Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 12 lutego 2026 14:07
  • Data zakończenia: 12 lutego 2026 14:44

Egzamin zdany!

Wynik: 29/40 punktów (72,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Która z wymienionych maszyn elektrycznych jest wykorzystywana jako czujnik prędkości obrotowej?

A. Silnik krokowy.
B. Kompensator.
C. Selsyn.
D. Prądnica tachometryczna.
Poprawnie – prądnica tachometryczna to klasyczny, bardzo często stosowany czujnik prędkości obrotowej w układach automatyki i napędów. Działa jak mała prądnica, która wytwarza napięcie proporcjonalne do prędkości obrotowej wału. Im szybciej się kręci, tym wyższe napięcie na jej zaciskach. Dzięki temu układ sterowania może w prosty sposób „odczytać” prędkość, mierząc napięcie wyjściowe, zwykle w zakresie kilku–kilkunastu woltów. W praktyce spotyka się prądnice tachometryczne prądu stałego (napięcie DC) oraz prądu przemiennego (AC), dobierane w zależności od rodzaju napędu i elektroniki pomiarowej. W nowocześniejszych instalacjach coraz częściej używa się enkoderów impulsowych, ale w wielu układach modernizowanych, w starszych obrabiarkach, suwnicach czy liniach technologicznych, prądnica tachometryczna dalej robi robotę, bo jest prosta, odporna i łatwa w diagnozowaniu. Moim zdaniem to bardzo dobre rozwiązanie edukacyjne – na jej przykładzie świetnie widać związek między wielkością mechaniczną (obr/min) a wielkością elektryczną (V). W dobrych praktykach projektowych ważne jest, żeby prądnicę tachometryczną montować solidnie współosiowo z wałem, zadbać o ekranowany przewód sygnałowy oraz właściwe uziemienie, żeby nie łapała zakłóceń. W układach regulacji prędkości (np. napędy DC, falowniki starszego typu, regulatory analogowe) sygnał z prądnicy tachometrycznej jest elementem sprzężenia zwrotnego – dzięki niemu regulator może porównać prędkość zadaną z rzeczywistą i odpowiednio korygować moment silnika. W dokumentacjach producentów napędów i według ogólnych zasad automatyki przemysłowej prądnica tachometryczna jest więc pełnoprawnym czujnikiem prędkości, a nie „zwykłą prądnicą”.

Pytanie 2

Którą klasę ochronności posiada oprawa oświetleniowa opatrzona przedstawionym symbolem graficznym?

Ilustracja do pytania
A. III
B. II
C. 0
D. I
Oprawa oświetleniowa oznaczona symbolem klasy ochronności I zapewnia wysoki poziom bezpieczeństwa w użytkowaniu. Klasa ta charakteryzuje się posiadaniem podstawowej izolacji oraz dodatkowym przewodem ochronnym, co pozwala na skuteczne odprowadzenie ewentualnych prądów upływowych do ziemi. Dzięki temu, w przypadku uszkodzenia izolacji, metalowe elementy oprawy nie stają się źródłem zagrożenia dla użytkowników. Przykładem zastosowania tej klasy są oprawy stosowane w miejscach narażonych na wilgoć, takich jak łazienki czy zewnętrzne oświetlenie ogrodowe. Zgodnie z normami PN-EN 60598-1, urządzenia oznaczone klasą I muszą być również regularnie kontrolowane pod kątem stanu przewodu ochronnego oraz integralności izolacji. Takie działania pomagają w utrzymaniu bezpieczeństwa i zgodności z przepisami BHP, co jest kluczowe w każdej instalacji elektrycznej.

Pytanie 3

Zmierzono różnicowy prąd zadziałania wyłączników różnicowoprądowych w instalacji elektrycznej. Jaki wniosek można wyciągnąć z pomiarów przedstawionych w tabeli?

Nr wyłącznikaOznaczenieRóżnicowy prąd zadziałania
IP 304 40-30-AC25 mA
IIP 304 40-100-AC70 mA
IIIP 302 25-30-AC12 mA
A. Wyłącznik nr II nie nadaje się do dalszej eksploatacji.
B. Żaden wyłącznik nie nadaje się do dalszej eksploatacji.
C. Wszystkie wyłączniki nadają się do dalszej eksploatacji.
D. Wyłącznik nr III nie nadaje się do dalszej eksploatacji.
Analizując dostępne odpowiedzi, można zauważyć szereg błędnych wniosków dotyczących stanu wyłączników różnicowoprądowych. Pierwsza z błędnych koncepcji mówi o tym, że żaden z wyłączników nie nadaje się do dalszej eksploatacji. Takie sformułowanie wprowadza w błąd, ponieważ na podstawie przedstawionych danych można zauważyć, że nie wszystkie wyłączniki miały problemy z zadziałaniem. Kolejnym błędnym podejściem jest stwierdzenie, że wyłącznik nr II nie nadaje się do dalszej eksploatacji. Bez analizy konkretnej wartości prądu różnicowego dla tego wyłącznika, nie można wnioskować o jego stanie. Koncentracja na jednym wyłączniku, bez uwzględnienia reszty, prowadzi do mylnych konkluzji. W przypadku wyłącznika nr III, kluczowe jest zrozumienie, że nie zadziałał on przy prądzie 12 mA, co jest poniżej wymaganych 15 mA. W praktyce, przy ocenie stanu technicznego wyłączników różnicowoprądowych, niezbędne jest uwzględnienie norm oraz wartości nominalnych zadziałania, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. Błędem jest również zakładanie, że wystarczy jedynie pomiar prądu różnicowego, aby ocenić stan wyłącznika. Każdy z wyłączników powinien być analizowany indywidualnie, w kontekście jego specyfikacji i wymagań bezpieczeństwa, zgodnie z obowiązującymi normami branżowymi.

Pytanie 4

Wyznacz znamionowy współczynnik mocy dla silnika trójfazowego z następującymi danymi: PN = 2,2 kW (moc mechaniczna), UN = 400 V, IN = 4,6 A, ηN = 0,84?

A. 0,99
B. 0,57
C. 0,82
D. 0,69
Obliczenie znamionowego współczynnika mocy (cos φ) dla silnika trójfazowego to dość prosta sprawa, jeśli mamy wszystkie potrzebne dane. Mówiąc w skrócie, ten współczynnik to stosunek mocy czynnej (P) do mocy pozornej (S). Może być obliczony za pomocą wzoru: cos φ = P / (√3 * U * I), gdzie P to moc czynna, U to napięcie, a I to prąd znamionowy. Jak podstawimy wartości z pytania: P = 2,2 kW, U = 400 V, I = 4,6 A, to najpierw liczymy S = √3 * 400 V * 4,6 A, co daje nam 2,664 kVA. Potem obliczamy cos φ = 2,2 kW / 2,664 kVA, co wychodzi około 0,826. Jak zaokrąglimy, to dostaniemy 0,82. Wiesz, czemu to jest ważne? Bo dobrze obliczony współczynnik mocy pomaga w projektowaniu układów elektroenergetycznych, a to z kolei przekłada się na lepszą efektywność energetyczną i mniejsze straty energii. Silniki z wyższym współczynnikiem mocy są bardziej efektywne i można na nich zaoszczędzić, co jest korzystne zarówno dla nas, jak i dla sieci zasilającej.

Pytanie 5

Działanie którego środka ochrony przeciwporażeniowej w instalacji elektrycznej o napięciu znamionowym 230 V, pozwala ocenić miernik przedstawiony na rysunku?

