Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 17 grudnia 2025 20:01
  • Data zakończenia: 17 grudnia 2025 20:15

Egzamin zdany!

Wynik: 30/40 punktów (75,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Napięcie testowe, strata dielektryczna, maksymalne napięcie, opór izolacji, temperatury współczynnik pojemności - to parametry znamionowe

A. diody pojemnościowej
B. solenoidu
C. rezystora
D. kondensatora
Wybór rezystora jako odpowiedzi na to pytanie jest błędny, ponieważ parametry wymienione w pytaniu nie są typowe dla tego elementu. Rezystory są elementami, które służą do ograniczania przepływu prądu w obwodach elektrycznych, a ich podstawowe parametry to rezystancja, moc znamionowa oraz tolerancja. Rezystancja jest miarą oporu, który rezystor stawia przepływającemu prądowi, a moc znamionowa odnosi się do maksymalnej mocy, jaką rezystor może rozproszyć bez ryzyka uszkodzenia. W kontekście solenoidu, który jest również niewłaściwym wyborem, jego parametry dotyczą głównie indukcyjności oraz maksymalnego prądu, a nie napięcia probierczego czy stratności dielektrycznej. Dioda pojemnościowa, z drugiej strony, jest elementem, który może wykazywać pewne właściwości pojemnościowe, jednak nie jest odpowiednia w kontekście wymienionych parametrów, które są typowe dla kondensatorów. Typowe błędy myślowe prowadzące do takich niepoprawnych wniosków to pomylenie funkcji elementów elektronicznych; zrozumienie różnic w zastosowaniach rezystorów, solenoidów i kondensatorów jest kluczowe dla właściwego doboru komponentów do projektów elektronicznych. W elektronice, precyzyjne rozróżnienie parametrów i ich zastosowań jest niezbędne dla zapewnienia efektywności i niezawodności układów.

Pytanie 2

Na którym rysunku przedstawiono triak?

Ilustracja do pytania
A. A.
B. C.
C. D.
D. B.
Triak, będący elementem półprzewodnikowym, odgrywa kluczową rolę w aplikacjach związanych z kontrolą mocy w obwodach prądu przemiennego. W odpowiedzi B widoczny jest triak, który można łatwo zidentyfikować dzięki jego unikalnym oznaczeniom oraz kształtowi. Triaki są powszechnie stosowane w regulatorach oświetlenia, silnikach elektrycznych oraz w systemach grzewczych, gdzie konieczne jest precyzyjne sterowanie mocą. W praktyce triak działa jako przełącznik, który może włączać i wyłączać przepływ prądu w cyklu AC, co pozwala na skuteczną kontrolę energii bez strat mocy. Dodatkowo, triaki są projektowane zgodnie z normami IEC, co zapewnia ich wysoką jakość i niezawodność. Znajomość triaków oraz ich zastosowań jest niezbędna dla inżynierów i techników, którzy pracują w dziedzinie elektroniki i automatyki.

Pytanie 3

W barach są skalowane

A. prędkościomierze
B. przepływomierze
C. manometry
D. wiskozymetry
Manometry to urządzenia pomiarowe, które służą do określania ciśnienia w różnych systemach. W kontekście barów, manometry są szczególnie ważne w kontrolowaniu ciśnienia gazów i cieczy, co jest kluczowe w wielu procesach przemysłowych oraz w instalacjach hydraulicznych i pneumatycznych. Przykładowo, w przemyśle gazowym manometry umożliwiają monitorowanie ciśnienia w zbiornikach, co jest niezbędne dla zapewnienia bezpieczeństwa i efektywności systemu. W praktyce, manometry są również używane w medycynie, na przykład do pomiaru ciśnienia krwi, co ilustruje ich wszechstronność. Standardy branżowe, takie jak ISO 5171, określają parametry, które manometry muszą spełniać, aby zapewnić wiarygodność i dokładność pomiarów. Ponadto, manometry różnią się rodzajem zastosowanego medium, mogą być stosowane w warunkach wysokotemperaturowych lub w środowiskach agresywnych chemicznie, co dodatkowo podkreśla ich znaczenie w szerokiej gamie aplikacji.

Pytanie 4

Na rysunku przedstawiono symbol graficzny

Ilustracja do pytania
A. optotriaka.
B. transoptora.
C. fotodiody.
D. fototyrystora.
Rozważając odpowiedzi inne niż transoptor, można zauważyć, że fotodiody, optotriaki oraz fototyrystory są różnymi, aczkolwiek pokrewnymi elementami, które pełnią inne funkcje niż transoptor. Fotodiody, na przykład, są elementami półprzewodnikowymi, które przekształcają światło w sygnał elektryczny, ale nie zapewniają izolacji galwanicznej. Ich zastosowanie koncentruje się głównie w detekcji światła i nie w przesyłaniu sygnałów między dwoma obwodami. Z kolei optotriaki to elementy stosowane do kontrolowania dużych obciążeń prądowych, działające na zasadzie przewodzenia prądu w obie strony, co całkowicie różni się od działania transoptora, który pozwala na jednokierunkowy przepływ sygnału. Fototyrystory również mają swoje zastosowanie w obwodach sterujących, ale ich główną rolą jest włączanie i wyłączanie obwodów pod dużym obciążeniem, a nie przekazywanie sygnałów. Typowym błędem myślowym jest mylenie tych elementów z transoptorami, co prowadzi do nieporozumień w projektowaniu obwodów. Kluczowe jest zrozumienie, że transoptor łączy w sobie funkcje diody emitującej światło i fototranzystora, co pozwala na efektywne i bezpieczne przekazywanie sygnałów, a jego użycie jest standardem w nowoczesnych rozwiązaniach elektronicznych.

Pytanie 5

Wynik pomiaru wskazany przez manometr wynosi

Ilustracja do pytania
A. 6,7 bar
B. 7,1 bar
C. 6,6 bar
D. 7,2 bar
Wybór odpowiedzi 6,7 bar, 7,1 bar lub 6,6 bar jest niepoprawny z kilku powodów. Każda z tych wartości nie odzwierciedla rzeczywistego odczytu manometru, co może prowadzić do poważnych konsekwencji w zastosowaniach technicznych. Odczytanie wartości ciśnienia z manometru wymaga analizy pozycji wskazówki w kontekście podziałki, a wszelkie niedokładności w odczycie mogą skutkować nieprawidłowym działaniem systemu. Na przykład, w układach hydraulicznych, niewłaściwe pomiary ciśnienia mogą prowadzić do uszkodzenia komponentów lub nawet awarii całego systemu. Często popełnianym błędem jest zaokrąglanie wartości pomiarowych, co zniekształca rzeczywisty stan i prowadzi do fałszywych wniosków. Ponadto, błędne przypisanie wartości do wskazania manometru może być wynikiem nieuwagi lub braku doświadczenia w pracy z tymi urządzeniami. W standardach branżowych, takich jak PN-EN 837, podkreślono znaczenie precyzyjnych pomiarów oraz właściwego odczytu, co ma kluczowe znaczenie dla bezpieczeństwa i efektywności pracy w różnych dziedzinach przemysłu.

