Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 7 grudnia 2025 16:07
  • Data zakończenia: 7 grudnia 2025 16:53

Egzamin zdany!

Wynik: 26/40 punktów (65,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Za pomocą których elementów układu elektropneumatycznego, którego schemat przedstawiono na rysunku, należy regulować prędkość wysuwania tłoczysk siłowników 1A1 i 2A1?

Ilustracja do pytania
A. 1V1 i 2V1
B. 1V2 i 2V1
C. 1V2 i 2V2
D. 1V1 i 2V2
Odpowiedzi 1V1 i 2V1, 1V2 i 2V1 oraz 1V2 i 2V2 nie są za dobre, bo mają błędne założenia co do tych zaworów w układzie elektropneumatycznym. Zawory kierunkowe, jak 1V1 i 2V1, odpowiadają za kierunek, w jakim płynie medium, więc ich podstawowa rola to kontrolowanie, w którą stronę idzie powietrze czy gaz. Chociaż są ważne, to nie dają rady regulować prędkości ruchu tłoczysk. Co do odpowiedzi 1V2 i 2V1, nawet jeżeli zawory V2 są ok do regulacji, to połączenie ich z kierunkowymi nie pozwoli na skuteczną kontrolę prędkości, bo nie mają odpowiednich funkcji. Często mylenie funkcji zaworów to główny powód błędnych wniosków. Kluczowa sprawa to wiedzieć, że różne zawory mają różne role i muszą być stosowane zgodnie z tym, co potrafią. Regulacja prędkości wymaga użycia zaworów zaprojektowanych do tego, co jest zgodne z normami w branży pneumatycznej.

Pytanie 2

Urządzenie do pomiaru o zakresie od 0,1 do 10 m3/s to

A. przepływomierz
B. miernik mętności
C. czujnik poziomu
D. miernik prędkości
Przepływomierz to urządzenie, które służy do pomiaru przepływu cieczy lub gazów w określonym czasie. Miernik o zakresie pomiarowym od 0,1 do 10 m³/s jest typowym przykładem przepływomierza, który znajduje zastosowanie w różnych branżach, takich jak przemysł chemiczny, energetyczny czy wodociągowy. Przepływomierze mogą działać na różnych zasadach, w tym na zasadzie pomiaru różnicy ciśnień, elektromagnetycznych czy ultradźwiękowych. Przykładem zastosowania jest monitoring zużycia wody w systemach wodociągowych, gdzie dokładne pomiary przepływu pomagają w zarządzaniu zasobami oraz w identyfikacji nieszczelności w instalacjach. W kontekście dobrej praktyki, regularna kalibracja przepływomierzy jest kluczowa, aby zapewnić ich dokładność i niezawodność, co jest zgodne z normami ISO 9001 dotyczących zarządzania jakością.

Pytanie 3

Który instrument pomoże w monitorowaniu jakości sprężonego powietrza pod kątem wilgotności oraz obecności kondensatu?

A. Detektor wycieków
B. Miernik przepływu powietrza
C. Miernik punktu rosy
D. Termomanometr bimetaliczny
Miernik punktu rosy to naprawdę ważne urządzenie, jeżeli chodzi o jakość sprężonego powietrza. Głównie pozwala zmierzyć, w jakiej temperaturze para wodna zaczyna się skraplać, co jest mega istotne w kontekście wilgotności. W różnych branżach, gdzie sprężone powietrze jest na porządku dziennym, kontrolowanie wilgotności to podstawa. Za dużo wody w powietrzu może uszkodzić sprzęt, prowadzić do korozji, a czasem nawet zmniejszyć efektywność działania. Na przykład w systemach pneumatycznych, gdzie wszystko musi działać precyzyjnie, nadmiar wilgoci może spowodować tzw. „hydrauliczne uderzenie”, co w efekcie może doprowadzić do awarii. A skoro mówimy o branży spożywczej czy farmaceutycznej, to według norm ISO 8573, które regulują jakość sprężonego powietrza, pomiar punktu rosy to kluczowa sprawa, bo wpływa na bezpieczeństwo i jakość produktów. Używając miernika punktu rosy, szczególnie w połączeniu z systemami osuszania powietrza, można naprawdę zadbać o odpowiednie standardy jakości, co jest niezbędne, żeby procesy przemysłowe działały jak należy.

Pytanie 4

Jakiego koloru powinna być izolacja przewodu PE?

A. Niebieski.
B. Brązowy.
C. Zielony.
D. Żółto-zielony.
Przewód PE, czyli Protective Earth, powinien być w kolorze żółto-zielonym. To jest standard, który obowiązuje w normie IEC 60446 i w innych przepisach dotyczących instalacji elektrycznych. Przewód PE jest naprawdę ważny, bo chroni nas przed porażeniem prądem. Dlatego jasne oznaczenie tego przewodu jest kluczowe dla bezpieczeństwa ludzi i urządzeń. Dzięki żółto-zielonemu kolorowi elektrycy od razu wiedzą, jaka jest jego funkcja, co ułatwia pracę i sprawia, że wszystko jest zgodne z międzynarodowymi standardami. Kiedy coś się dzieje i awaria występuje, ten przewód powinien odprowadzać nadmiar prądu do ziemi, zmniejszając ryzyko porażenia lub uszkodzenia sprzętu. Oznaczenie w odpowiednim kolorze pozwala na szybkie zidentyfikowanie przewodów, co jest niezbędne podczas montażu czy serwisu. Właściwe oznaczenie to też kwestia ważna, bo prawo wymaga, żeby projektanci i wykonawcy przestrzegali tych norm.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Aby przeprowadzić bezdotykowy pomiar bardzo wysokiej temperatury, powinno się użyć

