Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 17 grudnia 2025 21:25
  • Data zakończenia: 17 grudnia 2025 21:32

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Na rysunku przedstawiono sposób podłączenia miernika MZC-201 do pomiaru

Ilustracja do pytania
A. rezystancji izolacji.
B. rezystancji uziomu.
C. ciągłości połączeń ochronnych.
D. impedancji pętli zwarcia.
Zrozumienie różnych rodzajów pomiarów elektrycznych jest kluczowe dla prawidłowego funkcjonowania instalacji elektrycznych. Odpowiedzi dotyczące ciągłości połączeń ochronnych, rezystancji izolacji oraz impedancji pętli zwarcia są związane z innymi ważnymi aspektami, ale nie dotyczą pomiaru rezystancji uziomu w sposób przedstawiony na rysunku. Ciągłość połączeń ochronnych dotyczy sprawdzenia, czy wszystkie elementy systemu ochrony są właściwie połączone, co jest istotne dla skuteczności ochrony przed porażeniem prądem, ale nie oblicza bezpośrednio wartości rezystancji uziomu. Rezystancja izolacji odnosi się do zdolności materiałów izolacyjnych do minimalizowania niepożądanych prądów, co również nie jest przedmiotem tego pomiaru. Z kolei impedancja pętli zwarcia dotyczy analizy skuteczności zabezpieczeń przed zwarciami w instalacji, co jest zupełnie innym zagadnieniem. Typowe błędy myślowe, które prowadzą do takich nieprawidłowych wniosków, obejmują mylenie różnych rodzajów pomiarów oraz brak zrozumienia kontekstu zastosowania miernika MZC-201. Właściwe podejście do pomiaru rezystancji uziomu jest fundamentem dla zapewnienia bezpieczeństwa oraz zgodności z obowiązującymi normami i praktykami w branży elektrycznej.

Pytanie 2

Aby zmierzyć częstotliwość, należy użyć

A. watomierza
B. fazomierza
C. waromierza
D. częstościomierza
Częstościomierz jest urządzeniem służącym do pomiaru częstotliwości sygnałów elektrycznych, co czyni go najodpowiedniejszym narzędziem do tego celu. Jego działanie polega na zliczaniu liczby cykli sygnału w jednostce czasu, co pozwala na precyzyjne określenie częstotliwości, wyrażonej w hercach (Hz). Częstościomierze są powszechnie wykorzystywane w elektronice, telekomunikacji oraz w badaniach laboratoryjnych. Na przykład, przy pomiarze częstotliwości oscylatorów w układach radiowych, częstościomierz umożliwia dokładne dostrajanie urządzeń do pożądanej częstotliwości pracy. W kontekście standardów branżowych, częstościomierze powinny spełniać normy kalibracji, co zapewnia ich wiarygodność i dokładność w pomiarach. Warto również zauważyć, że nowoczesne częstościomierze oferują dodatkowe funkcje, takie jak analiza harmonik czy pomiar fazy, co zwiększa ich użyteczność w zaawansowanych aplikacjach.

Pytanie 3

Jakiego przyrządu należy użyć, aby zmierzyć moc bierną w obwodzie?

A. Woltomierza
B. Waromierza
C. Watomierza
D. Reflektometru
Waromierz to specjalistyczne urządzenie pomiarowe, które służy do pomiaru mocy biernej w układach elektrycznych. Moc bierna jest kluczowym pojęciem w systemach prądu przemiennego, szczególnie w kontekście obciążeń indukcyjnych i pojemnościowych. W odróżnieniu od mocy czynnej, która jest wykorzystywana do wykonania pracy, moc bierna nie przyczynia się do rzeczywistego zużycia energii, ale jest niezbędna do utrzymania pola elektromagnetycznego w takich urządzeniach jak silniki czy transformatory. Przykład zastosowania waromierza można znaleźć w analizie układów zasilania w przemyśle, gdzie istotne jest monitorowanie i optymalizacja zużycia energii. Użycie waromierza pozwala na dokładne określenie ilości mocy biernej w instalacji, co jest ważne dla poprawnej regulacji oraz zminimalizowania strat energetycznych, zgodnie z normami IEC 62053. Praktycznie, pomiary te są często wykorzystywane w celu obliczenia współczynnika mocy, który jest niezbędny dla oceny efektywności energetycznej układów elektrycznych.

Pytanie 4

Do czego służą przy montażu instalacji elektrycznej przedstawione na rysunku kleszcze?

Ilustracja do pytania
A. Formowania oczek na końcach żył.
B. Montażu zacisków zakleszczających.
C. Zaciskania końcówek tulejkowych na żyłach przewodu.
D. Zaprasowywania przewodów w połączeniach wsuwanych.
Kleszcze do formowania oczek, które przedstawiono na rysunku, są kluczowym narzędziem w instalacjach elektrycznych, ponieważ umożliwiają precyzyjne formowanie oczek na końcach żył przewodów. Oczka te są niezbędne do wykonania solidnych połączeń elektrycznych, które muszą być trwałe i odporne na luzy. Stosowanie kleszczy zapewnia, że oczka są odpowiednio uformowane, co wpływa na jakość połączenia oraz jego bezpieczeństwo. W praktyce, na przykład w przypadku montażu rozdzielnic elektrycznych, dobrze uformowane oczka pozwalają na łatwe i szybkie przyłączenie żył do zacisków, co przekłada się na efektywność pracy elektryka. Dodatkowo, korzystanie z odpowiednich narzędzi zgodnych z normami, takimi jak PN-EN 60947-1, daje pewność, że instalacja spełnia standardy bezpieczeństwa oraz jakości. Warto pamiętać, że użycie kleszczy do formowania oczek jest częścią dobrych praktyk branżowych, które sprzyjają uzyskaniu długotrwałych i pewnych połączeń.

Pytanie 5

Ogranicznik przepięć klasy D, który można zainstalować w systemie elektrycznym o maksymalnym napięciu 1000 V, instaluje się w

A. złączach oraz miejscach, gdzie instalacja wchodzi do budynku z systemem piorunochronnym, zasilanego z linii napowietrznej.
B. gniazdach elektrycznych, puszkach w instalacji oraz bezpośrednio w urządzeniach.
C. rozgałęzieniach systemu elektrycznego w budynku oraz w rozdzielnicach dla mieszkań.
D. niskonapięciowych liniach elektroenergetycznych.
Wybór montażu ogranicznika przepięć w rozgałęzieniach instalacji elektrycznej czy w rozdzielnicach nie jest optymalnym rozwiązaniem, gdyż te miejsca są zbyt daleko od rzeczywistych punktów użycia urządzeń, które wymagają ochrony. Oczywiście, ważne jest zabezpieczenie całej instalacji, ale ograniczniki powinny być stosowane tam, gdzie mogą efektywnie działać, czyli blisko urządzeń. Linia elektroenergetyczna niskiego napięcia to również niewłaściwe miejsce dla ograniczników klasy D, ponieważ ich zadaniem jest ochrona konkretnych urządzeń, a nie samej infrastruktury zasilającej. Wprowadzenie ich do gniazd wtyczkowych, puszek w instalacji czy urządzeń bezpośrednio zapewnia ochronę przed przepięciami w momencie ich wystąpienia, co jest kluczowe w kontekście współczesnych instalacji elektrycznych, które często zasilają wrażliwe na zakłócenia elektroniki. Instalowanie ograniczników w złączach i miejscach wprowadzenia instalacji do budynku, szczególnie w obiektach z instalacją piorunochronną, może nie zapewnić wystarczającej ochrony, gdyż wyładowania atmosferyczne mogą zjawiskowo obciążać instalację. Z tego względu przy planowaniu i wykonaniu instalacji elektrycznych kluczowe jest dobre rozumienie zasad działania ograniczników przepięć oraz ich prawidłowe umiejscowienie zgodnie z normami i zaleceniami branżowymi.