Pytanie 6

Do spawania metali za pomocą łuku elektrycznego wykorzystuje się zasilacz o

A. niskim napięciu i dużym prądzie
B. niskim napięciu i małym prądzie
C. wysokim napięciu i dużym prądzie
D. wysokim napięciu i małym prądzie
Spawanie metali za pomocą łuku elektrycznego to nie lada wyzwanie, ale jeśli dobrze dobierzesz parametry prądu, wszystko pójdzie gładko. Ważne jest, żeby ustawić niskie napięcie i dość wysoki prąd. Niskie napięcie zmniejsza ryzyko, że coś się przebije, a przy tym zapewnia stabilność łuku spawalniczego, co jest mega istotne. Wysoki prąd z kolei pozwala na topnienie materiałów, więc można uzyskać spoiny dobrej jakości. Jak wiesz, przy spawaniu MIG/MAG, TIG czy MMA, te zasady naprawdę obowiązują. Zgodnie z normami, takimi jak ISO 4063, odpowiednie ustawienia to klucz do trwałych i wytrzymałych spoin. Dzięki tym parametrom, tworzona złącza będą odporne na zmęczenie i różne uszkodzenia, co w przemyśle, np. przy budowie maszyn czy konstrukcjach stalowych, jest bardzo ważne.

Pytanie 7

Przed zainstalowaniem podtynkowej instalacji zasilającej dla urządzenia mechatronicznego nie weryfikuje się

A. średnicy żył przewodu
B. ciągłości żył przewodu
C. stanu izolacji przewodu
D. wagi żył w przewodzie
Analizując pozostałe odpowiedzi, warto zwrócić uwagę na istotność każdego z wymienionych czynników w kontekście montażu instalacji elektrycznych. Sprawdzanie średnicy żył przewodu jest kluczowe, ponieważ niewłaściwie dobrana średnica może prowadzić do nadmiernego przegrzewania się przewodu, co skutkuje utratą efektywności energetycznej, a w najgorszym przypadku – do pożaru. Z tego względu, dobór odpowiednich przewodów zgodnie z normami, takimi jak PN-IEC 60364, jest obowiązkowy. Podobnie, ciągłość żył jest niezbędna do zapewnienia, że instalacja będzie działać poprawnie. Możliwość przerwania obwodu, np. w wyniku uszkodzenia przewodu, może prowadzić do nieprzewidzianych przestojów w działaniu urządzeń, co w kontekście przemysłowym ma poważne konsekwencje finansowe oraz operacyjne. Stan izolacji również nie może być bagatelizowany. Uszkodzenie izolacji naraża użytkowników na ryzyko porażenia prądem, a także umożliwia powstawanie zwarć, co z kolei może prowadzić do katastrof elektrycznych. Oparcie się na wadze żył jako kryterium przed montażem jest błędną strategią, ponieważ nie daje ono żadnych praktycznych informacji o bezpieczeństwie czy wydajności instalacji. Dlatego istotne jest, aby koncentrować się na sprawdzeniu średnicy, ciągłości oraz izolacji, co zapewnia bezpieczeństwo i funkcjonalność instalacji elektrycznych.

Pytanie 8

Przekładnia przedstawiona na rysunku składa się

Ilustracja do pytania
A. z wieńca zębatego i ślimaka.
B. ze ślimaka i zębatki.
C. z koła koronowego i ślimaka.
D. ze ślimaka i ślimacznicy.
Poprawna odpowiedź wskazuje na skład przekładni, która składa się z ślimaka oraz ślimacznicy. Ślimak jest elementem o spiralnym kształcie, który zazwyczaj pełni rolę elementu napędowego. Jego konstrukcja pozwala na wytwarzanie ruchu obrotowego, który jest następnie przenoszony na ślimacznicę – koło z zębami wewnętrznymi, które współpracuje z ślimakiem. Ta specyficzna kombinacja elementów mechanicznych jest szeroko stosowana w różnych aplikacjach inżynieryjnych, np. w przekładniach stosowanych w maszynach przemysłowych, w mechanizmach w windach czy w układach napędowych. Dzięki spiralnej geometrii, przekładnie ślimakowe charakteryzują się dużą zdolnością do przenoszenia momentu obrotowego oraz możliwością redukcji prędkości obrotowej. Tego rodzaju przekładnie są cenione za swoją kompaktowość oraz efektywność, co sprawia, że są zgodne z nowoczesnymi standardami projektowania inżynieryjnego, które kładą nacisk na wydajność oraz niezawodność.

Pytanie 9

Silnik elektryczny o mocy 4 kW generuje na wale moment obrotowy 13,1 Nm przy jakiej prędkości obrotowej?

A. 5487 obr/min
B. 524 obr/min
C. 305 obr/min
D. 2916 obr/min
Często, jak wybiera się prędkość obrotową silnika, to można się zaplątać w zrozumieniu, jak moc, moment obrotowy i prędkość się ze sobą łączą. Wiesz, czasem ludzie myślą, że jak moment obrotowy jest większy, to automatycznie prędkość obrotowa też rośnie, a to nie do końca tak działa. Musisz pamiętać, że prędkość obrotowa i moment obrotowy mają odwrotną zależność: jak moc zostaje stała, to większy moment oznacza niższą prędkość i na odwrót. Jeszcze zdarza się, że ludzie mylą jednostki; na przykład, moc mamy w watach, a nie w niutonometrach, i to może prowadzić do różnych pomyłek. Tak samo z prędkością, jak się źle przelicza, to wychodzą błędy. Jeśli chodzi o inżynierię elektryczną i mechaniczną, to ważne jest, żeby stosować właściwe wzory i rozumieć, jak różne parametry wpływają na działanie silników. W praktyce, złe obliczenia mogą skutkować nieodpowiednim doborem części, co potem przekłada się na to, jak efektywnie działa cały system i jego trwałość w czasie.

Pytanie 10

Zestyk K1, oznaczony na schemacie czerwoną ramką, odpowiada za

Ilustracja do pytania
A. wyłączenie zasilania cewek przekaźników K1 i K2
B. blokowanie jednoczesnego załączenia cewek przekaźników K1 i K2
C. włączenie zasilania cewek przekaźników K1 i K2
D. podtrzymanie zasilania cewek przekaźników K1 i K2
Zestyk K1, oznaczony na schemacie czerwoną ramką, pełni funkcję samopodtrzymania, co oznacza, że po zamknięciu obwodu przez przycisk S1, jest w stanie podtrzymać zasilanie cewek przekaźników K1 i K2. Po zwolnieniu przycisku S1, zestyk K1 zapewnia, że obwód pozostaje zamknięty, co pozwala na kontynuowanie pracy przekaźników. Tego rodzaju rozwiązania są powszechnie stosowane w automatyce przemysłowej, gdzie istotne jest, aby urządzenia mogły pracować autonomicznie po aktywacji przez operatora. Przykładem praktycznym mogą być systemy sterowania silnikami, gdzie samopodtrzymujące się obwody zapewniają, że silnik pozostanie włączony do momentu, gdy nie zostanie podjęta decyzja o wyłączeniu go. W kontekście standardów, takie podejście jest zgodne z zasadami projektowania systemów automatyki, które zalecają minimalizację punktów awarii oraz zapewnienie ciągłości działania. Wiedza o funkcji samopodtrzymania jest kluczowa dla zrozumienia działania bardziej skomplikowanych systemów sterujących oraz ich bezpieczeństwa.