A. pirometru
B. termometru rezystancyjnego
C. termopary
D. termometru półprzewodnikowego
Termometr półprzewodnikowy to urządzenie, które działa na zasadzie zmian oporu elektrycznego w wyniku zmian temperatury. Choć może być użyteczny w pomiarach w niskich temperaturach, jego zastosowanie w przypadku bardzo wysokich temperatur, gdzie przekracza powyżej 200°C, obarczone jest dużym ryzykiem błędów pomiarowych oraz uszkodzenia sensora. Termopara, z kolei, jest dobrze znaną metodą pomiaru temperatury, jednak również wymaga kontaktu z badaną powierzchnią, co czyni ją nieodpowiednią do pomiarów bezdotykowych. Termometry rezystancyjne są precyzyjnymi przyrządami, ale podobnie jak termopary, również działają na zasadzie bezpośredniego kontaktu z obiektem, co w przypadku ekstremalnych temperatur może prowadzić do ich zniszczenia. Kluczowym błędem myślowym, który prowadzi do wyboru tych urządzeń, jest niepełne rozumienie zasad dotyczących pomiaru temperatury oraz ich ograniczeń. W kontekście pomiarów w trudnych warunkach, takich jak wysoka temperatura czy obecność agresywnych substancji, pirometr jest jedynym sensownym wyborem, gdyż pozwala na szybkie, bezpieczne i dokładne odczyty bez konieczności fizycznego kontaktu z obiektem. Wybór odpowiedniego instrumentu do pomiaru temperatury powinien zawsze być oparty na specyfice aplikacji oraz wymaganiach dotyczących dokładności i bezpieczeństwa.

Pytanie 7

Który przyrząd pozwoli przed podłączeniem silnika trójfazowego do napięcia zasilającego na określenie kierunku obrotów wirnika?

Ilustracja do pytania
A. A.
B. C.
C. D.
D. B.
Falownik, będący przyrządem widocznym na zdjęciu A, jest kluczowym elementem w systemach automatyki, szczególnie w kontekście zarządzania silnikami trójfazowymi. Jego główną funkcją jest regulacja zarówno prędkości, jak i kierunku obrotów silnika poprzez zmianę częstotliwości zasilania. Dzięki zastosowaniu falownika, operator ma możliwość przed podłączeniem silnika do zasilania określić kierunek obrotów wirnika, co jest istotne w kontekście bezpieczeństwa oraz efektywności pracy maszyn. W praktyce, falowniki są powszechnie wykorzystywane w różnorodnych aplikacjach, od prostych systemów napędowych po skomplikowane linie produkcyjne. Zgodnie z normami IEC 61800, falowniki powinny być wykorzystywane z uwzględnieniem odpowiednich parametrów technicznych, co zapewnia ich niezawodność i długotrwałe działanie. W związku z tym, zrozumienie roli falowników oraz umiejętność ich stosowania w praktyce jest niezwykle ważne dla każdego specjalisty zajmującego się automatyką i mechatroniką.

Pytanie 8

Który zawór należy zamontować w układzie prasy hydraulicznej, wymieniając element oznaczony na schemacie strzałką?

Ilustracja do pytania
A. Podwójnego sygnału.
B. Odcinający.
C. Dławiący.
D. Szybkiego spustu.
Zawór szybkiego spustu jest kluczowym elementem w układach prasy hydraulicznej, gdyż umożliwia sprawne i szybkie odprowadzenie medium roboczego, co jest istotne podczas pracy z dużymi siłami. Jego zastosowanie pozwala na natychmiastowe zmniejszenie ciśnienia w cylindrze, co jest niezbędne, aby uniknąć uszkodzeń elementów konstrukcyjnych prasy oraz zapewnić bezpieczeństwo operacji. Przykładowo, w procesie podnoszenia i opuszczania ciężkich elementów, zawór szybkiego spustu umożliwia nie tylko efektywne wykonywanie cykli pracy, ale także zwiększa wydajność całego systemu. Zastosowanie tego typu zaworu jest zgodne ze standardami branżowymi, które zalecają zapewnienie szybkiego dostępu do ciśnienia w układach hydraulicznych, co jest kluczowe dla bezpieczeństwa i efektywności pracy. Dzięki jego zastosowaniu prace hydrauliczne stają się bardziej precyzyjne i nie wymagają długiego czasu na dostosowanie ciśnienia, co wpływa na ogólną wydajność produkcji. Zawory szybkiego spustu są powszechnie stosowane w różnych aplikacjach hydraulicznych, w tym w maszynach budowlanych i przemysłowych. Ich właściwe dobranie i montaż są niezbędne dla prawidłowego funkcjonowania całego układu.