Ilustracja do pytania
A. Połączeń wyrównawczych.
B. Izolacji roboczej.
C. Samoczynnego wyłączenia zasilania.
D. Zasilania napięciem bezpiecznym.
Udzielając odpowiedzi na to pytanie, można było się posługiwać różnymi pojęciami związanymi z bezpieczeństwem elektrycznym, jednak niektóre z nich mogą wprowadzać w błąd. Zasilanie napięciem bezpiecznym odnosi się do systemów, które wykorzystują niższe napięcia w celu zminimalizowania ryzyka porażenia, jednak nie jest to związane z pomiarem izolacji, którego celem jest ochrona przed porażeniem w instalacjach o napięciu 230 V. Połączenia wyrównawcze są istotne w kontekście ochrony przed porażeniem, ale ich ocena wymaga innego rodzaju pomiarów, takich jak pomiar oporności połączeń. Samoczynne wyłączenie zasilania to mechanizm zabezpieczający, który działa w przypadku wykrycia nieprawidłowości w instalacji, ale także nie jest bezpośrednio związany z pomiarem izolacji roboczej. Typowym błędem jest mylenie tych pojęć i pomijanie istotności pomiarów rezystancji izolacji w kontekście bezpieczeństwa energetycznego. W rzeczywistości, zrozumienie funkcji izolacji roboczej oraz jej roli w ochronie przed porażeniem elektrycznym jest kluczowe dla każdego, kto pracuje z systemami elektrycznymi, a nieprawidłowe zrozumienie tych zagadnień może prowadzić do niebezpiecznych sytuacji podczas eksploatacji instalacji.

Pytanie 6

Do jakiej kategorii urządzeń elektrycznych należą linie napowietrzne i kablowe?

A. Pomocniczych
B. Przesyłowych
C. Odbiorczych
D. Wytwórczych
Linie napowietrzne i kablowe zaliczają się do grupy urządzeń przesyłowych, ponieważ ich główną funkcją jest transport energii elektrycznej na znaczną odległość, co jest kluczowe dla zasilania odbiorców końcowych oraz dla stabilności systemu energetycznego. Przesył energii elektrycznej odbywa się z wykorzystaniem linii napowietrznych, które są powszechnie stosowane w terenach wiejskich oraz w obszarach, gdzie nie ma potrzeby zakupu droższych kabli. Dobre praktyki w zakresie przesyłu energii elektrycznej zakładają minimalizację strat, które mogą występować w trakcie transportu, co jest istotne dla efektywności energetycznej. Przykładowo, zastosowanie linii wysokiego napięcia pozwala na przesyłanie dużych mocy przy mniejszych stratach. W kontekście standardów, linie przesyłowe powinny spełniać normy określone przez Międzynarodową Komisję Elektrotechniczną (IEC) oraz krajowe regulacje dotyczące jakości i bezpieczeństwa. W praktyce oznacza to, że projektując systemy przesyłowe, inżynierowie muszą uwzględniać nie tylko parametry techniczne, ale również aspekt ochrony środowiska oraz wpływ na otoczenie.

Pytanie 7

W układzie instalacji mieszkaniowej przedstawionej na rysunku, ochrona wyłącznikiem różnicowoprądowym RCD nie obejmuje gniazd w

Ilustracja do pytania
A. pokoju 1 i pokoju 2
B. łazience i pokoju 2
C. łazience i pokoju 1
D. kuchni i pokoju 2
Odpowiedź, w której zaznaczyłeś "pokoju 1 i pokoju 2", jest rzeczywiście trafna. W schemacie instalacji elektrycznej widać, że obwody gniazd w tych pomieszczeniach nie mają ochrony wyłącznika różnicowoprądowego (RCD). To ważne, bo RCD powinno się stosować w miejscach, gdzie ryzyko porażenia prądem jest większe, jak w łazienkach czy kuchniach, gdzie woda może być problemem. Normy mówią, że tam, gdzie może wystąpić kontakt z wodą, trzeba mieć RCD, żeby zapewnić bezpieczeństwo. W pokojach 1 i 2 brakuje tej ochrony, co oznacza, że gniazda nie są tak dobrze zabezpieczone. Dobrze zaprojektowana instalacja powinna zawsze brać to pod uwagę, zwłaszcza przy układzie gniazd w miejscach, gdzie może być wilgoć. Jakbyś planował przerobić te pomieszczenia lub dodać nowe urządzenia elektryczne, warto by było przemyśleć, czy nie trzeba coś zmienić w systemie ochrony.

Pytanie 8

Jakiego przyrządu należy użyć, aby zmierzyć moc bierną w obwodzie?

A. Watomierza
B. Waromierza
C. Woltomierza
D. Reflektometru
Pomiar mocy w układach elektrycznych można przeprowadzać za pomocą różnych mierników, jednak nie wszystkie z nich są odpowiednie do pomiaru mocy biernej. Reflektometr jest urządzeniem, które służy do analizy odbicia sygnału w liniach transmisyjnych, a jego zastosowanie ogranicza się do problematyki związanej z impedancją i stratami sygnału, co nie ma związku z pomiarem mocy biernej. Watomierz, z drugiej strony, mierzy moc czynną, a jego działanie opiera się na pomiarze napięcia i prądu, a następnie obliczaniu mocy czynnej, co oznacza, że nie jest w stanie dostarczyć informacji na temat mocy biernej, która jest miarą energii niezużywanej. Woltomierz jest urządzeniem do pomiaru napięcia, a jedynie mierząc napięcie nie można określić mocy biernej, gdyż nie uwzględnia on parametrów prądu oraz fazy między nimi. Typowym błędem myślowym jest zatem utożsamianie różnych rodzajów mocy i mylenie ich pomiaru, co prowadzi do nieprawidłowych wniosków i decyzji w zakresie projektowania oraz eksploatacji systemów elektrycznych. Zrozumienie różnic pomiędzy mocą czynną, bierną i pozorną oraz umiejętność zastosowania odpowiednich narzędzi pomiarowych jest kluczowe dla efektywności energetycznej.

Pytanie 9

Na rysunkach przedstawiono kolejno typy końcówek źródeł światła

Ilustracja do pytania
A. E 14, MR 16, GU 10, AR 111
B. E 14, AR 111, MR 16, GU 10
C. E 14, GU 10, AR 111, MR 16
D. E 14, AR 111, GU 10, MR 16
Poprawna odpowiedź to "E 14, GU 10, AR 111, MR 16". Typy końcówek źródeł światła, które zostały przedstawione na zdjęciu, są kluczowe w zrozumieniu różnych zastosowań oświetleniowych. Końcówka E 14, znana jako mały gwint, jest powszechnie stosowana w lampach domowych, szczególnie w żarówkach LED i energooszczędnych, co czyni ją wszechstronnym rozwiązaniem do użytku przydomowego. Końcówka GU 10, z dwoma pinami i blokadą, jest używana w reflektorach sufitowych i halogenowych, co pozwala na łatwą wymianę żarówek, a jednocześnie zapewnia stabilne mocowanie. Końcówka AR 111, z reflektorem, jest często stosowana w oświetleniu profesjonalnym, na przykład w galeriach sztuki czy sklepach, gdzie istotna jest jakość i kierunek światła. Końcówka MR 16 to popularny wybór w systemach oświetleniowych niskonapięciowych, szczególnie w przypadku oświetlenia punktowego. Znajomość tych typów końcówek jest niezbędna dla każdego, kto zajmuje się projektowaniem i montażem systemów oświetleniowych, a także dla osób wybierających odpowiednie źródła światła do różnych aplikacji.

Pytanie 10

Oprawa oświetleniowa oznaczona przedstawionym symbolem graficznym należy do klasy oświetlenia

Ilustracja do pytania
A. pośredniego.
B. bezpośredniego.
C. przeważnie pośredniego.
D. przeważnie bezpośredniego.
Oprawa oświetleniowa oznaczona tym symbolem graficznym należy do kategorii przeważnie pośredniego oświetlenia, co oznacza, że głównym celem jej konstrukcji jest kierowanie światła w dół, jednocześnie rozpraszając je w innych kierunkach. Tego typu oświetlenie jest powszechnie stosowane w przestrzeniach, gdzie kluczowe jest stworzenie komfortowej atmosfery przy jednoczesnym zapewnieniu odpowiedniego doświetlenia. Przykładem może być oświetlenie w biurach, gdzie oprawy te mogą być używane do oświetlenia stanowisk pracy, oferując wygodę dla oczu poprzez unikanie olśnień. Zgodnie z normami oświetleniowymi, takimi jak PN-EN 12464-1, odpowiednia klasa oświetlenia powinna być dostosowana do określonych warunków pracy oraz zalecanego poziomu natężenia światła. Oprócz tego, przeważnie pośrednie oświetlenie jest często stosowane w przestrzeniach publicznych, takich jak galerie handlowe czy hotele, gdzie istotne jest stworzenie przyjemnego i zachęcającego otoczenia.

