Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik geodeta
  • Kwalifikacja: BUD.18 - Wykonywanie pomiarów sytuacyjnych, wysokościowych i realizacyjnych oraz opracowywanie wyników tych pomiarów
  • Data rozpoczęcia: 8 grudnia 2025 13:04
  • Data zakończenia: 8 grudnia 2025 13:07

Egzamin niezdany

Wynik: 4/40 punktów (10,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Punkty umieszczane na powierzchni monitorowanego obiektu, które sygnalizują zmiany lokalizacji elementów obiektu, to punkty

A. kontrolne
B. wiążące
C. odniesienia
D. kontrolowane
Odpowiedź 'kontrolowane' jest poprawna, ponieważ punkty kontrolowane to specyficzne punkty umieszczane na monitorowanym obiekcie, które służą do obserwacji i analizy zmian w ich położeniu. Używane są w różnych dziedzinach, takich jak inżynieria, geodezja czy monitorowanie konstrukcji, aby ocenić deformacje, ruchy czy inne zmiany w czasie. Przykładowo, w budownictwie punkty kontrolowane mogą być wykorzystane do monitorowania osiadania fundamentów budynku po jego wybudowaniu. Zastosowanie takich punktów jest zgodne z najlepszymi praktykami branżowymi, takimi jak standardy geodezyjne, które sugerują regularne pomiary oraz dokumentację wyników, co ułatwia analizę zmian oraz identyfikację ewentualnych problemów w konstrukcji. W kontekście systemów monitorowania, punkty kontrolowane pozwalają na automatyzację procesów i poprawiają dokładność pomiarów poprzez zastosowanie technologii takich jak GPS czy skanowanie laserowe, które mogą być zintegrowane z systemami zarządzania obiektami.

Pytanie 2

Korzystając z danych zamieszczonych w tabeli, oblicz kąt skręcenia pomiędzy układami współrzędnych wtórnym i pierwotnym.

Numer punktuUkład pierwotnyUkład wtórny
XpYpXwYw
1100,00100,00400,00400,00
2123,00134,00377,00366,00
3145,00162,00355,00338,00
4200,00200,00300,00300,00
A. 200g
B. 250g
C. 300g
D. 50g

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prawidłowa odpowiedź to 200g, co oznacza kąt skręcenia między układami współrzędnych wtórnym i pierwotnym. Aby obliczyć kąt skręcenia, ważne jest zrozumienie, jak układy współrzędnych są ze sobą powiązane. Kąt ten można określić poprzez analizę różnic między danymi w układzie pierwotnym a tymi w układzie wtórnym. W praktyce, poprawne obliczenie kąta skręcenia jest kluczowe w dziedzinach takich jak inżynieria, architektura oraz robotyka, gdzie precyzyjne określenie orientacji obiektów jest niezbędne do prawidłowego działania mechanizmów i systemów. Kiedy zmieniamy orientację układów współrzędnych, musimy uwzględnić nie tylko kąt, ale także zmiany w lokalizacji oraz ewentualne przekształcenia, które mogą wpłynąć na dalsze obliczenia. Znajomość prawidłowego obliczania kąta skręcenia jest zgodna z najlepszymi praktykami w zakresie projektowania systemów, w których precyzja ma kluczowe znaczenie dla ich funkcjonowania.

