczony do izolacji obwodów. Te różnice w funkcjach mogą prowadzić do nieporozumień i błędnych wyborów w kontekście doboru odpowiednich urządzeń do danej aplikacji. Niezrozumienie tych podstawowych parametrów może skutkować niewłaściwym użytkowaniem sprzętu elektrycznego, co w dłuższej perspektywie może prowadzić do awarii i zagrożeń dla bezpieczeństwa. Warto zawsze odnosić się do aktualnych norm i wytycznych branżowych, aby właściwie dobierać aparaty łączeniowe do odpowiednich zastosowań.

Pytanie 14

Urządzenie oznaczone przedstawionym symbolem klasy ochronności można podłączyć do instalacji

Ilustracja do pytania
A. ze stykiem ochronnym.
B. separowanej elektrycznie od linii zasilającej.
C. o obniżonym napięciu zasilania SELV lub PELV.
D. bez przewodu ochronnego.
Urządzenie z klasą ochronności III jest tak naprawdę super bezpieczne, bo działa na niskim napięciu. To znaczy, że prąd, który płynie, nie przekracza 50 V AC lub 120 V DC. Dlatego ryzyko, że coś się stanie, jest naprawdę małe. Myślę, że to dobra opcja, zwłaszcza w miejscach, gdzie mogą być dzieci, jak szkoły czy parki. Warto też wspomnieć o normach IEC 61140 i IEC 60950, które mówią, jak powinno wyglądać bezpieczeństwo takich urządzeń. Zastosowanie niskonapięciowego zasilania chroni nas przed porażeniem elektrycznym, bo wszystko jest dobrze odseparowane od wyższych napięć, co daje dodatkowe poczucie bezpieczeństwa.

Pytanie 15

Jakim rodzajem wyłączników nadprądowych powinien być zabezpieczony obwód zasilania silnika klatkowego trójfazowego, którego parametry znamionowe to: PN = 11 kW, UN = 400 V, cos φ = 0,73, η = 80%?

A. S303 C32
B. S303 C40
C. S303 C25
D. S303 C20
Poprawna odpowiedź to S303 C32, ponieważ w przypadku obwodu zasilania trójfazowego silnika klatkowego o mocach znamionowych 11 kW i napięciu 400 V, należy obliczyć prąd roboczy silnika. Prąd ten można wyznaczyć ze wzoru: I = P / (√3 * U * cos φ), co daje wartość około 18,5 A. Z uwagi na istotne zmiany w obciążeniu oraz do ochrony przed przeciążeniem i zwarciem, stosuje się wyłączniki nadprądowe, które powinny mieć wartość znamionową prądu nie niższą niż 125% prądu roboczego silnika. W tym przypadku 125% z 18,5 A to 23,125 A, co wskazuje na to, że wyłącznik S303 C25 (25 A) byłby niewystarczający. Wyłącznik S303 C32 z wartością 32 A jest odpowiedni, ponieważ zapewnia odpowiedni margines bezpieczeństwa. Tego typu wyłączniki są szeroko stosowane w przemyśle i są zgodne z normami EN 60947-2, co zapewnia ich wysoką jakość i niezawodność.

Pytanie 16

Jaką czynność należy wykonać podczas inspekcji instalacji elektrycznej w budynku mieszkalnym przed jego oddaniem do użytku?

A. Weryfikacja czasu samoczynnego odłączenia zasilania
B. Ocena prawidłowego doboru przekroju kabli
C. Zmierzanie rezystancji izolacji instalacji elektrycznej
D. Przeprowadzenie próby ciągłości przewodów ochronnych oraz połączeń wyrównawczych
Tematyka dotycząca oceny instalacji elektrycznej jest złożona i wymaga zrozumienia wielu aspektów technicznych. Czas samoczynnego wyłączenia zasilania, mimo że istotny dla bezpieczeństwa, nie jest bezpośrednio związany z podstawowymi wymaganiami dotyczącymi doboru przekrojów przewodów. To pojęcie odnosi się głównie do działania zabezpieczeń w przypadku wystąpienia przeciążenia lub zwarcia. Również próba ciągłości przewodów ochronnych i połączeń wyrównawczych, choć ważna, nie dotyczy bezpośrednio doboru przekrojów, a raczej zapewnia integralność systemu ochrony przed porażeniem elektrycznym. Z kolei pomiar rezystancji izolacji instalacji elektrycznej jest techniką, która ma na celu sprawdzenie stanu izolacji, co jest kluczowe dla bezpieczeństwa, ale nie ma wpływu na dobór przekroju przewodów. Często błędne myślenie wynika z niepełnego zrozumienia roli poszczególnych elementów instalacji elektrycznej. Należy pamiętać, że podstawą zapewnienia bezpieczeństwa instalacji jest odpowiedni dobór przekrojów przewodów, dostosowany do zamierzonych obciążeń oraz warunków ich eksploatacji, co jest fundamentem dobrych praktyk w branży elektrycznej.

Pytanie 17

W jakim trybie pracy silnik asynchroniczny osiąga najmniejszy współczynnik mocy?

A. Zwarcia awaryjnego
B. Obciążenia znamionowego
C. Biegu jałowego
D. Zwarcia pomiarowego
W stanie biegu jałowego silnik asynchroniczny pracuje bez obciążenia, co prowadzi do niskiego współczynnika mocy. W tym trybie, silnik zużywa moc bierną, co skutkuje niską efektywnością energetyczną. W rzeczywistości, współczynnik mocy może wynosić zaledwie 0,1 do 0,2, co oznacza, że tylko niewielka część energii elektrycznej jest przekształcana w moc użyteczną. Zastosowanie tego trybu jest ograniczone, ale w niektórych sytuacjach, jak w przypadku urządzeń uruchamianych w warunkach niskiego obciążenia, mogą występować momenty pracy w biegu jałowym. W praktyce, dla poprawy efektywności energetycznej, często stosuje się kondensatory, które kompensują moc bierną, co pozwala zwiększyć współczynnik mocy do bardziej akceptowalnych wartości. Ponadto, znajomość tego zjawiska jest kluczowa przy projektowaniu układów zasilania oraz przy wyborze odpowiednich urządzeń i komponentów w systemach elektronicznych i elektrycznych, co jest zgodne z normami takimi jak IEC 60034 dotyczące maszyn elektrycznych.