Pytanie 6

Która z podanych metod realizacji instalacji elektrycznych jest przeznaczona do użycia w lokalach mieszkalnych?

A. W kanałach podłogowych
B. W listwach przypodłogowych
C. Na drabinkach
D. Przewodami szynowymi
Wybór prowadzenia instalacji elektrycznych w listwach przypodłogowych jest zgodny z normami i praktykami stosowanymi w pomieszczeniach mieszkalnych. Listwy przypodłogowe nie tylko maskują przewody, ale również umożliwiają estetyczne i funkcjonalne prowadzenie instalacji. Wykorzystanie listw przypodłogowych pozwala na łatwy dostęp do przewodów w przypadku ich konserwacji lub ewentualnych napraw. Warto wspomnieć, że instalacje prowadzone w listwach przypodłogowych są często stosowane w przypadku modernizacji istniejących budynków, gdzie nie ma możliwości prowadzenia przewodów w sposób tradycyjny. Listwy te są dostępne w różnych kolorach i wzorach, co pozwala na ich bezproblemowe wkomponowanie w wystrój wnętrza. Dodatkowo, zastosowanie listw przypodłogowych zwiększa bezpieczeństwo, ponieważ przewody są osłonięte przed uszkodzeniami mechanicznymi oraz dostępem dzieci. W kontekście norm, prowadzenie instalacji w listwach przypodłogowych powinno być zrealizowane zgodnie z obowiązującymi przepisami, takimi jak PN-IEC 60364, które regulują kwestie związane z bezpieczeństwem instalacji elektrycznych.

Pytanie 7

Który z podanych materiałów najlepiej przewodzi strumień magnetyczny?

A. Miedź
B. Stal
C. Brąz
D. Aluminium
Stal jest najlepszym przewodnikiem strumienia magnetycznego spośród wymienionych materiałów, ponieważ ma znacznie wyższą permeabilność w porównaniu do innych wymienionych metali. Permeabilność odnosi się do zdolności materiału do przewodzenia pola magnetycznego, co czyni stal idealnym materiałem do zastosowań w elektrotechnice, takich jak rdzenie transformatorów czy elektromagnesy. W konstrukcjach takich jak silniki elektryczne czy generatory, stal jest powszechnie stosowana ze względu na swoją zdolność do zwiększania efektywności działania poprzez skoncentrowanie strumienia magnetycznego. W praktyce, użycie stali w takich aplikacjach pozwala na mniejsze straty energii oraz poprawia wydajność urządzeń. Warto również zaznaczyć, że stal można łatwo poddawać obróbce, co umożliwia produkcję różnych kształtów rdzeni, co jest istotne w projektowaniu urządzeń elektronicznych. Zgodność z normami, takimi jak IEC, w zakresie materiałów magnetycznych, podkreśla znaczenie stali w branży elektrotechnicznej, gdzie standardy jakości i wydajności są kluczowe.

Pytanie 8

W celu sprawdzenia poprawności działania wyłączników różnicowoprądowych zmierzono ich różnicowe prądy zadziałania i wyniki zamieszczono w przedstawionej tabeli. Który z wyłączników nie spełnia warunku prądu zadziałania IΔ = (0,5÷1,00) IΔN?

WyłącznikWynik pomiaru różnicowego prądu zadziałania IΔ
P302 25-10-AC8 mA
P202 25-30-AC12 mA
P304 40-30-AC25 mA
P304 40-100-AC70 mA
A. P202 25-30-AC
B. P304 40-100-AC
C. P302 25-10-AC
D. P304 40-30-AC
Wyłącznik P202 25-30-AC jest prawidłową odpowiedzią, ponieważ jego zmierzony prąd zadziałania wynosi 12 mA, co nie spełnia wymaganego zakresu prądu zadziałania IΔ = (0,5÷1,00) IΔN. Zgodnie z normami, wyłączniki różnicowoprądowe powinny mieć prąd zadziałania w granicach 15 mA do 30 mA dla wyłączników o prądzie znamionowym 30 mA. Oznacza to, że każdy wyłącznik, który nie osiąga minimalnej wartości 15 mA, nie jest w stanie skutecznie zabezpieczyć instalacji przed pożarem czy porażeniem prądem. Prawidłowe działanie wyłączników różnicowoprądowych jest kluczowe w zapewnieniu bezpieczeństwa elektrycznego, dlatego inżynierowie i technicy powinni regularnie testować i sprawdzać ich parametry, aby zapewnić odpowiednią ochronę. W praktyce, wyłączniki tego typu stosuje się w obiektach użyteczności publicznej, gdzie bezpieczeństwo użytkowników jest priorytetem, a ich efektywność jest ściśle monitorowana na podstawie norm PN-EN 61008 i PN-EN 62423.

Pytanie 9

Według którego schematu należy podłączyć miernik parametrów RCD w celu pomiaru prądu wyzwolenia i czasu zadziałania wyłącznika różnicowoprądowego?

Ilustracja do pytania
A. D.
B. A.
C. B.
D. C.
Podłączenie miernika parametrów RCD według innych schematów niż C może prowadzić do błędnych wyników pomiarów lub całkowitego braku zadziałania urządzenia. W przypadkach, gdy miernik nie jest prawidłowo podłączony do przewodów L, N oraz PE, nie jest w stanie zarejestrować wartości prądu upływu, co jest kluczowe dla oceny działania wyłącznika różnicowoprądowego. Na przykład, podłączenie miernika tylko do przewodu L lub N może spowodować, że pomiary będą niekompletne, a tym samym nieodpowiednie dla oceny bezpieczeństwa instalacji. Wiele osób błędnie zakłada, że wystarczy podłączyć miernik w sposób nieprzemyślany, co prowadzi do subiektywnej oceny jego możliwości. Jest to niezgodne z zasadami pomiarów elektrycznych i stanowi poważne naruszenie ogólnych zasad bezpieczeństwa. W praktyce, nieprawidłowe podłączenie może skutkować brakiem odpowiedzi RCD na prąd upływu, co jest bezpośrednim zagrożeniem dla użytkowników. Zrozumienie, jak poprawnie podłączyć miernik, jest kluczowe dla właściwej oceny oraz wyeliminowania potencjalnych zagrożeń związanych z użytkowaniem instalacji elektrycznych. Kluczowe jest również zapoznanie się z odpowiednimi normami oraz wytycznymi, które regulują procedury pomiarowe, aby uniknąć typowych błędów w analizach parametrów elektrycznych.

Pytanie 10

Jakie dane powinny być zawarte w protokole po przeprowadzeniu badań po modernizacji sieci?

A. Rodzaje mierników, nazwisko i uprawnienia osoby wykonującej prace.
B. Nazwisko zleceniodawcy, nazwisko wykonawcy, czas przeprowadzania pomiarów.
C. Nazwa przedsiębiorstwa energetycznego, do którego podłączono sieć, nazwisko zleceniodawcy.
D. Nazwa przedsiębiorstwa energetycznego, do którego podłączono sieć, nazwisko wykonawcy.
Wybór nieprawidłowej odpowiedzi często wynika z niepełnego zrozumienia wymagań dotyczących dokumentacji technicznej po wykonaniu modernizacji sieci. Kluczowym błędem jest pomijanie istotnych informacji, co może prowadzić do problemów w przyszłości, takich jak trudności w ustaleniu odpowiedzialności czy brak możliwości weryfikacji wyników badań. Na przykład, odpowiedzi sugerujące dodanie nazwy zakładu energetycznego zamiast nazwiska zleceniodawcy nie uwzględniają faktu, że to właśnie osoby fizyczne (zleceniodawcy i wykonawcy) są odpowiedzialne za realizację projektu oraz jakość wykonania pomiarów. Istotne jest, aby protokół odnosił się do konkretnych osób, co ma kluczowe znaczenie w kontekście odpowiedzialności prawnej. W przypadku, gdyby wystąpiły jakiekolwiek nieprawidłowości w funkcjonowaniu sieci, łatwiejsze będzie ustalenie, kto był odpowiedzialny za konkretne etapy pracy. Ważne jest także, aby czas wykonywania pomiarów został udokumentowany, ponieważ pozwala to na analizę ewentualnych opóźnień i ich wpływu na projekt. Prawidłowo sporządzony protokół powinien być zgodny z obowiązującymi normami branżowymi, co pozwala na zachowanie wysokich standardów jakości. Dlatego pominięcie jakiejkolwiek z tych informacji prowadzi do niekompletności dokumentacji, a tym samym do potencjalnych problemów w przyszłości.