Pytanie 11

Podaj skuteczność świetlną źródła światła o etykiecie przedstawionej na rysunku.

Ilustracja do pytania
A. 81,4 lm/W
B. 1 180,0 lm/W
C. 14,5 lm/W
D. 206,9 lm/W
Skuteczność świetlna, określana jako stosunek strumienia świetlnego (lm) do mocy elektrycznej (W), jest kluczowym parametrem oceny efektywności źródeł światła. W opisanym przypadku źródło światła wykazuje strumień świetlny wynoszący 1180 lumenów oraz moc równą 14,5 W. Obliczając skuteczność świetlną, dzielimy strumień świetlny przez moc: 1180 lm / 14,5 W, co daje 81,4 lm/W. W praktyce, wysoka skuteczność świetlna oznacza, że źródło światła dostarcza więcej światła przy mniejszym zużyciu energii, co przekłada się na niższe rachunki za energię oraz mniejszy wpływ na środowisko. Tego typu obliczenia są istotne przy projektowaniu systemów oświetleniowych, gdzie należy brać pod uwagę zarówno efektywność energetyczną jak i komfort użytkowania. Przykładem zastosowania jest wybór oświetlenia LED, które zazwyczaj charakteryzuje się wyższą skutecznością świetlną w porównaniu do tradycyjnych żarówek, co jest zgodne z normami efektywności energetycznej obowiązującymi w wielu krajach.

Pytanie 12

Na rysunku przedstawiono symbol graficzny przewodu

Ilustracja do pytania
A. PE
B. L
C. PEN
D. N
Symbol przedstawiony na rysunku oznacza przewód neutralny, który w instalacjach elektrycznych jest kluczowym elementem systemu zasilania. Oznaczenie "N" wskazuje na przewód, który ma za zadanie prowadzić prąd powracający z obciążenia do źródła zasilania. Przewód neutralny jest niezbędny w układach jedno- i trójfazowych, gdzie zapewnia równowagę obciążenia w instalacji. W praktyce oznaczenie to jest stosowane zgodnie z normami IEC 60446, które definiują sposób oznaczania przewodów w instalacjach elektrycznych. Poprawne rozróżnianie między przewodami fazowymi a neutralnym jest kluczowe dla bezpieczeństwa eksploatacji instalacji. Przykładowo, w budynkach mieszkalnych przewód neutralny jest wykorzystywany w instalacjach oświetleniowych oraz gniazdach elektrycznych, gdzie zapewnia powrót prądu do źródła zasilania, co jest niezbędne do prawidłowego działania urządzeń elektrycznych. Bez przewodu neutralnego, obwody nie byłyby w stanie funkcjonować prawidłowo, co mogłoby prowadzić do niebezpiecznych sytuacji takich jak przegrzanie czy zwarcia.

Pytanie 13

W instalacjach TN-S wyłączniki różnicowoprądowe są używane jako ochrona przed

A. przeciążeniem
B. porażeniem
C. zwarciem
D. przepięciem
Wyłączniki różnicowoprądowe (RCD) są kluczowymi urządzeniami w systemach elektrycznych, szczególnie w sieciach TN-S, gdzie pełnią funkcję zabezpieczenia przed porażeniem elektrycznym. Ich działanie opiera się na wykrywaniu różnic prądów między przewodami fazowymi a przewodem neutralnym. W przypadku, gdy wystąpi upływ prądu do ziemi (np. wskutek przypadkowego dotknięcia uszkodzonego sprzętu) RCD natychmiast odcina zasilanie, minimalizując ryzyko porażenia. Stosowanie RCD jest zgodne z normami, takimi jak PN-EN 61008, które określają wymogi dotyczące ochrony przed porażeniem elektrycznym. W praktyce, RCD są często instalowane w obwodach zasilających gniazdka w domach oraz w obiektach użyteczności publicznej, gdzie dostęp do energii elektrycznej mają osoby nieprzeszkolone. Dodatkowo, RCD powinny być regularnie testowane, aby zapewnić ich prawidłowe funkcjonowanie, co jest standardową praktyką w utrzymaniu instalacji elektrycznych.

Pytanie 14

Które styczniki należy załączyć w układzie zasilania silnika trójfazowego pierścieniowego, przedstawionego na schemacie, aby uzyskać największą prędkość obrotową wirnika?

Ilustracja do pytania
A. K1, K2
B. K3, K4
C. K2, K3
D. K1, K4
Prawidłowo – żeby silnik trójfazowy pierścieniowy osiągnął największą prędkość obrotową, musi pracować bez dodatkowych rezystancji w obwodzie wirnika. Na schemacie stycznik K1 zasila stojan silnika z sieci trójfazowej, a stycznik K4 zwiera wszystkie stopnie rezystancji rozruchowych R1, R2, R3 w obwodzie pierścieni. Po załączeniu K1 i K4 prąd wirnika płynie bezpośrednio przez pierścienie, bez przejścia przez rezystory, co oznacza minimalne straty i maksymalną prędkość zbliżoną do synchronicznej (poślizg ma wtedy małą wartość roboczą). W praktyce wygląda to tak, że rozruch wykonuje się stopniowo: najpierw włączone są największe rezystancje, żeby ograniczyć prąd rozruchowy i zwiększyć moment startowy, a potem kolejne stopnie są zwierane – aż do stanu, który pokazuje właśnie kombinacja K1 + K4. Z mojego doświadczenia w utrzymaniu ruchu wynika, że często popełnia się błąd, zostawiając część rezystancji „na stałe”, co powoduje przegrzewanie oporników i spadek sprawności. Dobre praktyki mówią jasno: rezystancje rozruchowe w silniku pierścieniowym służą tylko do startu i ewentualnie do krótkotrwałej regulacji przy rozruchu ciężkim, a praca ustalona powinna odbywać się przy zwartym wirniku. Z punktu widzenia charakterystyk mechanicznych oznacza to największą prędkość obrotową i najmniejsze straty mocy w rezystorach, co zaleca się w dokumentacjach producentów silników i w typowych układach stosowanych w przemyśle, np. przy napędzie suwnic czy dużych wentylatorów.

Pytanie 15

Na podstawie zamieszczonych wyników pomiarów rezystancji w przewodzie elektrycznym przedstawionym na ilustracji można stwierdzić, że żyły

Ilustracja do pytania
A. N i PE są zwarte oraz L3 jest przerwana.
B. N i L3 są zwarte oraz PE jest przerwana.
C. L1 i L2 są zwarte.
D. L1 i L2 są przerwane.
Poprawna odpowiedź wskazuje, że żyły N i PE są zwarte oraz L3 jest przerwana. Wyniki pomiarów rezystancji potwierdzają, że między żyłami N i PE nie ma oporu, co oznacza, że są one ze sobą połączone. Przykładowo, w instalacjach elektrycznych, żyła neutralna (N) oraz żyła ochronna (PE) powinny być połączone w punkcie zerowym, co jest zgodne z normami bezpieczeństwa. W przypadku, gdy rezystancja między L3.1 a L3.2 wynosi ∞, mamy do czynienia z przerwaniem w tej żyle, co może prowadzić do niebezpiecznych sytuacji, takich jak wzrost napięcia na żyłach fazowych. Istotne jest, aby przy każdorazowej kontroli instalacji elektrycznych stosować takie pomiary, aby zidentyfikować wszelkie nieprawidłowości. Praktyki te są zgodne z normami PN-IEC 60364, które określają wymagania dotyczące bezpieczeństwa instalacji elektrycznych. Zrozumienie tych zależności jest kluczowe dla zapewnienia bezpieczeństwa oraz długotrwałej eksploatacji instalacji elektrycznych.