Pytanie 3

Znaki geodezyjne, które nie są objęte ochroną, to

A. budowle triangulacyjne
B. punkty osnowy geodezyjnej
C. kamienie graniczne
D. repety robocze
Kamienie graniczne są stałymi elementami, które pełnią kluczową rolę w geodezji, szczególnie w kontekście wyznaczania granic działek i nieruchomości. Ich ochrona ma na celu zapobieganie przypadkowemu usunięciu lub zniszczeniu, co mogłoby prowadzić do niejasności prawnych dotyczących własności. Punkty osnowy geodezyjnej stanowią fundament dla wszystkich działań geodezyjnych. Są to precyzyjnie zlokalizowane punkty, które są używane jako odniesienia do pomiarów, co czyni je niezbędnymi dla zachowania integralności danych geodezyjnych. Budowle triangulacyjne, takie jak wieże triangulacyjne, również podlegają szczególnej ochronie, ponieważ ich obecność jest kluczowa dla realizacji pomiarów geodezyjnych na szeroką skalę. Ochrona tych elementów jest zgodna z obowiązującymi normami geodezyjnymi i standardami pracy w tej dziedzinie. Typowe błędy myślowe, które prowadzą do niepoprawnych wniosków, obejmują mylenie repety roboczych z punktami osnowy oraz niezrozumienie znaczenia ochrony znaków geodezyjnych dla prawidłowego funkcjonowania systemu geodezyjnego. Ochrona znaków geodezyjnych jest niezbędna do zapewnienia spójności i dokładności pomiarów, co jest kluczowe dla rozwoju infrastruktury i zarządzania przestrzenią. Dlatego ważne jest, aby mieć świadomość, które elementy podlegają ochronie, a które są tymczasowe i zasługują na inny status w kontekście prac geodezyjnych.

Pytanie 4

Na podstawie danych zamieszczonych w tabeli, oblicz wartość współczynnika kierunkowego cos A linii pomiarowej A-B, który jest stosowany do obliczenia współrzędnych punktu pomierzonego metodą ortogonalną.

ΔXA-B = 216,11 mΔYA-B = 432,73 mdA-B = 483,69 m
sin AA-B = ΔYA-B / dA-B          cos AA-B = ΔXA-B / dA-B
A. cos A = 0,4994 A-B
B. cos A = 2,2382 A-B
C. cos A = 0,4468 A-B
D. cos A = 2,0024 A-B

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wartość współczynnika kierunkowego cos A dla linii pomiarowej A-B wynosząca 0,4468 jest prawidłowa i wynika z zastosowania wzoru, który polega na podziale różnicy współrzędnych X punktów A i B przez odległość między nimi. W praktyce, obliczając współrzędne punktu pomierzonego metodą ortogonalną, kluczowe jest uwzględnienie precyzyjnych danych o położeniu punktów, co pozwala na uzyskanie wiarygodnych wyników. Zastosowanie współczynnika kierunkowego w geodezji i kartografii jest niezbędne, aby prawidłowo określić lokalizację punktu w przestrzeni. W ramach standardów geodezyjnych, takich jak PN-EN ISO 19111, wskazuje się na znaczenie dokładnych obliczeń kierunkowych dla zapewnienia wysokiej jakości danych przestrzennych, które są fundamentem wielu analiz w inżynierii, planowaniu przestrzennym czy ochronie środowiska. Użycie współczynnika kierunkowego w praktyce pozwala nie tylko na obliczenia, ale także na wizualizację relacji przestrzennych, co jest niezbędne w nowoczesnych systemach informacji geograficznej (GIS).

Pytanie 5

Podstawowym krokiem w procesie tworzenia pierwotnej mapy tradycyjną metodą jest umieszczenie na arkuszu ramki sekcyjnej oraz siatki kwadratów. Jakim narzędziem nie można przenieść siatki kwadratów na zdefiniowany arkusz?

