Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 18 lutego 2026 06:05
  • Data zakończenia: 18 lutego 2026 06:42

Egzamin zdany!

Wynik: 22/40 punktów (55,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Na rysunku przedstawiono stosowaną w instalacjach elektrycznych złączkę

Ilustracja do pytania
A. śrubową.
B. gwintową.
C. samozaciskową.
D. skrętną.
Złączka skrętna, przedstawiona na rysunku, jest jednym z najczęściej stosowanych elementów w instalacjach elektrycznych, szczególnie w celu łączenia przewodów. Jej główną zaletą jest prostota użycia, ponieważ do jej montażu nie są wymagane żadne narzędzia, co znacząco przyspiesza proces instalacji. Skręcenie przewodów w złączce skrętnej umożliwia stabilne i trwałe połączenie, które jest w stanie wytrzymać znaczne obciążenia elektryczne. Dodatkowo, zastosowanie metalowego sprężynującego elementu, który dysponuje odpowiednim naciskiem, zapewnia doskonały kontakt elektryczny oraz minimalizuje ryzyko przegrzania się połączenia. W praktyce złączki skrętne znajdują zastosowanie nie tylko w instalacjach domowych, ale także w przemyśle, gdzie niezawodność połączeń jest kluczowa. Standardy branżowe, takie jak IEC 60947-1, podkreślają znaczenie stosowania odpowiednich złączek w zależności od zastosowania i wymagań technicznych, co czyni złączkę skrętną rozwiązaniem, które spełnia te normy.

Pytanie 2

W jakiej kolejności należy włączać styczniki w układzie przedstawionym na schemacie, aby przeprowadzić prawidłowy rozruch silnika, przy zamkniętym wyłączniku Q1?

Ilustracja do pytania
A. W odstępach czasu kolejno: K1M, K42M, K41M
B. Najpierw K1M i K42M, następnie wyłączyć K42M, a włączyć K41M
C. W odstępach czasu kolejno: K41M, K42M, K1M
D. Najpierw K1M i K41M, następnie wyłączyć K41M, a włączyć K42M
Wybór odpowiedzi "W odstępach czasu kolejno: K41M, K42M, K1M" jest poprawny, ponieważ odzwierciedla najlepsze praktyki w zakresie rozruchu silników elektrycznych. Włączając stycznik K41M jako pierwszy, uzwojenia silnika są połączone w gwiazdę, co znacznie redukuje prąd rozruchowy i chroni silnik przed przeciążeniem. Zmniejszenie prądu rozruchowego jest kluczowe, aby uniknąć uszkodzenia silnika. Po aktywowaniu K41M, włączenie K42M przestawia silnik w tryb pracy z pełnym obciążeniem, co jest niezbędne do osiągnięcia optymalnej wydajności. Ostatnim krokiem jest włączenie K1M, które zasila silnik, umożliwiając jego normalną pracę. Taka sekwencja jest zgodna z zasadami bezpieczeństwa i efektywności energetycznej w systemach elektrycznych. Dobrze zaplanowana sekwencja włączania styczników jest istotna, aby uniknąć ryzyka uszkodzenia sprzętu oraz zapewnić stabilność w pracy maszyny.

Pytanie 3

Kondensator stosowany w jednofazowych silnikach indukcyjnych przeznaczony jest do

A. zmiany wartości napięcia w układzie.
B. wytworzenia momentu rozruchowego.
C. regulacji prędkości obrotowej.
D. zatrzymywania silnika.
W jednofazowych silnikach indukcyjnych rola kondensatora jest dość konkretna i dobrze opisana w literaturze oraz katalogach producentów. Podstawowy problem takiego silnika polega na tym, że pojedyncze uzwojenie zasilane z jednej fazy tworzy pole magnetyczne pulsujące, a nie wirujące. Takie pole nie wytwarza początkowego momentu obrotowego, więc wirnik sam z siebie nie ruszy. Dlatego stosuje się uzwojenie pomocnicze i kondensator, który przesuwa fazę prądu w tym uzwojeniu względem uzwojenia głównego. Dzięki temu powstają dwa pola magnetyczne przesunięte w czasie i przestrzeni, co daje efekt pola wirującego i właśnie z tego bierze się moment rozruchowy. Częsty błąd polega na myleniu kondensatora z elementem służącym do regulacji prędkości obrotowej. W silnikach indukcyjnych klatkowych prędkość jest w praktyce wyznaczona przez częstotliwość sieci i liczbę par biegunów, a nie przez kondensator. Zmiana pojemności może wpływać na prąd, nagrzewanie, głośność pracy, ale nie jest to poprawna i bezpieczna metoda regulacji obrotów zgodnie z dobrą praktyką. Kolejne nieporozumienie to traktowanie kondensatora jak czegoś w rodzaju „hamulca” do zatrzymywania silnika. Do zatrzymywania stosuje się po prostu odłączenie zasilania, ewentualnie hamowanie mechaniczne lub specjalne układy hamowania elektrycznego, ale nie kondensator rozruchowy. Zdarza się też, że ktoś myśli o kondensatorze jak o elemencie zmieniającym wartość napięcia w układzie. W typowych małych silnikach jednofazowych kondensator nie służy do transformowania napięcia, tylko do kształtowania przebiegu prądu i uzyskania przesunięcia fazowego. Takie mylenie funkcji wynika często z ogólnej wiedzy, że kondensatory „coś robią z napięciem”, ale tutaj ich rola jest ściśle związana z wytworzeniem pola wirującego i zapewnieniem poprawnego rozruchu. W praktyce serwisowej dobór właściwego kondensatora jest kluczowy, bo zbyt mała lub zbyt duża pojemność objawia się właśnie słabym momentem rozruchowym, buczeniem silnika, przegrzewaniem i skróceniem jego żywotności, a nie żadną kontrolowaną regulacją prędkości.

Pytanie 4

W którym układzie sieciowym, w przypadku przerwania przewodu ochronno-neutralnego, na obudowach metalowych odbiorników może pojawiać się pełne napięcie fazowe?

A. IT
B. TT
C. TN-S
D. TN-C
Prawidłowa odpowiedź to układ TN-C, bo właśnie w tym systemie przewód ochronno‑neutralny PEN pełni jednocześnie dwie funkcje: przewodu roboczego (N) i ochronnego (PE). Jeśli dojdzie do jego przerwania, wszystkie obudowy urządzeń podłączone do tego przewodu „tracą” połączenie z punktem neutralnym transformatora i zaczynają się zachowywać jak przewód fazowy – może się na nich pojawić pełne napięcie fazowe względem ziemi. I to jest bardzo niebezpieczne w praktyce, bo użytkownik dotyka wtedy normalnie uziemionej obudowy, która nagle ma 230 V. W układzie TN-C przewód PEN jest prowadzony wspólnie, najczęściej w starszych instalacjach dwuprzewodowych (L + PEN). Z mojego doświadczenia właśnie w takich starych blokach czy kamienicach ryzyko przerwania PEN jest realne: poluzowane zaciski, korozja, złe łączenia. Normy, np. PN‑HD 60364, od lat odradzają stosowanie TN-C w instalacjach odbiorczych wewnątrz budynków i zalecają przejście na układy TN-S albo TN-C-S, gdzie funkcje PE i N są rozdzielone. Rozdział PEN na PE i N (układ TN-C-S) wykonuje się możliwie blisko punktu zasilania budynku, a w instalacji wewnętrznej prowadzi się już trzy przewody: L, N, PE, co radykalnie zmniejsza ryzyko pojawienia się napięcia na obudowach. W praktyce dobrym zwyczajem jest unikanie „dorabiania” ochrony przez mostkowanie bolca ochronnego do N w gniazdach w starych instalacjach TN-C. To tylko utrwala niebezpieczny układ i zwiększa skutki potencjalnego przerwania PEN. Zawodowo patrząc, każda modernizacja instalacji w TN-C powinna iść w stronę wymiany przewodów i rozdziału przewodu PEN, a nie kombinowania z przejściówkami. Moim zdaniem to jedno z kluczowych zagadnień ochrony przeciwporażeniowej, które każdy elektryk powinien mieć „w małym palcu”.

Pytanie 5

Jakie znaczenie ma opis OMY 500 V 3x1,5 mm2 umieszczony na izolacji przewodu?