Pytanie 9

Uruchomienie krokowej symulacji działania układu zaprojektowanego w programie przedstawionym na rysunku wymaga kliknięcia ikony

Ilustracja do pytania
A. A.
B. B.
C. D.
D. C.
Aby uruchomić krokową symulację działania układu zaprojektowanego w programie, należy kliknąć ikonę oznaczoną literą "B", która reprezentuje symbol "play" (trójkąt skierowany w prawo). To powszechnie akceptowane oznaczenie w szerokiej gamie programów komputerowych i aplikacji, które służą do symulacji, odtwarzania multimediów czy programowania. Używanie standardowych ikon, takich jak symbol "play", pomaga w intuicyjnym i łatwym korzystaniu z oprogramowania, co jest kluczowe w procesie edukacyjnym i projektowym. Przykładowo, w programach do modelowania elektronicznego, takich jak LTspice czy Multisim, użytkownicy przyzwyczajają się do tego, że kliknięcie przycisku "play" uruchamia symulację obwodu. Umiejętność identyfikacji i używania takich ikon jest istotna nie tylko dla efektywności pracy, ale także dla zrozumienia interakcji w programach komputerowych. Dodatkowo, dobrze jest znać inne ikony, które mogą być używane do zatrzymywania, wstrzymywania lub resetowania symulacji, co jest istotne w kontekście analizy wyników i dokonywania poprawek w projektach. Zrozumienie i umiejętność korzystania z tych standardów może znacznie przyspieszyć proces nauki oraz wspierać praktyczne zastosowanie wiedzy inżynierskiej.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Przekaźnik czasowy z nastawą dwóch czasów realizuje funkcję A ustawioną potencjometrem konfiguracyjnym FUNC, której odpowiada diagram pracy przedstawiony na rysunku. Oznacza to realizację przez przekaźnik funkcji

Ilustracja do pytania
A. opóźnionego wyłączenia.
B. opóźnionego wyłączania cyklicznego.
C. opóźnionego załączania cyklicznego.
D. opóźnionego załączenia.
Wybór opóźnionego załączenia, opóźnionego załączania cyklicznego lub opóźnionego wyłączania cyklicznego jako odpowiedzi wskazuje na pewne nieporozumienia w interpretacji funkcji przekaźnika czasowego. Opóźnione załączenie odnosi się do sytuacji, w której przekaźnik aktywuje się po określonym czasie od momentu podania sygnału na wejściu. Możliwość ta jest przydatna w aplikacjach, w których wymagane jest opóźnienie w rozpoczęciu działania urządzenia, na przykład w systemach alarmowych. W kontekście pytania, jednak, nie pasuje do opisanego zachowania przekaźnika, który nie pozostaje w stanie włączonym po upływie czasów, ale wyłącza się po czasie t1. Z kolei opóźnione załączanie cykliczne sugeruje, że przekaźnik wykonuje określony cykl załączania i wyłączania, co nie ma miejsca w przypadku opisanego diagramu. Funkcja ta mogłaby znaleźć zastosowanie w urządzeniach, które muszą działać w trybie cyklicznym, co w tym przypadku nie jest spełnione. Z kolei opóźnione wyłączenie sugeruje, że urządzenie będzie włączone przez pewien czas, a następnie wyłączone, co rzeczywiście odpowiada funkcji opóźnionego wyłączenia. Dlatego kluczowe jest zrozumienie różnicy między tymi funkcjami, aby uniknąć błędnych interpretacji wynikających z nieprawidłowego rozumienia schematu pracy urządzenia. W praktyce, precyzyjne określenie rodzajów funkcji przekaźnika czasowego jest niezwykle ważne dla zapewnienia prawidłowego działania systemów automatyki, co jest zgodne z najlepszymi praktykami w branży.

Pytanie 12

Który z przedstawionych sposobów ułożenia przewodu hydraulicznego jest prawidłowy?

Ilustracja do pytania
A. A.
B. C.
C. D.
D. B.
Zły wybór! To ułożenie przewodu hydraulicznego niestety nie jest odpowiednie, bo może sprawić, że system nie będzie działał jak należy. Opcje A, B i C mają te zagięcia pod ostrymi kątami, co jest naprawdę niekorzystne. Takie zagięcia mogą powodować wzrost oporu przepływu i przez to wydajność systemu leci na łeb na szyję. Niektórzy mogą myśleć, że te zagięcia to nic wielkiego, ale w praktyce prowadzą one do turbulencji, co może zdziałać niezłe szkody. A to nie koniec, bo ich skomplikowane układanie to także problem, jeśli chodzi o konserwację i naprawy. Z tego, co wiem, w hydraulice liczy się prostota, więc lepiej unikać zbędnych zakrętów. Warto trzymać się norm i dobrych praktyk, żeby zabezpieczyć system przed awariami i zagwarantować wydajność.

Pytanie 13

Jakie parametry mierzy prądnica tachometryczna?

A. naprężenia mechaniczne
B. prędkość liniową
C. napięcie elektryczne
D. prędkość obrotową
Prądnica tachometryczna jest urządzeniem służącym do pomiaru prędkości obrotowej. Działa na zasadzie generowania napięcia elektrycznego proporcjonalnego do prędkości obrotowej wału lub innego elementu mechanicznego. W praktyce, prądnicę tachometryczną wykorzystuje się w wielu zastosowaniach, takich jak systemy sterowania silnikami, automatyka przemysłowa czy w urządzeniach pomiarowych. Dzięki swojej precyzji, prądnice tachometryczne są standardem w pomiarach prędkości obrotowej, a ich stosowanie jest zgodne z najlepszymi praktykami inżynieryjnymi. W kontekście automatyzacji, umożliwiają one monitorowanie i regulację procesów, co przekłada się na zwiększenie efektywności i bezpieczeństwa pracy maszyn. Przykładem mogą być systemy, w których prędkość obrotowa silnika musi być precyzyjnie kontrolowana, aby zapewnić optymalne warunki pracy.

Pytanie 14

Który podzespół jest badany pod względem szczelności w układzie przedstawionym na rysunku?