Pytanie 11

Na rysunku przedstawiono siłownik hydrauliczny

Ilustracja do pytania
A. jednostronnego działania, o mocowaniu gwintowym.
B. dwustronnego działania, o mocowaniu gwintowym.
C. dwustronnego działania, o mocowaniu przegubowym.
D. jednostronnego działania, o mocowaniu przegubowym.
Wybrana odpowiedź jest poprawna, ponieważ siłownik przedstawiony na rysunku ma mocowanie przegubowe. Przeguby znajdują się na obu końcach siłownika, co pozwala na swobodny ruch w różnych kierunkach, co jest istotne w aplikacjach, gdzie wymagane jest precyzyjne sterowanie ruchem. Dodatkowo, siłownik działa jednostronnie, co oznacza, że płyn hydrauliczny wpływa tylko z jednej strony tłoka, co jest potwierdzone brakiem przewodów hydraulicznych po obu stronach. Tego typu siłowniki są powszechnie stosowane w maszynach budowlanych oraz w systemach automatyki, gdzie precyzyjne ruchy są kluczowe. Przykłady obejmują manipulatorów w robotyce czy mechanizmy podnoszące w dźwigach. Dobrą praktyką w projektowaniu siłowników jest uwzględnienie ich zastosowania, co pozwala na optymalizację ich właściwości oraz wydajności.

Pytanie 12

Na rysunku przedstawiono m.in.

Ilustracja do pytania
A. imadło.
B. suport poprzeczny.
C. uchwyt tokarski.
D. wałek pociągowy.
Uchwyt tokarski jest kluczowym elementem wyposażenia tokarni, który umożliwia precyzyjne mocowanie obrabianych przedmiotów. Jego konstrukcja składa się z dwóch lub więcej szczęk, które mogą być regulowane za pomocą kluczy. Dzięki temu uchwyt jest w stanie zacisnąć różne średnice elementów, co czyni go niezwykle wszechstronnym i niezbędnym w procesach obróbczych. W praktyce, uchwyty tokarskie występują w różnych rozmiarach i kształtach, co pozwala na ich zastosowanie w zależności od typu obrabianego materiału oraz specyfiki pracy na tokarce. Użycie uchwytu tokarskiego zgodnie z dobrą praktyką obróbcza nie tylko zwiększa efektywność pracy, ale również zapewnia bezpieczeństwo operatora, ponieważ odpowiednie mocowanie elementu minimalizuje ryzyko jego usunięcia lub uszkodzenia podczas obróbki. Warto pamiętać, że uchwyty tokarskie są projektowane zgodnie z normami, takimi jak ISO 9001, co gwarantuje ich wysoką jakość i niezawodność w zastosowaniach przemysłowych.

Pytanie 13

Jaką wartość można zarejestrować korzystając z enkodera absolutnego jednoobrotowego?

A. Ciśnienie
B. Przyspieszenie
C. Moment obrotowy
D. Przesunięcie kątowe
Enkoder absolutny jednoobrotowy służy do pomiaru przesunięcia kątowego, co oznacza, że pozwala na określenie dokładnej pozycji obiektu w zakresie jednego obrotu. Działa na zasadzie rejestrowania unikalnej wartości kodu dla każdej pozycji kątowej, co sprawia, że jest niezwykle precyzyjny. Zastosowanie tego typu enkodera w aplikacjach takich jak robotyka, automatyka przemysłowa czy mechatronika jest powszechne, gdyż pozwala na dokładne określenie położenia elementów ruchomych. Przykładem zastosowania może być kontrola położenia silnika krokowego, gdzie dokładne informacje o kącie obrotu są kluczowe dla precyzyjnego sterowania ruchem. Enkodery absolutne jednoobrotowe są również zgodne z normami branżowymi, takimi jak IEC 61131, co zapewnia ich wysoką jakość i niezawodność. Dzięki swojej konstrukcji, eliminują problem utraty pozycji po wyłączeniu zasilania, co jest istotne w wielu aplikacjach przemysłowych.

Pytanie 14

Na schemacie przedstawionym na rysunku element opisany D5 jest diodą

Ilustracja do pytania
A. Zenera.
B. prostowniczą.
C. pojemnościową.
D. tunelową.
Element D5 na schemacie jest diodą Zenera, co można zidentyfikować poprzez charakterystyczny symbol tej diody, gdzie linia równoległa do strzałki wskazuje kierunek przewodzenia. Dioda Zenera jest używana do stabilizacji napięcia w obwodach elektronicznych, co czyni ją niezwykle użytecznym komponentem w aplikacjach wymagających precyzyjnego zarządzania napięciem. Działa ona zarówno w kierunku przewodzenia, jak i zaporowym, co pozwala na utrzymanie stałego poziomu napięcia po przekroczeniu tzw. napięcia Zenera. W praktyce, diody Zenera są powszechnie stosowane w zasilaczach stabilizowanych, gdzie pomagają w eliminacji szumów oraz zapewniają stabilność napięcia, co jest kluczowe w wielu zastosowaniach, jak na przykład w sprzęcie audio czy komputerach. Zastosowanie diod Zenera w układach regulacji napięcia jest zgodne z dobrymi praktykami inżynierskimi, gdzie niezawodność i stabilność są priorytetami.

Pytanie 15

Element elektroniczny przedstawiony na rysunku to

Ilustracja do pytania
A. dioda.
B. kondensator.
C. tranzystor.
D. rezystor.
Tranzystor, który został przedstawiony na zdjęciu, jest kluczowym elementem w nowoczesnej elektronice, szczególnie w układach analogowych i cyfrowych. Posiada on trzy wyprowadzenia: bramkę (G), dren (D) oraz źródło (S), które są charakterystyczne dla tranzystora polowego typu MOSFET. Tranzystory są powszechnie używane do wzmacniania sygnałów oraz jako przełączniki w obwodach elektronicznych. Na przykład, w zastosowaniach audio, tranzystory mogą wzmacniać sygnały, pozwalając na wytwarzanie dźwięku o wyższej mocy. W systemach cyfrowych, tranzystory stanowią podstawę działania układów logicznych, umożliwiając realizację operacji arytmetycznych i logicznych. Dodatkowo, tranzystory są niezbędne w projektach fotowoltaicznych, gdzie kontrolują przepływ prądu z paneli słonecznych do akumulatorów. Warto również podkreślić, że znajomość działania tranzystorów jest niezbędna dla każdego inżyniera elektronika, ponieważ są one fundamentem wielu nowoczesnych technologii.

Pytanie 16

Jakiego typu siłownik został przedstawiony na rysunku?