Pytanie 16

Którą funkcję pełni układ elektryczny przedstawiony na schemacie?

Ilustracja do pytania
A. Zamienia prąd stały na przemienny.
B. Reguluje częstotliwość prądu przemiennego.
C. Steruje mocą prądu stałego.
D. Zamienia prąd przemienny na jednokierunkowy.
Poprawnie – na schemacie widać klasyczny trójfazowy mostek prostowniczy zbudowany z sześciu diod. Taki układ służy do zamiany prądu przemiennego (AC) na prąd jednokierunkowy, czyli wyprostowany (DC). Diody przewodzą tylko w jedną stronę, dlatego w każdym momencie przewodzą te, które akurat „wpuszczają” dodatnie półokresy na zacisk dodatni, a ujemne kierują na zacisk ujemny. Dzięki odpowiedniemu połączeniu sześciu diod z trzema fazami uzyskujemy na wyjściu stosunkowo mało tętniejące napięcie stałe. W praktyce taki prostownik znajdziesz np. w zasilaczach do napędów silników prądu stałego, w spawarkach inwertorowych, w prostownikach do ładowania akumulatorów trakcyjnych, w układach DC-link w przekształtnikach częstotliwości oraz w wielu zasilaczach przemysłowych. Z mojego doświadczenia wynika, że rozpoznawanie mostka prostowniczego na schematach to absolutna podstawa w technikum elektrycznym – później dochodzą tylko bardziej rozbudowane wersje: sterowane (z tyrystorami), z filtracją LC, z ograniczeniem prądu rozruchowego itd. W normach i dobrych praktykach projektowych zwraca się uwagę m.in. na prawidłowy dobór diod pod kątem prądu znamionowego, napięcia wstecznego oraz odprowadzania ciepła (radiatory, odpowiednia wentylacja). Ważne jest też poprawne prowadzenie przewodów fazowych i przewodu ochronnego zgodnie z PN-HD 60364, a także dobór zabezpieczeń nadprądowych po stronie AC i DC. W eksploatacji takich prostowników trzeba pamiętać o sprawdzeniu polaryzacji na wyjściu, bo odwrotne podłączenie obciążenia (np. akumulatora) może skończyć się uszkodzeniem diod. Ten typ układu nie zmienia częstotliwości ani nie steruje mocą w sensie regulacji, tylko właśnie prostuje – i to jest jego główna rola.

Pytanie 17

Który licznik należy zamontować w instalacji elektrycznej, aby umożliwić przedpłatowy system rozliczania energii elektrycznej?

Ilustracja do pytania
A. C.
B. A.
C. B.
D. D.
Wybór niewłaściwego licznika do instalacji elektrycznej, jak w przypadku odpowiedzi A, C czy D, może prowadzić do poważnych problemów w zakresie zarządzania zużyciem energii. Liczniki, które nie są przystosowane do systemu przedpłatowego, nie mogą umożliwić użytkownikom wprowadzania kodów doładowujących, co jest kluczowym elementem tego systemu. Liczniki tradycyjne, które są powszechnie instalowane w domach, umożliwiają jedynie pomiar zużycia energii bez interakcji ze stroną użytkownika w zakresie przedpłat. Takie urządzenia są zgodne z innymi standardami, ale nie mają funkcjonalności, która jest istotna w kontekście nowoczesnych systemów zarządzania energią. Typowym błędem myślowym jest założenie, że każdy licznik energii może funkcyjnie zastąpić licznik przedpłatowy. Różnice te są kluczowe, szczególnie w sytuacjach, gdy użytkownicy chcą mieć większą kontrolę nad swoimi wydatkami. Aby wdrożyć skuteczny system zarządzania energią w budynkach mieszkalnych czy komercyjnych, konieczne jest zrozumienie specyfiki liczników i ich przeznaczenia. Dlatego właściwy wybór licznika, który wspiera system przedpłatowy, jest nie tylko kwestią techniczną, ale również finansową.

Pytanie 18

Podczas wymiany uszkodzonego mechanicznie gniazda wtykowego w podtynkowej instalacji elektrycznej działającej w systemie TN-S, jakie czynności należy podjąć?

A. nałożyć warstwę cyny na końcówki przewodów
B. zasilić przewody o większym przekroju żył do najbliższej puszki łączeniowej
C. podłączyć poszczególne przewody do odpowiednich zacisków gniazda
D. wybrać gniazdo o wyższym prądzie znamionowym niż to uszkodzone
Wymienione odpowiedzi, które sugerują zastosowanie gniazda o większym prądzie znamionowym lub naniesienie warstwy cyny na końcówki przewodów, są nieprawidłowe i mogą prowadzić do poważnych błędów w instalacji elektrycznej. Użycie gniazda o większym prądzie znamionowym może wydawać się korzystne, jednak nie uwzględnia to możliwości przewodów oraz ich obciążalności prądowej. Każdy element instalacji elektrycznej powinien być dobrany zgodnie z jego przeznaczeniem oraz obciążeniem, do którego jest zaprojektowany. Zastosowanie gniazda o wyższej wartości niż przewody prowadzi do sytuacji, w której przewody mogą ulegać przegrzaniu, co w konsekwencji stwarza ryzyko pożaru. Co więcej, nanoszenie cyny na końcówki przewodów jest praktyką, która nie tylko może wprowadzać dodatkowe opory w połączeniu, ale także stwarza ryzyko korozji oraz osłabienia połączenia w dłuższym okresie użytkowania. W instalacjach elektrycznych kluczową rolę odgrywa jakość połączeń, które powinny być pewne i stabilne, aby uniknąć awarii. Niezależnie od tego, jak zaawansowane są technologie stosowane w instalacji, kluczowe jest przestrzeganie zasad dotyczących podłączania przewodów do właściwych zacisków oraz wykorzystanie odpowiednich materiałów i produktów w zgodzie z normami branżowymi, aby zapewnić bezpieczeństwo i funkcjonalność całej instalacji.

Pytanie 19

W miejsce cyfr dobierz symbole graficzne rodzaju przewodów, zachowując kolejność.

Ilustracja do pytania
A. C.
B. D.
C. A.
D. B.
Odpowiedź D jest poprawna, ponieważ zgodnie z zasadami podłączania przewodów w instalacjach elektrycznych, oznaczenia przewodów mają kluczowe znaczenie dla ich prawidłowego funkcjonowania. Przewód oznaczony grubą kropką reprezentuje przewód neutralny (N), podczas gdy przewody bez oznaczeń to przewody fazowe (L). W analizowanym schemacie widzimy, że do łącznika dochodzi przewód fazowy, a jego wyjście również prowadzi do przewodu fazowego. Odpowiedź D ilustruje tę sytuację, przedstawiając dwa przewody fazowe oraz jeden neutralny, co jest zgodne z normami i dobrymi praktykami branżowymi. Właściwe podłączenie przewodów jest istotne, aby zapewnić bezpieczeństwo instalacji oraz jej właściwe działanie. Przykładowo, w instalacjach oświetleniowych, prawidłowe oznaczenie i podłączenie przewodów ma kluczowe znaczenie dla uniknięcia zwarć oraz zapewnienia nieprzerwanego dostępu do energii elektrycznej.

Pytanie 20

Na której ilustracji przedstawiono kabel typu YAKY?

Ilustracja do pytania
A. Na ilustracji 4.
B. Na ilustracji 1.
C. Na ilustracji 2.
D. Na ilustracji 3.
Kabel typu YAKY to jeden z najczęściej stosowanych kabli energetycznych, który charakteryzuje się szczególnymi właściwościami izolacyjnymi. W kontekście omawianej ilustracji, kabel na ilustracji 2 wykazuje cechy typowe dla kabli YAKY, takie jak izolacja z polwinitu oraz oplot z PVC. Izolacja ta zapewnia wysoką odporność na działanie czynników atmosferycznych, a także na uszkodzenia mechaniczne, co czyni go idealnym do zastosowań w instalacjach wewnętrznych i zewnętrznych. Kable YAKY są często wykorzystywane w budownictwie do zasilania różnych urządzeń oraz w instalacjach oświetleniowych, ponieważ ich konstrukcja pozwala na bezpieczne prowadzenie energii elektrycznej. Dodatkowo, w ramach norm europejskich, kable YAKY spełniają wymagania dotyczące bezpieczeństwa przeciwpożarowego i ochrony środowiska, jak również są zgodne z dyrektywami RoHS, co potwierdza ich przydatność w nowoczesnych instalacjach elektrycznych.