Ilustracja do pytania
A. Zawór Z1.
B. Zespół przygotowania powietrza.
C. Zawór Z3.
D. Siłownik pneumatyczny.
Wybierając odpowiedzi inne niż siłownik pneumatyczny, można wpaść w pułapki związane z niepełnym zrozumieniem funkcji poszczególnych elementów układu pneumatycznego oraz ich roli w zachowaniu szczelności systemu. Zawory, takie jak Z1 i Z3, owszem, są istotnymi komponentami, ale ich główną funkcją jest kontrola przepływu powietrza, a nie bezpośrednie przekształcanie energii. Choć ich szczelność również jest ważna, nie jest to element, który najczęściej ulega nieszczelności. Zespół przygotowania powietrza ma za zadanie przygotować powietrze do pracy w układzie, ale nie jest on odpowiedzialny za bezpośrednie przekształcanie energii w ruch. Typowym błędem myślowym jest skupienie się na elementach, które nie mają bezpośredniego wpływu na ruch w systemie, co prowadzi do błędnych wniosków. Należy pamiętać, że w układach pneumatycznych to właśnie siłowniki są najbardziej narażone na utratę ciśnienia, dlatego to one powinny być przedmiotem szczegółowego badania szczelności.

Pytanie 15

Pralka automatyczna nie reaguje po naciśnięciu przycisku zasilania. Co może być przyczyną takiej sytuacji?

A. brakiem dopływu wody do urządzenia
B. brakiem zasilania elektrycznego
C. niewłaściwym zerowaniem obudowy silnika pralki
D. usterką silnika pralki
Brak zasilania napięciem elektrycznym jest najczęstszą przyczyną, dla której pralka automatyczna nie reaguje po wciśnięciu przycisku zasilania. W praktyce, przed rozpoczęciem jakiejkolwiek diagnostyki, warto upewnić się, że urządzenie jest prawidłowo podłączone do gniazdka i że gniazdko jest sprawne. Testowanie gniazdka za pomocą innego urządzenia, np. lampki, może potwierdzić obecność napięcia. W sytuacji, gdy zasilanie jest prawidłowe, dalsza kontrola powinna obejmować przewody zasilające i wtyczki, które mogą ulec uszkodzeniu. W standardzie instalacji elektrycznych, aby zapewnić bezpieczeństwo urządzeń, należy stosować odpowiednie zabezpieczenia, takie jak bezpieczniki czy wyłączniki różnicowoprądowe. Ponadto, regularne przeglądy instalacji elektrycznej są zalecane, aby unikać problemów związanych z zasilaniem, co jest zgodne z dobrymi praktykami w dziedzinie bezpieczeństwa urządzeń AGD.

Pytanie 16

Który z przekształtników używanych w systemach zasilania dla urządzeń mechatronicznych przekształca energię prądu stałego na energię prądu przemiennego z regulowanymi wartościami częstotliwości i napięcia?

A. Falownik
B. Prostownik
C. Regulator napięcia przemiennego
D. Rozruch progresywny
Falownik to urządzenie elektroniczne, które konwertuje energię prądu stałego (DC) na energię prądu przemiennego (AC) o regulowanych wartościach częstotliwości i napięcia. Jego podstawowym zastosowaniem jest zasilanie silników elektrycznych w układach mechatronicznych, gdzie wymagana jest precyzyjna kontrola prędkości obrotowej oraz momentu obrotowego. Dzięki falownikom możliwe jest dostosowanie parametrów zasilania do rzeczywistych potrzeb aplikacji, co prowadzi do zwiększenia efektywności energetycznej oraz wydajności urządzenia. Falowniki są szeroko stosowane w różnych gałęziach przemysłu, takich jak automatyka przemysłowa, wentylacja, klimatyzacja czy transport. Warto również wspomnieć o standardach, takich jak IEC 61800, które definiują wymagania dotyczące napędów elektrycznych i systemów sterowania. Stosowanie falowników przyczynia się do minimalizacji zużycia energii, a także poprawy jakości pracy urządzeń, dlatego są one kluczowym elementem nowoczesnych systemów mechatronicznych.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Z czego składa się pneumohydrauliczny wzmacniacz ciśnienia?

A. przemiennik pneumohydrauliczny oraz siłownik pneumatyczny
B. przemiennik pneumohydrauliczny oraz siłownik hydrauliczny
C. siłownik pneumatyczny połączony szeregowo z siłownikiem hydraulicznym
D. akumulator hydrauliczny połączony szeregowo z pneumatycznym siłownikiem
Prawidłowa odpowiedź wskazuje na połączenie siłownika pneumatycznego z siłownikiem hydraulicznym, co jest kluczowym elementem w konstrukcji pneumohydraulicznych wzmacniaczy ciśnienia. Tego rodzaju wzmacniacze wykorzystują siłę sprężonego powietrza do generowania ciśnienia hydraulicznego, co pozwala na efektywne przetwarzanie energii. Przykładem zastosowania pneumohydraulicznych wzmacniaczy ciśnienia są systemy automatyki przemysłowej, gdzie precyzyjne sterowanie ruchem jest niezbędne. W praktyce, dzięki zastosowaniu siłowników pneumatycznych i hydraulicznych, możliwe jest osiągnięcie większej siły roboczej przy jednoczesnym wykorzystaniu mniejszej ilości energii. Tego rodzaju rozwiązania są zgodne z normami ISO oraz dobrymi praktykami w dziedzinie hydrauliki i pneumatyki, co zapewnia ich skuteczność oraz niezawodność w długoterminowym użytkowaniu. Zastosowanie takiego rozwiązania w przemyśle umożliwia realizację złożonych procesów technologicznych, a także zwiększa bezpieczeństwo operacji, minimalizując ryzyko awarii.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Demontaż przekładni pasowej zaczyna się od