Pytanie 18

Jaką liczbę należy zastosować do pomnożenia wartości znamionowego prądu silnika trójfazowego klatkowego, który napędza pompę, aby obliczyć maksymalną dozwoloną wartość nastawy prądu na jego zabezpieczeniu przeciążeniowym?

A. 2,0
B. 0,9
C. 1,1
D. 1,2
Poprawna odpowiedź to 1,1, co oznacza, że wartość znamionowego prądu silnika trójfazowego klatkowego należy pomnożyć przez ten współczynnik, aby obliczyć maksymalną dopuszczalną wartość nastawy prądu na zabezpieczeniu przeciążeniowym. Zastosowanie współczynnika 1,1 wynika z faktu, że silniki elektryczne, w tym silniki klatkowe, mogą mieć chwilowe przeciążenia, które są normalne w czasie rozruchu lub przy zmiennych warunkach pracy. Przyjęcie wartości 1,1 jako mnożnika do prądu znamionowego uwzględnia te momenty, co jest zgodne z praktykami opisanymi w normach IEC 60947-4-1 dotyczących wyłączników silnikowych. Przykładowo, jeśli znamionowy prąd silnika wynosi 10 A, to maksymalna dopuszczalna wartość nastawy na zabezpieczeniu przeciążeniowym wynosi 11 A. Takie ustawienie zabezpieczenia pozwala na bezpieczne działanie silnika, jednocześnie chroniąc go przed uszkodzeniem w wyniku przeciążenia.

Pytanie 19

Wkładki topikowe, jak przedstawiona na ilustracji, przeznaczone są do zabezpieczania

Ilustracja do pytania
A. urządzeń energoelektronicznych przed skutkami zwarć i przeciążeń.
B. przewodów elektrycznych wyłącznie przed skutkami zwarć.
C. przewodów elektrycznych przed skutkami zwarć i przeciążeń.
D. urządzeń energoelektronicznych wyłącznie przed skutkami przeciążeń.
Wybór odpowiedzi, która ogranicza zastosowanie wkładek topikowych wyłącznie do ochrony przed przeciążeniami lub zwarciami w urządzeniach energoelektronicznych, jest mylny. W rzeczywistości wkładki te są zaprojektowane do ochrony przewodów elektrycznych, a ich funkcjonalność obejmuje zarówno zabezpieczanie przed przeciążeniami, jak i zwarciami. Odpowiedzi sugerujące, że wkładki topikowe mogą chronić jedynie przed skutkami przeciążeń lub zwarć w urządzeniach, ignorują kluczową rolę, jaką odgrywają w ochronie instalacji elektrycznych jako całości. W praktyce, niewłaściwe zrozumienie funkcji wkładek topikowych może prowadzić do niewłaściwego doboru zabezpieczeń, co zwiększa ryzyko uszkodzenia zarówno przewodów, jak i podłączonych urządzeń. Zgodnie z wytycznymi norm, takich jak PN-EN 60947, wkładki topikowe muszą być odpowiednio dobrane do parametrów instalacji, co podkreśla konieczność zrozumienia ich roli w systemie ochrony elektrycznej. Ignorując te aspekty, można łatwo wprowadzić w błąd, co skutkuje narażeniem na niebezpieczeństwo zarówno użytkowników, jak i sprzętu elektrycznego.

Pytanie 20

Jaka przyczyna powoduje rozbieżność w działaniu silnika bocznikowego prądu stałego?

A. Przerwa w uzwojeniu wzbudzenia
B. Luzy w łożyskach
C. Brak obciążenia
D. Przerwa w uzwojeniu twornika
Luzy w łożyskach same w sobie nie sprawią, że silnik bocznikowy prądu stałego zacznie się rozbiegać. Owszem, luzy mogą zmniejszyć wydajność i stabilność silnika. Mogą powodować większe tarcie, co prowadzi do przegrzewania, ale to nie kluczowy powód rozbiegania. Brak obciążenia też nie jest głównym problemem, bo nawet bez obciążenia te silniki mogą pracować, tylko kręcą się szybciej, co może prowadzić do uszkodzeń. Przerwa w uzwojeniu twornika nie sprawi, że silnik się rozbiegnie, bo bez prądu w tym uzwojeniu, to ten silnik w ogóle nie wystartuje. Kluczowe w tym wszystkim jest zrozumienie, że rozbieganie się silnika wynika z braku pola magnetycznego i braku stabilizacji prędkości obrotowej. Myślenie, że to przez problemy mechaniczne, to typowy błąd, bo powinno się skupić bardziej na zasadach działania silnika i jego systemie wzbudzenia.

Pytanie 21

Jakie skutki dla instalacji mieszkalnej przyniesie zamiana przewodu YDY 3x1,5 mm2 na YADY 3 x 1,5 mm2?