Pytanie 21

Na którym rysunku przedstawiono przenośny uziemiacz służący do uziemiania żył przewodów instalacji kablowych w miejscu wykonywanych prac konserwacyjno-remontowych oraz w miejscu wyłączenia instalacji spod napięcia?

Ilustracja do pytania
A. D.
B. C.
C. A.
D. B.
Wybór odpowiedzi spoza opcji D wskazuje na brak zrozumienia podstawowych zasad dotyczących przenośnych uziemiaczy. Uziemiacze te są niezbędne w każdym środowisku, gdzie prowadzone są prace elektryczne, a ich właściwe zastosowanie może uchronić przed tragicznymi konsekwencjami. Odpowiedzi A, B i C mogą przedstawiać różne narzędzia, ale żadne z nich nie spełniają funkcji przenośnego uziemiacza. W praktyce, niektóre odpowiedzi mogą przedstawiać urządzenia, które są stosowane w inny sposób, na przykład narzędzia pomiarowe lub akcesoria, ale nie mają one zastosowania w kontekście tymczasowego uziemienia. Typowym błędem jest mylenie różnych narzędzi i ich funkcji, co prowadzi do nieprawidłowych wniosków o ich zastosowaniu. Przykładami tego mogą być różne narzędzia elektryczne, które nie mają charakterystyki uziemiającej. Właściwe zrozumienie funkcji przenośnego uziemiacza jest kluczowe, aby uniknąć sytuacji potencjalnie zagrażających zdrowiu i życiu, a także zapewnić bezpieczeństwo podczas prowadzenia prac konserwacyjnych. Standardy branżowe, takie jak OSHA oraz IEC, jasno określają konieczność stosowania uziemiaczy w odpowiednich miejscach pracy, co powinno być priorytetem w każdej sytuacji związanej z pracą z energią elektryczną.

Pytanie 22

Odbiornik elektryczny można przyłączyć do sieci typu TN-S stosując gniazdo umieszczone na rysunku

Ilustracja do pytania
A. C.
B. D.
C. A.
D. B.
Gniazdo typu B jest odpowiednie dla systemu TN-S, ponieważ zapewnia oddzielne zaciski dla przewodów ochronnego PE i neutralnego N. W systemie TN-S, kluczowym aspektem jest zachowanie separacji między tymi dwoma przewodami na całej długości instalacji, co minimalizuje ryzyko zakłóceń i zapewnia bezpieczeństwo użytkowników. Przykład zastosowania gniazda typu B można znaleźć w instalacjach elektrycznych w budynkach komercyjnych, gdzie stosowane są różnorodne odbiorniki elektryczne wymagające niezawodnego uziemienia oraz neutralnego przewodu. Dzięki oddzieleniu tych przewodów, osoby obsługujące gniazdo są lepiej chronione przed porażeniem elektrycznym. Zgodność z normami takimi jak PN-EN 60364-4-41, które określają wymagania dotyczące ochrony przed porażeniem elektrycznym, jest kluczowa dla zapewnienia wysokiego poziomu bezpieczeństwa w instalacjach elektrycznych.

Pytanie 23

Jakie narzędzia są konieczne do wytyczenia trasy instalacji przewodów elektrycznych montowanych na powierzchni?

A. Kątownik, młotek, punktak
B. Kątownik, ołówek traserski, sznurek traserski
C. Ołówek traserski, poziomnica, przymiar taśmowy
D. Ołówek traserski, przymiar kreskowy, rysik
Jakbyś wybrał zestaw narzędzi bez ołówka traserskiego, poziomnicy i przymiaru taśmowego, to mógłbyś mieć sporo kłopotów z trasowaniem drogi przewodów natynkowych. Na przykład, kątownik, młotek i punktak to nie jest najlepszy pomysł, bo młotek i punktak bardziej nadają się do wbijania, a nie do precyzyjnego pomiaru. Kątownik jest ok, gdy potrzebujesz kąty proste, ale niestety nie pomoże ci w trasowaniu. Zestaw z ołówkiem traserskim, przymiaru kreskowego i rysika też nie jest najlepszy, żeby uzyskać precyzyjne wyniki w instalacjach elektrycznych. Przymiar kreskowy bardziej jest do rysowania linii prostej, a nie do pomiaru. Ołówek traserski i rysik są używane w różnych technikach rysunkowych, ale w instalacjach elektrycznych liczy się, żeby mieć narzędzia, które pozwalają na dokładne poziomowanie i pomiar. Bardzo ważne jest, żeby nie mylić funkcji narzędzi, bo to może prowadzić do błędów przy montażu, a w efekcie do różnych problemów technicznych.

Pytanie 24

Która z wielkości elektrycznych jest mierzona w układzie przedstawionym na schemacie?

Ilustracja do pytania
A. Rezystancja przewodu ochronnego.
B. Impedancja pętli zwarcia.
C. Impedancja przewodu neutralnego.
D. Rezystancja uziemienia.
Rezystancja przewodu ochronnego jest kluczowym parametrem w systemach elektrycznych, który zapewnia bezpieczeństwo użytkowników i sprzętu. Miernik, który jest podłączony do przewodu ochronnego (PE), jest używany do pomiaru tej rezystancji, co jest szczególnie istotne w kontekście ochrony przed porażeniem prądem elektrycznym. Zgodnie z normami, takimi jak PN-EN 60364, rezystancja przewodu ochronnego powinna być na tyle niska, aby w przypadku wystąpienia awarii prąd zwarciowy mógł bezpiecznie przepływać, co umożliwia skuteczną pracę zabezpieczeń. Przykładem zastosowania tej wiedzy jest regularne przeprowadzanie pomiarów rezystancji przewodu ochronnego w instalacjach budowlanych, co pozwala na wczesne wykrywanie potencjalnych problemów, które mogą prowadzić do zagrożenia. Dobrą praktyką jest również prowadzenie dokumentacji z takich pomiarów, co może być przydatne w przypadku inspekcji lub weryfikacji zgodności instalacji z obowiązującymi normami.

Pytanie 25

Jakie akcesoria są wymagane do podłączenia gniazda wtyczkowego do instalacji zrealizowanej przewodami LY?

A. Ściągacz izolacji, wkrętak, próbnik
B. Ściągacz izolacji, lutownica, tester
C. Szczypce, wkrętak, lutownica
D. Tester, wkrętak, lutownica
Aby prawidłowo podłączyć gniazdo wtyczkowe do sieci wykonanej przewodami LY, niezbędne są trzy podstawowe narzędzia: ściągacz izolacji, wkrętak oraz próbnik. Ściągacz izolacji pozwala na bezpieczne usunięcie izolacji z końców przewodów, co jest kluczowe dla uzyskania dobrego kontaktu elektrycznego. Użycie ściągacza jest zalecane, aby uniknąć uszkodzenia miedzi wewnątrz przewodu. Wkrętak jest niezbędny do mocowania gniazda oraz łączenia przewodów w zaciskach. Próbnik z kolei umożliwia sprawdzenie, czy w obwodzie znajduje się napięcie, co jest niezwykle istotne dla zapewnienia bezpieczeństwa podczas pracy. Stosując te narzędzia, wykonawcy mogą zapewnić, że instalacja będzie zgodna z obowiązującymi normami, takimi jak PN-IEC 60364, które określają zasady dotyczące instalacji elektrycznych. Prawidłowe użycie tych narzędzi poprawia niezawodność całego systemu elektrycznego oraz minimalizuje ryzyko awarii.

