Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.06 - Eksploatacja i programowanie urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 2 stycznia 2026 19:57
  • Data zakończenia: 2 stycznia 2026 20:10

Egzamin zdany!

Wynik: 37/40 punktów (92,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Które z wymienionych komend spowoduje przeniesienie programu z PLC do pamięci komputera?

A. Upload
B. Download
C. Erase Memory
D. Write
Odpowiedź "Upload" jest prawidłowa, ponieważ termin ten odnosi się do procesu przesyłania danych z urządzenia, takiego jak sterownik PLC, do systemu komputerowego. W kontekście programowania i automatyzacji, uploadowanie programu z PLC do komputera jest kluczowym krokiem w procesie zarządzania i monitorowania systemów automatyki. Dzięki temu inżynierowie mogą łatwo zaktualizować, analizować i archiwizować programy sterujące. Praktycznym zastosowaniem uploadu jest możliwość przechowywania kopii zapasowych programów, co jest zgodne z najlepszymi praktykami w zakresie zarządzania danymi, zapewniając bezpieczeństwo i łatwy dostęp do wersji roboczych. Warto zauważyć, że w procesach przemysłowych uploadowanie danych do komputera umożliwia także diagnostykę i optymalizację istniejących programów oraz szybsze wprowadzanie zmian, co znacznie zwiększa efektywność operacyjną. Standardy, takie jak IEC 61131-3, podkreślają znaczenie łatwego dostępu do programów i ich modyfikacji, co czyni upload kluczowym procesem w pracy z PLC.

Pytanie 2

Gdzie można znaleźć informacje na temat wymagań oraz częstotliwości realizacji prac konserwacyjnych dla konkretnego urządzenia mechatronicznego?

A. Na dokumencie gwarancyjnym
B. W instrukcji obsługi
C. Na tabliczce identyfikacyjnej
D. W kartach danych handlowych
Instrukcja obsługi jest kluczowym dokumentem, który zawiera szczegółowe informacje o konserwacji i użytkowaniu urządzeń mechatronicznych. Dzięki niej operatorzy oraz technicy mogą zrozumieć, jakie konkretne czynności konserwacyjne należy przeprowadzać, aby zapewnić optymalną wydajność i bezpieczeństwo urządzenia. Informacje te obejmują zarówno zalecany harmonogram konserwacji, jak i niezbędne procedury, co jest zgodne z najlepszymi praktykami w branży. W praktyce, regularne przeglądy i konserwacja zgodnie z instrukcją mogą znacznie wydłużyć żywotność urządzenia i zminimalizować ryzyko awarii, co jest kluczowe w kontekście produkcji przemysłowej. Przykładem zastosowania może być robot przemysłowy, którego instrukcja obsługi podaje harmonogram czyszczenia i smarowania, co pozwala na utrzymanie jego precyzji i niezawodności w długim okresie eksploatacji. Należy również pamiętać, że nieprzestrzeganie tych wytycznych może prowadzić do utraty gwarancji oraz zwiększonych kosztów napraw. Dlatego zawsze warto na bieżąco zapoznawać się z instrukcją obsługi.

Pytanie 3

Która z podanych funkcji programowych w sterownikach PLC jest przeznaczona do realizacji operacji dodawania?

A. DIV
B. MOVE
C. ADD
D. SUB
Funkcja ADD jest kluczowym elementem w programowaniu sterowników PLC, ponieważ umożliwia wykonanie operacji dodawania na danych wejściowych. W kontekście automatyki przemysłowej, operacje arytmetyczne, takie jak dodawanie, są niezbędne do przetwarzania sygnałów i podejmowania decyzji na podstawie zebranych danych. Na przykład, w aplikacjach, gdzie konieczne jest zliczanie jednostek produkcji lub sumowanie wartości czujników, funkcja ADD pozwala na efektywne obliczenia. W standardach takich jak IEC 61131-3, które definiują języki programowania dla PLC, ADD jest jedną z podstawowych funkcji arytmetycznych, obok takich jak SUB (odejmowanie) i MUL (mnożenie). Zrozumienie i umiejętność wykorzystania funkcji ADD w programowaniu sterowników PLC są niezbędne dla inżynierów automatyki, co pozwala na tworzenie bardziej złożonych i funkcjonalnych systemów sterowania.

Pytanie 4

Jakiego rodzaju oprogramowanie należy zastosować do przedstawienia procesu produkcji?