A. Obciążalność długotrwała instalacji zostanie zmniejszona
B. Wytrzymałość elektryczna izolacji wzrośnie
C. Rezystancja przewodów ulegnie zmniejszeniu
D. Przewodność elektryczna przewodów ulegnie zwiększeniu
Wybór przewodu YADY 3x1,5 mm2 zamiast YDY 3x1,5 mm2 to nie byle co. Wiesz, te przewody mają różne właściwości, zwłaszcza jeśli chodzi o to, jak długo mogą wytrzymać przy dużym obciążeniu. Przewód YADY ma inną izolację, która po prostu nie znosi wysokich temperatur i uszkodzeń mechanicznych tak dobrze, jak YDY. Jak przewód YADY się nagrzeje, to może mieć problem z przenoszeniem prądu bezpiecznie. Takie sprawy reguluje norma PN-IEC 60364 i dobrze mieć to na uwadze przy projektowaniu. Inżynierowie i wykonawcy muszą więc dobrze przemyśleć, co wybierają, bo niewłaściwy przewód to ryzyko przegrzania i awarii, a to przecież może być niebezpieczne. Warto zainwestować w dobry wybór, żeby uniknąć kłopotów.

Pytanie 22

Jakie czynności oraz w jakiej kolejności powinny zostać dokonane podczas wymiany uszkodzonego łącznika elektrycznego?

A. Załączyć zasilanie, sprawdzić ciągłość połączeń, wymontować uszkodzony łącznik
B. Wymontować uszkodzony łącznik, odłączyć zasilanie, sprawdzić ciągłość połączeń
C. Odłączyć zasilanie, wymontować uszkodzony łącznik, sprawdzić ciągłość połączeń
D. Odłączyć zasilanie, sprawdzić brak napięcia, wymontować uszkodzony łącznik
Odpowiedź "Odłączyć napięcie, sprawdzić brak napięcia, wymontować uszkodzony łącznik" jest prawidłowa, ponieważ obejmuje kluczowe kroki niezbędne do bezpiecznej wymiany łącznika elektrycznego. Pierwszym krokiem jest odłączenie napięcia, co jest absolutnie konieczne, aby zapobiec porażeniu prądem. Takie działanie jest zgodne z zasadą bezpieczeństwa elektrycznego, zgodnej z normą PN-IEC 60364. Następnie, sprawdzenie braku napięcia za pomocą odpowiednich narzędzi, takich jak wskaźnik napięcia, pozwala upewnić się, że instalacja jest całkowicie bezpieczna do pracy. To kluczowy krok, który chroni technika przed niebezpieczeństwem. Po potwierdzeniu braku napięcia można przystąpić do demontażu uszkodzonego łącznika. Dobrą praktyką jest również sprawdzenie stanu przewodów, co zapewnia, że nowy łącznik będzie poprawnie funkcjonować. Przykład zastosowania tej procedury można zaobserwować podczas serwisów i konserwacji instalacji elektrycznych w domach i biurach, gdzie przestrzeganie zasad bezpieczeństwa może zapobiec poważnym wypadkom.

Pytanie 23

Ile minimum osób powinno zajmować się pracami w warunkach szczególnego zagrożenia?

A. Jedna osoba
B. Trzy osoby
C. Dwie osoby
D. Cztery osoby
Praca w warunkach szczególnego zagrożenia to obszar, w którym bezpieczeństwo pracowników powinno być priorytetem. Odpowiedzi sugerujące, iż jedna osoba może wystarczyć do wykonywania takiej pracy, pomijają kluczowe aspekty związane z ryzykiem i są niezgodne z obowiązującymi standardami BHP. W sytuacjach, gdzie występują potencjalnie niebezpieczne czynniki, jak na przykład prace w wysokich temperaturach, narażenie na toksyczne substancje czy prace w zamkniętych przestrzeniach, zapewnienie wsparcia jest niezbędne. Posiadanie tylko jednego pracownika naraża go na większe ryzyko, ponieważ w przypadku wypadku, braku orientacji w sytuacji, czy wystąpienia nagłej choroby, nikt nie będzie w stanie szybko zareagować. Takie podejście jest szczególnie niebezpieczne, gdyż doświadczony pracownik może również trafić w sytuację, w której jego zdolności do działania są ograniczone. W praktyce, nie tylko normy prawne, ale również zasady zdrowego rozsądku i praktyki przemysłowe wskazują na konieczność dwuosobowej obsady. W wielu branżach wprowadza się zasady buddy system, które zapewniają, że pracownicy zawsze pracują w parach, co znacząco zwiększa poziom bezpieczeństwa. Ignorowanie tego zalecenia prowadzi do nieodpowiedzialnego podejścia do bezpieczeństwa, gdzie ryzyko wypadków wzrasta, a skutki mogą być tragiczne.

Pytanie 24

Jakiego składnika nie może mieć kabel zasilający do rozdzielnicy głównej w pomieszczeniu przemysłowym uznawanym za niebezpieczne pod kątem pożaru?

A. Żył aluminiowych
B. Powłoki polietylenowej
C. Zewnętrznego oplotu włóknistego
D. Pancerza stalowego
Zewnętrzny oplot włóknisty w kablach zasilających nie jest zalecany w pomieszczeniach przemysłowych, które są klasyfikowane jako niebezpieczne pod względem pożarowym, ponieważ może on stanowić dodatkowe źródło łatwopalne. W takich środowiskach ważne jest, aby stosować zabezpieczenia, które minimalizują ryzyko pożaru. Zamiast oplotu włóknistego, lepszym rozwiązaniem są materiały odporniejsze na działanie wysokich temperatur oraz ognia, takie jak pancerz stalowy lub powłoka polietylenowa, które zapewniają lepszą ochronę mechaniczną oraz zabezpieczenie przed uszkodzeniami. Przykładem zastosowania mogą być różnego rodzaju zakłady przemysłowe, w których występują substancje łatwopalne, takie jak chemikalia, co wymusza na projektantach instalacji elektrycznych przestrzeganie standardów, takich jak norma IEC 60079 dotycząca urządzeń elektrycznych przeznaczonych do pracy w atmosferze wybuchowej. Wybór odpowiednich kabli zasilających jest kluczowy dla zapewnienia bezpieczeństwa pracy i ochrony mienia.