A. Sznur mieszkalny pięciożyłowy w izolacji polietylenowej
B. Przewód oponowy mieszkalny trzyżyłowy w izolacji polwinitowej
C. Przewód oponowy warsztatowy pięciożyłowy w izolacji polietylenowej
D. Sznur mieszkalny trzyżyłowy w izolacji polwinitowej
Odpowiedź wskazująca na przewód oponowy mieszkaniowy trzyżyłowy w izolacji polwinitowej jest poprawna, ponieważ oznaczenie OMY 500 V 3x1,5 mm2 wskazuje na konkretny typ przewodu, który jest powszechnie stosowany w instalacjach elektrycznych w budynkach mieszkalnych. Oznaczenie 'OMY' odnosi się do przewodów oponowych, które charakteryzują się dużą elastycznością i odpornością na uszkodzenia mechaniczne. Izolacja polwinitowa (PVC) zabezpiecza przed działaniem wilgoci i substancji chemicznych, co czyni ten przewód idealnym do stosowania w warunkach domowych, gdzie często zachodzi ryzyko narażenia na różnorodne czynniki zewnętrzne. Przewód o przekroju 3x1,5 mm2 oznacza, że ma trzy żyły o średnicy 1,5 mm2, co jest standardowym przekrojem dla obwodów oświetleniowych i gniazd wtykowych w mieszkaniach. Przykłady zastosowania obejmują instalacje w domach jednorodzinnych, w których przewody te są używane do podłączenia oświetlenia oraz zasilania urządzeń elektrycznych. Zgodność z normą PN-EN 50525-2-21 potwierdza, że przewód spełnia wymagane standardy bezpieczeństwa oraz jakości.

Pytanie 6

Podczas ponownej próby załączenia urządzenia przedstawionego na rysunku po około 40 s następuje jego samoczynne wyłączenie. Określ najbardziej prawdopodobną przyczynę zadziałania urządzenia.

Ilustracja do pytania
A. Upływ prądu do uziemienia.
B. Zwarcie przewodów L i PE.
C. Przeciążenie w obwodzie.
D. Zwarcie przewodów L i N.
Niepoprawne odpowiedzi często wynikają z niepełnego zrozumienia zasady działania wyłączników różnicowoprądowych oraz ich funkcji w systemach elektrycznych. Na przykład, zwarcie przewodów L i N nie prowadziłoby do samoczynnego wyłączenia urządzenia po pewnym czasie, ale raczej do natychmiastowego zadziałania zabezpieczenia. Zwarcie to powoduje bezpośredni przepływ prądu, co skutkuje dużym wzrostem prądu, ale nie jest zgodne z zachowaniem, które obserwujemy w przypadku przeciążenia. Upływ prądu do uziemienia także nie jest przyczyną opóźnionego wyłączenia, jako że wyłączniki różnicowoprądowe działają w oparciu o różnicę prądów między przewodami roboczymi, a nie na zasadzie wykrywania przeciążeń. Natomiast zwarcie przewodów L i PE wskazuje na błędne połączenie, które również nie prowadzi do zjawiska opóźnionego wyłączenia. Typowe błędy myślowe w takich przypadkach to mylenie sygnatury zjawisk elektrycznych oraz braku zrozumienia, w jaki sposób wyłączniki zabezpieczają instalacje. Zgodnie z normami bezpieczeństwa, wiedza o charakterystyce działania zabezpieczeń nadprądowych jest niezbędna do prawidłowego projektowania i eksploatacji systemów elektrycznych.

Pytanie 7

Który łącznik oznaczono symbolem literowym P na schemacie montażowym zamieszczonym na rysunku?

Ilustracja do pytania
A. Krzyżowy.
B. Świecznikowy.
C. Schodowy.
D. Grupowy.
Wybór łącznika grupowego, schodowego lub świecznikowego jako odpowiedzi na pytanie jest nieprawidłowy, ponieważ każdy z tych typów łączników ma swoje specyficzne zastosowania, które nie są zgodne z rolą łącznika oznaczonego literą P w układzie z trzema punktami sterowania. Łącznik grupowy służy do włączania lub wyłączania kilku punktów świetlnych jednocześnie z jednego miejsca, co nie odpowiada funkcji łącznika krzyżowego. Z kolei łączniki schodowe są używane na początku i końcu obwodu, umożliwiając jedynie sterowanie z dwóch miejsc. Nie można ich zastosować w układzie wymagającym przełączania z trzech lokalizacji. Łącznik świecznikowy, przeznaczony do sterowania oświetleniem z jednego miejsca, również nie jest odpowiedni w kontekście tego pytania. Osoby myślące, że wszystkie te łączniki mogą zastąpić krzyżowy, mogą nie dostrzegać różnic w ich funkcjonalności i zastosowaniach, co prowadzi do merytorycznych błędów w projektowaniu instalacji elektrycznych. W praktyce, nieznajomość typów łączników i ich funkcji może skutkować nieefektywnym rozwiązaniem, które nie spełnia wymagań użytkownika w zakresie wygody i funkcjonalności.

Pytanie 8

Który z wymienionych symboli literowo-cyfrowych powinien mieć przewód zastosowany do zasilenia z sieci jednofazowej o napięciu 230 V ruchomego odbiornika, wykonanego w II klasie ochronności?

A. H03VV-F 3X0,75
B. H05VV-U 2X1,5
C. H05VV-K 3X0,75
D. H03VVH2-F 2X1,5
Prawidłowy wybór to przewód oznaczony symbolem H03VVH2-F 2×1,5 i to z kilku bardzo konkretnych powodów. Po pierwsze, oznaczenie H03 mówi, że jest to lekki przewód o napięciu znamionowym 300/300 V, czyli typowo stosowany do zasilania małych, ruchomych odbiorników w instalacjach jednofazowych 230 V, takich jak czajniki, żelazka, małe elektronarzędzia czy sprzęt RTV/AGD II klasy ochronności. W praktyce dokładnie taki przewód często widzimy jako fabryczny przewód zasilający w urządzeniach z wtyczką płaską, bez bolca ochronnego. Dalej: VV oznacza izolację i powłokę z PVC, czyli rozwiązanie tanie, łatwo dostępne i zgodne z normami do zastosowań domowych i biurowych. Symbol H2 w środku (H2 lub H2-R, w tym przypadku zapis H2 „zaszyty” w H2-F) oznacza przewód płaski, dwużyłowy, co idealnie pasuje do urządzeń w II klasie ochronności – tam nie stosuje się żyły ochronnej PE, więc wystarczą dwie żyły robocze: fazowa i neutralna. Litera F oznacza, że żyły są wielodrutowe (giętkie), czyli przystosowane do częstego zginania, przesuwania, nawijania na bęben czy chowanie do obudowy – dokładnie to, czego oczekujemy od przewodu do ruchomego odbiornika. Przekrój 2×1,5 mm² zapewnia odpowiednią obciążalność prądową i mniejsze spadki napięcia przy typowych mocach odbiorników jednofazowych, jest też często zalecany przez producentów jako bezpieczny i trwały. Z mojego doświadczenia w serwisie sprzętu domowego, H03VVH2-F jest takim „klasykiem gatunku” dla urządzeń II klasy, gdzie nie ma zacisku ochronnego i przewód musi być lekki, elastyczny i zgodny z wymaganiami norm PN-HD 21 i powiązanych. W dobrze wykonanej instalacji i naprawie zawsze patrzy się nie tylko na napięcie, ale też na klasę ochronności urządzenia, typ pracy (ruchomy/stały), elastyczność przewodu i jego konstrukcję – i pod tym względem Twój wybór jest po prostu podręcznikowy.

Pytanie 9

Z którego z wymienionych materiałów wykonuje się rury elektroinstalacyjne przeznaczone do prowadzenia przewodów na podłożu palnym?