A. CAM
B. CAD
C. SCADA
D. CAE
SCADA, czyli System Kontroli i Zbierania Danych, to oprogramowanie kluczowe w wizualizacji i zarządzaniu procesami produkcyjnymi. Jego głównym celem jest monitorowanie systemów w czasie rzeczywistym, co pozwala na szybkie reagowanie na wszelkie nieprawidłowości. SCADA umożliwia zbieranie danych z różnych czujników i urządzeń, a następnie ich przetwarzanie i wizualizację w formie intuicyjnych interfejsów graficznych. Dzięki temu operatorzy mogą pełniej zrozumieć stan systemu produkcyjnego, co jest istotne w kontekście optymalizacji procesów oraz minimalizacji przestojów. W praktyce SCADA często współpracuje z innymi systemami, takimi jak ERP (Enterprise Resource Planning) czy MES (Manufacturing Execution Systems), co jeszcze bardziej zwiększa jej użyteczność. Standardy takie jak ISA-95 definiują interakcje pomiędzy systemami produkcyjnymi a zarządczymi, co sprawia, że SCADA jest integralnym elementem nowoczesnych zakładów przemysłowych. Właściwe wykorzystanie SCADA przynosi korzyści w postaci zwiększonej efektywności operacyjnej oraz lepszego wykorzystania zasobów.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Zanieczyszczony element filtra oleju doprowadził do znacznego obniżenia efektywności układu smarowania. Co należy w takim przypadku zrobić?

A. wyczyścić wkład filtra za pomocą wody destylowanej
B. wymienić wkład lub filtr
C. przedmuchać wkład filtra przy użyciu sprężonego powietrza
D. usunąć zanieczyszczenia z wkładu filtra za pomocą szczotki drucianej
Wymiana wkładu lub filtru oleju jest kluczowym krokiem w utrzymaniu prawidłowej wydajności układu smarowania silnika. Zanieczyszczenia gromadzące się w filtrze mogą prowadzić do poważnych problemów, takich jak zatarcie silnika, które może być wynikiem niewłaściwego smarowania. Wymieniając wkład, eliminujemy wszelkie zanieczyszczenia, co przywraca odpowiedni przepływ oleju i zapewnia jego skuteczną dystrybucję do wszystkich elementów silnika. Zgodnie z najlepszymi praktykami branżowymi, filtry oleju powinny być wymieniane zgodnie z harmonogramem ustalonym przez producenta pojazdu lub co określoną ilość przejechanych kilometrów, co zwykle wynosi od 10 000 do 15 000 km. Regularna wymiana oleju i filtrów nie tylko zwiększa wydajność silnika, ale także prolonguje jego żywotność, co jest kluczowe dla ekonomiki eksploatacji pojazdu. Dodatkowo, stosowanie wysokiej jakości filtrów uznawanych przez renomowane marki wpływa na efektywność i zabezpieczenie silnika przed uszkodzeniami.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Jakim momentem powinien być obciążony silnik o charakterystykach obciążenia przedstawionych na rysunku, aby jego sprawność była największa oraz jaki prąd będzie pobierał ten silnik z sieci?

Ilustracja do pytania
A. M=3,5Nm, I=1,45 A
B. M=1,5Nm, I=0,80 A
C. M=3,5Nm, I=0,95 A
D. M=1,5Nm, I=0,65 A
Odpowiedź "M=1,5Nm, I=0,65 A" jest prawidłowa, ponieważ wynika z analizy charakterystyki sprawności silnika. Z wykresu można zauważyć, że sprawność (η) osiąga maksimum przy obciążeniu momentem 1,5 Nm, co oznacza, że silnik pracuje w najbardziej efektywnym zakresie swojej wydajności. Przy tym momencie pobór prądu wynosi 0,65 A, co jest korzystne z punktu widzenia efektywności energetycznej. W praktyce, osiąganie maksymalnej sprawności jest kluczowe w zastosowaniach przemysłowych, gdzie nieefektywne działanie silników może prowadzić do znacznych strat energii. Wybierając odpowiednie parametry obciążenia, inżynierowie mogą zmniejszyć zużycie energii, co jest zgodne z najlepszymi praktykami zarządzania energią. Dodatkowo, operowanie silnikiem w optymalnym zakresie momentu obrotowego przyczynia się do wydłużenia jego żywotności oraz zredukowania kosztów eksploatacyjnych.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Jaką czynność powinno się wykonać jako pierwszą, gdy automatycznie sterowana brama przesuwna nie zatrzymuje się w pozycji otwartej?