Pytanie 26

Rodzaj której maszyny wirującej przedstawiono na ilustracji?

Ilustracja do pytania
A. Synchronicznej.
B. Komutatorowej prądu przemiennego.
C. Indukcyjnej klatkowej.
D. Indukcyjnej pierścieniowej.
Maszyna wirująca przedstawiona na ilustracji to maszyna synchroniczna, której główną cechą charakterystyczną jest zsynchronizowanie prędkości obrotowej wirnika z częstotliwością prądu zasilającego. W przypadku maszyn synchronicznych wirnik posiada bieguny magnetyczne, co można zauważyć na ilustracji, gdzie oznaczone są bieguny S i N. Uzwojenie stojana, rozmieszczone wokół wirnika, generuje pole magnetyczne, które synchronizuje się z polem wirnika. Praktycznym zastosowaniem maszyn synchronicznych są elektrownie, gdzie wykorzystywane są jako generatory prądu. Dzięki swojej stabilności i efektywności, maszyny te są również stosowane w napędach elektrycznych, w aplikacjach wymagających precyzyjnej kontroli prędkości i momentu obrotowego, takich jak w systemach automatyki przemysłowej. Warto również zauważyć, że w porównaniu do innych rodzajów maszyn, maszyny synchroniczne oferują wyższą efektywność energetyczną i mniejsze straty, co jest zgodne z najlepszymi praktykami w dziedzinie inżynierii elektrycznej.

Pytanie 27

Złącze wtykowe przedstawione na rysunku przeznaczone jest do zastosowań w obszarach zagrożonych

Ilustracja do pytania
A. wybuchem pyłu.
B. wyziewami żrącymi.
C. wzrostem temperatury.
D. nadmierną wilgotnością.
Wybór odpowiedzi dotyczący wzrostu temperatury, wyziewów żrących czy nadmiernej wilgotności wskazuje na nieporozumienie dotyczące zastosowania technologii o oznaczeniu "Ex". Złącza wtykowe z tym oznaczeniem nie są projektowane do ochrony przed skutkami wzrostu temperatury, co może dotyczyć innego rodzaju zabezpieczeń, takich jak elementy chłodzące lub izolacje termiczne. Wyziewy żrące, np. kwasy czy inne substancje chemiczne, mogą w rzeczywistości wymagać złączy odpornych na korozję, co jest innym aspektem niż ochronne właściwości oznaczenia Ex. Nadmierna wilgotność to zjawisko, które również nie odnosi się do zagrożeń wybuchowych, lecz może prowadzić do problemów z korozją, co wymaga użycia złączy odpornych na działanie wilgoci. Kluczowym błędem w myśleniu jest utożsamienie złączy Ex z innymi zagrożeniami, które nie są związane z atmosferami wybuchowymi. W kontekście norm i regulacji, należy zrozumieć, że złącza Ex są certyfikowane wyłącznie dla specyficznych warunków pracy, co nie obejmuje pozostałych wymienionych zagrożeń, dlatego ich wybór powinien być ściśle powiązany z rzeczywistymi warunkami panującymi w danym środowisku pracy.

Pytanie 28

Na którym rysunku przedstawiono szybkozłączkę do puszek instalacyjnych?

Ilustracja do pytania
A. C.
B. B.
C. D.
D. A.
Szybkozłączka do puszek instalacyjnych, jak pokazano w rysunku D, to kluczowy element w nowoczesnych instalacjach elektrycznych, umożliwiający szybkie i bezpieczne łączenie przewodów. Element ten charakteryzuje się przezroczystą obudową, co pozwala na wizualną kontrolę poprawności połączenia. Żółte dźwignie są przeznaczone do zaciskania przewodów, co eliminuje potrzebę użycia narzędzi i przyspiesza proces instalacji. Szybkozłączki tego typu znajdują zastosowanie w różnych aplikacjach, od domowych instalacji elektrycznych po bardziej skomplikowane systemy przemysłowe, gdzie czas montażu jest kluczowy. Warto zwrócić uwagę na normy IEC 60947-7-1, które regulują użycie takich połączeń w instalacjach, zapewniając bezpieczeństwo i niezawodność. Prawidłowe użycie szybkozłączek zmniejsza ryzyko błędów instalacyjnych oraz zapewnia łatwość konserwacji i rozbudowy instalacji.

Pytanie 29

Podczas pomiarów kontrolnych, przed odbiorem mieszkania, wykryto usterkę w instalacji oświetleniowej. Na zdjęciu przedstawiono fragment pomieszczenia przed tynkowaniem i wykonaniem wylewek. W celu wymiany uszkodzonych przewodów typu DY 1,5 mm2, prowadzonych w rurach instalacyjnych giętkich, należy w pierwszej kolejności

Ilustracja do pytania
A. wyciągnąć stare przewody z rur i wciągnąć nowe za pomocą sprężystego drutu stalowego.
B. do końców starych przewodów zamocować nowe i wyciągając stare wprowadzać do rur nowe przewody.
C. rozkuć ściany i podłogę oraz wymienić uszkodzone odcinki instalacji.
D. rozkuć ściany, wprowadzić nowe przewody w ścianach i listwach przypodłogowych.
Odpowiedź polegająca na zamocowaniu nowych przewodów do końców starych i wyciąganiu ich podczas wprowadzania nowych jest najbardziej efektywnym sposobem wymiany uszkodzonych przewodów w instalacji elektrycznej. Metoda ta minimalizuje inwazyjność pracy, co jest kluczowe w kontekście renowacji pomieszczeń. Działając w ten sposób, oszczędzamy czas i koszty związane z ewentualnymi naprawami ścian i podłóg. Ponadto, stosując ten sposób, możemy zachować integralność istniejącej instalacji, unikając potencjalnego uszkodzenia rur, co może prowadzić do dodatkowych kosztów. W praktyce, ta technika jest szeroko zalecana w standardach branżowych, takich jak PN-IEC 60364, które podkreślają znaczenie skutecznych i bezpiecznych metod naprawy instalacji elektrycznych. Warto również dodać, że przy tej metodzie kluczowe jest użycie odpowiednich materiałów, takich jak przewody o właściwej specyfikacji oraz narzędzi, które umożliwiają precyzyjne wykonanie wymiany.

Pytanie 30

Prędkość obrotowa silnika w układzie przedstawionym na schemacie regulowana jest przez zmianę wartości

Ilustracja do pytania
A. częstotliwości napięcia zasilania.
B. rezystancji obwodu twornika.
C. napięcia twornika.
D. prądu wzbudzenia.
Wybór prądu wzbudzenia jako metody regulacji prędkości obrotowej silnika może prowadzić do nieporozumień, ponieważ w rzeczywistości przystosowanie prądu wzbudzenia wpływa na siłę elektromotoryczną (SEM), a nie bezpośrednio na prędkość obrotową. Mimo że zwiększenie prądu wzbudzenia w silniku prądu stałego może w pewnym stopniu zwiększyć moment obrotowy, to nie jest to efektywna metoda regulacji prędkości. Podobnie, zmiana częstotliwości napięcia zasilania jest właściwa dla silników prądu zmiennego, a nie dla silników prądu stałego, gdzie kluczowym parametrem jest napięcie przyłożone do twornika. Rezystancja obwodu twornika także nie jest metodą regulacji prędkości, lecz wpływa na straty mocy oraz wydajność silnika. Często występuje błędne przekonanie, że można regulować prędkość bezpośrednio przez te parametry, co prowadzi do nieefektywności operacyjnych i nieoptymalnych wyników w praktyce. W kontekście zastosowań przemysłowych, wybór niewłaściwej metody regulacji może skutkować nadmiernym zużyciem energii, a także uszkodzeniami silnika, co jest niezgodne z najlepszymi praktykami inżynieryjnymi.

Pytanie 31

Jakie jest wymagane napięcie testowe przy pomiarze rezystancji izolacji obwodów w instalacjach elektrycznych 230/400 V?