Pytanie 25

Która z wymienionych czynności nie jest częścią oceny stanu technicznego podczas przeglądu układu napędowego z wykorzystaniem przekształtnika energoelektronicznego?

A. Ocena czystości filtrów powietrza chłodzącego
B. Sprawdzenie natężenia oświetlenia na stanowisku obsługi układu napędowego
C. Weryfikacja jakości zabezpieczeń nadprądowych oraz zmiennozwarciowych
D. Kontrola połączeń stykowych
Kiedy wybierasz odpowiedzi dotyczące zabezpieczeń nadprądowych, czystości filtrów powietrza chłodzącego i połączeń stykowych, można zauważyć, że te rzeczy powinny być częścią przeglądu stanu technicznego układów napędowych. Zabezpieczenia nadprądowe są ważne, bo chronią sprzęt przed uszkodzeniem, jeśli dojdzie do sytuacji, gdzie coś jest za dużo, na przykład przeciążenia. Ich awaria może prowadzić do poważnych problemów, co potwierdzają różne standardy bezpieczeństwa, jak IEC 60947. Czystość filtrów powietrza również jest mega istotna, bo zanieczyszczenia mogą sprawić, że komponenty się przegrzeją, co nie jest dobre dla ich żywotności. Kontrola połączeń stykowych jest następna na liście, żeby upewnić się, że sygnały elektryczne są stabilne i nie mają problemów z erozją, bo to może prowadzić do nieprawidłowego działania systemu. Ważne jest, żeby zrozumieć, że wszystkie te kontrole są ze sobą powiązane i mają wpływ na działanie układu napędowego. Ignorując je, można wpaść w pułapki i błędnie ocenić bezpieczeństwo urządzenia.

Pytanie 26

Jakie są dopuszczalne maksymalne terminy między kolejnymi kontrolami instalacji elektrycznych w pomieszczeniach z wyziewami żrącymi?

A. 1 rok dla weryfikacji skuteczności ochrony przeciwporażeniowej oraz 5 lat dla weryfikacji rezystancji izolacji
B. 1 rok dla weryfikacji skuteczności ochrony przeciwporażeniowej oraz 1 rok dla weryfikacji rezystancji izolacji
C. 5 lat dla weryfikacji skuteczności ochrony przeciwporażeniowej oraz 5 lat dla weryfikacji rezystancji izolacji
D. 5 lat dla weryfikacji skuteczności ochrony przeciwporażeniowej oraz 1 rok dla weryfikacji rezystancji izolacji
Wybór odpowiedzi, że maksymalne okresy między sprawdzeniami instalacji elektrycznych w pomieszczeniach z wyziewami żrącymi wynoszą 1 rok dla ochrony przeciwporażeniowej i 1 rok dla rezystancji izolacji, są naprawdę zgodne z tym, co mówi prawo i normy. W takich miejscach jak laboratoria chemiczne czy fabryki ryzyko uszkodzenia izolacji jest wyższe, dlatego kontrole powinny być częstsze. Trzeba regularnie sprawdzać, czy wyłączniki różnicowo-prądowe działają, bo to kluczowe dla bezpieczeństwa. A jeśli chodzi o rezystancję izolacji, to wczesne wykrycie problemów może zapobiec poważnym awariom. W praktyce, dobrze zorganizowane harmonogramy przeglądów w zakładach pomagają się dostosować do wymogów prawnych i standardów bezpieczeństwa, takich jak norma PN-EN 60079 dla atmosfer wybuchowych czy PN-IEC 60364 dla instalacji elektrycznych. Przestrzeganie tych zasad jest bardzo ważne, aby zminimalizować ryzyko wypadków i chronić ludzi oraz mienie.

Pytanie 27

Jaki jest maksymalny czas automatycznego wyłączenia zasilania w celu zapewnienia ochrony przed porażeniem elektrycznym w przypadku awarii w obwodach odbiorczych o prądzie nominalnym I < 32 A w jednofazowym układzie sieciowym TN przy napięciu 230 V?

A. 0,2 s
B. 0,4 s
C. 5,0 s
D. 0,1 s
Czas samoczynnego wyłączenia zasilania ma kluczowe znaczenie dla bezpieczeństwa w instalacjach elektrycznych. Odpowiedzi takie jak 5,0 s, 0,2 s czy 0,1 s wskazują na pewne nieporozumienia dotyczące standardów ochrony przeciwporażeniowej. Wybór 5,0 s sugeruje znaczną tolerancję na czas wyłączenia, co jest niezgodne z praktykami w systemach TN, gdzie szybka reakcja jest kluczowa. Umożliwienie tak długiego czasu wyłączenia mogłoby prowadzić do poważnych zagrożeń dla zdrowia, gdyż w przypadku porażenia prądem, opóźnienia w odcięciu zasilania mogą skutkować poważnymi obrażeniami lub nawet śmiercią. Odpowiedzi 0,2 s i 0,1 s również nie są zgodne z wymaganiami dla obwodów o prądzie znamionowym poniżej 32 A, ponieważ czas ten jest zbyt krótki, aby zapewnić skuteczną detekcję i wyłączenie, co może prowadzić do fałszywych wyłączeń. Takie podejście ignoruje kluczowe zasady, które zakładają, że wyłączniki różnicowoprądowe muszą działać w sposób, który równocześnie zapewnia ochronę przed porażeniem oraz minimalizuje ryzyko niepotrzebnych wyłączeń przy normalnym funkcjonowaniu urządzeń. Prawidłowe rozumienie norm dotyczących ochrony przeciwporażeniowej jest istotne dla inżynierów i techników elektryków, aby skutecznie projektować i wdrażać bezpieczne rozwiązania elektryczne.