A. Zweryfikować zasilanie silnika
B. Przekazać sterownik do serwisu
C. Skontrolować stan czujnika krańcowego
D. Sprawdzić poziom naładowania baterii w pilocie zdalnego sterowania
Sprawdzanie stanu czujnika krańcowego jako pierwsza czynność w diagnozowaniu problemów z automatycznymi bramami przesuwnymi jest niezwykle istotne. Czujnik krańcowy pełni kluczową rolę w systemie, informując sterownik o tym, że brama osiągnęła maksymalną pozycję otwartą lub zamkniętą. Jeśli czujnik nie działa prawidłowo, brama nie otrzyma sygnału do zatrzymania, co może prowadzić do niebezpiecznych sytuacji. Dobrą praktyką jest regularne serwisowanie systemu, w tym sprawdzanie funkcjonowania czujników, co może zapobiec poważnym usterkom. W przypadku stwierdzenia uszkodzenia czujnika, jego wymiana jest zalecana, aby zapewnić pełną funkcjonalność bramy. Co więcej, w standardach bezpieczeństwa dla automatycznych bram, takich jak normy EN 13241-1, podkreśla się znaczenie sprawności czujników, co ma kluczowe znaczenie dla ochrony osób i mienia w pobliżu bramy.

Pytanie 12

Podczas przeglądu silnika trójfazowego frezarki numerycznej wykonano pomiary rezystancji uzwojeń i rezystancji izolacji, przedstawione w tabeli. Wyniki te wskazują na

Pomiar między
zaciskami silnika
Wynik
U1-U222 Ω
V1-V221,5 Ω
W1-W222,2 Ω
U1-V1
V1-W1
U1-W1
U1-PE52 MΩ
V1-PE49 MΩ
W1-PE30 Ω
A. zwarcie między uzwojeniami U1-U2 oraz W1-W2.
B. przerwę w uzwojeniu U1-U2.
C. zwarcie między uzwojeniem W1-W2, a obudową silnika.
D. przerwę w uzwojeniu V1-V2.
Stwierdzenia dotyczące przerwy w uzwojeniu U1-U2 czy V1-V2, jak również sugerowanie zwarcia między uzwojeniami, wskazują na niepełne zrozumienie właściwego pomiaru rezystancji w układach trójfazowych. Przerwy w uzwojeniach są zazwyczaj diagnozowane na podstawie znacznego wzrostu rezystancji lub nieskończoności w pomiarach, co w tym przypadku nie miało miejsca, bowiem wartości rezystancji dla U1-U2 i V1-V2 były zbliżone i wynosiły około 22 Ω. Takie wartości nie sugerują problemów z ciągłością elektryczną. Problemy z izolacją często objawiają się podwyższonymi wartościami rezystancji, co prowadzi do niepoprawnych wniosków w przypadku braku odpowiednich danych. Analogicznie, błędne jest stwierdzenie o zwarciu między uzwojeniem a obudową, gdyż brak odpowiednich badań czy pomiarów może prowadzić do mylnych konkluzji. W rzeczywistości, każda z tych odpowiedzi nie uwzględnia kontekstu analizy izolacji i jej znaczenia dla bezpieczeństwa oraz wydajności silnika. Kiedy mamy do czynienia z silnikami elektrycznymi, kluczowe jest, aby pamiętać o znaczeniu norm oraz dobrych praktyk, takich jak regularne inspekcje oraz pomiary, które pozwalają na wczesne wykrycie usterek w izolacji, co zapobiega kosztownym awariom.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Wejście sterownika PLC, do którego podłączono czujnik o wyjściu NPN, musi reagować na sygnał napięciowy

Ilustracja do pytania
A. analogowy.
B. logiczny niski.
C. sinusoidalny.
D. logiczny wysoki.
Czujnik o wyjściu NPN działa w sposób, który umożliwia przewodzenie prądu, gdy jest aktywowany. Jego działanie polega na złączeniu wyjścia czujnika z masą, co generuje sygnał o wartości logicznej niskiej (0V). Dlatego wejście sterownika PLC musi być zaprojektowane tak, aby rozpoznawało ten sygnał. Użycie czujników NPN jest powszechne w automatyce przemysłowej, gdzie wykorzystuje się je do detekcji obiektów. Przykładem ich zastosowania mogą być linie montażowe, na których czujniki te informują system sterujący o obecności lub nieobecności komponentów. Dzięki temu maszyny mogą działać z większą precyzją i efektywnością. W praktyce, jeśli czujnik wykrywa obiekt, zamyka obwód, co skutkuje sygnałem niskim, a PLC podejmuje odpowiednią decyzję operacyjną. Dlatego znajomość sposobu działania czujników NPN i ich odpowiedniego podłączenia do systemów automatyki jest kluczowa dla prawidłowego funkcjonowania całego układu.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Na rysunku przedstawiono diagram działania jednego z bloków funkcyjnych sterownika PLC. Jest to blok