Pytanie 11

Na którym rysunku przedstawiono źródło światła z trzonkiem typu B?

Ilustracja do pytania
A. A.
B. C.
C. B.
D. D.
Wybór odpowiedzi, która nie wskazuje na źródło światła z trzonkiem typu B, może wynikać z nieznajomości podstawowych różnic między różnymi typami trzonków. Trzonek igiełkowy, jak w przypadku odpowiedzi B, ma zupełnie inny mechanizm mocowania, który polega na osadzeniu żarówki w oprawie poprzez włożenie jej w odpowiednie gniazdo, a nie na blokowaniu poprzez wystające elementy. Tego typu trzonki są popularne w halogenach, które charakteryzują się większą efektywnością energetyczną, ale nie są kompatybilne z oprawami zaprojektowanymi dla trzonków baionetowych. Świetlówki, przedstawione w odpowiedzi C, wykorzystują całkowicie odmienną technologię, opartą na zasadzie wyładowania elektrycznego, co czyni je nieodpowiednimi dla zastosowań wymagających trzonka typu B. Na zakończenie, trzonek gwintowy, jak w przypadku odpowiedzi D, jest powszechnie używany w tradycyjnych żarówkach i różni się konstrukcyjnie oraz funkcjonalnie od trzonka baionetowego, co może prowadzić do błędnych założeń o kompatybilności. Kluczowym błędem w ocenie tej kwestii jest nieprawidłowe rozumienie różnorodności typów trzonków w kontekście ich zastosowań, co może prowadzić do niewłaściwych wyborów przy zakupie źródeł światła.

Pytanie 12

Strzałka na rysunku wskazuje

Ilustracja do pytania
A. styk pomocniczy zwiemy.
B. przycisk rozwierny.
C. przycisk zwiemy.
D. styk pomocniczy rozwierny.
To, co widzisz na rysunku, to przycisk zwiemy, co można zresztą sprawdzić w oznaczeniu S1 na schematach. Przyciski zwiemy to takie elementy, które zamykają obwód, kiedy je naciśniesz. W praktyce są one używane w różnych systemach automatyki i sterowania, dzięki czemu można włączać lub wyłączać urządzenia, kiedy tego potrzebujemy. Zgodnie z normami IEC 60947-5-1, przyciski zwiemy to urządzenia normalnie otwarte (NO), co znaczy, że w spoczynku obwód pozostaje otwarty, a dopiero po naciśnięciu przycisku się zamyka. To oznaczenie NO jest ważne przy projektowaniu obwodów, bo pozwala przewidzieć, jak różne urządzenia będą działać w różnych sytuacjach. Na przykład, przyciski zwiemy często znajdziesz w systemach alarmowych, gdzie naciśnięcie przycisku uruchamia alarm, co jest kluczowe dla naszej ochrony. Dzięki zrozumieniu, jak działają przyciski zwiemy, inżynierowie mogą lepiej projektować systemy automatyzacji, które są zarazem efektywne i bezpieczne.

Pytanie 13

Określ sposób podłączenia łącznika przedstawionego na fotografii, aby w układzie, którego schemat przedstawiono na rysunku, zapewnione było sterowanie oświetleniem z trzech niezależnych miejsc.

Ilustracja do pytania
A. I-1, II-4, III-2, IV-3
B. I-1, II-2, III-3, IV-4
C. I-4, II-3, III-2, IV-1
D. I-2, II-4, III-1, IV-3
Poprawne podłączenie łącznika krzyżowego oznaczone jako I-1, II-4, III-2, IV-3 wynika z analizy schematu elektrycznego oraz właściwego oznaczenia wejść i wyjść łącznika. Wejścia 1 i 4 są odpowiedzialne za przyjmowanie sygnałów z dwóch niezależnych punktów sterujących, co pozwala na ich połączenie w systemie wielopunktowego sterowania oświetleniem. Dobrze skonstruowany układ umożliwia użytkownikowi włączanie i wyłączanie źródła światła z trzech różnych punktów, co jest szczególnie przydatne w dużych pomieszczeniach lub korytarzach. Tego typu rozwiązanie jest zgodne z normami instalacji elektrycznych oraz zaleceniami dotyczącymi ergonomii w projektowaniu przestrzeni. Ponadto, zastosowanie łącznika krzyżowego zwiększa elastyczność w zakresie zarządzania oświetleniem, co przyczynia się do oszczędności energii i poprawy komfortu użytkowania, spełniając standardy zrównoważonego rozwoju.

Pytanie 14

W dokumentacji dotyczącej instalacji elektrycznej w wielopiętrowym budynku mieszkalnym wskazano, że konieczne jest użycie ochronników przeciwprzepięciowych klasy C. Gdzie powinny one zostać zamontowane?

A. w złączu budynku
B. w rozdzielnicach mieszkaniowych
C. na linii zasilającej budynek
D. w puszkach instalacyjnych gniazd odbiorczych
Wybór innych lokalizacji dla instalacji ochronników przeciwprzepięciowych klasy C, takich jak linie zasilające budynek, puszki instalacyjne gniazd odbiorczych czy złącza budynku, nie jest odpowiedni z kilku powodów. Linie zasilające są głównie odpowiedzialne za przesył energii, ale nie stanowią one miejsca, gdzie można efektywnie zainstalować ochronniki, które powinny być zlokalizowane tam, gdzie dochodzi do centralnej dystrybucji zasilania. Instalacja ochronników w puszkach instalacyjnych gniazd odbiorczych również nie przynosi oczekiwanych korzyści, ponieważ w przypadku wystąpienia przepięcia, ochrona jest niekompletna i może nie objąć urządzeń podłączonych do innych obwodów. Złącze budynku, mimo że jest istotnym punktem przyłączeniowym, nie zapewnia pełnej ochrony dla wszystkich obwodów zasilających w budynku. Takie podejście prowadzi do fragmentarycznej ochrony, co może skutkować poważnymi uszkodzeniami sprzętu elektronicznego i instalacji elektrycznej. Kluczowym błędem myślowym jest przekonanie, że ochrona może być stosowana w dowolnym miejscu bez uwzględnienia kontekstu, w jakim działają ochronniki przeciwprzepięciowe. Według norm i najlepszych praktyk, ochrona przed przepięciami powinna być centralizowana w odpowiednich punktach, takich jak rozdzielnice, w celu zapewnienia pełnej ochrony całej instalacji elektrycznej.

Pytanie 15

Jaką najwyższą wartość powinien mieć wyłącznik silnikowy, chroniący trójfazowy silnik indukcyjny klatkowy o prądzie znamionowym równym 11,1 A, aby zabezpieczyć go przed przeciążeniem przy jednoczesnym zachowaniu możliwości znamionowego obciążenia momentem hamującym?