Pytanie 28

Której z poniżej wymienionych czynności nie da się wykonać podczas próbnego uruchomienia zgrzewarki oporowej?

A. Weryfikacji stanu i poprawności ustawienia elektrod
B. Mierzenia czasu poszczególnych etapów zgrzewania: docisku oraz przerwy
C. Pomiaru rezystancji izolacji między uzwojeniem pierwotnym transformatora a obudową
D. Sprawdzenia funkcjonowania przełącznika do zgrzewania pojedynczego oraz ciągłego
Pomiar rezystancji izolacji między uzwojeniem pierwotnym transformatora a obudową jest kluczowy dla zapewnienia bezpieczeństwa pracy zgrzewarki oporowej. W czasie próbnego uruchamiania urządzenia, istotne jest, aby skupić się na sprawdzeniu stanu elektrod, prawidłowości ustawienia oraz funkcji zgrzewania. Pomiar rezystancji izolacji, który jest standardową procedurą konserwacyjną, powinien być przeprowadzany przed włączeniem urządzenia do pracy, aby upewnić się, że nie ma niebezpiecznych przebicia elektrycznych, które mogłyby spowodować uszkodzenie sprzętu lub zagrożenie dla operatora. Dobre praktyki w branży wymagają, aby przed rozpoczęciem jakiejkolwiek pracy z urządzeniem elektrycznym, przeprowadzić dokładne pomiary izolacji, co nie jest częścią próbnego uruchamiania, lecz regularnych przeglądów. Takie działania ograniczają ryzyko awarii i zwiększają bezpieczeństwo operacyjne, co jest zgodne z normami ISO 9001 dotyczącymi systemów zarządzania jakością oraz normami bezpieczeństwa elektrycznego. Przykładem zastosowania tych zasad jest wykonywanie pomiarów rezystancji izolacji w przemyśle elektronicznym, gdzie regularne kontrole stanu izolacji są normą.

Pytanie 29

Wyznacz rezystancję przewodu LgY o powierzchni przekroju 10 mm2 i długości 1 km, mając informację, że rezystywność miedzi wynosi 1,72∙10-8 Ω∙m?

A. 17,2 Ω
B. 172 Ω
C. 1,72 Ω
D. 1 720 Ω
Obliczenie rezystancji przewodu może prowadzić do różnych nieporozumień, zwłaszcza gdy błędnie interpretuje się wartości lub stosuje się niewłaściwe wzory. W przypadku odpowiedzi 17,2 Ω, można zauważyć, że jest to wynik, który można uzyskać, myląc jednostki lub nieprawidłowo stosując wzór. Użycie niewłaściwych jednostek lub przeliczeń może prowadzić do znacznych błędów w obliczeniach. Rezystancja przewodu o długości 1 km i przekroju 10 mm² nie może być tak wysoka, ponieważ przy danych wartościach materialnych i geometrycznych wynikiem powinno być zaledwie 1,72 Ω. Z kolei odpowiedzi takie jak 1 720 Ω oraz 172 Ω wskazują na poważne błędy w obliczeniach, które mogą wynikać z całkowitego zignorowania proporcji długości do przekroju poprzecznego lub błędnego przeliczenia jednostek. Tego rodzaju błędy myślowe są częste przy obliczeniach rezystancji, zwłaszcza w przypadkach, gdy nie uwzględnia się odpowiednich parametrów materiałowych. W praktykach inżynieryjnych kluczowe jest prawidłowe zrozumienie i zastosowanie wzorów, a także dbałość o poprawne przeliczenie jednostek, aby uniknąć sytuacji, które mogą prowadzić do nieefektywności w systemach elektrycznych oraz nieplanowanych awarii w instalacjach. Dobre praktyki inżynieryjne zalecają systematyczne sprawdzanie obliczeń oraz korzystanie z wartości tabelarycznych materiałów, aby zapewnić ich poprawność.

Pytanie 30

W celu sprawdzenia poprawności działania wyłączników różnicowoprądowych zmierzono ich różnicowe prądy zadziałania i wyniki zamieszczono w przedstawionej tabeli. Który z wyłączników spełnia warunek prądu zadziałania IA = (0,5÷1,00) IΔN?

WyłącznikWynik pomiaru różnicowego prądu zadziałania IΔ
P302 25-10-AC25 mA
P202 25-30-AC25 mA
P304 40-30-AC40 mA
P304 40-100-AC40 mA
A. P304 40-30-AC
B. P304 40-100-AC
C. P302 25-10-AC
D. P202 25-30-AC
Wyłącznik P202 25-30-AC jest poprawny, ponieważ jego prąd zadziałania wynosi 25 mA, co mieści się w przedziale I_A = (0,5÷1,00) I_ΔN dla tego urządzenia. Obliczając ten zakres, przyjmujemy, że nominalny prąd różnicowy I_ΔN wynosi 30 mA, co daje zakres zadziałania od 15 mA do 30 mA. Wyłączniki różnicowoprądowe są kluczowymi elementami w systemach zabezpieczeń elektrycznych, chroniącymi przed porażeniem prądem elektrycznym oraz pożarami spowodowanymi upływem prądu. Regularne sprawdzanie ich działania, zgodne z normami takimi jak PN-EN 61008, jest niezbędne w każdej instalacji elektrycznej. Właściwy dobór wyłączników i ich odpowiednie ustawienia mają kluczowe znaczenie dla bezpieczeństwa użytkowników i niezawodności systemu. Zastosowanie wyłącznika P202 25-30-AC w praktyce pozwala na efektywne zabezpieczenie obwodów w różnych aplikacjach, w tym w budynkach mieszkalnych, biurowych oraz przemysłowych.