Ilustracja do pytania
A. zegara czasowego TON.
B. zegara czasowego TOF.
C. licznika impulsów zliczającego w górę.
D. licznika impulsów zliczającego w dół.
Wybór odpowiedzi "licznika impulsów zliczającego w dół" jest poprawny. Analizując diagram, można zauważyć, że wartość CV (Current Value) zmniejsza się z każdym sygnałem CU (Count Up), co jest charakterystyczne dla licznika zliczającego w dół. W praktycznych zastosowaniach, takie liczniki są często wykorzystywane w systemach automatyki przemysłowej, gdzie istotne jest monitorowanie ilości produktów, które zostały zredukowane w danym procesie produkcyjnym. Na przykład, w przypadku pakowania produktów, licznik ten może zliczać ilość sztuk, które zostały spakowane, aż do całkowitego zliczenia do zera, co w efekcie może uruchomić sygnał alarmowy lub inne działania. Dodatkowo, sygnał LOAD umożliwia ustawienie wartości początkowej licznika, co jest kluczowe w scenariuszach wymagających resetowania licznika po zakończeniu cyklu produkcyjnego. Zrozumienie i prawidłowe zastosowanie tego typu bloków funkcyjnych jest istotne w kontekście automatyzacji procesów i optymalizacji produkcji.

Pytanie 17

Jaki będzie stan wyjść sterownika PLC realizującego przedstawiony program, jeżeli stan wejścia I1 ulegnie zmianie z 1 na 0, a wejście I2 = 0?

Ilustracja do pytania
A. Q1 = 1 i Q2 = 1
B. Q1 = 0 i Q2 = 0
C. Q1 = 0 i Q2 = 1
D. Q1 = 1 i Q2 = 0
Poprawna odpowiedź to Q1 = 1 i Q2 = 1. W przedstawionym schemacie drabinkowym, stan wyjść Q1 i Q2 jest zależny od stanów wejść I1 i I2 oraz od mechanizmu samopodtrzymania. Po zmianie stanu I1 z 1 na 0, Q1, które było wcześniej aktywne, utrzymuje swój stan dzięki obwodowi samopodtrzymania. To oznacza, że nawet po deaktywacji I1, Q1 pozostaje w stanie aktywnym. Z kolei Q2, które również korzysta z mechanizmu samopodtrzymania, zachowuje aktywność, ponieważ jego stan również był wcześniej 1. Takie podejście jest zgodne z praktykami w branży automatyki, gdzie obwody samopodtrzymania są powszechnie wykorzystywane do utrzymania wydajności systemów, minimalizując ryzyko niezamierzonych wyłączeń w krytycznych procesach. Wykorzystanie takich technik jest istotne w projektowaniu systemów sterowania, aby zapewnić ich niezawodność oraz odpowiednią reakcję na zmiany w otoczeniu.

Pytanie 18

Rozpoczynając konserwację instalacji światłowodowej, co należy wykonać w pierwszej kolejności?

A. zajrzeć do otworu z wiązką lasera w kablu
B. podłączyć mikroskop ręczny z monitorem LCD
C. podłączyć reflektometr
D. zajrzeć do otworu z wiązką lasera w modemie
Podłączenie mikroskopu ręcznego do monitora LCD na początku konserwacji instalacji światłowodowej to naprawdę ważny krok. Pozwala to na dokładne sprawdzenie włókien światłowodowych. Mikroskopy zapewniają powiększenie, które ułatwia zauważenie mikrouszkodzeń i zanieczyszczeń, co może mieć wpływ na jakość sygnału. Z mojego doświadczenia, inspekcja wizualna włókien przed dalszymi czynnościami to standard w branży telekomunikacyjnej i zgadza się z wytycznymi od ITU. Dzięki mikroskopowi można odkryć różne problemy, jak nieodpowiednie zakończenia włókien, odpryski czy zarysowania. Takie rzeczy mogą spowodować straty sygnału albo przerwy w transmisji. Im wcześniej znajdziemy problemy, tym szybciej można je naprawić i zaoszczędzić pieniądze. Użycie mikroskopu ręcznego to umiejętność, która przyda się każdemu technikowi zajmującemu się instalacją i konserwacją światłowodów. Przykładowo, jak wykryjesz zanieczyszczenia, to technik może je wyczyścić specjalnymi materiałami, co jest zgodne z najlepszymi praktykami w branży.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Na etykiecie znamionowej zasilacza, który jest podłączony do układu, widnieją informacje: INPUT 100-240 VAC; OUTPUT 12 VDC. Co to oznacza w kontekście zasilania układu?