A. poluzowania naciągu pasów
B. zdemontowania koła pasowego o mniejszej średnicy
C. demontażu wałów
D. zdemontowania koła pasowego o większej średnicy
Poluzowanie naciągu pasów jest kluczowym krokiem w demontażu przekładni pasowych, ponieważ pozwala na swobodne odłączenie elementów układu. W praktyce, zanim przystąpimy do demontażu, ważne jest, aby zminimalizować napięcie w pasach, co zapewnia łatwe usunięcie kół pasowych, zarówno większych, jak i mniejszych. Podczas pracy z przekładniami pasowymi, zgodnie z normami branżowymi, należy zawsze rozpoczynać demontaż od poluzowania naciągu, aby uniknąć uszkodzeń komponentów oraz zapewnić bezpieczeństwo. Przykładowo, w wielu zakładach przemysłowych, przed demontażem przekładni, technicy wykonują inspekcję stanu pasów oraz kół pasowych, aby upewnić się, że nie ma widocznych uszkodzeń. Taki proces pozwala na uniknięcie niepotrzebnych kosztów związanych z wymianą uszkodzonych elementów, a także przyspiesza proces konserwacji maszyn. Dlatego, poluzowanie naciągu pasów jest nie tylko procedurą techniczną, ale także praktycznym podejściem do zarządzania zasobami w zakładzie.

Pytanie 23

W przekładni zbudowanej z kół przedstawionych na rysunku należy zastosować pasek

Ilustracja do pytania
A. wieloklinowy.
B. klinowy.
C. wielorowkowy.
D. zębaty.
Poprawna odpowiedź to zębaty pasek, który jest odpowiednio dostosowany do koła zębatego, jak przedstawiono na rysunku. Przekładnie zębate wykorzystywane są w wielu zastosowaniach przemysłowych, od napędów w maszynach po systemy przenoszenia mocy w pojazdach. Paski zębate zapewniają precyzyjne połączenie między kołami zębatymi, co pozwala na efektywną transmisję momentu obrotowego bez utraty energii, co jest kluczowe w aplikacjach wymagających wysokiej dokładności, takich jak drukarki 3D czy robotyka. W praktyce, dobór odpowiedniego paska zębatego wpływa na wydajność całego systemu, a jego parametry, takie jak szerokość i liczba zębów, muszą odpowiadać specyfikacjom technicznym kół zębatych. Zastosowanie pasków zębatych spełnia również normy i standardy branżowe, co zapewnia ich niezawodną pracę oraz długą żywotność w trudnych warunkach eksploatacyjnych. Stosowanie tego rodzaju rozwiązań technicznych jest zgodne z najlepszymi praktykami inżynieryjnymi, co pozwala na optymalne wykorzystanie zasobów oraz minimalizację ryzyka awarii.

Pytanie 24

Jakiego rodzaju cieczy hydraulicznej powinno się użyć w urządzeniu hydrauliczny, które może być narażone na kontakt z otwartym ogniem?

A. HFA - emulsja olejowo-wodna, mająca w składzie ponad 80 % wody
B. HTG - produkowana na bazie olejów roślinnych, rozpuszczalna w wodzie
C. HV - dla urządzeń funkcjonujących w zmiennych warunkach temperatury
D. HT - ester syntetyczny, najlepiej ulegający biodegradacji
Odpowiedź HFA, czyli emulsja olejowo-wodna, zawierająca ponad 80% wody, jest prawidłowa w kontekście pracy urządzeń hydraulicznych w warunkach zagrożenia pożarowego. Tego rodzaju ciecz hydrauliczna charakteryzuje się znacznie wyższą odpornością na wysokie temperatury i działanie ognia, co jest kluczowe w miejscach, gdzie istnieje ryzyko kontaktu z otwartym płomieniem. W przypadku wycieku emulsji olejowo-wodnej, woda działa jako czynnik chłodzący, minimalizując ryzyko pożaru. Tego rodzaju cieczy hydrauliczne są szeroko stosowane w przemyśle, gdzie praca z substancjami łatwopalnymi jest powszechna, jak na przykład w rafineriach, piecach przemysłowych czy zakładach chemicznych. Zgodnie z normami, takimi jak NFPA (National Fire Protection Association), stosowanie cieczy o obniżonej palności, takich jak HFA, jest zalecane w środowiskach o wysokim ryzyku pożaru. Dodatkowo, emulsje olejowo-wodne są często używane w zastosowaniach, gdzie wymagane jest smarowanie oraz chłodzenie, co czyni je wszechstronnym rozwiązaniem w hydraulice przemysłowej.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Silnik krokowy dysponuje 4 uzwojeniami wzbudzającymi, z których każde ma 8 nabiegunników. Jakie będzie przesunięcie kątowe silnika przypadające na pojedynczy krok przy sterowaniu jednym uzwojeniem?