Ilustracja do pytania
A. Dwustronnego działania z jednostronnym tłoczyskiem.
B. Jednostronnego działania z jednostronnym tłoczyskiem
C. Jednostronnego działania z dwustronnym tłoczyskiem.
D. Dwustronnego działania z dwustronnym tłoczyskiem.
Poprawna odpowiedź to dwustronnego działania z jednostronnym tłoczyskiem. W siłownikach pneumatycznych charakteryzujących się dwustronnym działaniem, medium, na przykład powietrze, może być wprowadzone z obu stron tłoczyska, co umożliwia ruch tłoka w obie strony. To rozwiązanie jest szeroko stosowane w automatyzacji procesów przemysłowych, gdzie precyzyjne sterowanie ruchem jest kluczowe. Siłowniki tego typu odwzorowują działanie w wielu zastosowaniach, jak na przykład w robotyce, gdzie wymagane jest szybkie i płynne przemieszczanie elementów. Ważne jest również, aby zwracać uwagę na projektowanie systemów pneumatycznych zgodnie z normami ISO 4414, które definiują zasady bezpieczeństwa oraz optymalizacji systemów pneumatycznych. Dobre praktyki inżynieryjne obejmują również regularne przeglądy i konserwację siłowników, co przyczynia się do wydłużenia ich żywotności i efektywności operacyjnej.

Pytanie 17

Sterowanie za pomocą Pulse Width Modulation (PWM) w systemach kontrolnych odnosi się do regulacji przez

A. częstotliwości
B. amplitudy impulsu
C. zmianę szerokości impulsu
D. zmianę fazy impulsu
Twoja odpowiedź na temat zmiany szerokości impulsu jest naprawdę na miejscu! Pulse Width Modulation, czyli PWM, to świetna technika, gdzie szerokość impulsu sygnału zmienia się, żeby lepiej sterować mocą dostarczaną do różnych urządzeń. W przypadku PWM okres sygnału zostaje taki sam, a to, co się zmienia, to właśnie szerokość impulsu, co bezpośrednio wpływa na średnią moc. Dzięki temu można precyzyjnie kontrolować na przykład silniki, regulować jasność diod LED, albo przekształcać sygnały cyfrowe w analogowe. Weźmy przykładowo regulację prędkości silnika DC – zmieniając szerokość impulsu, można fajnie ustawić obroty silnika. To naprawdę przydatne, bo PWM pozwala efektywnie wykorzystywać energię i ograniczać straty w systemach elektronicznych, co jest mega ważne w inżynierii.

Pytanie 18

Który rodzaj obróbki wiórowej przedstawiono na rysunku?

Ilustracja do pytania
A. Toczenie.
B. Frezowanie.
C. Struganie.
D. Wiercenie.
Toczenie to proces obróbczy, w którym przedmiot obrabiany wykonuje ruch obrotowy, podczas gdy narzędzie skrawające porusza się wzdłuż osi obrotu lub naokoło przedmiotu. Jest to jedna z kluczowych metod obróbczych stosowanych w przemyśle, szczególnie w produkcji wałów, tulei oraz innych komponentów cylindrycznych. Ważne jest, aby proces toczenia zachowywał odpowiednie parametry, takie jak prędkość skrawania, posuw czy głębokość skrawania, co wpływa na jakość powierzchni i dokładność wymiarową obrabianego przedmiotu. Standardy ISO dotyczące obróbczych procesów wiórowych zalecają stosowanie odpowiednich narzędzi skrawających, które są dostosowane do materiału obrabianego, co pozwala na optymalizację wydajności oraz trwałości narzędzi. Przykładowo, toczenie stali wymaga użycia narzędzi z węglika spiekanego, które charakteryzują się wysoką twardością i odpornością na ścieranie. Zrozumienie zasad toczenia jest niezbędne dla inżynierów i technologów zajmujących się produkcją, ponieważ ma to bezpośredni wpływ na efektywność procesów wytwórczych oraz jakość końcowych produktów.

Pytanie 19

Jakie medium powinno być użyte do łączenia systemów komunikacyjnych w obiekcie przemysłowym, gdzie występują znaczące zakłócenia elektromagnetyczne?

A. Sygnał radiowy
B. Kabel telefoniczny
C. Kabel UTP
D. Światłowód
Światłowód to najskuteczniejsze medium wykorzystywane do komunikacji w środowiskach, gdzie występują silne zakłócenia elektromagnetyczne. Jego konstrukcja oparta na szkle lub tworzywie sztucznym pozwala na przesyłanie sygnałów świetlnych, co eliminuje problemy związane z zakłóceniami elektromagnetycznymi, które mogą wpływać na inne media transmisyjne, takie jak kable miedziane. W praktyce, zastosowanie światłowodów w halach przemysłowych, w pobliżu dużych maszyn czy urządzeń generujących pole elektromagnetyczne, zapewnia stabilną i niezawodną komunikację. Przykładem może być wdrożenie infrastruktury światłowodowej w fabrykach produkcyjnych, gdzie precyzyjna i szybka wymiana danych pomiędzy różnymi sekcjami jest kluczowa dla efektywności procesów produkcyjnych. Światłowody są także zgodne z wieloma normami, takimi jak ISO/IEC 11801, które definiują standardy kablowe i zapewniają wysoką jakość sygnału oraz bezpieczeństwo w instalacjach telekomunikacyjnych. Dodatkowo, światłowody są odporne na działanie wysokich temperatur oraz chemikaliów, co czyni je idealnym rozwiązaniem w trudnych warunkach przemysłowych.

Pytanie 20

Urządzenie, którego dane techniczne przedstawiono w tabeli,

Ciecz roboczaOlej mineralny
WydajnośćDm3/min47 przy n=1450 min-1, p=1 MPa
Ciśnienie na wlocieMPa-0,02 (podciśnienie) do 0,5 (nadciśnienie)
Ciśnienie na wylocieMPamax. 10
Ciśnienie przeciekówMPamax. 0,2
Moment obrotowyNmmax. 235
Prędkość obrotowaobr/min1 000 do 1 800
Optymalna temperatura pracyK313÷338
Filtracjaμm16
A. steruje kierunkiem przepływu oleju.
B. wytwarza strumień oleju w układach i urządzeniach hydraulicznych.
C. utrzymuje stałe ciśnienie niezależnie od kierunku przepływu oleju.
D. otwiera i zamyka przepływ oleju.
Wybrana odpowiedź jest poprawna, ponieważ urządzenie opisane w tabeli to pompa hydrauliczna, która ma na celu wytwarzanie strumienia oleju w układach hydraulicznych. Wydajność na poziomie 47 dm³/min oraz ciśnienie robocze 1 MPa wskazują na typowe parametry działania pomp hydraulicznych. W praktyce, pompy te są kluczowe w wielu zastosowaniach, takich jak systemy hydrauliczne w maszynach budowlanych, pojazdach, a także w przemyśle. Dobrą praktyką jest regularne monitorowanie parametrów pracy pompy, co pozwala na wczesne wykrywanie usterek i zapewnia długotrwałą efektywność systemu. Ponadto, zgodnie z normami hydraulicznymi, ważne jest, aby pompy były dobierane do konkretnych aplikacji, co zwiększa ich wydajność i bezpieczeństwo działania.

Pytanie 21

Co znaczy zaświecenie czerwonej diody oznaczonej skrótem BATF na panelu kontrolnym sterownika PLC?