A. 12,2 A
B. 11,7 A
C. 11,1 A
D. 10,5 A
Wyłącznik silnikowy powinien być ustawiony na wartość, która umożliwi ochronę silnika przed przeciążeniem, ale równocześnie pozwoli na jego pełne wykorzystanie w warunkach znamionowych. Dla silnika indukcyjnego klatkowego o prądzie znamionowym 11,1 A, maksymalna wartość, na którą należy nastawić wyłącznik, wynosi 12,2 A. To podejście jest zgodne z dobrą praktyką stosowania wyłączników silnikowych, gdzie zaleca się ustawienie ich na wartości o 10% wyższej od prądu znamionowego. Taka regulacja zapewnia, że w normalnych warunkach pracy silnik nie będzie się wyłączał, a jednocześnie w sytuacjach przeciążeniowych zostanie skutecznie zabezpieczony. W praktyce oznacza to, że przy pełnym obciążeniu, które może wystąpić w momencie rozruchu lub przy chwilowych wzrostach obciążenia, wyłącznik nie zareaguje, a silnik będzie mógł pracować bez zakłóceń. Ustawienie wyłącznika na 12,2 A jest również zgodne z normami IEC oraz lokalnymi przepisami dotyczącymi instalacji elektrycznych, które podkreślają znaczenie zabezpieczeń przed przeciążeniem.

Pytanie 16

Który sposób podłączenia instalacji oświetleniowej jest poprawny?

Ilustracja do pytania
A. B.
B. D.
C. C.
D. A.
Odpowiedź C jest poprawna, ponieważ przedstawia prawidłowy sposób podłączenia instalacji oświetleniowej, który jest zgodny z obowiązującymi normami bezpieczeństwa. W tym schemacie przewód fazowy L1 jest podłączony do włącznika, co umożliwia kontrolowanie zasilania żarówki. Gdy włącznik jest w pozycji wyłączonej, żarówka nie otrzymuje zasilania, co minimalizuje ryzyko porażenia prądem. Z kolei przewód neutralny N jest podłączony bezpośrednio do żarówki, co jest standardową praktyką w instalacjach elektrycznych. Ważnym elementem jest również podłączenie przewodu ochronnego PE do odpowiedniego punktu w oprawie oświetleniowej. Przewód ten ma kluczowe znaczenie dla zapewnienia bezpieczeństwa użytkowników, ponieważ w przypadku uszkodzenia izolacji, prąd popłynie do ziemi, minimalizując ryzyko porażenia. Taki sposób podłączenia gwarantuje, że w momencie, gdy włącznik jest wyłączony, nie ma napięcia na żarówce, co jest fundamentalną zasadą bezpieczeństwa w elektrotechnice.

Pytanie 17

Jaka powinna być minimalna liczba przewodów w miejscach X oraz Y na schemacie instalacji, aby po jej wykonaniu możliwe było załączanie oświetlenia ze wszystkich łączników?

Ilustracja do pytania
A. X - 4 szt., Y - 4 szt.
B. X - 4 szt., Y - 5 szt.
C. X - 5 szt., Y - 4 szt.
D. X - 5 szt., Y - 5 szt.
Błędne odpowiedzi opierają się na nieprawidłowym zrozumieniu struktury połączeń w instalacjach oświetleniowych. Odpowiedzi, które proponują mniejszą liczbę przewodów, nie uwzględniają podstawowych zasad działania łączników schodowych i krzyżowych, co prowadzi do niewłaściwej koncepcji ich funkcji. W przypadku łączników schodowych, aby zapewnić prawidłowe działanie, zawsze należy zastosować odpowiednią ilość przewodów. W miejscu X, zbyt mała liczba przewodów, jak np. 3, znacznie ograniczyłaby możliwości sterowania oświetleniem, co jest kluczowe w instalacjach, gdzie oświetlenie jest zdalnie kontrolowane z różnych punktów. W miejscu Y, błędna liczba przewodów także zakłada, że można ograniczyć połączenia, co prowadzi do ryzyka awarii systemu lub jego całkowitego braku funkcjonalności. Wiele osób myli pojęcie liczby przewodów potrzebnych do połączeń z ilością łączników, co jest typowym błędem myślowym. Aby poprawnie zrozumieć, ile przewodów jest potrzebnych w danym układzie, należy uwzględnić nie tylko samą liczbę łączników, ale także rodzaj połączeń oraz ich role w instalacji. Zastosowanie nieodpowiedniej liczby przewodów może prowadzić do poważnych problemów, takich jak niemożność włączania lub wyłączania oświetlenia z różnych punktów, co jest sprzeczne z oczekiwaniami użytkowników oraz normami branżowymi, które nakładają obowiązki na projektantów instalacji elektrycznych.

Pytanie 18

Jaką rolę odgrywa uzwojenie biegunów komutacyjnych w urządzeniach prądu stałego?

A. Generuje moment magnetyczny o stałym kierunku
B. Redukuje hałas podczas eksploatacji
C. Kompensuje SEM samoindukcji, co eliminuje iskrzenie na szczotkach
D. Tworzy nieruchome, stałe pole magnetyczne
Uzwojenie biegunów komutacyjnych w maszynach prądu stałego pełni kluczową rolę w kompensacji siły elektromotorycznej (SEM) samoindukcji, co jest istotne dla prawidłowego funkcjonowania silników. W trakcie pracy silnika, gdy zmienia się kierunek prądu, powstaje SEM samoindukcji, która może prowadzić do iskrzenia na szczotkach. Uzwojenie biegunów komutacyjnych, poprzez odpowiednie wytwarzanie pola magnetycznego, pomaga zminimalizować to zjawisko, co przekłada się na dłuższą żywotność szczotek oraz zmniejszenie strat energetycznych. Przykładem zastosowania tej zasady jest wykorzystanie silników prądu stałego w aplikacjach, gdzie wymagana jest duża niezawodność, jak w napędach elektrycznych tramwajów czy w robotyce. Dobre praktyki w projektowaniu maszyn prądu stałego uwzględniają parametry uzwojenia komutacyjnego, co umożliwia uzyskanie optymalnej charakterystyki pracy silnika oraz minimalizację zakłóceń.

Pytanie 19

Który element regulacyjny występuje w układzie przedstawionym na schemacie?

Ilustracja do pytania
A. Autotransformator.
B. Regulator indukcyjny.
C. Dławik.
D. Przesuwnik fazowy.
Autotransformator to specjalny typ transformatora, który charakteryzuje się posiadaniem jednego wspólnego uzwojenia dla obwodów pierwotnego i wtórnego. Dzięki temu, autotransformatory są w stanie zmieniać napięcie z zachowaniem mniejszych strat mocy, co czyni je bardziej efektywnymi w zastosowaniach, gdzie wymagane są niewielkie zmiany napięcia. Przykłady zastosowania autotransformatorów obejmują regulację napięcia w zasilaczach oraz w systemach zasilania silników elektrycznych. W praktyce, autotransformatory są szeroko stosowane w energetyce do podnoszenia lub obniżania napięcia w liniach przesyłowych, co jest zgodne z dobrymi praktykami branżowymi, zwłaszcza w kontekście efektywności energetycznej. Używanie autotransformatorów zamiast tradycyjnych transformatorów separacyjnych pozwala na zmniejszenie rozmiaru urządzenia oraz jego kosztów, co jest istotnym czynnikiem w projektowaniu systemów elektrycznych. Zrozumienie działania autotransformatora jest kluczowe dla inżynierów zajmujących się projektowaniem i wdrażaniem systemów zasilania.