A. Z pleksi.
B. Z nierdzewnej stali.
C. Z naturalnej gumy.
D. Z bawełny.
Prawidłowo wybrany materiał – rura elektroinstalacyjna z nierdzewnej stali – wynika bezpośrednio z wymagań bezpieczeństwa pożarowego. Przy prowadzeniu przewodów po podłożu palnym (np. drewno, płyta OSB, boazeria, niektóre płyty meblowe) kluczowe jest, żeby elementy instalacji nie przyczyniały się do rozprzestrzeniania ognia i wytrzymywały podwyższoną temperaturę. Stal nierdzewna jest materiałem niepalnym, ma wysoką temperaturę topnienia, jest mechanicznie wytrzymała i dobrze chroni przewody przed uszkodzeniami mechanicznymi oraz działaniem ognia. W praktyce takie rury stalowe stosuje się np. w drewnianych domkach letniskowych, na poddaszach z widocznymi drewnianymi belkami, w halach z konstrukcją drewnianą czy w starym budownictwie z boazerią. Moim zdaniem to jedno z bardziej intuicyjnych rozwiązań: jeżeli coś montujemy na materiale łatwopalnym, to sam osprzęt powinien być zdecydowanie niepalny i odporny. Normy i dobre praktyki instalacyjne (np. zapisy wynikające z PN-HD 60364 dotyczące doboru osprzętu do podłoża) mówią wprost, że osprzęt na podłożu palnym musi być tak dobrany, aby w razie zwarcia, przegrzania czy łuku elektrycznego nie powodował zapłonu otoczenia. Rury stalowe spełniają te wymagania dużo lepiej niż jakiekolwiek tworzywa, szczególnie te standardowe, stosowane w zwykłych instalacjach podtynkowych. Dodatkowo, stal nierdzewna jest odporna na korozję, więc w dłuższej perspektywie mamy stabilną, trwałą ochronę przewodów, co w instalacjach wykonywanych na widocznym, palnym podłożu jest bardzo ważne – nikt przecież nie będzie co chwilę tego przebudowywał. W wielu projektach wykonawczych można spotkać wręcz zapis: „Prowadzenie przewodów po podłożu palnym – wyłącznie w rurach metalowych”, co jest takim praktycznym skrótem myślowym do właśnie tego wymagania.

Pytanie 10

W jakiego rodzaju instalacjach elektrycznych typowe jest stosowanie przewodów w karbowanych rurkach?

A. Napowietrznych
B. Nadtynkowych
C. Wtynkowych
D. Podtynkowych
Układanie przewodów w rurkach karbowanych jest charakterystyczne dla instalacji podtynkowych, ponieważ zapewnia to nie tylko estetykę, ale również dodatkową ochronę mechaniczną przewodów. Rurki karbowane, zwane również rurami osłonowymi, są elastyczne i łatwe w instalacji, co pozwala na dostosowanie ich do różnych kształtów i rozmiarów pomieszczeń. Przewody umieszczone w takich rurkach są chronione przed uszkodzeniami mechanicznymi, wilgocią oraz wpływem czynników zewnętrznych. W standardach instalacyjnych, takich jak norma PN-IEC 60364, zaleca się stosowanie rur karbowanych w miejscach, gdzie występuje ryzyko uszkodzeń przewodów, co zwiększa bezpieczeństwo całej instalacji. Przykładem zastosowania mogą być instalacje elektryczne w domach jednorodzinnych, gdzie przewody są układane w ścianach i sufitach, a ich estetyczne ukrycie wraz z ochroną jest kluczowe dla komfortu użytkowania. Warto również zauważyć, że odpowiednia instalacja zgodna z normami oraz zaleceniami producentów rur jest niezbędna do zapewnienia długotrwałej i bezawaryjnej pracy instalacji elektrycznej.

Pytanie 11

Na podstawie zamieszczonych w tabeli wyników pomiarów dotyczących przewodu przedstawionego na ilustracji określ, które z jego żył są ze sobą zwarte.

Ilustracja do pytania
A. N i PE
B. L1 i L3
C. N i L3
D. L1 i PE
Odpowiedź N i PE jest poprawna, ponieważ analizując wyniki pomiarów rezystancji, stwierdzamy, że rezystancja wynosi 0 Ω, co jednoznacznie wskazuje na zwarcie między tymi przewodami. W standardach elektrycznych, takich jak PN-IEC 60364, ważne jest, aby prawidłowo identyfikować różne żyły, zwłaszcza w kontekście ochrony przed porażeniem elektrycznym. W przypadku przewodu neutralnego (N) i przewodu ochronnego (PE) ich zwarcie może wskazywać na nieprawidłowości w instalacji, które mogą prowadzić do niebezpiecznych sytuacji. Wiedza na temat pomiarów rezystancji jest kluczowa w utrzymaniu bezpieczeństwa systemów elektrycznych, a także w diagnostyce awarii. W praktyce, przed przystąpieniem do pracy przy instalacjach elektrycznych, zaleca się przeprowadzanie dokładnych pomiarów, aby upewnić się, że nie występuje żadne zwarcie, co jest zgodne z najlepszymi praktykami w branży, takimi jak regularne kontrole i inspekcje instalacji.

Pytanie 12

Który z przedstawionych przyrządów jest przeznaczony do wykrywania pod obciążeniem wadliwych połączeń elektrycznych w torach wielkoprądowych?

Ilustracja do pytania
A. Przyrząd 4.
B. Przyrząd 1.
C. Przyrząd 2.
D. Przyrząd 3.
Wybór przyrządu niezgodnego z funkcją wykrywania wadliwych połączeń elektrycznych pod obciążeniem może prowadzić do poważnych konsekwencji operacyjnych. Przyrządy, które nie są zaprojektowane do pomiaru temperatury, takie jak multimetry czy oscyloskopy, nie są w stanie wykryć problemów związanych z nadmiernym nagrzewaniem, które często występują w przypadku wadliwych połączeń. Wiele osób może błędnie zakładać, że tradycyjne metody pomiarowe są wystarczające do diagnozowania problemów w torach elektrycznych. Niemniej jednak, nie uwzględniają one krytycznego aspektu, jakim jest temperatura operacyjna, która może z łatwością umknąć w standardowych pomiarach elektrycznych. Dodatkowo, niezrozumienie zasad termowizji prowadzi do zaniedbań w utrzymaniu infrastruktury, co może skutkować poważnymi awariami i dużymi kosztami napraw. Dlatego coraz ważniejsze staje się stosowanie nowoczesnych technologii, takich jak termowizja, które dostarczają nie tylko precyzyjnych danych, ale również umożliwiają przewidywanie i zapobieganie awariom jeszcze przed ich wystąpieniem.

Pytanie 13

Zamontowanie gniazda wtyczkowego bez styku ochronnego i dołączenie do niego urządzenia elektrycznego I klasy ochronności spowoduje

A. zagrożenie porażeniem prądem elektrycznym.
B. uszkodzenie urządzenia elektrycznego.
C. zwarcie w instalacji elektrycznej.
D. przeciążenie instalacji elektrycznej.
Prawidłowo – kluczowy problem w tym pytaniu to ochrona przeciwporażeniowa urządzeń I klasy ochronności. Urządzenia tej klasy mają obudowę metalową połączoną ze stykiem ochronnym (bolcem) w gnieździe. Ten styk musi być połączony z przewodem ochronnym PE w instalacji. Dzięki temu, jeśli nastąpi uszkodzenie izolacji i przewód fazowy dotknie obudowy, prąd popłynie przez PE, a zabezpieczenie (wyłącznik nadprądowy, bezpiecznik, wyłącznik różnicowoprądowy) szybko zadziała i odłączy zasilanie. Jeżeli zamontujemy gniazdo bez styku ochronnego i podłączymy do niego urządzenie I klasy, to obudowa zostaje „zawieszona w powietrzu” – nie ma połączenia ochronnego. W razie przebicia fazy na obudowę, metalowe części mogą znaleźć się pod napięciem 230 V względem ziemi. Użytkownik, który dotknie obudowy i jednocześnie np. kaloryfera, zlewu, podłogi betonowej, może stać się ścieżką przepływu prądu. To właśnie jest typowe zagrożenie porażeniem prądem elektrycznym. Z punktu widzenia norm (PN-HD 60364 i ogólne zasady SEP) stosowanie gniazd bez styku ochronnego w nowych instalacjach jest niedopuszczalne, jeżeli mają być tam podłączane urządzenia I klasy. W praktyce oznacza to, że w mieszkaniach, warsztatach, biurach powinny być montowane gniazda ze stykiem ochronnym, a przewód ochronny musi być poprawnie podłączony. Moim zdaniem każdy elektryk powinien mieć odruch: urządzenie z wtyczką z bolcem → tylko do gniazda ze stykiem ochronnym. Stare „płaskie” gniazdka bez bolca to relikt, który w zastosowaniach ogólnych jest po prostu niebezpieczny.

Pytanie 14

Jakie zabezpieczenie przed porażeniem prądem w przypadku pośredniego dotyku zostało wdrożone, gdy pojedynczy odbiornik jest zasilany za pośrednictwem transformatora o przekładni 230 V/230 V, który jest skonstruowany w taki sposób, że nie można doprowadzić do zwarcia między jego uzwojeniami?