A. Brak baterii podtrzymującej zasilanie
B. Potrzeba zmian w parametrach programu
C. Tryb funkcjonowania CPU
D. Tryb wstrzymania CPU
Zaświecenie się czerwonej diody oznaczonej skrótem BATF na panelu sygnalizacyjnym sterownika PLC informuje użytkownika o braku baterii podtrzymującej zasilanie. Baterie te są kluczowe dla prawidłowego działania urządzeń, które przechowują dane w pamięci nieulotnej, takich jak godzina systemowa czy ustawienia konfiguracyjne. Gdy bateria jest wyczerpana lub nieobecna, sterownik PLC może stracić wprowadzone dane po wyłączeniu zasilania, co może prowadzić do nieprawidłowego działania systemu oraz utraty istotnych informacji. W praktyce, w przypadku zaświecenia się diody BATF, zaleca się jak najszybszą wymianę baterii, aby uniknąć potencjalnych awarii. Ponadto, zgodnie z normami branżowymi, regularne przeglądy stanu baterii oraz systematyczne konserwacje są kluczowe dla zapewnienia ciągłości pracy urządzeń oraz ich niezawodności. Utrzymanie funkcji podtrzymywania zasilania nie tylko zabezpiecza dane, ale również zwiększa efektywność operacyjną całego systemu.

Pytanie 22

Typowym elementem konstrukcji siłownika, przygotowanego do współpracy z bezdotykowymi czujnikami położenia krańcowego, jest

A. zawór dławiący
B. tłumik
C. membrana
D. magnes stały
Magnes stały jest kluczowym elementem siłowników przystosowanych do współpracy z bezdotykowymi sensorami położeń krańcowych, ponieważ umożliwia precyzyjne i niezawodne określenie pozycji roboczej siłownika. Bezdotykowe sensory, takie jak czujniki Halla, działają w oparciu o pole magnetyczne generowane przez magnes stały, co pozwala na zdalne monitorowanie i kontrolowanie pracy siłownika bez ryzyka mechanicznego zużycia. Przykładem zastosowania jest automatyka przemysłowa, gdzie magnesy stałe są wykorzystywane w siłownikach do precyzyjnego pozycjonowania w systemach transportowych. Dobrym standardem w branży jest stosowanie magnesów neodymowych ze względu na ich wysoką siłę magnetyczną oraz kompaktowe wymiary, co przekłada się na mniejsze rozmiary i większą efektywność systemów automatyki. Ponadto, zastosowanie magnesów stałych zwiększa żywotność komponentów, zmniejsza koszty utrzymania i zwiększa niezawodność całego systemu, co jest zgodne z najlepszymi praktykami inżynieryjnymi.

Pytanie 23

Przedstawiony na rysunku schemat podłączenia dwóch niezależnych źródeł napięcia stałego jest stosowany do zasilania silnika prądu stałego

Ilustracja do pytania
A. szeregowego.
B. szeregowo-bocznikowego.
C. obcowzbudnego.
D. bocznikowego.
Silnik obcowzbudny jest szczególnym przypadkiem silnika prądu stałego, który wykorzystuje niezależne źródło napięcia do zasilania uzwojenia wzbudzenia. W przedstawionym schemacie widać, że uzwojenie wzbudzenia jest zasilane z drugiego źródła, co pozwala na precyzyjne kontrolowanie pola magnetycznego w silniku. Taka konfiguracja jest szczególnie korzystna w zastosowaniach, gdzie wymagana jest wysoka dynamika oraz zmienność momentu obrotowego, jak w przypadku napędów w urządzeniach przemysłowych czy elektrycznych pojazdach. W praktyce, dzięki niezależnemu zasilaniu uzwojenia wzbudzenia, można uzyskać lepszą charakterystykę pracy silnika oraz zwiększyć jego efektywność energetyczną. Standardy branżowe, takie jak IEC 60034, podkreślają znaczenie odpowiedniego doboru typów silników do specyficznych aplikacji, a silnik obcowzbudny często znajduje się w wykazie zaleceń do zastosowań wymagających dużych zmian prędkości obrotowej oraz precyzyjnego sterowania.

Pytanie 24

Na rysunku przedstawiono wykonywanie pomiaru prędkości obrotowej wału silnika napędowego w systemie mechatronicznym metodą

Ilustracja do pytania
A. optyczną.
B. elektromagnetyczną.
C. mechaniczną.
D. stroboskopową.
Odpowiedź mechaniczną jest prawidłowa, ponieważ na przedstawionym zdjęciu widać urządzenie pomiarowe, które opiera się na bezpośrednim kontakcie z wałem silnika. W metodzie mechanicznej pomiar prędkości obrotowej wykonuje się zazwyczaj za pomocą tachometrów mechanicznych, które przekształcają energię mechaniczną na sygnał elektryczny, który może być wyświetlany w postaci cyfrowej lub analogowej. Przykładem zastosowania tej metody jest pomiar prędkości obrotowej silników w różnych zastosowaniach przemysłowych, takich jak maszyny wytwórcze czy napędy w samochodach. W praktyce, przyrządy te są często wykorzystywane w sytuacjach, gdzie ważna jest precyzyjna kontrola prędkości obrotowej, co jest kluczowe dla efektywności i bezpieczeństwa pracy urządzeń. W porównaniu do innych metod, takich jak optyczna czy elektromagnetyczna, pomiar mechaniczny oferuje większą dokładność w przypadku określonych warunków pracy, co sprawia, że jest to jedna z preferowanych technik w wielu branżach inżynieryjnych.

Pytanie 25

W celu oceny stanu technicznego przycisku S1 wykonano pomiary rezystancji, których wyniki przedstawiono w tabeli. Na ich podstawie można stwierdzić, że przycisk S1 posiada zestyk

Nazwa elementuWartość rezystancji zestyków [Ω]
Przed przyciśnięciemPo przyciśnięciu
Przycisk S10,22
A. niesprawny NC.
B. sprawny NC.
C. niesprawny NO.
D. sprawny NO.
Przycisk S1, który oceniłeś jako sprawny NC, działa tak, że w spoczynku obwód jest zamknięty. To się zgadza z tym, jak powinien działać. Jeśli rezystancja wynosi 0,22 Ω przed naciśnięciem, to znaczy, że wszystko jest ok, bo obwód faktycznie jest zamknięty – to jest bardzo ważne dla zestyków NC. Kiedy naciśniesz przycisk, rezystancja skacze do ∞ Ω, co oznacza otwarcie obwodu, i to też jest typowe dla NO. Przyciski NC używa się w różnych sytuacjach, na przykład w automatyce przemysłowej, gdzie potrzebujesz, żeby maszyny się zatrzymywały w razie awarii. Dobrze jest wiedzieć, że w systemach awaryjnego zatrzymywania przyciski te w normalnych warunkach są zamknięte dla bezpieczeństwa, a w nagłych sytuacjach otwierają się, co chroni przed zagrożeniem. Wiedza o tym, jak działają przyciski NC, jest naprawdę istotna, nie tylko dla bezpieczeństwa, ale także w kontekście norm, które obowiązują w branży inżynieryjnej. To wszystko ma ogromne znaczenie w codziennej pracy.

Pytanie 26

Które narzędzie służy do zaciskania przedstawionych opasek na wiązkach przewodów?