A. 2°49'
B. 11°15'
C. 22°30'
D. 5°38'
Silnik krokowy z czterema uzwojeniami wzbudzającymi i ośmioma nabiegunnikami w każdym uzwojeniu charakteryzuje się określoną ilością kroków na pełny obrót. W tym przypadku mamy 4 uzwojenia, co oznacza, że przy każdym aktywowaniu jednego uzwojenia, silnik wykonuje część obrotu, a liczba nabiegunników wpływa na precyzyjność tego ruchu. Aby obliczyć kąt przesunięcia na krok, należy zastosować wzór: 360° / (Liczba uzwojeń * Liczba nabiegunników). W tym przypadku obliczenia wyglądają następująco: 360° / (4 * 8) = 360° / 32 = 11°15'. Praktyczne zastosowania silników krokowych obejmują zautomatyzowane systemy, w których wymagana jest precyzyjna kontrola pozycji, jak np. w drukarkach 3D, robotyce czy automatyce przemysłowej. Zrozumienie tego obliczenia pozwala na lepsze projektowanie układów sterujących oraz optymalizację ich pracy w różnych aplikacjach.

Pytanie 27

Urządzenie, którego dane techniczne przedstawiono w tabeli,

Ciecz roboczaOlej mineralny
WydajnośćDm3/min47 przy n=1450 min-1, p=1 MPa
Ciśnienie na wlocieMPa-0,02 (podciśnienie) do 0,5 (nadciśnienie)
Ciśnienie na wylocieMPamax. 10
Ciśnienie przeciekówMPamax. 0,2
Moment obrotowyNmmax. 235
Prędkość obrotowaobr/min1 000 do 1 800
Optymalna temperatura pracyK313÷338
Filtracjaμm16
A. steruje kierunkiem przepływu oleju.
B. wytwarza strumień oleju w układach i urządzeniach hydraulicznych.
C. utrzymuje stałe ciśnienie niezależnie od kierunku przepływu oleju.
D. otwiera i zamyka przepływ oleju.
Wybór nieprawidłowej odpowiedzi może wynikać z nieporozumienia dotyczącego funkcji urządzeń hydraulicznych. Na przykład, odpowiedzi sugerujące, że urządzenie steruje kierunkiem przepływu oleju, otwiera i zamyka przepływ, lub utrzymuje stałe ciśnienie, dotyczą innych typów urządzeń, takich jak zawory. Zawory kierunkowe są używane do zmiany kierunku przepływu medium, a zawory ciśnieniowe regulują ciśnienie w systemie, ale nie są w stanie generować strumienia oleju. Typowy błąd w myśleniu polega na myleniu funkcji pompy z funkcją zaworów, co jest powszechnym problemem wśród osób uczących się hydrauliki. Kluczowe jest zrozumienie, że pompy służą do przemieszczania oleju, a nie jego regulacji. Aby poprawnie rozwiązywać takie zadania, warto zwrócić uwagę na parametry techniczne podawane w opisach urządzeń oraz na ich zastosowanie w praktyce. Znajomość typów urządzeń oraz ich specyficznych ról w układzie hydraulicznym jest fundamentalna dla zrozumienia i efektywnego wykorzystania technologii hydraulicznej.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Czujnik Pt 100 pokazany na ilustracji służy do pomiaru

A. objętości cieczy
B. ciśnienia cieczy
C. temperatury powietrza
D. napięcia elektrycznego
Podczas analizy dostępnych odpowiedzi warto zauważyć, że czujnik Pt 100 jest nieodpowiedni do pomiaru napięcia elektrycznego, ciśnienia cieczy ani objętości cieczy. Czujnik napięcia opiera się na zupełnie innych zasadach działania, gdzie wykorzystuje się różnice potencjałów elektrycznych, a nie zmiany oporności materiału. W przypadku ciśnienia cieczy, pomiary odbywają się zazwyczaj za pomocą manometrów lub czujników piezorezystancyjnych, które reagują na siłę wywieraną przez ciecz na przetwornik. Z kolei pomiar objętości cieczy zazwyczaj przeprowadza się przy użyciu przepływomierzy, które mierzą ilość cieczy przepływającej przez określony punkt w jednostce czasu, a nie poprzez analizę oporności materiału. Zrozumienie fundamentalnych właściwości czujników pomiarowych jest kluczowe, ponieważ różne typy czujników są projektowane do specyficznych zastosowań, które wymagają unikalnych cech. Wybór nieodpowiednich czujników do danego zadania prowadzi do błędnych wyników pomiarów i może skutkować poważnymi konsekwencjami w systemach, gdzie precyzja jest kluczowa, jak w medycynie czy przemyśle chemicznym. Dlatego istotne jest, aby przy wyborze odpowiednich czujników kierować się ich zasadą działania oraz przeznaczeniem, co jest zgodne z dobrymi praktykami w zakresie inżynierii pomiarowej.

Pytanie 31

Pokazany na rysunku sposób montowania podzespołów elektronicznych, na płytce obwodu drukowanego to

Ilustracja do pytania
A. klejenie.
B. lutowanie.
C. spawanie.
D. zgrzewanie.
Lutowanie jest kluczową techniką montażu podzespołów elektronicznych na płytkach obwodów drukowanych. Proces ten polega na łączeniu elementów za pomocą stopu lutowniczego, który po podgrzaniu staje się płynny, a następnie, po ochłodzeniu, tworzy mocne połączenie zarówno elektryczne, jak i mechaniczne. Lutowanie jest szeroko stosowane w przemyśle elektronicznym, szczególnie w produkcji urządzeń, które muszą wykazywać niezawodność i długowieczność. W przypadku lutowania, istotne jest przestrzeganie standardów takich jak IPC-A-610, które definiują wymagania dotyczące jakości lutowanych połączeń. Przykładowo, lutowanie może być stosowane do montażu komponentów SMD (przez powierzchnię), gdzie precyzyjne i niezawodne połączenia są kluczowe. Dodatkowo, lutowanie może być realizowane zarówno ręcznie, jak i maszynowo, co pozwala na elastyczność w procesie produkcyjnym, zależnie od skali produkcji oraz wymagań jakościowych.