A. 12 VDC
B. 12 VAC
C. w zakresie od 100 do 240 VDC
D. w zakresie od 100 do 240 VAC
Odpowiedzi, które wskazują na napięcie zmienne, takie jak '100-240 VAC' lub '12 VAC', są niewłaściwe, ponieważ nie odzwierciedlają one charakterystyki wyjścia zasilacza. Zapis 'INPUT 100-240 VAC' informuje o zakresie napięcia, które można podać na wejście zasilacza, natomiast 'OUTPUT 12 VDC' oznacza, że na wyjściu otrzymujemy napięcie stałe. Wybór napięcia zmiennego na wyjściu prowadzi do nieporozumień, ponieważ wiele urządzeń elektronicznych, takich jak komputery czy sprzęt audio, wymaga napięcia stałego do prawidłowego działania. W przypadku, gdyby urządzenie było zasilane napięciem zmiennym, mogłoby to spowodować uszkodzenia lub nieprawidłowe działanie, co jest sprzeczne z dobrymi praktykami w zakresie projektowania układów elektronicznych. Często te błędne odpowiedzi wynikają z mylenia pojęć napięcia stałego i zmiennego, co jest kluczowe dla inżynierów i techników zajmujących się elektroniką. Zrozumienie różnicy między tymi dwoma typami napięcia oraz ich zastosowaniem jest fundamentem skutecznego projektowania i eksploatacji systemów elektronicznych.

Pytanie 21

Radiator, który ma zanieczyszczenia z pasty termoprzewodzącej, powinien być oczyszczony przy użyciu

A. wody destylowanej
B. sprężonego powietrza
C. alkoholu izopropylowego
D. gazu technicznego
Alkohol izopropylowy jest idealnym środkiem do czyszczenia radiatorów z pasty termoprzewodzącej. Jego właściwości rozpuszczające pozwalają skutecznie usunąć zanieczyszczenia, nie uszkadzając przy tym delikatnych powierzchni radiatora. W praktyce, stosowanie alkoholu izopropylowego jest powszechną metodą w branży elektroniki, gdzie czystość komponentów jest kluczowa dla ich prawidłowego działania. Przygotowując radiator do ponownego montażu, należy upewnić się, że wszelkie resztki pasty termoprzewodzącej zostały całkowicie usunięte, aby zapewnić efektywne przewodnictwo cieplne. Alkohol izopropylowy, ze względu na swoją szybkość odparowywania, minimalizuje ryzyko pozostawienia wilgoci na czyszczonej powierzchni. Warto również zaznaczyć, że stosowanie alkoholu izopropylowego jest zgodne z najlepszymi praktykami w zakresie konserwacji sprzętu elektronicznego, co potwierdzają liczne standardy branżowe, takie jak IPC-7711/7721 dotyczące naprawy i konserwacji elektronicznych obwodów drukowanych.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Gdy sprzęt komputerowy jest w trakcie pożaru i podłączony do zasilania, nie wolno go gasić

A. gaśnicą śniegową
B. kocem gaśniczym
C. gaśnicą proszkową
D. pianą
Prawidłowa odpowiedź to użycie piany do gaszenia płonącego sprzętu komputerowego. Piana ma zdolność izolowania źródła ognia od tlenu, co jest kluczowe w procesie gaszenia. Ponadto, piana chłodzi powierzchnię, na którą jest aplikowana, co zmniejsza ryzyko dalszego rozprzestrzeniania się ognia. Standardy bezpieczeństwa przeciwpożarowego w miejscach, gdzie używa się sprzętu elektronicznego, zalecają stosowanie środków gaśniczych, które minimalizują ryzyko uszkodzenia sprzętu. W przypadku sprzętu komputerowego, którego podzespoły są wrażliwe na działanie wody oraz substancji chemicznych, piana staje się najbardziej odpowiednim rozwiązaniem. Przykładowo, w centrach danych i serwerowniach, gdzie istnieje ryzyko pożarów związanych z elektroniką, zaleca się stosowanie systemów gaśniczych opartych na pianie, aby skutecznie i bezpiecznie opanować sytuację. Warto zatem znać i stosować tę metodę, aby zminimalizować straty materialne oraz zapewnić bezpieczeństwo osobom znajdującym się w pobliżu.