A. Nanosnika biegunowego
B. Podziałki transwersalnej i kroczka
C. Koordynatografu
D. Kwadratnicy z nakłuwaczem

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Nanosnik biegunowy jest przyrządem, który nie jest przeznaczony do nanoszenia siatki kwadratów na arkusz, lecz służy do określania kierunków i pomiarów kątowych. W tradycyjnym procesie tworzenia pierworysu mapy, kluczowe jest precyzyjne naniesienie siatki kwadratów, co umożliwia dalsze odwzorowanie i szczegółowe pomiary. Nanosnik biegunowy wprowadza pewne ograniczenia, gdyż nie ma on możliwości bezpośredniego wprowadzenia siatki; zamiast tego, zaleca się korzystanie z narzędzi takich jak koordynatograf, który precyzyjnie pozwala na ustawienie i przenoszenie punktów oraz linii na arkusz. Standardy branżowe zalecają stosowanie narzędzi, które zapewniają wysoką dokładność i precyzję, co jest kluczowe w kartografii. W praktyce, aby uzyskać dokładny pierworys, powinno się wykorzystywać sprzęt, który umożliwia bezbłędne odwzorowanie obiektów na mapie, co w przypadku nanosnika biegunowego nie jest możliwe.

Pytanie 6

Topograficzny opis punktu osnowy pomiarowej nie zawiera

A. numeru punktu osnowy, który jest opisywany
B. nazwiska geodety, który sporządził opis
C. miar umożliwiających lokalizację znaku
D. skali przygotowania opisu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kiedy piszesz opis topograficzny punktu osnowy, warto skupić się na najważniejszych informacjach. Nie ma sensu trzymać się jakiejś skali opracowania. Owszem, skala jest ważna w przypadku map czy planów, ale przy punktach osnowy liczą się inne dane. Musisz podać numer punktu, żeby można go było zlokalizować w terenie. No i dobrze jest dodać, kto ten punkt opracował - nazwisko geodety. Użycie skali w tym przypadku nie jest standardem, bo pomiar powinien opierać się na dokładnych współrzędnych, które są przecież dużo bardziej przydatne. Jak się spojrzy na standardy geodezyjne, to widać, że kładą nacisk na precyzję lokalizacji, a nie na opis przez pryzmat skali. Także, pomijając tę skalę w opisie punktu, robisz dobrze.

Pytanie 7

Która z metod pomiarów sytuacyjnych szczegółów terenowych opiera się na pomiarze kątów oraz odległości przy użyciu tachimetru?

A. Biegunowa
B. Wcięć kątowych
C. Domiarów prostokątnych
D. Ortogonalna

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Metoda biegunowa to naprawdę podstawowa rzecz w geodezji. Chodzi o to, żeby zmierzyć kąty i odległości przy pomocy tachimetru. Dzięki temu, można dokładnie ustalić, gdzie są punkty w terenie, w odniesieniu do jednego, wybranego punktu. Tachimetr łączy w sobie teodolity i dalmierze, co pozwala na jednoczesne odczyty kątów poziomych i pionowych oraz dystansów do różnych punktów. To wszystko sprawia, że pomiary są efektywniejsze i bardziej precyzyjne. Metoda biegunowa jest szczególnie przydatna, gdy teren jest trudny do ogarnięcia, albo gdy potrzebujemy szybko i dokładnie zarejestrować teren. W branży są też różne normy, jak te ISO dotyczące pomiarów, które mówią, jak ważne jest korzystanie z tej metody w geodezji i inżynierii, czy przy tworzeniu map.

Pytanie 8

Jeśli dokonano poniższych pomiarów kąta pionowego: w pierwszym ustawieniu lunety KL = 83,3400g oraz w drugim ustawieniu lunety KP = 316,6700g, to wartość kąta nachylenia α wynosi

A. 83,3350g
B. 16,6650g
C. 83,3400g
D. 16,6700g

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby obliczyć wartość kąta nachylenia α na podstawie odczytów lunety, należy zastosować odpowiednią formułę, która polega na odjęciu wartości odczytu w położeniu I od wartości odczytu w położeniu II. W tym przypadku, odczyt w położeniu II wynosi 316,6700g, a w położeniu I 83,3400g. Obliczenie tego daje: α = KP - KL = 316,6700g - 83,3400g = 233,3300g. Jednak, aby uzyskać kąt nachylenia w kontekście geodezyjnym, należy zauważyć, że kąt nachylenia w kontekście pomiarów geodezyjnych jest często wyrażany jako kąt w stosunku do poziomu, a nie w bezwzględnych jednostkach. W takim przypadku, odpowiednia wartość α, jaką otrzymujemy (16,6650g), odnosi się do różnicy wysokości lub kątów nachylenia. W praktyce, poprawne obliczenie kątów nachyleń jest kluczowe w wielu zastosowaniach geodezyjnych oraz inżynieryjnych, takich jak budowa dróg, mostów czy budynków, gdzie precyzyjne pomiary wysokości i nachyleń mają fundamentalne znaczenie dla bezpieczeństwa oraz trwałości konstrukcji.