A. 1000 V
B. 750V
C. 250V
D. 500V
Wymagane napięcie probiercze przy badaniu rezystancji izolacji obwodów w instalacjach elektrycznych 230/400 V wynosi 500 V. Taki poziom napięcia jest zgodny z normami określonymi w dokumentach takich jak PN-EN 61557-2, które regulują przeprowadzanie badań izolacji. Stosowanie napięcia 500 V jest efektywne w testowaniu izolacji, gdyż pozwala na uzyskanie rzetelnych wyników, przy jednoczesnym minimalizowaniu ryzyka uszkodzenia izolacji. Praktyczne zastosowanie tego napięcia jest szczególnie widoczne w instalacjach o napięciu roboczym 230/400 V, gdzie niskie napięcie mogłoby nie ujawnić potencjalnych problemów, a zbyt wysokie mogłoby prowadzić do uszkodzeń lub fałszywych odczytów. Regularne testy rezystancji izolacji przy użyciu odpowiednich napięć są kluczowe dla zapewnienia bezpieczeństwa i niezawodności instalacji elektrycznych, co wynika z praktyk branżowych oraz przepisów BHP.

Pytanie 32

Podaj rodzaj i miejsce uszkodzenia w trójfazowym silniku indukcyjnym o uzwojeniach połączonych w gwiazdę, jeżeli wyniki pomiarów rezystancji jego uzwojeń przedstawione są w tabeli.

Rezystancja między zaciskamiWartość
U - V20,0 Ω
V - W15,0 Ω
W - U15,0 Ω
A. Zwarcie międzyzwojowe w fazie V
B. Przerwa w uzwojeniu fazy W
C. Zwarcie międzyzwojowe w fazie W
D. Przerwa w uzwojeniu fazy V
Odpowiedź "Zwarcie międzyzwojowe w fazie W" jest prawidłowa, ponieważ analiza wyników pomiarów rezystancji uzwojeń trójfazowego silnika indukcyjnego wskazuje na istotne różnice w wartościach rezystancji, które są kluczowym wskaźnikiem stanu uzwojeń. W przypadku uzwojenia W, wartość rezystancji wynosi 5,0 Ω, co jest znacznie niższe od wartości uzwojeń U i V, które wynoszą odpowiednio 20,0 Ω i 15,0 Ω. Taka różnica wskazuje na wystąpienie zwarcia międzyzwojowego. W praktyce, gdy rezystancja jednego z uzwojeń jest znacznie niższa, oznacza to, że w tym uzwojeniu doszło do nieprawidłowości, która prowadzi do utraty właściwości izolacyjnych. W przypadku silników indukcyjnych, regularne monitorowanie rezystancji uzwojeń jest kluczowe dla wczesnego wykrywania uszkodzeń, co pozwala na zapobieganie poważniejszym awariom. Standardy branżowe, takie jak IEC 60034, podkreślają znaczenie regularnych przeglądów oraz testów, by zapewnić niezawodność i efektywność pracy urządzeń elektrycznych. Dodatkowo, znajomość typowych uszkodzeń, takich jak zwarcia międzyzwojowe, jest niezbędna dla techników w celu szybkiej diagnozy i naprawy silników elektrycznych.

Pytanie 33

Na której ilustracji przedstawiono kabel typu YAKY?

Ilustracja do pytania
A. Na ilustracji 3.
B. Na ilustracji 4.
C. Na ilustracji 2.
D. Na ilustracji 1.
Kabel typu YAKY jest szczególnym rodzajem kabla elektroenergetycznego, który charakteryzuje się żyłami aluminiowymi oraz izolacją wykonaną z polichlorku winylu (PVC). Na ilustracji 4 widać kabel z żyłami aluminiowymi, co jest kluczową cechą tego typu kabla. Kabel YAKY jest powszechnie stosowany w instalacjach elektrycznych, gdzie wymagane są wysokie parametry przewodzenia prądu oraz odporność na warunki atmosferyczne. Dzięki zastosowaniu żył aluminiowych, kabel ten jest lżejszy i tańszy niż jego miedziane odpowiedniki, co czyni go popularnym wyborem w gospodarce energetycznej. W praktyce, kable YAKY są często używane w rozdzielniach, do zasilania budynków, a także w instalacjach przesyłowych. Warto również podkreślić, że standardy branżowe, takie jak PN-EN 50525, regulują parametry techniczne dla kabli tego typu, zapewniając ich bezpieczeństwo i efektywność w eksploatacji.

Pytanie 34

Który zestaw oznaczeń literowych barw izolacji żył jest właściwy dla przewodu przedstawionego na rysunku?

Ilustracja do pytania
A. BN, BK, GY
B. BN, BK, GNYE
C. BK, BU, GY
D. BU, GY, GNYE
Odpowiedź "BN, BK, GY" jest prawidłowa, ponieważ odpowiada kolorom izolacji przewodów przedstawionych na rysunku. Przewód brązowy (BN) jest powszechnie stosowany jako przewód fazowy w instalacjach elektrycznych, podczas gdy przewód czarny (BK) również może być używany w tej roli, szczególnie w konfiguracjach wielofazowych. Przewód szary (GY) jest zazwyczaj stosowany jako przewód neutralny, co jest zgodne z normą PN-IEC 60446, która określa zasady oznaczania kolorami przewodów elektrycznych. Zastosowanie odpowiednich kolorów jest istotne dla bezpieczeństwa i efektywności instalacji, umożliwiając identyfikację funkcji każdego przewodu w systemie. Dobrą praktyką w projektowaniu i wykonawstwie instalacji elektrycznych jest stosowanie ustalonych kolorów izolacji, co ułatwia późniejsze prace konserwacyjne oraz diagnostyczne, zmniejszając ryzyko błędów.

Pytanie 35

Na rysunku przedstawiono sposób podłączenia miernika MZC-201 do pomiaru

Ilustracja do pytania
A. rezystancji uziomu.
B. rezystancji izolacji.
C. impedancji pętli zwarcia.
D. ciągłości połączeń ochronnych.
Zrozumienie różnych rodzajów pomiarów elektrycznych jest kluczowe dla prawidłowego funkcjonowania instalacji elektrycznych. Odpowiedzi dotyczące ciągłości połączeń ochronnych, rezystancji izolacji oraz impedancji pętli zwarcia są związane z innymi ważnymi aspektami, ale nie dotyczą pomiaru rezystancji uziomu w sposób przedstawiony na rysunku. Ciągłość połączeń ochronnych dotyczy sprawdzenia, czy wszystkie elementy systemu ochrony są właściwie połączone, co jest istotne dla skuteczności ochrony przed porażeniem prądem, ale nie oblicza bezpośrednio wartości rezystancji uziomu. Rezystancja izolacji odnosi się do zdolności materiałów izolacyjnych do minimalizowania niepożądanych prądów, co również nie jest przedmiotem tego pomiaru. Z kolei impedancja pętli zwarcia dotyczy analizy skuteczności zabezpieczeń przed zwarciami w instalacji, co jest zupełnie innym zagadnieniem. Typowe błędy myślowe, które prowadzą do takich nieprawidłowych wniosków, obejmują mylenie różnych rodzajów pomiarów oraz brak zrozumienia kontekstu zastosowania miernika MZC-201. Właściwe podejście do pomiaru rezystancji uziomu jest fundamentem dla zapewnienia bezpieczeństwa oraz zgodności z obowiązującymi normami i praktykami w branży elektrycznej.