Ilustracja do pytania
A. Narzędzie 1.
B. Narzędzie 4.
C. Narzędzie 3.
D. Narzędzie 2.
Wybór niewłaściwego narzędzia do zaciskania opasek na wiązkach przewodów może prowadzić do istotnych problemów w organizacji i funkcjonowaniu instalacji elektrycznych. Narzędzie 2, które jest zaciskarką do końcówek kablowych, jest zaprojektowane do innego celu, czyli mocowania końcówek przewodów do wtyczek lub złączek, co jest kluczowe w przygotowywaniu przewodów do dalszej instalacji. Użycie tego narzędzia w miejsce narzędzia do opasek kablowych nie tylko utrudni prawidłowe zaciśnięcie opaski, ale również może skutkować uszkodzeniem zarówno narzędzia, jak i samego przewodu. Podobnie, narzędzie 3, które jest przeznaczone do zaciskania złącz RJ45, jest używane w kontekście sieci telekomunikacyjnych i nie ma zastosowania przy pracy z opaskami kablowymi. Narzędzie 4, choć również może służyć do zaciskania opasek, istnieje ryzyko, że jego konstrukcja nie zapewni odpowiednio mocnego i estetycznego zaciśnięcia. Ostatecznie, wybór nieodpowiedniego narzędzia może prowadzić do błędów w instalacji, które będą skutkować nie tylko nieporządkiem, ale także potencjalnymi zagrożeniami, takimi jak zwarcia czy uszkodzenia sprzętu. W zawodowym środowisku istotne jest stosowanie odpowiednich narzędzi zgodnych z branżowymi standardami, aby uniknąć tych problemów.

Pytanie 27

W celu zwiększenia wskaźnika lepkości w układzie hydraulicznym oraz zmniejszenia zużycia jego elementów należy użyć oleju o oznaczeniu

DodatkiRodzaj oleju
HHHLHMHVHG
AntyutleniająceTakTakTakTak
Chroniące przed korozjąTakTakTakTak
Polepszające smarnośćTakTakTak
Zmniejszające zużycieTakTakTak
Zwiększające wskaźnik lepkościTak
O szczególnych właściwościach smarującychTak
A. HL
B. HH
C. HV
D. HM
Odpowiedź HV jest poprawna, ponieważ oleje hydrauliczne o oznaczeniu HV (High Viscosity Index) zawierają dodatki, które zwiększają wskaźnik lepkości. Oznacza to, że ich lepkość zmienia się w mniejszym stopniu w zależności od temperatury, co jest kluczowe w zastosowaniach hydraulicznych, gdzie stabilność lepkości w różnych warunkach roboczych jest niezwykle istotna. Użycie oleju o wysokim wskaźniku lepkości zapewnia lepszą ochronę elementów hydraulicznych, co przekłada się na ich dłuższą żywotność i mniejsze zużycie. Przykładem zastosowania oleju HV może być hydraulika stosowana w maszynach budowlanych, gdzie zmienne warunki pracy i temperatura mogą wpływać na wydajność systemu. Praktyki branżowe zalecają stosowanie olejów HV w sytuacjach, gdy urządzenia działają w szerszym zakresie temperatur, co minimalizuje ryzyko ich uszkodzenia i poprawia efektywność działania.

Pytanie 28

Który z podanych elementów przedstawiono na rysunku?

Ilustracja do pytania
A. Silnik pneumatyczny.
B. Pompę hydrauliczną.
C. Sprężarkę powietrza.
D. Silnik hydrauliczny.
Silnik hydrauliczny to urządzenie, które przetwarza energię hydrauliczną na energię mechaniczną, a jego działanie opiera się na zjawisku przepływu cieczy pod ciśnieniem. Na przedstawionym rysunku widoczne są charakterystyczne wejścia zasilające oraz solidna konstrukcja, co jest typowe dla silników hydraulicznych. W branży hydrauliki, silniki te znajdują zastosowanie w różnych maszynach, takich jak koparki, dźwigi czy wózki widłowe, gdzie wymagane jest dostarczenie dużej mocy przy stosunkowo kompaktowych rozmiarach. Dobrą praktyką w projektowaniu systemów hydraulicznych jest wykorzystanie silników hydraulicznych w aplikacjach, które wymagają dużych momentów obrotowych. Warto również zauważyć, że silniki te muszą być odpowiednio dobierane do specyfiki zastosowania, co pozwala na osiągnięcie optymalnej efektywności energetycznej oraz wydajności operacyjnej. Dodatkowo, zrozumienie różnic między silnikiem a pompą hydrauliczną jest kluczowe, ponieważ silniki przekształcają energię, podczas gdy pompy ją generują, co jest istotne w budowie i funkcjonowaniu złożonych systemów hydraulicznych.

Pytanie 29

Jakie ciśnienie w barach odpowiada 1 500 mmHg, przy założeniu, że 1 bar = 100 000 Pa, a 1 mmHg = 133,4 Pa?

A. 2,001 bar
B. 4,001 bar
C. 5,001 bar
D. 3,001 bar
Przeliczanie ciśnienia z mmHg na bary to dość prosta sprawa, ale trzeba pamiętać o kilku rzeczach. Wiesz, 1 mmHg to 133,4 Pa, a 1 bar to 100 000 Pa. Jak chcesz to obliczyć dla 1500 mmHg, to najpierw mnożysz: 1500 mmHg razy 133,4 Pa/mmHg, co daje 200100 Pa. Potem dzielisz tą wartość przez 100 000 Pa/bar, żeby dostać bary, czyli 200100 Pa podzielone przez 100 000 Pa/bar równa się 2,001 bar. To jest mega ważne, bo w inżynierii chemicznej czy meteorologii takie przeliczenia są w zasadzie na porządku dziennym. Jeśli projektujesz coś, co wymaga konkretnego ciśnienia, jak na przykład system hydrauliczny, to musisz wiedzieć, jak to przeliczać, żeby wszystko działało jak należy.

Pytanie 30

Na rysunku przedstawiono wykonywanie połączenia metodą

Ilustracja do pytania
A. garbową.
B. punktową.
C. liniową.
D. doczołową.
Odpowiedź oznaczona jako liniowa jest prawidłowa, ponieważ na przedstawionym rysunku ukazany jest proces spawania, w którym elementy są łączone wzdłuż jednej linii. Spawanie liniowe jest jedną z najczęściej stosowanych metod w przemyśle, szczególnie w konstrukcjach stalowych, gdzie wymagana jest wysoka wytrzymałość połączeń. Ta technika jest szeroko stosowana w budowie mostów, konstrukcji przemysłowych oraz w przemyśle motoryzacyjnym, gdzie spawane są elementy nośne. W praktyce spawanie liniowe wykonuje się z użyciem różnych technologii, takich jak MIG/MAG, TIG czy spawanie elektrodą otuloną. Zastosowanie prawidłowej techniki spawania ma kluczowe znaczenie dla zapewnienia integralności strukturalnej i bezpieczeństwa finalnych produktów. Warto również pamiętać, że spawanie liniowe powinno być realizowane zgodnie z odpowiednimi normami, takimi jak PN-EN ISO 3834, co zapewnia wysoką jakość połączeń oraz minimalizuje ryzyko wad materiałowych.

Pytanie 31

Które z poniższych urządzeń nie należy do kategorii mechatronicznych?