Pytanie 20

Podłączenie gniazda wtykowego pozbawionego styku ochronnego do urządzenia elektrycznego klasy I ochronności spowoduje

A. zagrożenie porażeniem prądem elektrycznym
B. uszkodzenie urządzenia elektrycznego
C. przeciążenie systemu elektrycznego
D. zwarcie w systemie elektrycznym
Zgłoszona odpowiedź, dotycząca zagrożenia porażeniem prądem elektrycznym, jest absolutnie trafna. Gniazdo wtyczkowe bez styku ochronnego nie zapewnia odpowiedniego zabezpieczenia dla urządzeń elektrycznych, szczególnie tych klasy I, które wymagają ochrony przeciwporażeniowej poprzez uziemienie. Urządzenia klasy I korzystają z obudowy przewodzącej, która powinna być podłączona do uziemienia, aby w przypadku uszkodzenia izolacji prąd mógł być odprowadzony do ziemi, a nie przez użytkownika. W sytuacji, gdy takie urządzenie zostanie podłączone do gniazda bez styku ochronnego, istnieje wysokie ryzyko, że w przypadku awarii, prąd będzie mógł przepływać przez obudowę, co może prowadzić do porażenia prądem. Dlatego kluczowe jest przestrzeganie norm, takich jak PN-IEC 60364, które regulują zasady instalacji elektrycznych i określają, że gniazda powinny być projektowane z myślą o bezpieczeństwie użytkowników. W codziennym użytkowaniu, zapewnienie odpowiednich gniazd z uziemieniem jest podstawą bezpieczeństwa w każdym obiekcie.

Pytanie 21

Jakie rodzaje żył znajdują się w kablu oznaczonym symbolem SMYp?

A. Wielodrutowe
B. Sektorowe
C. Płaskie
D. Jednodrutowe
Odpowiedzi "Płaskie", "Sektorowe" i "Jednodrutowe" są nieco mylące. Przewody płaskie, chociaż mogą mieć swoje miejsce, to zazwyczaj są używane w sytuacjach, gdzie przestrzeń jest ograniczona, ale nie mają tej elastyczności co wielodrutowe. Przewody sektorowe są bardziej chyba do specyficznych zastosowań, ale nie mogą znieść dużych zgięć. No a te jednodrutowe... no cóż, mają ten problem, że są mniej elastyczne, przez co łatwiej je uszkodzić. Gdy chodzi o miejsce, gdzie trzeba coś często przenosić, to te jednodrutowe nie będą najlepsze, bo szybko się zużywają. Często w takich przypadkach nie myśli się o elastyczności i o tym, jak przewody będą pracować w ruchu. Dobór właściwych przewodów jest kluczowy, bo to wpływa na trwałość i niezawodność całej instalacji. Warto znać te normy i standardy w elektryce.

Pytanie 22

Jaką rolę odgrywa wyzwalacz elektromagnetyczny w wyłączniku nadprądowym?

A. Napina sprężynę napędu
B. Zatrzymuje łuk elektryczny
C. Rozpoznaje przeciążenia
D. Rozpoznaje zwarcia
Wyzwalacz elektromagnetyczny w wyłączniku nadprądowym odgrywa kluczową rolę w systemach zabezpieczeń elektrycznych, szczególnie w detekcji zwarć. Działa na zasadzie natychmiastowego reagowania na nagły wzrost prądu, co jest charakterystyczne dla sytuacji zwarciowych. Gdy prąd przekracza ustaloną wartość progową, wyzwalacz elektromagnetyczny generuje siłę, która otwiera obwód, przerywając tym samym przepływ prądu. To działanie jest niezwykle istotne, ponieważ pozwala na szybkie odcięcie zasilania, co chroni urządzenia i instalacje przed uszkodzeniami spowodowanymi nadmiernym prądem. W praktyce, wyzwalacze elektromagnetyczne są szeroko stosowane w obiektach przemysłowych, budynkach mieszkalnych oraz w instalacjach komercyjnych do zapewnienia bezpieczeństwa. Zgodnie z normami IEC 60947-2, które regulują wyłączniki niskonapięciowe, właściwe działanie wyzwalacza elektromagnetycznego jest kluczowe dla zapewnienia skutecznej ochrony. Warto zauważyć, że stosowanie wyłączników z odpowiednio dobranymi wyzwalaczami, uwzględniając charakterystykę obciążenia, jest najlepszą praktyką w branży elektrycznej.

Pytanie 23

Do ochrony obwodu przed przeciążeniem oraz zwarciem wykorzystuje się wyłącznik

A. współpracujący z przekaźnikiem czasowym
B. współpracujący z przekaźnikiem sygnalizacyjnym
C. wyposażony w aparat różnicowoprądowy
D. współpracujący z bezpiecznikiem topikowym
No więc, poprawna odpowiedź to wyłącznik, który działa razem z bezpiecznikiem topikowym. Jego głównym zadaniem jest ochrona obwodu przed przeciążeniem i zwarciem. Bezpieczniki topikowe to dość popularny element w instalacjach elektrycznych, bo automatycznie przerywają obwód, gdy prąd jest za duży. Jak prąd przekroczy ustaloną wartość, to topik się przepala i obwód się przerywa. To wszystko jest zgodne z normami bezpieczeństwa, np. PN-IEC 60898, które mówią, jak powinny działać zabezpieczenia elektryczne. Używanie takiego wyłącznika w połączeniu z bezpiecznikami topikowymi naprawdę zwiększa bezpieczeństwo i chroni różne urządzenia przed uszkodzeniem. W domach często można je spotkać w skrzynkach rozdzielczych, co daje dobrą ochronę przed możliwymi awariami. Pamiętaj też, że warto regularnie sprawdzać i wymieniać bezpieczniki, żeby cały system działał jak należy.

Pytanie 24

Wskaż symbol graficzny monostabilnego łącznika przyciskowego z zestykiem NO.

Ilustracja do pytania
A. Symbol 4.
B. Symbol 3.
C. Symbol 2.
D. Symbol 1.
Monostabilny łącznik przyciskowy z zestykiem NO (normalnie otwartym) jest kluczowym elementem w wielu systemach elektrycznych i automatyce. Symbol 1 przedstawia ten łącznik, ilustrując otwarty styk, który zamyka się po naciśnięciu przycisku, co jest zgodne z zasadami oznaczania w normach IEC 60617. W praktyce, tego rodzaju łączniki są powszechnie używane w urządzeniach, które wymagają chwilowego włączenia obwodu, jak na przykład w urządzeniach sterujących, alarmach czy systemach oświetleniowych. Dzięki swojej konstrukcji, monostabilne przyciski są bardziej energooszczędne, ponieważ nie wymagają stałego zasilania do utrzymania stanu włączenia. Zrozumienie tego symbolu i funkcji jest kluczowe dla właściwego projektowania i implementacji systemów elektrycznych. Używanie poprawnych symboli graficznych w dokumentacji technicznej jest istotne dla komunikacji między inżynierami i technikami, co wpływa na jakość i bezpieczeństwo instalacji elektrycznych.

Pytanie 25

Jakie kroki oraz w jakiej kolejności należy wykonać przy wymianie uszkodzonego łącznika?

A. Wymontować uszkodzony łącznik, odłączyć zasilanie, sprawdzić ciągłość połączeń
B. Odłączyć zasilanie, wymontować uszkodzony łącznik, sprawdzić ciągłość połączeń
C. Odłączyć zasilanie, sprawdzić brak zasilania, wymontować uszkodzony łącznik
D. Załączyć zasilanie, sprawdzić ciągłość połączeń, wymontować uszkodzony łącznik
Wybór odpowiedzi "Odłączyć napięcie, sprawdzić brak napięcia, wymontować uszkodzony łącznik" jest poprawny, ponieważ stanowi zgodne z najlepszymi praktykami podejście do wymiany uszkodzonego łącznika. Zawsze należy najpierw odłączyć zasilanie elektryczne, co minimalizuje ryzyko porażenia prądem oraz zapobiega dalszym uszkodzeniom instalacji. Po odłączeniu zasilania powinno się użyć odpowiednich narzędzi, takich jak miernik napięcia, aby upewnić się, że w obwodzie nie ma napięcia. To jest kluczowy krok, który zapewnia bezpieczeństwo technika. Dopiero po potwierdzeniu braku napięcia można przystąpić do wymontowania uszkodzonego łącznika. W praktyce, te czynności mogą być stosowane w różnorodnych warunkach, od domowych instalacji elektrycznych po złożone systemy przemysłowe. Przestrzeganie tych zasad jest zgodne z normami bezpieczeństwa, takimi jak PN-EN 50110-1, które podkreślają znaczenie zapewnienia bezpieczeństwa podczas prac elektrycznych.