Pytanie 24

Na rysunku przedstawiono model magazynu grawitacyjnego oraz fragment algorytmu jego działania. W celu przetestowania działania układu należy sprawdzić, czy wysunięcie detalu z magazynu nastąpi, gdy wciśnięty zostanie przycisk _S1 oraz czy

Ilustracja do pytania
A. aktywny jest czujnik wykrywania pustego magazynu.
B. tłoczysko siłownika znajduje się w pozycji wysuniętej.
C. tłoczysko siłownika znajduje się w pozycji wsuniętej.
D. nieaktywny jest czujnik wykrywania pustego magazynu.
Poprawna odpowiedź wskazuje na kluczowy warunek, który musi być spełniony dla prawidłowego działania układu. Zgodnie z algorytmem, wysunięcie detalu z magazynu jest możliwe, gdy przycisk S1 jest wciśnięty, a czujnik wykrywania pustego magazynu (B4) jest nieaktywny. Taki mechanizm zapewnia, że detal nie zostanie wysunięty, gdy magazyn jest pusty, co mogłoby prowadzić do błędów w procesie automatyzacji i obniżenia efektywności operacji. Systemy grawitacyjne w automatyce, w których wykorzystuje się czujniki do monitorowania poziomu materiałów, są powszechnie stosowane w magazynach oraz liniach produkcyjnych. Przykładowo, w przemysłowym systemie transportu materiałów, odpowiednie zastosowanie czujników i przycisków może znacząco zredukować ryzyko awarii, a także zwiększyć bezpieczeństwo operacji. Kluczowe jest, aby przy projektowaniu takich systemów stosować praktyki inżynieryjne, które zapewniają zarówno wydajność, jak i bezpieczeństwo. Zrozumienie tej logiki działania jest niezbędne dla inżynierów w obszarze automatyki oraz robotyki.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Jakim skrótem literowym określa się oprogramowanie do tworzenia wizualizacji procesów industrialnych?

A. SCADA
B. CAE
C. CAM
D. CAD
SCADA, czyli Supervisory Control and Data Acquisition, to kluczowy system stosowany w automatyce przemysłowej, który umożliwia monitorowanie oraz kontrolowanie procesów technologicznych w czasie rzeczywistym. W praktyce SCADA zbiera dane z różnorodnych czujników i urządzeń, co pozwala na wizualizację procesów na interaktywnych panelach operatorskich. Tego typu systemy są stosowane w różnych branżach, w tym w energetyce, wodociągach, transporcie oraz przemyśle chemicznym. SCADA umożliwia nie tylko zbieranie danych, ale także ich analizę i generowanie raportów, co jest istotne dla podejmowania decyzji zarządzających. Dodatkowo, systemy SCADA często integrują różne protokoły komunikacyjne, takie jak Modbus czy OPC, co zapewnia ich elastyczność i interoperacyjność. W dobie Przemysłu 4.0 SCADA odgrywa także kluczową rolę w implementacji IoT (Internet of Things), co otwiera nowe możliwości w zakresie automatyzacji i optymalizacji procesów przemysłowych.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Którego z symboli graficznych należy użyć w celu przedstawienia fototranzystora na schemacie ideowym modułu wejść sterownika PLC?

Ilustracja do pytania
A. C.
B. A.
C. D.
D. B.
Symbol graficzny przedstawiony jako odpowiedź A. jest poprawnym oznaczeniem fototranzystora w schematach ideowych, co jest szczególnie istotne w kontekście projektowania systemów automatyki i sterowania. Fototranzystory są elementami półprzewodnikowymi, które wykrywają światło i przekształcają je w sygnał elektryczny, co czyni je kluczowymi komponentami w aplikacjach takich jak detekcja obiektów, pomiar oświetlenia oraz w systemach optoelektroniki. W schematach, dwa strzałki skierowane na zewnątrz symbolizują zdolność tego elementu do reagowania na światło, co jest kluczowe dla jego działania. Zastosowanie fototranzystorów w systemach PLC pozwala na skuteczne monitorowanie i kontrolowanie procesów, co jest zgodne z obowiązującymi standardami branżowymi, takimi jak IEC 61131-3. Dlatego znajomość odpowiedniego symbolu graficznego jest niezbędna dla inżynierów i techników zajmujących się automatyką przemysłową.

Pytanie 30

Dla którego stanu logicznego czujników C1 , C2, C3 spełniony jest warunek przejścia do następnego kroku (opuszczenie kroku 3)?

Ilustracja do pytania
A. C1 = 1, C2 = 1, C3 = 0
B. C1 = 1, C2 = 0, C3 = 1
C. C1 = 0, C2 = 0, C3 = 1
D. C1 = 0, C2 = 1, C3 = 0
Odpowiedź "C1 = 1, C2 = 0, C3 = 1" jest całkowicie w porządku. Spełnia wszystkie wymagania, żeby przejść do następnego etapu w tym schemacie. Można to zapisać jako (C1∨¬C2)∧C3=1. No i wiadomo, żeby to działało, C3 musi być 1, co oznacza, że czujnik C3 jest aktywny. Poza tym, z alternatywy C1∨¬C2 wynika, że przynajmniej jeden z tych dwóch warunków – C1 lub negacja C2 – musi być spełniony. W praktyce oznacza to, że C2 powinno być 0, żeby negacja (¬C2) dawała 1. A żeby to wszystko zadziałało, C1 też musi być 1, co oznacza, że czujnik C1 jest załączony. Takie zasady często są używane w automatyce, gdzie logiczne przełączniki decydują o tym, co dalej robią maszyny. To bardzo przydatne w przemyśle, bo dzięki temu można zapewnić bezpieczne i sprawne działanie procesów produkcyjnych. Widać, jak ważna jest znajomość logiki w programowaniu systemów sterujących.