Pytanie 9

Jaki jest błąd względny w pomiarze odcinka długości 250,00 m, jeśli jego długość zmierzono z błędem średnim ±5 cm?

A. 1/500
B. 1/5000
C. 1/50
D. 1/100

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Błąd względny to stosunek błędu pomiarowego do wartości rzeczywistej pomiaru, wyrażony najczęściej w procentach lub w postaci ułamka. W tym przypadku mamy pomiar odcinka o długości 250,00 m z błędem średnim ±5 cm. Aby obliczyć błąd względny, najpierw musimy przeliczyć błąd na metry: 5 cm to 0,05 m. Następnie stosujemy wzór na błąd względny: Błąd względny = (błąd pomiaru / wartość rzeczywista) = (0,05 m / 250 m). Po wykonaniu obliczeń otrzymujemy błąd względny równy 0,0002, co po przekształceniu daje 1/5000. Ta wiedza jest niezwykle przydatna w praktyce, zwłaszcza w inżynierii i naukach ścisłych, gdzie precyzyjne pomiary są kluczowe. Zrozumienie błędów pomiarowych pozwala na lepsze projektowanie eksperymentów oraz stosowanie odpowiednich narzędzi do ich analizy. Współczesne standardy w zakresie metrologii zalecają regularne kalibracje urządzeń pomiarowych, aby zminimalizować błędy, co potwierdza znaczenie tego zagadnienia w praktyce.

Pytanie 10

Na podstawie zamieszczonych w tabeli wyników pomiarów punktów kontrolowanych, oblicz przemieszczenie pionowe punktu nr 3.

Nr punktuPomiar pierwotny
Hp [m]
Pomiar wtórny
Hw [m]
1521,2578521,2480
2521,2521521,2410
3521,2610521,2554
4521,2586521,2533
5521,2567521,2458
6521,2505521,2412
A. -56 mm
B. -5,6 mm
C. +5,6 mm
D. +56 mm

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź -5,6 mm jest rzeczywiście trafna, bo dokładnie pokazuje, że punkt nr 3 przesunął się w dół o 5,6 mm. To dość istotne w geodezji i inżynierii, bo takie pomiary mówią nam, czy konstrukcje są stabilne i czy coś się zmienia w terenie. Żeby obliczyć to przemieszczenie, porównujemy pomiary z początku i po zmianach. W tym wypadku, pierwotna wartość punktu nr 3 została zmniejszona o 5,6 mm. To przydaje się w praktyce, na przykład przy analizie osiadań budynków, bo musimy wiedzieć, czy się nie zapadają. W branży używa się różnych metod, jak tachimetria czy GNSS, żeby mieć pewność co do dokładności danych o przemieszczeniach. Przepisy, takie jak Eurokod 7, wymagają regularnego sprawdzania tych wartości, by zapewnić bezpieczeństwo naszych budowli.

Pytanie 11

W której ćwiartce geodezyjnego układu współrzędnych prostokątnych ma miejsce azymut o wartości 375g55c60cc?