A. Izolacja odbiornika
B. Ochronne obniżenie napięcia
C. Podwójna lub wzmocniona izolacja
D. Izolowanie miejsca pracy
Izolowanie stanowiska jest koncepcją, która w teorii ma na celu zabezpieczenie osób pracujących w pobliżu urządzeń elektrycznych. Jednak nie zapewnia ona pełnej ochrony przed dotykiem pośrednim. Działa głównie w sytuacjach, gdy istnieje bezpośredni kontakt z elementami, które mogą stwarzać zagrożenie, ale nie eliminuje ryzyka, jakie może wynikać z nieprawidłowego działania transformatora. Z kolei podwójna lub wzmocniona izolacja to rozwiązanie, które stosuje się w przypadku urządzeń, gdzie istnieje ryzyko porażenia prądem ze względu na łatwy dostęp do elementów pod napięciem. Mimo że takie podejście jest skuteczne w wielu zastosowaniach, w omawianym przypadku, gdy transformator jest odpowiednio skonstruowany, izolacja nie ma kluczowego znaczenia. Ochronne obniżenie napięcia to osobna strategia, która polega na zredukowaniu napięcia do poziomu, który nie stanowi zagrożenia. Jednakże również nie jest adekwatne w kontekście analizy transformatora z jedną przekładnią, ponieważ nie eliminuje ryzyka, a jedynie je minimalizuje. Głównym błędem w rozumowaniu mogą być założenia, że każda z tych metod jest wystarczająca w każdej sytuacji, co prowadzi do nieprawidłowych decyzji w zakresie ochrony przed porażeniem elektrycznym.

Pytanie 15

Zamiast starego bezpiecznika trójfazowego 25 A, należy zastosować wysokoczuły wyłącznik różnicowoprądowy. Który z przedstawionych w katalogu, należy wybrać?

WyłącznikOznaczenie
A.BPC 425/030 4P AC
B.BDC 225/030 2P AC
C.BPC 425/100 4P AC
D.BDC 440/030 4P AC
A. D.
B. B.
C. C.
D. A.
Wybór niepoprawnej opcji może wynikać z kilku nieporozumień dotyczących specyfikacji wyłączników różnicowoprądowych. Niezrozumienie norm dotyczących prądu znamionowego może prowadzić do nieodpowiedniego doboru urządzenia. Na przykład, niektóre opcje mogą oferować zbyt wysokie prądy znamionowe, co skutkowałoby brakiem odpowiedniego zabezpieczenia dla obciążenia 25 A. W takich przypadkach, wybór urządzenia o niższym prądzie znamionowym może prowadzić do zadziałania wyłącznika w sytuacjach, które nie są krytyczne, co obniża jego skuteczność w ochronie. Ponadto, niewłaściwe zrozumienie liczby biegunów może doprowadzić do zastosowania wyłączników jednofazowych w instalacjach trójfazowych, co jest absolutnie niezalecane, ponieważ nie zapewnia to pełnej ochrony przed porażeniem prądem. Czułość wyłącznika różnicowoprądowego jest kluczowym parametrem, który powinien być dostosowany do specyfiki instalacji. Wybór urządzenia o zbyt dużej czułości, na przykład 100 mA, może nie zapewnić odpowiedniego zabezpieczenia, podczas gdy zbyt mała czułość może prowadzić do niepotrzebnych zadziałań. Takie błędy w doborze wyłączników mogą prowadzić do poważnych konsekwencji, w tym ryzyka wystąpienia pożaru czy porażenia prądem, co jest wysoce niepożądane w każdej instalacji elektrycznej. Dlatego kluczowe jest dobrać wyłącznik, który nie tylko spełnia normy, ale również jest odpowiednio dostosowany do charakterystyki używanych urządzeń i wymagań instalacji.

Pytanie 16

Jaką maksymalną wartość impedancji pętli zwarcia powinien mieć obwód o napięciu 230/400 V, aby wyłącznik instalacyjny nadprądowy C10 mógł skutecznie zapewnić ochronę przed porażeniem?

A. 0,4 Ω
B. 7,7 Ω
C. 2,3 Ω
D. 4,6 Ω
Wiesz co, jeśli chodzi o maksymalną wartość impedancji pętli zwarcia dla obwodu 230/400 V z wyłącznikiem nadprądowym C10, to wynosi ona 2,3 Ω. To wyliczenie oparłem na normie PN-IEC 60364, która w sumie mówi, jakie powinny być zasady dotyczące ochrony elektrycznej. Wyłącznik C10, który działa przy prądzie 10 A, musi zadziałać szybko, kiedy pojawi się zwarcie, a do tego potrzebna jest niska impedancja pętli. W skrócie, żeby zapewnić bezpieczeństwo, trzeba pilnować, żeby ta impedancja nie była wyższa niż 2,3 Ω. Dzięki temu wyłącznik zadziała w krótkim czasie, co daje lepszą ochronę. Jakby impedancja była wyższa, to wyłącznik może działać wolniej, a to już tworzy ryzyko dla ludzi. Dlatego ważne jest, żeby regularnie mierzyć impedancję pętli zwarcia i trzymać to w ryzach.

Pytanie 17

Zgodnie z polskim prawem budowlanym, instalacje elektryczne oraz piorunochronne w obiektach mieszkalnych powinny być poddawane okresowym badaniom

A. raz na rok
B. raz na pół roku
C. co najmniej raz na 10 lat
D. co najmniej raz na 5 lat
Wybierając częstotliwość badania instalacji elektrycznej i piorunochronnej, można napotkać wiele nieporozumień związanych z niewłaściwymi podejściami do tego tematu. Odpowiedzi sugerujące, że kontrole powinny odbywać się raz na pół roku, raz na rok, czy co najmniej raz na 10 lat, mogą wynikać z mylnego wrażenia, że częstotliwość badań powinna być uzależniona od intensywności użytkowania instalacji lub warunków zewnętrznych. Niemniej jednak, jest to podejście z gruntu błędne, ponieważ przepisy prawa budowlanego i normy dotyczące bezpieczeństwa elektrycznego jasno określają, iż standardowy okres pomiędzy badaniami powinien wynosić co najmniej 5 lat. Częstsze kontrole, takie jak raz na pół roku lub raz na rok, mogą nie tylko generować niepotrzebne koszty, ale również prowadzić do zbytniego obciążenia specjalistów, co może skutkować wypaleniem zawodowym i negatywnym wpływem na jakość przeprowadzanych badań. Z kolei nawiązanie do 10-letniego okresu między przeglądami jest zupełnie niezgodne z aktualnymi zaleceniami i normami, co może prowadzić do poważnych zagrożeń, gdyż długi okres bez kontroli stwarza ryzyko, że niebezpieczne usterki lub degradacja instalacji mogą pozostać niezauważone. W praktyce, niewłaściwe podejście do okresowości badań może nie tylko zagrażać bezpieczeństwu użytkowników, ale również wpływać na odpowiedzialność prawną właścicieli budynków, którzy są zobowiązani do zapewnienia bezpieczeństwa instalacji elektrycznych.

Pytanie 18

Do jakiej kategorii zaliczają się kable współosiowe?

A. Grzewczych
B. Oponowych
C. Kabelkowych
D. Telekomunikacyjnych
Przewody współosiowe, znane również jako kable koncentryczne, są kluczowym elementem w systemach telekomunikacyjnych. Ich budowa składa się z centralnego przewodu, który jest otoczony dielektrykiem, a następnie metalową osłoną. Taka konstrukcja pozwala na przesyłanie sygnałów radiowych i telewizyjnych z minimalnymi zakłóceniami, co jest szczególnie ważne w telekomunikacji. Przewody współosiowe są powszechnie wykorzystywane w instalacjach telewizyjnych, sieciach komputerowych oraz w systemach audio, gdzie istotna jest jakość przesyłanych danych. Zgodnie z normami branżowymi, takie jak ANSI/TIA-568, przewody te muszą spełniać określone standardy dotyczące tłumienia sygnału i zakłóceń elektromagnetycznych, co gwarantuje ich niezawodność. Stosowanie przewodów współosiowych w telekomunikacji jest także uzasadnione ich łatwością w instalacji oraz dużą odpornością na uszkodzenia mechaniczne, co czyni je preferowanym rozwiązaniem w wielu aplikacjach.

Pytanie 19

Na którym rysunku przedstawiono prawidłowy, zgodny z zasadami BHP sposób wykonania połączenia przewodu z żyłą w postaci drutu w zacisku śrubowym?