A. silnik indukcyjny klatkowy
B. chłodziarko-zamrażarka z cyfrowym sterowaniem
C. drukarka laserowa
D. odtwarzacz płyt CD oraz DVD
Wybór odpowiedzi, które wskazują na urządzenia mechatroniczne, raczej wynika z tego, że nie do końca rozumiesz, co to takiego. Przykłady jak drukarka laserowa, odtwarzacz płyt CD i DVD czy sterowana cyfrowo chłodziarko-zamrażarka to rzeczywiście łączą w sobie mechanikę, elektronikę i informatykę, przez co mogą być uznane za mechatroniczne. Przykładowo, drukarka laserowa to zaawansowane urządzenie, które łączy różne technologie – optykę, elektronikę i mechanikę – żeby drukować z dużą precyzją. Odtwarzacze płyt również wykorzystują mechanizmy do ładowania płyt i mają systemy laserowe do odczytu danych oraz elektroniki do przetwarzania dźwięku i obrazu. A te chłodziarko-zamrażarki, które są sterowane cyfrowo, to złożone systemy z czujnikami temperatury i mechaniką, które pomagają zarządzać temperaturą i oszczędzać energię. Warto, żebyś przy wyborze odpowiedzi pamiętał, że mechatronika to głównie systemy, gdzie mechanika spotyka elektronikę. Często popełniane błędy to takie, że zawężasz definicję mechatroniki tylko do mechaniki, przez co pomijasz ważne elektroniczne i cyfrowe elementy, które są kluczowe dla działania tych systemów.

Pytanie 32

Przedstawiony na rysunku czujnik Pt100 jest przeznaczony do pomiaru

Ilustracja do pytania
A. ciśnienia cieczy.
B. temperatury cieczy.
C. przepływu w cieczy.
D. poziomu cieczy.
Czujnik Pt100 jest jednym z najpowszechniej stosowanych czujników temperatury w przemyśle i laboratoriach. Jego zasada działania opiera się na zmianie rezystancji platyny w funkcji temperatury, co czyni go bardzo dokładnym i stabilnym rozwiązaniem. Przy 0°C rezystancja wynosi dokładnie 100 omów, co pozwala na precyzyjne pomiary w szerokim zakresie temperatur, zazwyczaj od -200°C do 850°C. Czujniki te są stosowane w wielu aplikacjach, od monitorowania procesów przemysłowych, przez systemy HVAC, aż po laboratoria naukowe. Warto podkreślić, że stosowanie czujników Pt100 jest zgodne z międzynarodowymi standardami, takimi jak IEC 60751, co zapewnia ich wysoką jakość i niezawodność. Dzięki ich precyzyjności i stabilności, czujniki te są często wybierane do zastosowań wymagających dokładnych danych temperaturowych, co w praktyce może wpływać na wydajność i bezpieczeństwo różnych procesów.

Pytanie 33

Jaką wielkość fizyczną mierzy się w tensometrach foliowych?

A. Pojemności
B. Indukcji
C. Indukcyjności
D. Rezystancji
Indukcja, pojemność i indukcyjność to wielkości fizyczne, które nie są bezpośrednio związane z działaniem tensometrów foliowych. Indukcja odnosi się do zjawisk elektromagnetycznych, takich jak wytwarzanie siły elektromotorycznej w przewodnikach, co ma zastosowanie w czujnikach indukcyjnych, ale nie w tensometrach. Pojemność opisuje zdolność do przechowywania ładunku elektrycznego w kondensatorach, co nie ma związku z mechanicznymi właściwościami materiałów używanych w tensometrach. Indukcyjność dotyczy zjawisk związanych z przepływem prądu w obwodach, ale również nie ma zastosowania w kontekście pomiaru deformacji. Zrozumienie tych różnic jest kluczowe, aby uniknąć błędów w doborze czujników do konkretnych zastosowań. Wybierając odpowiednie technologie pomiarowe, należy opierać się na zrozumieniu, jak różne właściwości fizyczne materiałów wpływają na ich zastosowanie. Pomocne jest również zapoznanie się z normami branżowymi oraz standardowymi metodami pomiaru, aby zapewnić dokładność i niezawodność wyników, co jest istotne w wielu dziedzinach inżynieryjnych.

Pytanie 34

Przed wykonaniem czynności konserwacyjnych zawsze należy

A. odłączyć urządzenie od źródła zasilania.
B. zweryfikować stan izolacji.
C. uziemić urządzenie.
D. zdjąć obudowę.
Odłączenie urządzenia od prądu to naprawdę ważny krok, zanim zaczniemy cokolwiek robić przy konserwacji. Głównym powodem jest to, że chcemy zadbać o swoje bezpieczeństwo. Jeśli urządzenie jest pod napięciem, to może dojść do porażenia, co naprawdę może skończyć się tragicznie. W elektrotechnice mamy różne przepisy BHP, które mówią, że najpierw trzeba odłączyć zasilanie, zanim weźmiemy się do roboty. Po odłączeniu warto też upewnić się, że ktoś nie włączy sprzętu przypadkiem. Fajnie jest zastosować blokady i oznaczenia, które są zgodne z zasadą Lockout/Tagout (LOTO) - to takie standardy, które pomagają nam zachować bezpieczeństwo w pracy.

Pytanie 35

Ile watomierzy jest wymaganych do pomiaru mocy czynnej przy użyciu metody Arona w trójfazowych układach elektrycznych?

A. 3
B. 1
C. 2
D. 4
Zastosowanie jednego watomierza do pomiaru mocy czynnej w układzie trójfazowym jest niewłaściwe, ponieważ nie jest w stanie zarejestrować pełnego obrazu obciążenia trzech faz. W przypadku użycia jednego przyrządu, pomiar będzie ograniczony i będzie dotyczył tylko jednej fazy, co prowadzi do zafałszowania wyników. Podobnie, wybór trzech watomierzy w tej metodzie byłby zbędny, ponieważ wprowadzałoby to dodatkowe koszty i złożoność w analizie danych, gdzie dwa watomierze są wystarczające. Wykorzystanie czterech watomierzy jest nadmiarowe i niepraktyczne, gdyż nie wprowadza żadnych korzyści w kontekście pomiaru ani analizy, a jedynie zwiększa ryzyko błędów pomiarowych i komplikacji operacyjnych. Kluczowym błędem myślowym jest przekonanie, że większa liczba watomierzy automatycznie poprawia jakość pomiaru; w rzeczywistości, dla uzyskania wiarygodnych wyników w systemach trójfazowych ważne jest, aby wykonać pomiary w sposób zorganizowany i zgodny z uznawanymi standardami pomiarowymi. Konsekwencje błędnych wyborów mogą prowadzić do nieefektywności w zarządzaniu energią oraz trudności w identyfikacji źródeł strat energii w systemie. W praktyce, stosowanie dwóch watomierzy dąży do równowagi pomiędzy dokładnością pomiarów a prostotą konfiguracji.