Pytanie 31

Wskaż właściwy sposób odniesienia do zmiennej 64-bitowej w pamięci markerów sterownika PLC, której pierwsze osiem bitów ma adres w systemie dziesiętnym 14?

A. MD14
B. MB14
C. ML14
D. MW14
ML14 jest poprawną odpowiedzią, ponieważ w kontekście adresacji zmiennych w sterownikach PLC, termin ten oznacza 'Marker Long'. Działa to na zasadzie przypisania odpowiedniego typu danych do konkretnego adresu w pamięci. Zmienne 64-bitowe, takie jak w tym przypadku, są klasyfikowane jako długie słowa, dlatego poprawne jest użycie oznaczenia ML. Liczba 14 oznacza, że zmienna zaczyna się od 14-tego bajtu w pamięci markerów i zajmuje osiem kolejnych bajtów, co jest zgodne z zasadami adresacji w systemach PLC. Ważne jest, aby mieć na uwadze, że różne typy danych są adresowane różnymi prefiksami; na przykład, MD oznacza zmienną 32-bitową, MW to zmienna 16-bitowa, a MB to zmienna 8-bitowa. Znajomość tych oznaczeń jest kluczowa w programowaniu PLC, ponieważ niewłaściwe adresowanie może prowadzić do błędów w działaniu programu. W praktyce, podczas tworzenia programów w PLC, zawsze należy upewnić się, że adresy zmiennych odpowiadają ich typowi, aby zapewnić poprawne działanie oraz optymalną wydajność urządzenia. Dobrą praktyką jest również dokumentowanie, jakie typy zmiennych i adresy są używane w projekcie, co ułatwia późniejsze zarządzanie i debugging.

Pytanie 32

Do zobrazowania relacji między elementami i zespołami projektowanej maszyny wykorzystuje się rysunek

A. zespołowy
B. rzutowy
C. częściowy
D. złożeniowy
Rysunek złożeniowy jest kluczowym elementem dokumentacji technicznej projektowanej maszyny, ponieważ przedstawia wszystkie komponenty oraz ich wzajemne usytuowanie w jednym, kompleksowym widoku. Dzięki temu inżynierowie i technicy mogą łatwo zrozumieć, jak poszczególne elementy współpracują ze sobą, co jest niezwykle istotne podczas procesu montażu oraz serwisowania maszyny. Na etapie projektowania, rysunki złożeniowe pozwalają na szybkie identyfikowanie potencjalnych problemów związanych z kolizjami elementów oraz optymalizację przestrzenną. Zgodnie z normami ISO dotyczącymi rysunku technicznego, rysunki złożeniowe powinny być jasne, czytelne i zawierać wszystkie niezbędne informacje, takie jak numery katalogowe części, materiały i wymiary. Przykładem zastosowania rysunku złożeniowego może być projektowanie skomplikowanych maszyn, takich jak obrabiarki czy urządzenia automatyki przemysłowej, gdzie zrozumienie interakcji pomiędzy komponentami jest kluczowe dla efektywności i bezpieczeństwa całego systemu.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Przedstawiony na rysunku symbol jest graficzną reprezentacją

Ilustracja do pytania
A. przekładni zębatej.
B. sprzęgła.
C. przekładni ciernej.
D. hamulca.
Symbol przedstawiony na rysunku jest graficzną reprezentacją hamulca, co jest zgodne z normami dokumentacji inżynieryjnej, takimi jak ISO 1219, które definiują standardowe symbole używane w schematach hydraulicznych i pneumatycznych. Hamulec, jako element maszyny, ma kluczowe znaczenie dla zapewnienia bezpieczeństwa operacji i kontroli ruchu. W praktyce, hamulce są stosowane w różnych aplikacjach, od pojazdów mechanicznych po maszyny przemysłowe, gdzie ich zadaniem jest zatrzymanie lub spowolnienie obrotów lub ruchu. W kontekście inżynierii mechanicznej, zrozumienie symboliki graficznej jest istotne dla poprawnej interpretacji schematów i efektywnego projektowania systemów. Hamulce mogą być mechaniczne, hydrauliczne lub pneumatyczne, a odpowiedni symbol graficzny ułatwia identyfikację ich funkcji i współpracy z innymi elementami. Dobrze jest znać różnorodność symboli oraz ich zastosowania, aby móc skutecznie przeprowadzać analizy i diagnozy w praktycznych sytuacjach.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Która z wymienionych zasad wymiarowania nie została zachowana na rysunku?