Ilustracja do pytania
A. D.
B. B.
C. C.
D. A.
Prawidłowe wykonanie połączenia przewodu z żyłą w postaci drutu w zacisku śrubowym jest kluczowe dla zapewnienia bezpieczeństwa i niezawodności instalacji elektrycznych. Na rysunku B, drut jest odpowiednio zagięty i umieszczony pod główką śruby, co pozwala na skuteczne zaciskanie i zapobiega jego wypadnięciu. W praktyce, ważne jest, aby drut był zagięty w odpowiedni sposób, co zapewnia pełne przyleganie do powierzchni styku, co z kolei minimalizuje ryzyko powstawania iskrzenia oraz przegrzewania połączenia. Zgodnie z normami PN-IEC 60947-7-1, zaleca się, aby połączenia były wykonywane w sposób, który zapewnia ich trwałość oraz odporność na wibracje. Dobrze wykonane połączenie zwiększa efektywność przesyłania energii elektrycznej oraz zmniejsza ryzyko awarii, co jest kluczowe w kontekście użytkowania złożonych systemów elektrycznych.

Pytanie 20

Której klasy ogranicznik przepięć przedstawiono na rysunku?

Ilustracja do pytania
A. Klasy C
B. Klasy A
C. Klasy D
D. Klasy B
Wybór odpowiedzi spośród klas A, B czy C jest nieprawidłowy, ponieważ te klasy ograniczników przepięć mają inne zastosowania i nie odpowiadają na konkretne potrzeby ochrony końcowych urządzeń elektronicznych. Ograniczniki klasy A są przeznaczone do ochrony instalacji przed przepięciami, które mogą wystąpić w wyniku wyładowań atmosferycznych, co czyni je bardziej odpowiednimi dla systemów zasilających i infrastruktury budowlanej, a nie dla urządzeń użytkowych. Klasa B z kolei jest zarezerwowana dla zastosowań przemysłowych, gdzie konieczne jest ograniczenie przepięć na poziomie wyższym niż w przypadku klasy D, co czyni je niewłaściwym wyborem dla urządzeń codziennego użytku. Klasa C, stosowana w instalacjach niskonapięciowych, również nie zapewnia odpowiedniej ochrony dla końcowych urządzeń, które wymagają bardziej specyficznej i bezpośredniej ochrony. Kluczowym błędem, który często prowadzi do wyboru niewłaściwej klasy, jest mylenie ogólnych właściwości ograniczników z ich specyfiką zastosowania. Każda klasa ograniczników ma określone parametry i przeznaczenie, które powinny być zgodne z wymaganiami danego systemu. Zrozumienie różnic między tymi klasami jest kluczowe dla właściwego doboru urządzeń ochronnych w celu zapewnienia optymalnej ochrony i wydajności systemów elektronicznych.

Pytanie 21

Jakiej klasy ogranicznik przepięć powinno się montować w instalacjach mieszkalnych?

A. Klasy A
B. Klasy C
C. Klasy B
D. Klasy D
Odpowiedzi wskazujące na klasy B, D oraz A jako odpowiednie dla rozdzielnic mieszkalnych są niepoprawne głównie z powodu różnic w charakterystyce i zastosowaniach tych ograniczników. Klasa B, według normy IEC 61643-11, jest zaprojektowana do ochrony przed bardzo wysokimi przepięciami, które mogą występować w sieciach zasilających, co czyni je bardziej odpowiednimi do zastosowań w instalacjach przemysłowych, gdzie ryzyko wystąpienia takich zdarzeń jest znacznie wyższe. Ograniczniki klasy A z kolei są przeznaczone do ochrony przed bardzo niskimi, ale szybko zmieniającymi się przepięciami, co również nie odpowiada typowym wymaganiom dla mieszkań. Klasa D, zdefiniowana jako ogranicznik przeznaczony do instalacji w obiektach specjalistycznych, takich jak centra danych, również nie jest zalecana do użytku domowego. Sugerowanie tych klas ograniczników dla zastosowań w rozdzielnicach mieszkaniowych może prowadzić do niewłaściwej ochrony i potencjalnych uszkodzeń sprzętu, co jest wynikiem niepełnego zrozumienia standardów ochrony przeciwprzepięciowej oraz różnorodności warunków, w jakich te urządzenia są używane. Kluczowe jest, aby przy wyborze odpowiedniego ogranicznika kierować się wymaganiami specyfikacji technicznych oraz dobrą praktyką inżynieryjną, co pomoże uniknąć kosztownych błędów i zapewni skuteczną ochronę instalacji elektrycznych.

Pytanie 22

Który element wyposażenia rozdzielnicy przedstawiono na ilustracji?

Ilustracja do pytania
A. Regulator temperatury.
B. Lampkę sygnalizacyjną trójfazową.
C. Przekaźnik czasowy.
D. Czujnik kolejności faz.
Lampka sygnalizacyjna trójfazowa, przedstawiona na ilustracji, to urządzenie, które odgrywa kluczową rolę w monitorowaniu stanu zasilania w instalacjach elektrycznych. Model SL-RGB 3in1 firmy Kanlux jest zaprojektowany do wskazywania obecności napięcia w trzech fazach, co jest istotne w kontekście instalacji przemysłowych oraz obiektów użyteczności publicznej. Lampki sygnalizacyjne trójfazowe są niezbędne w systemach energetycznych, ponieważ informują operatorów o prawidłowym funkcjonowaniu zasilania, co może zapobiec awariom i uszkodzeniom sprzętu. Umożliwiają one szybkie wykrycie problemów w zasilaniu, takich jak brak fazy czy asymetria napięcia. W praktyce, lampki te często są używane w połączeniu z innymi urządzeniami zabezpieczającymi, takimi jak wyłączniki różnicowoprądowe, co pozwala na zbudowanie kompleksowego systemu monitorowania i ochrony instalacji elektrycznych. Dodatkowo, zgodność z normami, takimi jak PN-EN 60204-1, zapewnia, że urządzenia te są bezpieczne i efektywne w użytkowaniu.

Pytanie 23

Który symbol graficzny na schemacie ideowym projektowanej instalacji elektrycznej oznacza sposób prowadzenia przewodów w tynku?

Ilustracja do pytania
A. A.
B. C.
C. B.
D. D.
Poprawna odpowiedź to B, ponieważ w polskich normach dotyczących schematów instalacji elektrycznych, sposób prowadzenia przewodów w tynku jest zazwyczaj reprezentowany przez symbol składający się z dwóch równoległych linii. Jedna z tych linii jest ciągła, co wskazuje na przewód zamontowany w tynku, a druga jest przerywana, sugerując ewentualne miejsce, w którym przewód jest ukryty lub prowadzenie w trudnych warunkach. Tego rodzaju symbol nie tylko ułatwia zrozumienie schematu instalacji, ale również przyczynia się do zachowania bezpieczeństwa oraz efektywności w projektowaniu i wykonywaniu instalacji elektrycznych. Przykładowo, w praktyce, stosowanie się do tego symbolu pozwala instalatorom na dokładne zaplanowanie trasy przewodów w ścianach budynków, co ma kluczowe znaczenie dla estetyki oraz funkcjonalności instalacji. Ponadto, stosowanie jednolitych symboli zgodnych z normami branżowymi, jak PN-EN 60617, zapewnia, że wszyscy uczestnicy procesu budowlanego mają wspólne zrozumienie projektu, co minimalizuje ryzyko błędów w realizacji.

Pytanie 24

Według przedstawionego schematu instalacji elektrycznej ochronnik przeciwprzepięciowy powinien być włączony między uziemienie oraz

Ilustracja do pytania
A. przewód fazowy i przewód neutralny.
B. wyłącznie przewody fazowe.
C. przewody fazowe i przewód neutralny.
D. wyłącznie przewód neutralny.
Wybór opcji ograniczającej włączenie ochronnika przeciwprzepięciowego wyłącznie między uziemieniem a przewodem neutralnym jest niewłaściwy, ponieważ nie uwzględnia pełnego zakresu zagrożeń, jakie mogą wystąpić w instalacjach elektrycznych. Ochronniki przeciwprzepięciowe są projektowane w taki sposób, aby chronić zarówno przewody fazowe, jak i neutralne, które mogą być narażone na przepięcia. Włączenie ochronnika tylko w relacji do przewodu neutralnego powoduje, że nie zabezpieczamy efektywnie pozostałych przewodów fazowych przed nadmiernymi napięciami. Podobnie, sugerowanie wyłącznie przewodów fazowych nie uwzględnia roli przewodu neutralnego, który również może doświadczać przepięć. Taka konfiguracja może prowadzić do poważnych uszkodzeń urządzeń, ponieważ energia z przepięcia nie zostanie odprowadzona w sposób bezpieczny, a sprzęt będzie narażony na awarie, co jest sprzeczne z zasadami projektowania instalacji elektrycznych oraz normami bezpieczeństwa. Właściwe włączenie ochronnika w sposób opisany w poprawnej odpowiedzi pozwala na zminimalizowanie ryzyka uszkodzeń oraz zapewnia zgodność z dobrymi praktykami branżowymi, co jest kluczowe w każdej instalacji elektrycznej.