Pytanie 31

Na wyjściu układu zasilacza przedstawionego na schemacie zaobserwowano przebieg napięcia pokazany na rysunku. Oznacza to, że

Ilustracja do pytania
A. uszkodzona jest dioda i kondensator.
B. dioda jest sprawna, a uszkodzony jest kondensator.
C. uszkodzona jest dioda, a kondensator jest sprawny.
D. układ pracuje prawidłowo.
Dioda w prostowniku jednopołówkowym pełni kluczową rolę, pozwalając prądowi przepływać tylko w jednym kierunku. W przedstawionym schemacie, przebieg napięcia na wyjściu układu wskazuje na prawidłowe działanie diody, ponieważ prąd przepływa tylko w jednej połówce cyklu. Jednakże, jeżeli obserwujemy pulsujące napięcie, zamiast wygładzonego napięcia stałego, sugeruje to uszkodzenie kondensatora, który powinien pełnić funkcję filtrowania. Kondensator w układzie zasilacza jest odpowiedzialny za redukcję tętnień napięcia i wygładzanie szczytów. Praktyczne zastosowanie tego układu można zauważyć w zasilaczach do urządzeń elektronicznych, gdzie stabilne napięcie jest kluczowe dla poprawnego działania. W przypadkach, gdy kondensator jest uszkodzony, może to prowadzić do wahań napięcia, co może uszkodzić podłączone urządzenia. Dobrą praktyką jest regularne monitorowanie stanu kondensatorów w układach zasilających, aby zapewnić ich niezawodność oraz wydajność.

Pytanie 32

Który z jednofazowych wyłączników zabezpieczających spełnia wymagania ochrony przed porażeniem przy impedancji pętli zwarcia Z = 4,2 Ω?

A. B16
B. C16
C. B10
D. C10
Odpowiedź B10 jest prawidłowa, ponieważ wyłącznik nadprądowy o charakterystyce B zapewnia odpowiednią ochronę przeciwporażeniową przy impedancji pętli zwarcia wynoszącej 4,2 Ω. W przypadku prądu zwarciowego, który może wynosić około 6-10 kA, czas wyłączenia powinien być maksymalnie 0,4 sekundy, aby zminimalizować ryzyko obrażeń ciała. Wyłącznik B10 charakteryzuje się wartością prądową 10 A oraz czasem zadziałania odpowiednim do ochrony ludzi w przypadku zwarcia. Normy PN-EN 60947-2 i PN-IEC 60364-4-41 podkreślają znaczenie odpowiedniego doboru wyłączników nadprądowych, a także określają wymagania dotyczące zabezpieczeń przed dotykiem bezpośrednim i pośrednim. W praktyce, zastosowanie tego typu wyłączników w instalacjach domowych i komercyjnych pozwala na efektywne zabezpieczenie obwodów przed przeciążeniami, a także zwiększa ogólne bezpieczeństwo użytkowników. Warto również zauważyć, że odpowiedni dobór wyłącznika wpływa na komfort korzystania z elektryczności w codziennym życiu oraz minimalizuje ryzyko awarii systemów elektrycznych.

Pytanie 33

Który z podanych przewodów powinien zostać wybrany w celu zastąpienia uszkodzonego przewodu zasilającego silnik trójfazowy zainstalowany w odbiorniku ruchomym?

A. YLY 3x2,5 mm2
B. OP4x2,5 mm2
C. SM3x2,5 mm2
D. YDY 4x2,5 mm2
Odpowiedź OP4x2,5 mm2 jest prawidłowa, ponieważ przewód ten spełnia wymagania dotyczące zasilania silników trójfazowych w aplikacjach przemysłowych. Przewód OP (olejoodporny) charakteryzuje się dużą odpornością na działanie olejów i substancji chemicznych, co jest kluczowe w środowiskach, gdzie takie czynniki mogą występować. Przekrój 2,5 mm2 zapewnia odpowiedni przepływ prądu dla silników o mocy do około 5,5 kW, co jest standardem w wielu instalacjach. Użycie przewodów zgodnych z normami PN-IEC 60364-1 oraz PN-EN 60228 gwarantuje bezpieczeństwo i niezawodność systemu. W praktyce, przewody te stosuje się w różnych mechanizmach, takich jak taśmy transportowe czy maszyny produkcyjne, gdzie mobilność i odporność na uszkodzenia mechaniczne są kluczowe. Zastosowanie odpowiedniego przewodu zasilającego jest istotne nie tylko dla prawidłowego działania urządzeń, ale też dla zapewnienia bezpieczeństwa w miejscu pracy.

Pytanie 34

Symbol graficzny którego przekaźnika przedstawiono na rysunku?

Ilustracja do pytania
A. Podnapięciowego.
B. Nadprądowego.
C. Nadnapięciowego.
D. Podczęstotliwościowego.
Wybór odpowiedzi na temat przekaźników wymaga zrozumienia ich funkcji oraz zastosowań w systemach automatyki. Odpowiedzi takie jak nadprądowy, podczęstotliwościowy oraz nadnapięciowy odnoszą się do różnych typów przekaźników, które działają w innych warunkach i mają różne funkcje. Przekaźnik nadprądowy, na przykład, jest używany do ochrony obwodów przed przeciążeniem; aktywuje się, gdy natężenie prądu przekroczy ustalony próg. Z kolei przekaźnik nadnapięciowy działa wtedy, gdy napięcie wzrośnie powyżej bezpiecznego poziomu. Oba te typy przekaźników są kluczowe dla zabezpieczenia układów elektrycznych, jednak ich działanie nie jest związane z niskim napięciem, co jest kluczowym aspektem w kontekście przekaźników podnapięciowych. Przekaźniki podczęstotliwościowe są rzadziej spotykane i służą do detekcji niskich częstotliwości sygnałów, co nie ma bezpośredniego związku z problematyką napięcia. Zrozumienie tych różnic jest kluczowe, aby uniknąć typowych błędów myślowych, które mogą prowadzić do niepoprawnych wniosków w kontekście projektowania obwodów i systemów kontrolnych. W praktyce, nieodpowiedni dobór przekaźników może prowadzić do awarii systemów, co podkreśla znaczenie wiedzy na temat ich działania i zastosowania w różnych sytuacjach inżynieryjnych.