Pytanie 32

Transoptor wykorzystuje się do

A. konwersji impulsów elektrycznych na promieniowanie świetlne
B. galwanicznej izolacji obwodów
C. sygnalizowania transmisji
D. galwanicznego połączenia obwodów
Transoptor, znany również jako optoizolator, jest urządzeniem elektronicznym, które służy do galwanicznej izolacji obwodów elektrycznych. Jego głównym zadaniem jest zapewnienie nieprzerwanego, ale izolowanego połączenia pomiędzy dwoma obwodami, co pozwala na przesyłanie sygnałów elektrycznych bez bezpośredniego połączenia między nimi. Przykładem zastosowania transoptora jest integracja urządzeń pracujących przy różnych poziomach napięcia, takich jak mikroprocesory i elementy wykonawcze, co chroni wrażliwe układy przed wysokim napięciem. Transoptory są powszechnie stosowane w automatyce przemysłowej, telekomunikacji oraz systemach pomiarowych, gdzie izolacja jest kluczowa dla bezpieczeństwa i niezawodności. Dzięki nim możliwe jest także zminimalizowanie zakłóceń elektromagnetycznych, co jest zgodne z najlepszymi praktykami inżynieryjnymi w projektowaniu systemów elektronicznych.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Jakie złącza zostały zastosowane w rozdzielaczu przedstawionym na rysunku?

Ilustracja do pytania
A. Wtykowe i zakręcane.
B. Zaciskowe i szybkozłącze.
C. Zakręcane i zaciskowe.
D. Szybkozłącze i wtykowe.
Odpowiedź "Szybkozłącze i wtykowe" jest prawidłowa, ponieważ na zdjęciu rozdzielacza rzeczywiście zastosowano te dwa typy złączy. Złącza wtykowe, umiejscowione z przodu rozdzielacza, umożliwiają szybkie podłączenie i odłączenie elementów układów hydraulicznych lub pneumatycznych bez konieczności użycia narzędzi. Tego rodzaju rozwiązania są szczególnie cenione w aplikacjach, gdzie czas reakcji jest kluczowy, na przykład w serwisie hydraulicznym. Z kolei szybkozłącza, umieszczone z tyłu rozdzielacza, pozwalają na błyskawiczne łączenie i rozłączanie przewodów, co jest niezbędne w przypadku konieczności zmiany konfiguracji układu lub przeprowadzania konserwacji. W przemyśle stosuje się standardy ISO dla szybkozłączy, które określają wymogi dotyczące ich wydajności i bezpieczeństwa. Znajomość tych rozwiązań pozwala na efektywniejsze zarządzanie systemami oraz ich optymalizację, co jest kluczowe dla zapewnienia wysokiej jakości pracy urządzeń. Takie złącza są stosowane w wielu sektorach, od motoryzacji po budownictwo, co podkreśla ich uniwersalność i praktyczność.

Pytanie 35

Dla którego stanu wejść na wyjściu Y układu logicznego pojawi się "1"?

Ilustracja do pytania
A. A=0, B=0, C=0
B. A=1, B=1, C=1
C. A=0, B=1, C=1
D. A=l, B=0, C=0
Pozostałe odpowiedzi są błędne, bo nie biorą pod uwagę podstaw działania układów logicznych. Na przykład, A=1, B=1, C=1 sugeruje, że wszystkie wejścia są aktywne, co w przypadku bramki AND teoretycznie dałoby aktywne wyjście Y. Ale w naszym przypadku, nie osiągniemy Y=1, jeśli inne warunki nie są spełnione. Z kolei A=0, B=1, C=1 pokazuje, że jedno z wejść jest nieaktywne, przez co nie możemy uzyskać pełnego aktywnego stanu, a to jest poważny błąd w myśleniu. W układach logicznych trzeba znać zasady, bo niektóre kombinacje wejść zostawiają wyjście w stanie '0'. Ostatnia opcja z A=0, B=0, C=0 ilustruje, że wszystkie wejścia są nieaktywne i zgodnie z regułami działania bramek logicznych nie mogą dać nam '1' na wyjściu. Zrozumienie tych prostych zasad jest kluczowe w pracy z systemami cyfrowymi, bo błędy w interpretacji mogą prowadzić do dużych pomyłek w praktyce.

Pytanie 36

Do montażu zaworu przedstawionego na rysunku należy zastosować klucz

Ilustracja do pytania
A. oczkowy.
B. nasadowy.
C. płaski.
D. imbusowy.
Klucz płaski to narzędzie, które idealnie nadaje się do montażu zaworów z sześciokątnymi nakrętkami, co wynika z jego konstrukcji. Jego szczęki przylegają do krawędzi nakrętki, co zapewnia pewny chwyt i minimalizuje ryzyko jej uszkodzenia. Używając klucza płaskiego, możemy również precyzyjnie kontrolować moment obrotowy, co jest kluczowe podczas montażu zaworów, aby uniknąć ich zbyt mocnego dokręcenia, co mogłoby prowadzić do awarii uszczelek lub uszkodzenia gwintów. W praktyce, klucz płaski jest preferowany w wielu aplikacjach przemysłowych, gdzie precyzyjne połączenia są niezbędne. Warto również wspomnieć, że w odpowiednich standardach związanych z montażem zaworów, klucz płaski jest często rekomendowany jako najbardziej odpowiednie narzędzie do obsługi tego typu elementów złącznych. Przy odpowiednim doborze narzędzi zwiększamy efektywność pracy oraz bezpieczeństwo całego systemu. Zastosowanie kluczy innych typów, jak nasadowe czy oczkowe, może prowadzić do niepożądanych skutków, takich jak słabsze dokręcenie lub uszkodzenie nakrętki.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Którą z wymienionych wielkości można zmierzyć za pomocą miernika przedstawionego na zdjęciu?