Pytanie 25

Powstanie napięcia na obudowie urządzenia AGD zasilanego z sieci TN-S jest rezultatem braku działania

A. rozłącznika
B. odłącznika
C. wyłącznika różnicowoprądowego
D. wyłącznika nadprądowego
Wyłącznik różnicowoprądowy, czyli RCD, to naprawdę ważne urządzenie, które czuwa nad bezpieczeństwem w naszych instalacjach elektrycznych. Jego zadanie polega na tym, że sprawdza, czy prąd, który płynie do urządzenia, jest równy prądowi, który z niego wypływa. Kiedy te dwa prądy się różnią, to może znaczyć, że coś jest nie tak, na przykład prąd może uciekać do ziemi. W takiej sytuacji RCD odłącza zasilanie, co znacznie zmniejsza ryzyko porażenia prądem. Jeśli chodzi o obudowy urządzeń AGD, to napięcie na ich powierzchni może być oznaką problemów z izolacją. Gdy urządzenie ma uszkodzenie, może dojść do niebezpiecznego kontaktu między elementami pod napięciem a obudową. Dlatego tak ważne są wyłączniki różnicowoprądowe, które spełniają normy IEC 61008, bo pomagają one zminimalizować ryzyko. Regularne sprawdzanie ich działania powinno być rutyną w każdym gospodarstwie domowym, żeby wszystko było bezpieczne.

Pytanie 26

Wskaż symbol graficzny monostabilnego łącznika przyciskowego z zestykiem NO.

Ilustracja do pytania
A. Symbol 3.
B. Symbol 1.
C. Symbol 2.
D. Symbol 4.
Monostabilny łącznik przyciskowy z zestykiem NO (normalnie otwartym) jest kluczowym elementem w wielu systemach elektrycznych i automatyce. Symbol 1 przedstawia ten łącznik, ilustrując otwarty styk, który zamyka się po naciśnięciu przycisku, co jest zgodne z zasadami oznaczania w normach IEC 60617. W praktyce, tego rodzaju łączniki są powszechnie używane w urządzeniach, które wymagają chwilowego włączenia obwodu, jak na przykład w urządzeniach sterujących, alarmach czy systemach oświetleniowych. Dzięki swojej konstrukcji, monostabilne przyciski są bardziej energooszczędne, ponieważ nie wymagają stałego zasilania do utrzymania stanu włączenia. Zrozumienie tego symbolu i funkcji jest kluczowe dla właściwego projektowania i implementacji systemów elektrycznych. Używanie poprawnych symboli graficznych w dokumentacji technicznej jest istotne dla komunikacji między inżynierami i technikami, co wpływa na jakość i bezpieczeństwo instalacji elektrycznych.

Pytanie 27

Który typ przewodu przedstawiono na ilustracji?

Ilustracja do pytania
A. YLY
B. YAKY
C. YKY
D. YALY
Odpowiedzi YLY, YAKY oraz YALY są niepoprawne, ponieważ każdy z tych typów przewodów ma inne właściwości i zastosowania. Przewód YLY, na przykład, charakteryzuje się izolacją z poliwęglanu, co czyni go mniej odpornym na wysoką temperaturę i nieodpowiednim do zastosowań w trudnych warunkach. Z kolei YAKY, będący przewodem aluminiowym, jest stosowany tam, gdzie niezbędne jest zredukowanie kosztów związanych z materiałem, ale nie jest zalecany w sytuacjach, gdzie wymagane są wysokie parametry przewodzenia energii elektrycznej. Przewód YALY ma podobne ograniczenia i nie nadaje się do instalacji, które muszą spełniać normy dotyczące odporności na czynniki zewnętrzne. Wybór niewłaściwego przewodu może prowadzić do awarii systemu, zagrożeń związanych z bezpieczeństwem a także nieefektywności energetycznej. Osoby zajmujące się projektowaniem systemów elektrycznych muszą być świadome różnic pomiędzy różnymi typami przewodów, aby uniknąć typowych błędów myślowych, takich jak założenie, że wszystkie przewody są uniwersalne. Wiedza ta jest kluczowa dla zapewnienia bezpieczeństwa i efektywności energetycznej w instalacjach elektrycznych.

Pytanie 28

Jaka maksymalna wartość impedancji pętli zwarcia może wystąpić w trójfazowym układzie elektrycznym o napięciu znamionowym 230/400 V, aby ochrona przeciwporażeniowa była skuteczna w przypadku uszkodzenia izolacji, wiedząc, że zasilanie tego układu ma przerwać instalacyjny wyłącznik nadprądowy B10?

A. 2,3 Ω
B. 7,7 Ω
C. 4,6 Ω
D. 8,0 Ω
Wartości impedancji pętli zwarcia 2,3 Ω, 7,7 Ω oraz 8,0 Ω nie są odpowiednie z różnych powodów. Impedancja pętli zwarcia o wartości 2,3 Ω może wydawać się atrakcyjna, ale jest zbyt niska, co może prowadzić do nieprawidłowego działania wyłącznika nadprądowego, czyniąc go bardziej podatnym na fałszywe wyzwolenia. Wyłączniki nadprądowe mają swoje charakterystyki czasowe, a przy zbyt niskiej impedancji prąd zwarciowy może być niewystarczający do ich skutecznego działania w momentach awaryjnych. Z kolei wartość 7,7 Ω, choć nieco bardziej akceptowalna, przekracza maksymalne wartości, które zapewniają odpowiednią ochronę w standardowych instalacjach, co może prowadzić do niebezpieczeństwa porażenia. Zbyt wysoka impedancja pętli zwarcia powoduje, że prąd zwarciowy, który z reguły musi być odpowiednio wysoki, aby wyzwolić zabezpieczenia, może nie osiągnąć wartości progowej przy zwarciu, co w konsekwencji skutkuje wydłużonym czasem wyłączenia zasilania i narażeniem użytkowników na niebezpieczeństwo. Wartość 8,0 Ω jest jeszcze bardziej niekorzystna, ponieważ znacznie przekracza parametry zalecane przez normy, co może prowadzić do poważnych zagrożeń w przypadku uszkodzenia izolacji. Zrozumienie tych zasad jest kluczowe dla inżynierów oraz techników, którzy projektują instalacje elektryczne, aby zapewnić ich bezpieczeństwo i zgodność z normami branżowymi.

Pytanie 29

Jakim symbolem oznacza się przewód jednożyłowy, wykonany z aluminiowych drutów i mający izolację z polichlorku winylu, o średnicy żyły 2,5 mm2?

A. YDY 2,5 mm2
B. ALY 2,5 mm2
C. YLY 2,5 mm2
D. ADY 2,5 mm2
Odpowiedź ALY 2,5 mm2 jest poprawna, ponieważ odnosi się do przewodu jednożyłowego z aluminiową żyłą wielodrutową, który jest powszechnie stosowany w instalacjach elektrycznych. W oznaczeniu tym, litera 'A' wskazuje na materiał przewodnika - aluminium, co jest istotne, ponieważ różni się on właściwościami od miedzi, na przykład mniejszą przewodnością elektryczną i wyższą wagą przy tej samej długości. Litera 'L' oznacza, że przewód jest wielodrutowy, co zwiększa elastyczność i ułatwia instalację w trudnych warunkach. Przewody te są zwykle stosowane w instalacjach oświetleniowych oraz w zasilaniu urządzeń domowych, gdzie ich parametry elektryczne, takie jak maksymalne obciążenie prądowe, są dostosowane do standardów, takich jak PN-IEC 60228. Stosowanie przewodów o odpowiedniej specyfikacji jest kluczowe dla zapewnienia bezpieczeństwa oraz efektywności energetycznej w systemach elektrycznych.