Ilustracja do pytania
A. Niepowtarzania wymiarów.
B. Niezamykania łańcuchów wymiarowych.
C. Pomijania wymiarów oczywistych.
D. Pomijania wymiarów koniecznych.
Odpowiedź "Pomijania wymiarów oczywistych" jest prawidłowa, ponieważ w kontekście rysunku technicznego zgodnego z normami, nie powinno się podawać wymiarów, które można łatwo obliczyć na podstawie innych wymiarów. Wymiar 100 mm jest w tym przypadku oczywisty, ponieważ może być wyznaczony jako suma wymiarów 60 mm i 40 mm, co czyni go zbędnym. Zasada pomijania wymiarów oczywistych jest kluczowa w procesie wymiarowania, ponieważ jej przestrzeganie pomaga uniknąć nadmiarowych informacji, które mogą prowadzić do nieporozumień podczas produkcji. W praktyce, projektanci i inżynierowie powinni koncentrować się na prezentacji tylko tych wymiarów, które są istotne dla wykonania elementu, co zwiększa czytelność rysunku i ułatwia interpretację. Normy ISO, takie jak ISO 129, podkreślają znaczenie minimalizacji wymiarów na rysunkach, co ma na celu poprawę efektywności komunikacji technicznej oraz redukcję ryzyka błędów konstrukcyjnych. Zastosowanie tej zasady w codziennej praktyce projektowej jest nie tylko korzystne, ale również niezbędne dla zachowania wysokich standardów jakości w dokumentacji technicznej.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Jakiego symbolu należy użyć, pisząc program dla sterownika PLC, gdy chcemy odwołać się do 8-bitowej komórki pamięci wewnętrznej klasy M?

A. MV0
B. MD0
C. M0.0
D. MB0
Symbol "MB" oznacza 8-bitową komórkę pamięci wewnętrznej typu M w programowaniu dla sterowników PLC. Oznaczenie to jest kluczowe dla poprawnego adresowania pamięci w systemach automatyki, ponieważ pozwala na precyzyjne odniesienie się do konkretnej komórki pamięci. W praktyce, podczas programowania sterowników, istotne jest, aby znać różne typy pamięci i ich zastosowanie. Komórki pamięci typu M są używane do przechowywania danych o krótkim czasie życia, takich jak stany przełączników, wyniki operacji logicznych lub inne dane tymczasowe. Adresując pamięć w programie, możemy np. ustawiać lub odczytywać stany urządzeń, co jest fundamentalne w procesach automatyzacji. Ważne jest także, aby stosować się do dobrych praktyk, takich jak konsekwentne nazywanie i organizowanie zmiennych, co ułatwia późniejsze utrzymanie i rozwijanie programu. Zrozumienie tej koncepcji jest niezbędne dla każdego inżyniera zajmującego się programowaniem PLC i efektywnym projektowaniem systemów automatyki.

Pytanie 40

Co obejmuje zakres pomiarowy czujnika?

A. najniższa wartość czynników wejściowych, która jest możliwa do pomiaru
B. wykres ilustrujący zależność między wartościami: wejściową i wyjściową czujnika
C. maksymalna różnica pomiędzy wartością zmierzoną a rzeczywistą
D. zakres wartości czynników wejściowych, które dany czujnik jest w stanie zmierzyć
Zakres pomiarowy czujnika to kluczowe pojęcie w technologii pomiarowej, definiujące przedział wartości, w którym dany czujnik może prawidłowo funkcjonować. Odpowiedź "przedział wartości wielkości wejściowych czujnika, jaki może być mierzony danym czujnikiem" precyzyjnie opisuje, że każdy czujnik ma określone granice, wewnątrz których jego pomiary są wiarygodne. Na przykład, czujnik temperatury może mieć zakres od -50°C do 150°C, co oznacza, że wartości poza tym przedziałem mogą być niedokładne lub całkowicie niemożliwe do zmierzenia. Zrozumienie zakresu pomiarowego jest niezbędne przy doborze odpowiednich czujników do konkretnego zastosowania, co jest zgodne z praktykami inżynieryjnymi i normami branżowymi, takimi jak ISO 9001. W praktyce, wybór czujnika z nieodpowiednim zakresem pomiarowym może prowadzić do błędów w danych, co może mieć poważne konsekwencje w różnych dziedzinach przemysłu, takich jak automatyka czy monitorowanie procesów chemicznych.