Pytanie 36

Śrubę mikrometryczną do pomiaru głębokości otworów przedstawia rysunek

Ilustracja do pytania
A. D.
B. B.
C. A.
D. C.
Śruba mikrometryczna do pomiaru głębokości otworów jest precyzyjnym narzędziem pomiarowym, które znajduje szerokie zastosowanie w inżynierii oraz w różnych dziedzinach produkcji, gdzie dokładność pomiaru jest kluczowa. W przypadku odpowiedzi B, prawidłowo zidentyfikowane zostały kluczowe cechy tego narzędzia: płaska podstawa, która stabilnie opiera się na krawędzi otworu, oraz pręt z końcówką pomiarową, który umożliwia dokładne wsunięcie w głąb otworu. Takie rozwiązanie zapewnia precyzyjne odczyty, co jest istotne w praktyce inżynierskiej, zwłaszcza w kontekście tolerancji i pasowania elementów. Warto również zauważyć, że standardy ISO dotyczące narzędzi pomiarowych zalecają regularne kalibracje takich urządzeń, aby zapewnić ich dokładność. Dzięki precyzyjnej konstrukcji, mikrometryczne śruby do pomiaru głębokości są nieocenione w procesach kontroli jakości, gdzie wymagane są szczegółowe pomiary głębokości otworów w materiałach. Dobre praktyki wskazują na konieczność przeszkolenia operatorów w zakresie użycia tych narzędzi, co zwiększa efektywność i dokładność pomiarów.

Pytanie 37

Na rysunku przedstawiono zawór rozdzielający przystosowany do sterowania

Ilustracja do pytania
A. hydraulicznego.
B. elektrycznego.
C. mechanicznego.
D. pneumatycznego.
Zawór rozdzielający przedstawiony na rysunku jest przeznaczony do systemów pneumatycznych, co można potwierdzić po symbolice oraz oznaczeniach na urządzeniu. W praktyce, zawory pneumatyczne są kluczowymi komponentami w wielu aplikacjach przemysłowych, w tym w automatyce oraz produkcji. Ich główną funkcją jest kontrolowanie przepływu powietrza w systemach, co pozwala na precyzyjne sterowanie napędem pneumatycznym. Zawory te są zaprojektowane do pracy w warunkach, gdzie maksymalne ciśnienie robocze wynosi 10 barów, co jest typowe dla systemów pneumatycznych, a ich konstrukcja musi spełniać odpowiednie normy, takie jak ISO 6431 czy ISO 15744, dotyczące wymagań dla elementów pneumatycznych. Stosowanie zaworów pneumatycznych w aplikacjach takich jak pakowanie, montaż czy manipulacja materiałami przyczynia się do zwiększenia efektywności procesów produkcyjnych. Systemy pneumatyczne są szczególnie cenione za swoją szybkość, niezawodność oraz stosunkowo niskie koszty operacyjne, co czyni je popularnym wyborem w nowoczesnym przemyśle.

Pytanie 38

Pralka automatyczna nie reaguje po naciśnięciu przycisku zasilania. Co może być przyczyną takiej sytuacji?

A. usterką silnika pralki
B. brakiem zasilania elektrycznego
C. brakiem dopływu wody do urządzenia
D. niewłaściwym zerowaniem obudowy silnika pralki
Brak zasilania napięciem elektrycznym jest najczęstszą przyczyną, dla której pralka automatyczna nie reaguje po wciśnięciu przycisku zasilania. W praktyce, przed rozpoczęciem jakiejkolwiek diagnostyki, warto upewnić się, że urządzenie jest prawidłowo podłączone do gniazdka i że gniazdko jest sprawne. Testowanie gniazdka za pomocą innego urządzenia, np. lampki, może potwierdzić obecność napięcia. W sytuacji, gdy zasilanie jest prawidłowe, dalsza kontrola powinna obejmować przewody zasilające i wtyczki, które mogą ulec uszkodzeniu. W standardzie instalacji elektrycznych, aby zapewnić bezpieczeństwo urządzeń, należy stosować odpowiednie zabezpieczenia, takie jak bezpieczniki czy wyłączniki różnicowoprądowe. Ponadto, regularne przeglądy instalacji elektrycznej są zalecane, aby unikać problemów związanych z zasilaniem, co jest zgodne z dobrymi praktykami w dziedzinie bezpieczeństwa urządzeń AGD.

Pytanie 39

Nie można zrealizować regulacji prędkości obrotowej silników indukcyjnych poprzez zmianę

A. wartości skutecznej napięcia zasilania stojana
B. kolejności faz
C. liczby par biegunów
D. wartości częstotliwości napięcia zasilającego
Kolejność faz w silnikach indukcyjnych nie wpływa na prędkość obrotową, a jedynie na kierunek obrotów. Dostosowanie prędkości obrotowej silnika indukcyjnego można osiągnąć poprzez zmianę częstotliwości napięcia zasilającego, co jest zgodne z zasadą, że prędkość obrotowa silnika jest proporcjonalna do częstotliwości napięcia. Również zmianę liczby par biegunów, co wymaga zmiany konstrukcji silnika. Przykłady zastosowania tej wiedzy obejmują systemy napędowe, gdzie kontrola prędkości jest kluczowa, takie jak pompy czy wentylatory, gdzie za pomocą falowników przekształca się częstotliwość zasilania. Standardy jak IEC 60034-1 regulują takie aspekty, zapewniając wydajność i bezpieczeństwo operacyjne. Zrozumienie, że kolejność faz nie wpływa na prędkość, jest kluczowe w prawidłowym projektowaniu i eksploatacji systemów elektrycznych.

Pytanie 40

Jakie są etapy podstawowych cykli działania sterownika PLC?

A. Aktualizacja stanu wejść, inicjalizacja sterownika, aktualizacja stanu wyjść, wykonanie programu
B. Inicjalizacja sterownika, aktualizacja stanu wejść, wykonanie programu, aktualizacja stanu wyjść
C. Aktualizacja stanu wyjść, inicjalizacja sterownika, wykonanie programu, uaktualnianie stanu wejść
D. Inicjalizacja sterownika, aktualizacja stanu wyjść, aktualizacja stanu wejść, wykonanie programu
Wybór niewłaściwych sekwencji cykli pracy sterownika PLC może prowadzić do licznych błędów w działaniu systemu, co ma bezpośredni wpływ na efektywność procesów automatyki. W przypadku pierwszej z niepoprawnych odpowiedzi, sekwencja zaczyna się od aktualizacji stanu wyjść przed odczytem stanu wejść, co jest fundamentalnym błędem. Sterownik PLC powinien najpierw poznać aktualny stan otoczenia (wejść), zanim podejmie decyzje, które wyjścia należy aktywować. W drugim przykładzie, sekwencja rozpoczyna się od aktualizacji stanu wejść, co jest poprawne, ale inicjalizacja sterownika powinna zająć miejsce przed tym krokiem, aby zapewnić, że wszystkie parametry są odpowiednio ustawione. Trzecia odpowiedź pokazuje, że aktualizacja stanu wyjść następuje przed wykonaniem programu, co jest sprzeczne z zasadą logiki sterowania, gdyż decyzje dotyczące wyjść powinny być oparte na obliczeniach i analizach przeprowadzonych w trakcie wykonania programu. Wreszcie, ostatnia odpowiedź wprowadza dodatkowy chaos, gdyż zaczyna się od aktualizacji stanu wyjść oraz nie uwzględnia sekwencji wykonania programu. Takie podejścia mogą prowadzić do nieprzewidywalnych rezultatów, błędów w automatyce oraz problemów z bezpieczeństwem. Kluczowe jest, aby zrozumieć, że każdy z tych kroków jest od siebie zależny, a ich odpowiednia sekwencja jest fundamentem prawidłowego działania systemów sterowania.