Pytanie 30

Podczas wymiany uszkodzonego gniazdka w instalacji powierzchniowej prowadzonej w rurach karbowanych zauważono, że na skutek poluzowania zacisku izolacja jednego z przewodów na odcinku kilku centymetrów straciła elastyczność oraz zmieniła barwę. Jak należy przeprowadzić naprawę tego uszkodzenia?

A. Nałożyć koszulkę termokurczliwą na uszkodzoną część izolacji przewodu
B. Wymienić wszystkie przewody na nowe o większej średnicy
C. Zaizolować uszkodzoną część izolacji przewodu taśmą
D. Wymienić uszkodzony przewód na nowy o identycznej średnicy
Wybór wymiany uszkodzonego przewodu na nowy o takim samym przekroju jest najlepszym rozwiązaniem w tej sytuacji. Uszkodzenia izolacji przewodów mogą prowadzić do poważnych konsekwencji, takich jak zwarcia, przegrzewanie się lub nawet pożary. Przewody elektryczne muszą być w pełni sprawne, aby zapewnić bezpieczeństwo i prawidłowe działanie instalacji. Wymiana na przewód o takim samym przekroju gwarantuje, że nie dojdzie do przeciążenia obwodu, co mogłoby wystąpić w przypadku zastosowania przewodu o większym przekroju. Zgodnie z normami PN-IEC 60364, przewody powinny być dobrane do obciążenia, a ich izolacja musi być nienaruszona. Praktyka wymiany przewodów na nowe jest zgodna z dobrymi praktykami branżowymi, które zalecają stosowanie materiałów wysokiej jakości oraz przestrzeganie zasad BHP podczas pracy z instalacjami elektrycznymi.

Pytanie 31

Który z poniższych przewodów jest przeznaczony do stosowania na zewnątrz budynków?

A. NYM
B. YDY
C. LNY
D. YKY
Wybór przewodów do zastosowań zewnętrznych wymaga zrozumienia, jakie właściwości powinny one posiadać. Przewód YDY, pomimo że jest powszechnie stosowany w instalacjach elektrycznych, nie jest przeznaczony do użytku na zewnątrz budynków ze względu na brak odpowiedniej ochrony przed czynnikami atmosferycznymi. Przewody tego typu są głównie stosowane wewnątrz budynków, gdzie nie są narażone na deszcz, słońce czy zmiany temperatur. Podobna sytuacja dotyczy przewodu LNY, który również nie posiada powłoki ochronnej przystosowanej do użytku zewnętrznego. Natomiast przewód NYM, choć bardziej odporny niż YDY, nadal nie spełnia wszystkich wymagań, które stawia się przewodom przeznaczonym do pracy na zewnątrz. NYM jest często stosowany w pomieszczeniach zamkniętych lub suchych, a jego użycie na zewnątrz wymaga dodatkowej ochrony. Typowym błędem jest zakładanie, że wszystkie przewody polwinitowe mają podobną odporność na warunki atmosferyczne, co nie jest prawdą. Wybierając przewody do użytku zewnętrznego, należy zwrócić uwagę na ich specyfikacje techniczne oraz zgodność z normami, które precyzują ich odporność na czynniki zewnętrzne. Dlatego tak ważne jest, aby dokładnie analizować właściwości przewodów przed ich zastosowaniem w instalacjach zewnętrznych.

Pytanie 32

Którego z symboli należy użyć na schemacie wielokreskowym w celu oznaczenia łącznika schodowego?

Ilustracja do pytania
A. C.
B. B.
C. A.
D. D.
Wybór symboli A, B lub D do oznaczenia łącznika schodowego jest nieprawidłowy i wynika z nieporozumienia dotyczącego funkcji oraz konstrukcji tych elementów. Symbol A przedstawia zwykły łącznik, który jest używany do włączania i wyłączania obwodu z jednego miejsca. Nie ma on możliwości zarządzania oświetleniem z dwóch różnych lokalizacji, co jest kluczowe dla łącznika schodowego. Użycie tego symbolu w tym kontekście prowadzi do błędnej interpretacji możliwości instalacji. Symbol B, z kolei, może odnosić się do innego typu przełącznika, który nie jest przystosowany do działania w systemach schodowych. Oznaczenia te mogą mylić, ponieważ nie oddają rzeczywistych funkcji, które powinny być jasno sprecyzowane w dokumentacji technicznej. Natomiast symbol D może reprezentować elementy, które nie są powiązane z funkcjonalnością zarządzania oświetleniem w kontekście schodów. Te błędne wybory wynikają z typowych nieporozumień w interpretacji rysunków technicznych oraz braku znajomości norm dotyczących oznaczania symboli elektrycznych. Ważne jest, aby przy projektowaniu instalacji elektrycznych zwracać uwagę na specyfikację i zastosowanie poszczególnych symboli, aby zapewnić ich poprawne użytkowanie i efektywność działania systemu. Dobrą praktyką jest konsultacja z dokumentacją normatywną oraz specjalistami w dziedzinie elektrotechniki przed podjęciem decyzji o wyborze odpowiednich elementów instalacji.

Pytanie 33

Na rysunku przedstawiono schemat

Ilustracja do pytania
A. łącznika zmierzchowego.
B. programowalnego przełącznika czasowego.
C. wyłącznika schodowego.
D. wyłącznika różnicowoprądowego.
Wybór odpowiedzi innej niż wyłącznik różnicowoprądowy wskazuje na nieporozumienia dotyczące funkcji i budowy różnych urządzeń elektrycznych. Programowalny przełącznik czasowy to urządzenie, które pozwala na automatyczne włączanie i wyłączanie obwodów elektrycznych w określonym czasie, co jest zupełnie inną funkcjonalnością niż zabezpieczanie przed porażeniem prądem. Łącznik zmierzchowy z kolei działa na zasadzie aktywacji oświetlenia w zależności od natężenia światła, co również nie ma nic wspólnego z ochroną przed upływem prądu. Wyłącznik schodowy, stosowany w instalacjach oświetleniowych, umożliwia sterowanie jednym źródłem światła z dwóch miejsc, jednak nie pełni funkcji zabezpieczających. Kluczowym błędem jest nieznajomość zasad działania wyłączników różnicowoprądowych, które są zaprojektowane specjalnie do wykrywania niebezpiecznych różnic prądów. Niezrozumienie tego zagadnienia może prowadzić do nieodpowiedniego doboru urządzeń w instalacjach elektrycznych, co z kolei może zwiększać ryzyko wypadków oraz zagrożeń dla zdrowia i życia. Wiedza na temat funkcji każdego z tych urządzeń jest kluczowa dla zapewnienia bezpieczeństwa w infrastrukturze elektrycznej.

Pytanie 34

Jakie parametry wyłącznika różnicowoprądowego powinny być zmierzone, aby ocenić jego poprawne działanie?

A. Napięcie w sieci oraz prąd obciążeniowy
B. Napięcie w sieci oraz prąd różnicowy
C. Obciążenie prądowe i czas reakcji
D. Prąd różnicowy oraz czas reakcji
Odpowiedź, która wskazuje na pomiar prądu różnicowego oraz czasu zadziałania wyłącznika różnicowoprądowego, jest poprawna, ponieważ te parametry są kluczowe dla oceny skuteczności działania tego urządzenia. Prąd różnicowy to różnica między prądami wpływającymi i wypływającymi z obwodu, a jego pomiar pozwala zidentyfikować potencjalne nieprawidłowości, takie jak upływ prądu do ziemi. Czas zadziałania, z kolei, określa, jak szybko wyłącznik reaguje na wykrycie tego prądu różnicowego, co jest istotne dla zapewnienia bezpieczeństwa użytkowników. Przykładem zastosowania jest sytuacja, gdy osoba dotyka uszkodzonego przewodu; w tym przypadku wyłącznik różnicowoprądowy powinien natychmiast zadziałać, aby uniknąć porażenia prądem. Zgodnie z normami IEC 61008 oraz IEC 61009, wyłączniki różnicowoprądowe powinny mieć określone wartości prądu różnicowego i czasu zadziałania, co podkreśla ich znaczenie w systemach zabezpieczeń. Regularne testowanie tych parametrów jest niezbędne do utrzymania wysokiego poziomu bezpieczeństwa w instalacjach elektrycznych.

Pytanie 35

Na której ilustracji przedstawiono symbol graficzny rozłącznika?