Ilustracja do pytania
A. Temperaturę.
B. Rezystancję izolacji.
C. Napięcie przemienne.
D. Natężenie prądu przemiennego.
Pomimo że pomiar rezystancji izolacji, natężenia prądu przemiennego oraz temperatury są istotnymi aspektami w pracach elektrycznych, nie są one funkcjami, które mogą być zrealizowane za pomocą miernika przedstawionego na zdjęciu. Miernik uniwersalny, jak ten, jest zaprojektowany z myślą o pomiarze napięcia przemiennego. Koncentrując się na pomiarze rezystancji izolacji, warto zauważyć, że do tych zastosowań często używa się specjalistycznych urządzeń, takich jak megomierze, które generują wyższe napięcie w celu oceny stanu izolacji przewodów. Z kolei pomiar natężenia prądu przemiennego wymaga zastosowania technik pomiarowych, które mogą obejmować cewki prądowe lub odpowiednie funkcje w miernikach wyposażonych w odpowiednie tryby. W odniesieniu do pomiaru temperatury, standardowe mierniki uniwersalne nie są w stanie realizować tych funkcji bez odpowiednich czujników. Typowym błędem myślowym jest założenie, że jedno urządzenie, jak miernik uniwersalny, może zastąpić wszystkie inne narzędzia pomiarowe. Kluczowe jest zrozumienie, że każde z tych narzędzi ma swoje specyficzne przeznaczenie i ograniczenia. W związku z tym ważne jest, aby przed przystąpieniem do pomiarów zrozumieć, jakie wielkości chcemy zmierzyć i jakie urządzenia są do tego najbardziej odpowiednie, co w praktyce oznacza konieczność stosowania różnych typów mierników zgodnie z ich przeznaczeniem.

Pytanie 39

Charakterystykę I = f(U) diody półprzewodnikowej można uzyskać za pomocą oscyloskopu dwukanałowego w trybie

A. X/T
B. AC
C. X/Y
D. DC
Użycie trybu AC do analizy charakterystyki prądowo-napięciowej diody półprzewodnikowej jest niewłaściwe, ponieważ ten tryb oscyloskopu służy przede wszystkim do analizy sygnałów zmiennych. W trybie AC oscyloskop nie wyświetla sygnałów stałych, co ogranicza możliwość monitorowania prądów i napięć w nieliniowych elementach, takich jak diody, które wymagają analizy w pełnym zakresie napięć. Z kolei tryb DC pozwala na obserwację sygnałów stałych, ale nie umożliwia jednoczesnego przedstawienia prądu i napięcia na jednym wykresie, co jest kluczowe do zrozumienia charakterystyki diody. Opcja X/T również nie jest odpowiednia, gdyż ten tryb jest używany do analizy sygnałów czasowych, a nie do porównania dwóch zmiennych, jak w przypadku prądu i napięcia. Typowym błędem przy wyborze trybu oscyloskopu jest założenie, że wystarczy wybrać jakikolwiek tryb do analizy, nie biorąc pod uwagę specyfiki badanego elementu. Aby skutecznie analizować nieliniowe charakterystyki, konieczne jest zrozumienie, że odpowiedni tryb X/Y dostarcza najbardziej wartościowych informacji, które są niezbędne dla właściwej interpretacji wyników oraz projektowania układów elektronicznych.

Pytanie 40

Podanie napięcia na zaciski przedstawionego na rysunku mostka prostowniczego powoduje zadziałanie zabezpieczenia B, W celu usunięcia usterki należy

Ilustracja do pytania
A. odwrotnie wlutować kondensator C
B. wymienić bezpiecznik aparatowy B
C. odwrotnie wlutować diodę D2
D. odwrotnie wlutować diodę D3
Odwrotne wlutowanie diody D2, kondensatora C, czy nawet wymiana bezpiecznika B nie rozwiązuje problemu zadziałania zabezpieczenia. Zrozumienie działania mostka prostowniczego wymaga znajomości podstawowych zasad dotyczących elektronicznych elementów półprzewodnikowych oraz ich roli w konwersji prądu. Dioda D2 nie ma związku z problemem, ponieważ jej orientacja nie wpływa na funkcjonowanie diody D3, która, jak wspomniano, jest odpowiedzialna za zjawisko zwarcia. Podobnie kondensator C pełni rolę wygładzającą napięcie wyjściowe, a jego niewłaściwe wlutowanie również nie prowadzi do zadziałania zabezpieczenia. Wymiana bezpiecznika B jest działaniem reaktywnym, które nie eliminuje źródła problemu, a jedynie naprawia skutki. Typowym błędem myślowym jest mylenie działania elementów w obwodzie i skupianie się na naprawie skutków, a nie przyczyn. Dlatego kluczowe jest zrozumienie, że problem tkwi w konkretnej diodzie, a nie innych elementach układu. W praktyce, przed przystąpieniem do naprawy lub diagnozowania usterki, zaleca się dokładne zapoznanie się ze schematem i funkcją każdego z komponentów, co pozwala unikać zbędnych błędów i zwiększa efektywność naprawy.