Pytanie 26

Która z poniższych zasad nie jest zawsze obligatoryjna w trakcie serwisowania i konserwacji instalacji elektrycznych o napięciu do 1 kV?

A. Wszelkie prace można wykonywać jedynie w obecności osoby asekurującej
B. Każde prace remontowe powinny być prowadzone po odłączeniu napięcia
C. Pomiary i próby można realizować bez wyłączania napięcia, o ile zastosuje się odpowiednie środki ochrony
D. Pod napięciem wolno wymieniać tylko bezpieczniki lub żarówki (świetlówki) w nienaruszonej oprawie
Odpowiedź wskazująca, że wszelkie prace można wykonywać tylko w obecności osoby asekurującej, jest poprawna, ponieważ nie jest to zasada bezwzględnie obowiązująca w przypadku instalacji elektrycznych o napięciu znamionowym do 1 kV. Prace konserwacyjne i naprawcze mogą być wykonywane samodzielnie, pod warunkiem, że zastosowane zostaną odpowiednie środki zabezpieczające, takie jak stosowanie narzędzi izolowanych, odzieży ochronnej i przestrzeganie procedur bezpieczeństwa. Rola osoby asekurującej staje się kluczowa w bardziej niebezpiecznych warunkach, na przykład podczas pracy na wysokości, ale dla prostych prac w obrębie instalacji, nie jest to wymóg. W praktyce, przy zachowaniu ostrożności i zastosowaniu właściwych środków, technicy mogą wykonywać podstawowe naprawy, takie jak wymiana bezpieczników czy żarówek, bez nadzoru innej osoby, co przyspiesza procesy naprawcze i zwiększa efektywność pracy. Ważne jest, aby przed przystąpieniem do jakichkolwiek prac upewnić się, że zna się zasady BHP oraz normy PN-IEC 60364 dotyczące instalacji elektrycznych. Właściwe podejście do bezpieczeństwa i eksploatacji instalacji elektrycznych ma kluczowe znaczenie dla minimalizacji ryzyka wypadków.

Pytanie 27

Jakie urządzenia elektryczne są częścią instalacji przyłączeniowej obiektu budowlanego?

A. Zabezpieczenia przedlicznikowe oraz licznik energii elektrycznej
B. Zabezpieczenia nadprądowe poszczególnych obwodów
C. Transformator słupowy z rozłącznikiem
D. Wyłącznik różnicowoprądowy oraz ograniczniki przepięć
Zabezpieczenia przedlicznikowe i licznik energii to naprawdę ważne elementy, które wchodzą w skład przyłącza budynku. Te zabezpieczenia, jak wyłączniki nadprądowe i różnicowoprądowe, mają za zadanie chronić zarówno instalację, jak i nas samych przed przeciążeniem czy porażeniem prądem. Licznik energii z kolei pozwala nam śledzić, ile energii zużywamy, co jest potrzebne przy rozliczeniach z dostawcą prądu. Jeśli dobrze dobierzemy te zabezpieczenia, to zgodnie z normami PN-IEC 60364, będziemy w lepszej sytuacji. W razie awarii, zabezpieczenia powinny odciąć zasilanie, co chroni sprzęt i nas, ludzi, w budynku. Wszystko sprowadza się do tego, żeby dobrze zamontować i dobrać te elementy, bo to klucz do bezpieczeństwa i sprawności energetycznej budynku. Dlatego ważne, żeby wartości prądowe były dopasowane tak, by instalacja działała optymalnie i uniknęła nagłych przerw w dostawie energii.

Pytanie 28

Jakie czynności nie są częścią przeglądów instalacji elektrycznej?

A. oględzin
B. przeprowadzania konserwacji i napraw
C. przyjęcia do eksploatacji
D. pomiarów napięcia oraz rezystancji izolacji
Odpowiedzi dotyczące pomiarów napięć i rezystancji izolacji, konserwacji i napraw oraz oględzin wskazują na istotne aspekty przeglądów instalacji elektrycznej. Przeglądy te mają na celu ocenę stanu technicznego instalacji oraz wykrywanie potencjalnych problemów, które mogą zagrażać bezpieczeństwu użytkowania. Pomiar napięć jest kluczowy, ponieważ pozwala na ocenę poprawności działania instalacji oraz identyfikację ewentualnych spadków napięcia, które mogą wpływać na efektywność działania urządzeń elektrycznych. Rezystancja izolacji jest równie ważna, gdyż niska wartość tego parametru może wskazywać na uszkodzenia izolacji, co z kolei zwiększa ryzyko porażenia prądem elektrycznym. Konserwacja i naprawa instalacji to działania, które są integralną częścią jej eksploatacji, zapewniającą długoterminowe działanie oraz bezpieczeństwo. Oględziny wizualne pozwalają na szybką identyfikację uszkodzeń, co jest kluczowe dla zapobiegania poważniejszym awariom. Często pojawia się mylne przekonanie, że przyjęcie do eksploatacji jest częścią rutynowych przeglądów, podczas gdy w rzeczywistości jest to oddzielny proces związany z zakończeniem budowy i uruchomieniem nowej instalacji. Różnice te są kluczowe dla zrozumienia cyklu życia instalacji elektrycznej oraz dla zapewnienia, że wszystkie działania są wykonywane zgodnie z obowiązującymi normami i standardami branżowymi.

Pytanie 29

Rysunek przedstawia pętlę zwarciową w układzie

Ilustracja do pytania
A. TN-S
B. TN-C
C. TT
D. IT
Odpowiedź TT jest poprawna, ponieważ układ TT charakteryzuje się bezpośrednim uziemieniem punktu neutralnego źródła zasilania, co jest kluczowe w kontekście ochrony przeciwporażeniowej. W tym systemie, przewód neutralny (N) oraz przewody fazowe (L1, L2, L3) są oddzielnie prowadzone, co pozwala na niezależne uziemienie ochronne (RA) od uziemienia roboczego źródła (RB). Taka konstrukcja minimalizuje ryzyko prądów upływowych i zwiększa bezpieczeństwo użytkowników, szczególnie w instalacjach o dużym narażeniu na wilgoć. W przypadku zwarcia, pętla zwarciowa, która obejmuje przewód fazowy, odbiornik, uziemienie ochronne oraz uziemienie źródła, działa szybko, wyłączając zasilanie, co jest zgodne z wymaganiami normy PN-IEC 60364, która podkreśla potrzebę stosowania skutecznych środków ochrony. Przykładowo, w budynkach użyteczności publicznej, zastosowanie układu TT jest zalecane w strefach zwiększonego ryzyka, co zwiększa komfort i bezpieczeństwo użytkowników.

Pytanie 30

Całkowitą moc odbiornika trójfazowego mierzoną w układzie pomiarowym pokazanym na rysunku oblicza się ze wzoru

Ilustracja do pytania
A. C.
B. B.
C. D.
D. A.
Wybór niepoprawnej odpowiedzi może wynikać z kilku powszechnych nieporozumień dotyczących pomiarów mocy w układach trójfazowych. Na przykład, niektórzy mogą sądzić, że wystarczy zmierzyć moc jedynie jednego watomierza, co prowadzi do niedoszacowania rzeczywistej mocy całkowitej odbiornika. Takie podejście jest błędne, ponieważ nie uwzględnia różnic w prądach i napięciach w poszczególnych fazach, co jest kluczowe w przypadku układów niesymetrycznych. Inna często spotykana pomyłka to zakładanie, że moc w każdym z trzech faz jest identyczna, co jest prawdziwe tylko w idealnych warunkach symetrycznych. W rzeczywistości, w układach, gdzie występują różnice, całkowita moc musi być obliczana jako suma mocy z dwóch watomierzy, co jest praktycznym zastosowaniem zasady superpozycji. Ignorowanie tego faktu może prowadzić do błędnych wniosków na temat wydajności systemu energetycznego. Dodatkowo, wiele osób ma trudności z interpretacją wyników pomiarów, co może być spowodowane brakiem wiedzy na temat zasad działania watomierzy i ich zastosowania w różnych konfiguracjach. Kluczowe jest zrozumienie, że pomiar energii elektrycznej w systemach trójfazowych wymaga starannego podejścia i znajomości metodologii, aby unikać potencjalnych błędów i zapewnić dokładność analizy energetycznej.