Pytanie 35

W silniku odkurzacza po wyjęciu z obudowy i załączeniu pełnego napięcia w serwisie zauważono zmniejszone obroty i iskrzenie na komutatorze. Na podstawie zamieszczonej tabeli wskaż, prawidłową kolejność czynności przy wykrywaniu i naprawie uszkodzenia w silniku odkurzacza.

Czynność
1demontaż elementów silnika
2próbne uruchomienie silnika przy zmniejszonym napięciu i doszlifowanie szczotek
3sprawdzenie długości szczotek i ich prawidłowego docisku do komutatora
4wykonanie badania na obecność zwarć w wirniku
5wymiana uszkodzonych podzespołów
6montaż podzespołów silnika
A. 3, 1, 4, 5, 6, 2
B. 4, 1, 5, 3, 6, 2
C. 3, 4, 2, 1, 5, 6
D. 1, 4, 3, 5, 2, 6
W przypadku niepoprawnych odpowiedzi pojawiają się typowe błędy myślowe związane z kolejnością działań diagnostycznych. Zaczynanie od demontażu elementów silnika bez wcześniejszej weryfikacji stanu szczotek prowadzi do nieefektywnej pracy oraz zwiększonego ryzyka uszkodzenia innych podzespołów. Diagnostyka powinna zawsze zaczynać się od najprostszych do najtrudniejszych problemów; w tym przypadku sprawdzenie szczotek jest kluczowe. Idąc dalej, pominiecie etapu badania wirnika na obecność zwarć może skutkować dalszymi uszkodzeniami, które nie będą widoczne gołym okiem. Wymiana uszkodzonych elementów przed dokładnym zrozumieniem przyczyny awarii prowadzi do marnotrawstwa czasu i zasobów. Ostatecznie, przeprowadzanie próbnego uruchomienia silnika przed całkowitym złożeniem i wykonaniem wszystkich niezbędnych napraw jest także niewłaściwą praktyką, która może prowadzić do dalszych awarii. W kontekście standardów branżowych, zawsze należy przestrzegać metodologii diagnostycznej, która zakłada systematyczne podejście i eliminację potencjalnych źródeł problemów, zaczynając od najprostszych rozwiązań. Dobre praktyki wskazują na znaczenie odpowiedniego przygotowania przed przystąpieniem do skomplikowanych operacji serwisowych, co pozwala na minimalizowanie ryzyka i zwiększenie efektywności napraw.

Pytanie 36

Który z wymienionych wyłączników nadprądowych powinien zabezpieczać obwód zasilający trójfazowy silnik klatkowy o parametrach znamionowych: Pn = 11 kW, Un = 400 V, cos φ = 0,73, η = 80 %?

A. S303 C25
B. S303 C32
C. S303 C40
D. S303 C20
Wybór wyłącznika nadprądowego S303 C32 jest odpowiedni dla obwodu zasilania trójfazowego silnika klatkowego o parametrach Pn = 11 kW, Un = 400 V, cos φ = 0,73 oraz η = 80%. Przy obliczaniu prądu znamionowego silnika, korzystając z wzoru I = Pn / (√3 * Un * cos φ), otrzymujemy wartość około 18,7 A. Wyłącznik C32 ma zdolność przenoszenia prądu do 32 A, co daje odpowiedni margines bezpieczeństwa w przypadku przeciążeń, a także umożliwia ochronę przed zwarciami. Dobrą praktyką w doborze wyłączników jest uwzględnienie dodatkowego zapasu prądowego, co chroni instalację przed uszkodzeniem. Na przykład, w przypadku rozruchu silnika, prąd może wzrosnąć do 6-7 razy wartości nominalnej, dlatego rekomenduje się stosowanie wyłączników z wyższymi wartościami znamionowymi. Zgodnie z normami PN-EN 60947-2, wyłączniki muszą być dostosowane do specyficznych warunków pracy, co czyni wybór S303 C32 właściwym rozwiązaniem w kontekście zapewnienia bezpieczeństwa i niezawodności systemu zasilania.

Pytanie 37

Podczas badania transformatora średniej mocy stwierdzono, że jego temperatura wzrosła ponad normę. Co może być tego przyczyną?

A. Zwarcie międzyzwojowe
B. Przerwa w uzwojeniu
C. Uszkodzenie rdzenia
D. Przeciążenie transformatora
Przeciążenie transformatora często prowadzi do zwiększenia jego temperatury. Gdy transformator jest obciążony powyżej swojej znamionowej mocy, zaczyna generować więcej ciepła niż jest w stanie oddać do otoczenia. Z tego powodu temperatura uzwojeń oraz innych elementów wewnętrznych transformatora wzrasta. Przeciążenia mogą wynikać z niewłaściwego projektowania systemu, nieprawidłowych połączeń, czy też nagłych wzrostów zapotrzebowania na moc. W praktyce, transformator powinien być zawsze eksploatowany w granicach swojej znamionowej mocy, a jego obciążenie monitorowane za pomocą odpowiednich urządzeń pomiarowych. Długotrwałe przeciążenie nie tylko prowadzi do wzrostu temperatury, ale może również skrócić żywotność transformatora, uszkodzić izolację uzwojeń i spowodować awarie całego systemu. Dlatego tak ważne jest stosowanie się do zaleceń producenta oraz regularne przeglądy i konserwacje urządzenia. Dodatkowo, instalacja systemów chłodzenia, takich jak wentylatory lub chłodzenie olejowe, może pomóc w zarządzaniu temperaturą podczas większych obciążeń.