Ilustracja do pytania
A. Na ilustracji IV.
B. Na ilustracji I.
C. Na ilustracji III.
D. Na ilustracji II.
Wybór innej ilustracji jako symbolu graficznego rozłącznika może wynikać z nieporozumień dotyczących interpretacji symboli elektrycznych. Na ilustracji I, III i IV przedstawione są inne elementy schematów elektrycznych, które mają różne funkcje i zastosowania. Na przykład, ilustracja I może przedstawiać symbol przekaźnika, który ma za zadanie automatyczne włączanie i wyłączanie obwodów, co jest zupełnie inną funkcją niż rozłącznik. Z kolei ilustracja III może pokazować symbol bezpiecznika, który chroni obwód przed przeciążeniem, a ilustracja IV może przedstawiać symbol wyłącznika, który manualnie przerywa obwód. Tego rodzaju błędy w identyfikacji symboli wynikają często z braku znajomości standardów IEC 60617, które definiują różne symbole używane w schematach elektrycznych. Kluczowe jest zrozumienie, że każdy symbol ma swoje specyficzne oznaczenie oraz funkcję, dlatego mylenie ich może prowadzić do nieprawidłowych wniosków i potencjalnych zagrożeń w pracy z instalacjami elektrycznymi. Aby uniknąć tego typu pomyłek, zaleca się systematyczne zapoznawanie się z normami i dobrymi praktykami w zakresie projektowania oraz czytania schematów elektrycznych.

Pytanie 36

Schemat przedstawia układ podłączenia żarówki

Ilustracja do pytania
A. sodowej.
B. rtęciowej.
C. fluorescencyjnej.
D. łukowej.
No cóż, wybór lamp sodowych, łukowych albo rtęciowych nie był najlepszy. Te lampy działają na innych zasadach niż fluorescencyjne. Na przykład, lampy sodowe używają wyładowań w parze sodu i dają specyficzne żółte światło, co nie pasuje do schematu. Lampy łukowe, które często spotykasz na ulicy, działają na ciągłym wyładowaniu w gazie, więc mają zupełnie inny układ. A lampy rtęciowe, mimo że też wykorzystują wyładowania, mają różne części, jak dławiki, które nie występują w lampach fluorescencyjnych. Moim zdaniem, błędy w myśleniu mogą wynikać z mylenia różnych typów lamp i ich zasad działania. Zrozumienie tych różnic jest ważne, bo złe podłączenie może prowadzić do problemów. Dobrze jest też pamiętać, że są normy IEC, które mówią o odpowiednich technologiach do różnych źródeł światła.

Pytanie 37

W jakiej jednostce miary określa się moment obrotowy, który należy zastosować przy dokręcaniu śrub w urządzeniach elektrycznych?

A. Pa
B. kg
C. Nˑm
D. kgˑm2
Moment siły, znany również jako moment obrotowy, jest miarą siły, która powoduje obrót ciała wokół osi. Jednostką momentu siły w międzynarodowym układzie jednostek SI jest niutonometr (N·m). W kontekście dokręcania zacisków śrubowych aparatów elektrycznych, używanie odpowiedniego momentu siły jest kluczowe, aby zapewnić prawidłowe i bezpieczne połączenie elektryczne. Zbyt mały moment może prowadzić do luzów, co z kolei może skutkować przerwaniem kontaktu elektrycznego, a zbyt duży moment może spowodować uszkodzenie śrub lub elementów, które są łączone. W praktyce, producenci sprzętu często podają zalecany moment dokręcania w instrukcjach obsługi, co może być wzorem do naśladowania w codziennym użytkowaniu. Stosowanie momentu siły w N·m jest również zgodne z normami branżowymi, co podkreśla jego znaczenie w zapewnieniu bezpieczeństwa i niezawodności w instalacjach elektrycznych.

Pytanie 38

Których aparatów montowanych na szynie TH 35 dotyczą przedstawione w tabeli parametry techniczne?

Parametry techniczne
Prąd znamionowy
In w A
Szerokość
w modułach
o wymiarach
17,5 mm
Charakterystyka
61B
101B
161B
201B
251B
321B
401B
501B
631B
A. Styczników.
B. Transformatorów.
C. Wyłączników różnicowoprądowych.
D. Wyłączników nadprądowych.
Odpowiedzi o transformatorach i wyłącznikach różnicowoprądowych są nietrafione, bo to zupełnie inne urządzenia z innymi zastosowaniami. Transformatory zmieniają napięcie w obwodach elektrycznych, a nie są montowane na szynie TH 35, więc porównywanie ich do wyłączników nadprądowych nie ma sensu. Co do wyłączników różnicowoprądowych, to one też chronią, ale działają na innej zasadzie - wykrywają różnicę prądów między fazą a przewodem neutralnym, co jest kluczowe, żeby uniknąć porażenia prądem, jak coś się uszkodzi. W praktyce często mylimy różne typy urządzeń, co prowadzi do błędnych wniosków. A styczniki, które też były wspomniane, są do załączania i wyłączania obwodów, ale nie mają funkcji zabezpieczającej jak wyłączniki nadprądowe. Dobrze jest znać różnice między tymi urządzeniami i wiedzieć, kiedy ich używać, bo to ma spore znaczenie dla bezpieczeństwa i efektywności instalacji elektrycznych.

Pytanie 39

Trasując położenie osprzętu instalacji w pomieszczeniu mieszkalnym na podstawie schematu, którego fragment przedstawiono na rysunku, należy

Ilustracja do pytania
A. uwzględnić zalecenia inwestora dotyczące wysokości umieszczania wyłącznika i gniazd w pomieszczeniu.
B. gniazda umieszczać w odległości co najmniej 50 cm od krawędzi drzwi i okien.
C. wyłącznik i gniazda umieszczać na wysokości co najmniej 100 cm od podłoża.
D. gniazda umieszczać tylko w strefie przypodłogowej.
Wybór odpowiedzi uwzględniającej zalecenia inwestora dotyczące wysokości umieszczania wyłącznika i gniazd w pomieszczeniu jest prawidłowy, ponieważ zgodnie z polskimi normami oraz najlepszymi praktykami w branży elektrycznej, projektowanie instalacji elektrycznych powinno uwzględniać preferencje użytkowników. Wysokość montażu osprzętu może wpływać na komfort użytkowania, dlatego istotne jest, aby dostosować ją do indywidualnych potrzeb mieszkańców. Na przykład, w pomieszczeniach, gdzie osoby o różnym wzroście korzystają z gniazd czy wyłączników, ich optymalne umiejscowienie może znacznie poprawić funkcjonalność przestrzeni. Należy również pamiętać, że wszelkie zalecenia inwestora muszą być zgodne z przepisami bezpieczeństwa, co oznacza, że powinny one być weryfikowane pod kątem zgodności z normami np. PN-IEC 60364. Uwzględnienie takich wskazówek nie tylko poprawia ergonomię, ale także zwiększa bezpieczeństwo użytkowania instalacji elektrycznej.

Pytanie 40

Na podstawie przedstawionego schematu ideowego instalacji oświetlenia klatki schodowej sterowanej za pomocą przekaźnika bistabilnego określ zakres oględzin instalacji.

Ilustracja do pytania
A. Naprawa łączników i mycie kloszy lamp.
B. Usunięcie uszkodzeń w instalacji przez osobę uprawnioną.
C. Wykonanie pomiarów rezystancji izolacji przewodów.
D. Sprawdzenie umocowania i stanu łączników oraz kloszy lamp.
Odpowiedź dotycząca sprawdzenia umocowania i stanu łączników oraz kloszy lamp jest poprawna, ponieważ oględziny instalacji oświetleniowej powinny koncentrować się na wizualnej i manualnej ocenie stanu elementów instalacji. Kluczowym aspektem tego procesu jest ocena bezpieczeństwa oraz funkcjonalności wszystkich komponentów systemu oświetleniowego. Sprawdzając umocowanie łączników, można zapobiec potencjalnym problemom, takim jak zwarcia czy uszkodzenia wywołane luźnymi połączeniami. Dobrą praktyką jest także ocena stanu kloszy lamp, ponieważ ich uszkodzenia mogą prowadzić do nieefektywnego rozpraszania światła lub nawet stwarzać zagrożenie pożarowe. Zasady przeprowadzania oględzin instalacji elektrycznych są określone w normach, takich jak PN-IEC 60364, które podkreślają znaczenie regularnych inspekcji w celu zapewnienia bezpieczeństwa użytkowników oraz długotrwałej funkcjonalności systemów oświetleniowych. Przykładem zastosowania tej wiedzy może być rutynowe sprawdzanie instalacji w obiektach użyteczności publicznej, gdzie bezpieczeństwo użytkowników jest priorytetem.