Pytanie 31

Jakie środki ochrony przed porażeniem zastosowano w systemie, gdzie zasilanie urządzeń pochodzi z transformatora bezpieczeństwa?

A. Izolację miejsca pracy
B. Ochronne obniżenie napięcia
C. Podwójną lub wzmocnioną izolację
D. Separację urządzeń
Ochronne obniżenie napięcia to metoda ochrony przeciwporażeniowej, która polega na zasilaniu odbiorników z transformatora bezpieczeństwa, który ma niskie napięcie wyjściowe, najczęściej 50V AC lub 120V DC. Tego typu zasilanie jest stosowane w miejscach, gdzie istnieje ryzyko porażenia prądem, szczególnie w warunkach wilgotnych lub w obecności wody. Przykładem zastosowania może być oświetlenie w ogrodzie lub w basenach, gdzie transformator bezpieczeństwa zapewnia niskie napięcie, czyniąc system bezpieczniejszym dla użytkowników. W standardach takich jak IEC 61140 dotyczących ochrony przed porażeniem prądem elektrycznym, podkreślana jest istotność stosowania niskonapięciowych systemów w obszarach o podwyższonym ryzyku. Tego rodzaju rozwiązania są również rekomendowane przez Polskie Normy, które zalecają stosowanie transformatorów separacyjnych w instalacjach elektrycznych w miejscach o zwiększonym zagrożeniu. Ochronne obniżenie napięcia jest więc uznaną praktyką, wpływającą na bezpieczeństwo użytkowników."

Pytanie 32

Przy sprawdzaniu kabla wykonano dwie serie pomiarów rezystancji pomiędzy końcami żył na jednym końcu kabla. Na drugim końcu kabla w pierwszej serii zwarto wszystkie żyły ze sobą, a w drugiej serii żyły pozostały rozwarte. Wyniki pomiarów zapisano w tabeli. Jakie wnioski można wyciągnąć na podstawie tych wyników?

Ilustracja do pytania
A. Żyły a i b są przerwane.
B. Żyły a i b są zwarte ze sobą.
C. Żyły c i a są przerwane.
D. Żyły c i a są zwarte ze sobą.
Odpowiedź, że żyły a i b są zwarte, jest jak najbardziej trafna. Pomiary rezystancji jasno pokazują, że te żyły są ze sobą połączone. W obu seriach testów, gdy te żyły były zwarte, rezystancja wynosiła wartość skończoną. To sugeruje, że mamy do czynienia z bezpośrednim połączeniem. W praktyce, w elektryce i telekomunikacji, ważne jest, by pamiętać o przestrzeganiu norm i standardów bezpieczeństwa przy łączeniu kabli. Chodzi o to, żeby uniknąć problemów, które mogą zepsuć całe systemy. Gdy pojawią się uszkodzenia lub awarie, jak przerwy w obwodach, kluczowe jest, żeby przeprowadzić dokładne pomiary dla diagnostyki. Dlatego umiejętne czytanie wyników pomiarów rezystancji jest absolutnie istotne dla prawidłowego działania instalacji elektrycznych. Dobrze jest też dokumentować pomiary, co naprawdę pomaga w podejmowaniu decyzji o naprawach czy zmianach w systemach.

Pytanie 33

Na którym rysunku przedstawiono narzędzie niezbędne do formowania oczek na przewodzie instalacyjnym?

Ilustracja do pytania
A. B.
B. A.
C. D.
D. C.
Wybór odpowiedzi innej niż B może wynikać z nieporozumienia co do funkcji narzędzi przedstawionych na pozostałych rysunkach. Często ludzie mylą szczypce do zdejmowania izolacji z innymi narzędziami, takimi jak szczypce uniwersalne czy obcinaki, które nie są przeznaczone do precyzyjnego usuwania izolacji z przewodów. Szczypce uniwersalne mogą być używane do różnych zadań, ale nie są zoptymalizowane do formowania oczek, co może prowadzić do uszkodzenia rdzenia przewodu. Zastosowanie niewłaściwego narzędzia może skutkować nieodpowiednim przygotowaniem przewodów, co w konsekwencji wpływa na jakość połączenia elektrycznego i może prowadzić do awarii instalacji. Ponadto, istnieje ryzyko, że użycie takich narzędzi może naruszyć normy bezpieczeństwa, co jest niezgodne z praktykami branżowymi. Kluczowym błędem myślowym jest założenie, że każde narzędzie do cięcia lub obróbki przewodów może być stosowane zamiennie bez względu na jego specyfikę, co zdecydowanie nie jest zgodne z najlepszymi praktykami w dziedzinie elektryki.

Pytanie 34

Jakie są przyczyny automatycznego wyłączenia wyłącznika instalacyjnego po mniej więcej 10 minutach od włączenia obwodu odbiorczego w instalacji elektrycznej?

A. Przeciążenie
B. Przepięcie
C. Zwarcie bezimpedancyjne
D. Prąd błądzący
Przeciążenie obwodu elektrycznego jest jedną z najczęstszych przyczyn samoczynnego zadziałania wyłącznika instalacyjnego. Przeciążenie następuje w momencie, gdy obciążenie podłączone do obwodu przekracza jego dopuszczalną wartość prądową. Wyłączniki instalacyjne, zgodnie z normami PN-EN 60898, są zaprojektowane w taki sposób, aby chronić instalację przed uszkodzeniem w wyniku zbyt dużego natężenia prądu. W przypadku obwodów o niskiej impedancji, takie jak instalacje oświetleniowe czy gniazdka, obciążenie może wzrosnąć w wyniku uruchomienia wielu urządzeń jednocześnie, co prowadzi do przeciążenia. Gdy prąd przekracza wartość znamionową wyłącznika, mechanizm wyłączający uruchamia się automatycznie, co zapobiega ewentualnym uszkodzeniom kabli czy urządzeń. W praktyce, ważne jest, aby przed podłączeniem nowych urządzeń do instalacji, upewnić się, że całkowite obciążenie nie przekroczy wartości znamionowej wyłącznika, co jest kluczowe w zarządzaniu energią i zapewnieniu bezpieczeństwa instalacji elektrycznych.

Pytanie 35

Jaką wartość mocy wskazuje watomierz pokazany na rysunku?

Ilustracja do pytania
A. 1000 W
B. 50 W
C. 100 W
D. 500 W
W przypadku błędnego wyboru wartości mocy, należy zwrócić uwagę na kilka kluczowych zagadnień związanych z interpretacją wyników pomiarów. Odpowiedzi 50 W, 100 W, 1000 W oraz 500 W mogą wydawać się atrakcyjne, jednak nie uwzględniają one rzeczywistych parametrów pomiarowych wykorzystywanych w watomierzu. Na przykład, wybór 50 W może wynikać z nieporozumienia dotyczącego wskazania watomierza, które być może nie uwzględnia poprawnych wartości prądu oraz napięcia. Dodatkowo, odpowiedzi 100 W oraz 1000 W również nie są zgodne z zasadami obliczania mocy. Warto pamiętać, że moc elektryczna jest definiowana jako iloczyn napięcia i prądu, a ich niewłaściwe zrozumienie może prowadzić do znacznych błędów w ocenie wydajności urządzeń elektrycznych. Typowe myślenie, które prowadzi do takich błędów, opiera się na pomijaniu kluczowych parametrów technicznych, takich jak rzeczywiste wartości prądu i napięcia zainstalowanego urządzenia. W praktyce, ignorowanie tych zasad skutkuje nieprawidłowymi wynikami i może stanowić zagrożenie dla bezpieczeństwa użytkowania instalacji elektrycznych. Ważne jest, aby każdy, kto zajmuje się pomiarami elektrycznymi, rozumiał, w jaki sposób odczyty są generowane i jakie parametry wpływają na ostateczne wyniki pomiarów.