Pytanie 38

Podczas wymiany uzwojeń w transformatorze jednofazowym o parametrach: SN = 200 VA, U1N = 230 V, U2N = 14,6 V, uzwojenie pierwotne powinno być wykonane z drutu nawojowego

A. o mniejszej średnicy i większej liczbie zwojów niż uzwojenie wtórne
B. o mniejszej średnicy i mniejszej liczbie zwojów niż uzwojenie wtórne
C. o większej średnicy i mniejszej ilości zwojów niż uzwojenie wtórne
D. o większej średnicy i większej liczbie zwojów niż uzwojenie wtórne
Stwierdzenia dotyczące wykonania uzwojenia pierwotnego z drutu o większej średnicy i większej liczbie zwojów, a także o mniejszej średnicy i mniejszej liczbie zwojów, są związane z niewłaściwym zrozumieniem zasad transformacji napięcia w transformatorze. Uzwojenie pierwotne, które przyjmuje napięcie 230 V, wymaga odpowiedniego doboru liczby zwojów w porównaniu do uzwojenia wtórnego, które działa na napięciu 14,6 V. W każdym przypadku, gdy napięcie na uzwojeniu wtórnym jest znacznie niższe niż na pierwotnym, liczba zwojów uzwojenia wtórnego musi być znacznie mniejsza w odniesieniu do uzwojenia pierwotnego. Taki dobór przekłada się na to, że uzwojenie pierwotne musi mieć więcej zwojów, co jest sprzeczne z koncepcją grubszej średnicy drutu, ponieważ większa średnica skutkowałaby zmniejszeniem liczby zwojów na danej długości. Często błędy te wynikają z mylenia pojęć dotyczących impedancji i rezystancji, co prowadzi do nieprawidłowych wniosków na temat wymagań dotyczących wymiany uzwojeń. Ponadto, nieprawidłowe podejście do średnicy drutu może skutkować niewłaściwym przewodnictwem i zwiększoną stratą ciepła, co jest nieefektywne i niezgodne z dobrymi praktykami w projektowaniu transformatorów. Właściwe zrozumienie tych zasad jest kluczowe dla zapewnienia efektywności energetycznej i trwałości urządzeń elektronicznych.

Pytanie 39

Na rysunku przedstawiono wyłącznik

Ilustracja do pytania
A. czasowy.
B. gazowo-wydmuchowy.
C. nadprądowy.
D. różnicowoprądowy.
Wyłącznik różnicowoprądowy jest kluczowym urządzeniem stosowanym w systemach elektrycznych, którego głównym zadaniem jest ochrona ludzi przed porażeniem prądem elektrycznym. Działa na zasadzie pomiaru różnicy prądów wpływających i wypływających z obwodu. W przypadku wykrycia nieprawidłowości, na przykład przy uszkodzeniu izolacji, wyłącznik natychmiast przerywa obwód, co minimalizuje ryzyko wypadków. Głównym elementem wyłącznika różnicowoprądowego jest przycisk testowy, który pozwala użytkownikowi na regularne sprawdzanie jego działania. Zgodnie z normami PN-EN 61008-1, każdy wyłącznik różnicowoprądowy powinien być poddawany testom, co stało się standardem w nowoczesnych instalacjach elektrycznych. Warto zastosować te urządzenia w domach oraz obiektach użyteczności publicznej, zwłaszcza w miejscach narażonych na wilgoć, takich jak łazienki czy kuchnie.

Pytanie 40

Jakie nastąpi zmiana w przekładni napięciowej transformatora jednofazowego, jeśli podczas jego modernizacji nawinięto o 10% więcej zwojów po stronie niskiego napięcia, nie zmieniając ilości zwojów po stronie wysokiego napięcia?

A. Spadnie o 10%
B. Wzrośnie o 21%
C. Spadnie o 19%
D. Wzrośnie o 10%
Transformator jednofazowy działa na zasadzie przekładni napięciowej, która jest definiowana jako stosunek liczby zwojów uzwojenia wysokiego napięcia do liczby zwojów uzwojenia niskiego napięcia. W przypadku, gdy nawinięto o 10% więcej zwojów na stronie dolnego napięcia, liczba zwojów w uzwojeniu niskiego napięcia wzrasta, co prowadzi do zmiany przekładni. Jeśli oznaczymy liczbę zwojów uzwojenia niskiego napięcia jako N1, uzwojenia wysokiego napięcia jako N2, to nowa liczba zwojów uzwojenia niskiego napięcia wyniesie 1,1 * N1. Nowa przekładnia napięciowa (U2/U1) oblicza się jako N2/(1,1 * N1), co skutkuje zmniejszeniem przekładni o około 10%. W praktyce, zwiększenie liczby zwojów po stronie dolnego napięcia oznacza, że transformator będzie w stanie obniżyć napięcie w mniejszym stopniu, co ma znaczenie w aplikacjach wymagających stabilizacji napięcia, takich jak zasilanie urządzeń elektronicznych, gdzie precyzyjne napięcie jest kluczowe. W przemyśle energetycznym zrozumienie przekładni napięciowej jest niezbędne do projektowania transformatorów oraz ich optymalizacji. Zmiany w liczbie zwojów mogą być korzystne w niektórych warunkach operacyjnych, co podkreśla znaczenie regularnych przeglądów i modernizacji transformatorów.