Pytanie 36

Zamontowanie gniazda wtyczkowego bez styku ochronnego i dołączenie do niego urządzenia elektrycznego I klasy ochronności spowoduje

A. zagrożenie porażeniem prądem elektrycznym.
B. uszkodzenie urządzenia elektrycznego.
C. zwarcie w instalacji elektrycznej.
D. przeciążenie instalacji elektrycznej.
Prawidłowo – kluczowy problem w tym pytaniu to ochrona przeciwporażeniowa urządzeń I klasy ochronności. Urządzenia tej klasy mają obudowę metalową połączoną ze stykiem ochronnym (bolcem) w gnieździe. Ten styk musi być połączony z przewodem ochronnym PE w instalacji. Dzięki temu, jeśli nastąpi uszkodzenie izolacji i przewód fazowy dotknie obudowy, prąd popłynie przez PE, a zabezpieczenie (wyłącznik nadprądowy, bezpiecznik, wyłącznik różnicowoprądowy) szybko zadziała i odłączy zasilanie. Jeżeli zamontujemy gniazdo bez styku ochronnego i podłączymy do niego urządzenie I klasy, to obudowa zostaje „zawieszona w powietrzu” – nie ma połączenia ochronnego. W razie przebicia fazy na obudowę, metalowe części mogą znaleźć się pod napięciem 230 V względem ziemi. Użytkownik, który dotknie obudowy i jednocześnie np. kaloryfera, zlewu, podłogi betonowej, może stać się ścieżką przepływu prądu. To właśnie jest typowe zagrożenie porażeniem prądem elektrycznym. Z punktu widzenia norm (PN-HD 60364 i ogólne zasady SEP) stosowanie gniazd bez styku ochronnego w nowych instalacjach jest niedopuszczalne, jeżeli mają być tam podłączane urządzenia I klasy. W praktyce oznacza to, że w mieszkaniach, warsztatach, biurach powinny być montowane gniazda ze stykiem ochronnym, a przewód ochronny musi być poprawnie podłączony. Moim zdaniem każdy elektryk powinien mieć odruch: urządzenie z wtyczką z bolcem → tylko do gniazda ze stykiem ochronnym. Stare „płaskie” gniazdka bez bolca to relikt, który w zastosowaniach ogólnych jest po prostu niebezpieczny.

Pytanie 37

Którego z przedstawionych narzędzi należy użyć do potwierdzenia obecności napięcia elektrycznego w przewodzie?

Ilustracja do pytania
A. Narzędzia 2.
B. Narzędzia 1.
C. Narzędzia 4.
D. Narzędzia 3.
Poprawnie wskazane zostało narzędzie 2, czyli próbnik / wskaźnik napięcia. To właśnie tego typu przyrząd służy do bezpośredniego potwierdzenia obecności napięcia elektrycznego w przewodzie. W praktyce elektrycznej mówi się wręcz, że zanim czegokolwiek dotkniesz, najpierw sprawdź, czy jest tam napięcie – i robi się to właśnie wskaźnikiem napięcia. Narzędzie 2 jest zaprojektowane specjalnie do pracy na instalacjach elektrycznych: ma odpowiednią izolację, najczęściej oznaczenie zakresu napięć (np. 12–690 V AC/DC), klasę bezpieczeństwa CAT oraz spełnia wymagania norm, np. PN-EN 61243 dotyczącej wskaźników napięcia. Z mojego doświadczenia to jedno z podstawowych narzędzi w kieszeni elektryka, zaraz obok miernika uniwersalnego. Taki wskaźnik pozwala szybko sprawdzić, czy przewód fazowy jest pod napięciem, czy obwód został poprawnie wyłączony, a także czy nie ma przypadkowego zasilania zwrotnego z innego obwodu. Używa się go np. przy wymianie gniazda, łącznika oświetleniowego, przy pracach w rozdzielnicy, przy sprawdzaniu, który przewód jest fazowy, a który neutralny. Co ważne, profesjonalne wskaźniki napięcia często mają funkcję detekcji napięcia bezdotykowo lub z niewielkim dotykiem, co dodatkowo zwiększa bezpieczeństwo. Dobre praktyki branżowe mówią też o zasadzie: sprawdź – wyłącz – zabezpiecz – ponownie sprawdź. Ten drugi etap sprawdzenia wykonuje się właśnie takim narzędziem jak nr 2, bo zwykły śrubokręt czy inne przyrządy nie dają wiarygodnej informacji o obecności napięcia. Dlatego wybór narzędzia 2 jest jak najbardziej zgodny z praktyką zawodową i przepisami BHP dotyczącymi pracy pod napięciem i w pobliżu napięcia.

Pytanie 38

Na którym rysunku przedstawiono schemat połączeń umożliwiający pomiar energii elektrycznej pobranej przez użytkownika?

Ilustracja do pytania
A. B.
B. A.
C. C.
D. D.
Błędne odpowiedzi mogą być wynikiem nieporozumień co do tego, jak działają liczniki energii i ich podłączenie w obwodach elektrycznych. Schematy A, B i D mogą mieć błędy w połączeniu przewodów fazowych i neutralnych, co prowadzi do złego pomiaru energii. Często myli się, że licznik może być podłączony równolegle do obciążenia, a to wcale nie działa, bo licznik wtedy nie zmierzy przepływu prądu. Właściwy pomiar wymaga szeregowego połączenia, żeby licznik był w torze prądowym. Dodatkowo, jeśli źle rozumie się rolę przewodów, można mieć problem z ich zidentyfikowaniem, co może być niebezpieczne. Warto zwrócić uwagę na normy i przepisy dotyczące instalacji elektrycznych, bo pokazują, jak ważne jest bezpieczeństwo i poprawność podłączeń. Zrozumienie zasad działania systemów pomiarowych oraz ich prawidłowego podłączenia jest kluczowe, żeby zapewnić bezpieczeństwo i efektywność energetyczną w codziennym użytkowaniu energii.

Pytanie 39

Na którym rysunku przedstawiono przewód instalacyjny wtynkowy typu YDYt?

Ilustracja do pytania
A. C.
B. A.
C. D.
D. B.
Poprawna odpowiedź to B, ponieważ przewód instalacyjny wtynkowy typu YDYt jest miedzianym przewodem jednodrutowym, który ma charakterystyczną izolację z PVC. Takie przewody są projektowane do stosowania w instalacjach elektrycznych, w miejscach, gdzie można je przybijać do ścian bez ryzyka uszkodzenia izolacji. Na zdjęciu B widzimy przewód, w którym żyły są oddzielone, co rzeczywiście odpowiada normom dla przewodów tego typu. Przewody YDYt są często wykorzystywane w instalacjach wewnętrznych, gdzie ich układ nie wymaga dodatkowej ochrony mechanicznej. Dzięki swojej konstrukcji, przewody te pozwalają na łatwy montaż i estetyczne wykończenie, co jest szczególnie ważne w budynkach mieszkalnych i biurowych. W praktyce oznacza to, że instalatorzy mogą je stosować w różnych konfiguracjach, co wpływa na elastyczność projektowania instalacji elektrycznych. Zgodność z normami PN-EN 60228 oraz PN-EN 50525-2-21 potwierdza ich jakość oraz bezpieczeństwo użytkowania.

Pytanie 40

Z którym zaciskiem będzie połączony zacisk 41 stycznika K2 według przedstawionego schematu montażowego?

Ilustracja do pytania
A. Z zaciskiem 4 listwy zaciskowej X1
B. Z zaciskiem 22 stycznika K1
C. Z zaciskiem 3 listwy zaciskowej X1
D. Z zaciskiem A2 stycznika K1
Wybór zacisku 3 listwy zaciskowej X1 jako poprawnej odpowiedzi jest uzasadniony analizą schematu montażowego, który jasno pokazuje połączenie pomiędzy tym zaciskiem a zaciskiem 41 stycznika K2. W praktyce, prawidłowe połączenie zacisków jest kluczowe dla zapewnienia właściwego działania systemów elektrycznych. W przypadku styczników, ich poprawne podłączenie wpływa na stabilność i bezpieczeństwo całego obwodu. W standardach branżowych, takich jak normy IEC 60947, zwraca się uwagę na znaczenie właściwego oznaczenia i połączeń w systemach automatyki, co pozwala na uniknięcie błędów w instalacji oraz ułatwia diagnostykę i konserwację. Zastosowanie logicznego podejścia do analizy schematu oraz znajomość standardów elektrycznych pomagają w skutecznym projektowaniu i wdrażaniu systemów, co jest niezbędne w każdej pracy zawodowej związanej z elektryką.