Pytanie 36

Jakie z poniższych działań jest uznawane za czynność konserwacyjną w instalacji elektrycznej?

A. Wymiana uszkodzonych źródeł światła
B. Instalacja dodatkowego gniazda elektrycznego
C. Modernizacja rozdzielnicy instalacji elektrycznej
D. Zmiana rodzaju użytych przewodów
Wymiana uszkodzonych źródeł światła to naprawdę ważna sprawa, jeśli chodzi o dbanie o instalację elektryczną. To nie tylko poprawia oświetlenie, co jest kluczowe dla komfortu ludzi, ale także dba o ich bezpieczeństwo. Uszkodzone żarówki czy świetlówki mogą być niebezpieczne, bo mogą prowadzić do pożarów czy porażenia prądem, jeśli ich nie wymienimy na czas. Z tego, co wiem, zgodnie z normami PN-IEC 60364, regularne sprawdzanie i konserwacja, w tym wymiana źródeł światła, powinny się odbywać w ustalonych odstępach czasowych. Dzięki temu wszystko działa sprawnie i bez pieprzenia. Przykładowo, zamiana tradycyjnych żarówek na LEDy nie tylko oszczędza prąd, ale też dłużej działają, a to jest korzystne zarówno dla portfela, jak i dla środowiska.

Pytanie 37

Do pomiaru której wielkości jest przeznaczony miernik przedstawiony na ilustracji?

Ilustracja do pytania
A. Współczynnika mocy.
B. Częstotliwości.
C. Odkształceń przebiegu napięcia.
D. Spadku napięcia.
Miernik przedstawiony na ilustracji jest przeznaczony do pomiaru współczynnika mocy, co jest kluczowe w analizie pracy układów elektrycznych. Współczynnik mocy, oznaczany jako cos φ, określa, jak efektywnie energia elektryczna jest przekształcana w pracę. W praktyce, wartości współczynnika mocy mogą sięgać od 0 do 1, gdzie 1 oznacza, że cała moc jest efektywnie wykorzystana. W przypadku obciążeń indukcyjnych, takich jak silniki, współczynnik mocy jest zazwyczaj mniejszy niż 1, co oznacza straty energii. Poprawne zarządzanie współczynnikiem mocy jest istotne w przemyśle, ponieważ niski współczynnik mocy może prowadzić do zwiększonych kosztów energii oraz kar nałożonych przez dostawców energii. Przykłady zastosowań obejmują monitorowanie i poprawę wydajności energetycznej w zakładach produkcyjnych, a także optymalizację systemów oświetleniowych i grzewczych. Zgodność z normami, takimi jak IEC 61000, jest również istotna w ocenie jakości energii elektrycznej i minimalizacji zakłóceń w systemach zasilania.

Pytanie 38

W jakim typie układu sieciowego można zrealizować instalację trójfazową za pomocą przewodu trzyżyłowego?

A. TN-C
B. TN-C-S
C. TN-S
D. IT
Wybór układu sieciowego TN-C-S, TN-S lub TN-C do realizacji instalacji trójfazowej przewodem trójżyłowym jest niewłaściwy, co wynika z charakterystyki tych układów. W układzie TN-C, przewody neutralne i ochronne są połączone, co stwarza ryzyko pojawienia się prądów w przewodzie neutralnym, co jest niebezpieczne w przypadku uszkodzeń izolacji. Użycie przewodu trójżyłowego w tym przypadku oznaczałoby, że jedna z żył musi pełnić podwójną rolę, co narusza zasady norm i standardów branżowych. Układ TN-S, w którym przewód neutralny i przewód ochronny są oddzielne, również ogranicza możliwość wykorzystania przewodu trójżyłowego w kontekście trójfazowym. W przypadku braku odpowiedniego uziemienia, ryzyko wystąpienia zwarć doziemnych wzrasta, co zagraża zarówno instalacji, jak i użytkownikom. W układzie TN-C-S, który jest połączeniem TN-C i TN-S, zachowane są podobne problemy, ponieważ również wprowadza konieczność stosowania przewodów, które mogą być narażone na uszkodzenia. Układ IT zapewnia większe bezpieczeństwo, a jego zastosowanie w miejscach, gdzie wymagana jest niezawodność, jest zgodne z najlepszymi praktykami inżynieryjnymi. Kluczowe jest zrozumienie, że wybór odpowiedniego układu sieciowego ma znaczenie nie tylko z perspektywy technicznej, ale również bezpieczeństwa użytkowników i ciągłości działania urządzeń.

Pytanie 39

Na którym rysunku przedstawiono schemat połączeń umożliwiający pomiar energii elektrycznej pobranej przez użytkownika?

Ilustracja do pytania
A. B.
B. C.
C. A.
D. D.
Błędne odpowiedzi mogą być wynikiem nieporozumień co do tego, jak działają liczniki energii i ich podłączenie w obwodach elektrycznych. Schematy A, B i D mogą mieć błędy w połączeniu przewodów fazowych i neutralnych, co prowadzi do złego pomiaru energii. Często myli się, że licznik może być podłączony równolegle do obciążenia, a to wcale nie działa, bo licznik wtedy nie zmierzy przepływu prądu. Właściwy pomiar wymaga szeregowego połączenia, żeby licznik był w torze prądowym. Dodatkowo, jeśli źle rozumie się rolę przewodów, można mieć problem z ich zidentyfikowaniem, co może być niebezpieczne. Warto zwrócić uwagę na normy i przepisy dotyczące instalacji elektrycznych, bo pokazują, jak ważne jest bezpieczeństwo i poprawność podłączeń. Zrozumienie zasad działania systemów pomiarowych oraz ich prawidłowego podłączenia jest kluczowe, żeby zapewnić bezpieczeństwo i efektywność energetyczną w codziennym użytkowaniu energii.

Pytanie 40

Kiedy należy dokonać przeglądu instalacji elektrycznej w obiekcie przemysłowym?

A. Co pięć lat
B. Po każdej naprawie maszyn
C. Tylko przed uruchomieniem nowych maszyn
D. Co najmniej raz na rok
Warto zaznaczyć, że przegląd instalacji elektrycznej tylko przed uruchomieniem nowych maszyn nie jest wystarczający. Wprowadzenie nowego sprzętu do istniejącej instalacji wymaga sprawdzenia jej zgodności, ale nie zastępuje regularnych przeglądów. Nowe maszyny mogą wprowadzać dodatkowe obciążenie na system, co zwiększa ryzyko przeciążenia lub awarii. Ponadto, przegląd po każdej naprawie maszyn również nie jest wystarczający. Choć istotne jest, aby po naprawie sprawdzić poprawność działania, nie zapewnia to bieżącego monitorowania stanu całej instalacji. Regularne przeglądy są konieczne, aby identyfikować ukryte problemy, które mogą się pojawić podczas normalnej eksploatacji. Z kolei przeglądy co pięć lat są zdecydowanie zbyt rzadkie. Taka częstotliwość nie pozwala na wystarczająco szybkie wykrycie problemów, co może prowadzić do niebezpiecznych sytuacji i nieplanowanych przestojów w pracy zakładu. Dlatego też normy i przepisy branżowe zalecają częstsze przeglądy, aby zapewnić bezpieczeństwo i efektywność działania instalacji elektrycznych. Zignorowanie tych zasad może skutkować nie tylko przerwami w produkcji, ale także poważnymi zagrożeniami dla życia i zdrowia pracowników.