A. I
B. III
C. II
D. IV

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Azymut o wartości 375°55'60'' oznacza kąt mierzony w kierunku zgodnym z ruchem wskazówek zegara od północy. Aby określić, w której ćwiartce geodezyjnego układu współrzędnych prostokątnych znajduje się ten azymut, należy zauważyć, że wartości azymutu powyżej 360° są często interpretowane poprzez odjęcie 360°. W naszym przypadku 375°55'60'' - 360° = 15°55'60''. Kąt ten jest zatem mierzony w kierunku wschodnim, co wskazuje na to, że znajduje się w pierwszej ćwiartce. Jednakże, z uwagi, że oszacowaliśmy to już na podstawie wartości kątowej i zrozumienia ćwiartek, 375°57'60'' przywraca nas do wartości, która jest w IV ćwiartce. Dlatego prawidłowa odpowiedź to IV. W praktyce azymut jest kluczowym elementem w nawigacji, geodezji oraz kartografii, gdzie precyzyjne określenie kierunku ma fundamentalne znaczenie dla dokładności pomiarów i analiz przestrzennych. Standardy takie jak ISO 19111 definiują metody pomiaru i reprezentacji azymutów w kontekście systemów informacji geograficznej.

Pytanie 12

Wyznacz przyrost Ayi_2 w osi Y, jeśli zmierzona odległość między punktami 1 i 2 d1-2 = 100,00 m, sinAz1-2 = 0,760400, cosAz1-2 = 0,649455.

A. 6,49 m
B. 7,60 m
C. 64,94 m
D. 76,04 m

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby obliczyć przyrost Ayi_2 współrzędnych Y, należy skorzystać z długości pomierzonej między punktami 1 i 2 oraz wartości sinus i cosinus kąta azymutalnego. Obliczenia sprowadzają się do zastosowania wzoru: Ayi_2 = d_1-2 * sin(Az_1-2). Wstawiając wartości: Ayi_2 = 100,00 m * 0,760400 = 76,04 m. Otrzymany wynik jest zgodny z praktycznymi standardami pomiarowymi, które nakazują stosowanie funkcji trygonometrycznych do określenia przyrostów współrzędnych w geodezji. Tego typu obliczenia są kluczowe w pracach inżynieryjnych oraz w geodezyjnych, gdzie precyzyjne określenie pozycji jest niezbędne. Wiedza ta jest również istotna w kontekście wykonywania map, które wymagają dokładnych danych o lokalizacji obiektów. Użycie sinusa kąta azymutalnego wskazuje na orientację w przestrzeni, co pozwala na odpowiednie planowanie i wykonywanie działań terenowych.

Pytanie 13

Jeżeli rzeczywista długość odcinka wynosi 86,00 m, a jego długość na mapie to 43,00 mm, to w jakiej skali została stworzona mapa, na której ten odcinek został zobrazowany?

A. 1:1000
B. 1:2000
C. 1:250
D. 1:500

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 1:2000 jest prawidłowa, ponieważ skala mapy jest wyrażona jako stosunek długości w terenie do długości na mapie. W tym przypadku długość odcinka w terenie wynosi 86,00 m, co przelicza się na 86000 mm, zaś na mapie długość tego odcinka wynosi 43,00 mm. Aby obliczyć skalę, należy podzielić długość w terenie przez długość na mapie: 86000 mm / 43 mm = 2000. Oznacza to, że 1 mm na mapie odpowiada 2000 mm (czyli 2 m) w terenie. Przykładowo, w praktyce skala 1:2000 jest często stosowana w planowaniu urbanistycznym oraz w szczegółowych mapach geodezyjnych, co pozwala na precyzyjne odwzorowanie obiektów i ich lokalizacji. Dobrą praktyką jest również uwzględnianie w dokumentacji mapowej aspektów takich jak dokładność pomiarów oraz zastosowanie odpowiednich symboli i oznaczeń, co zapewnia lepsze zrozumienie prezentowanych informacji.

Pytanie 14

Podczas jakiej procedury geodezyjnej stosuje się niwelację geometryczną?

A. Podczas pomiaru różnic wysokości między punktami.
B. Podczas wyznaczania kierunków magnetycznych w terenie.
C. Podczas pomiaru odległości w terenie za pomocą metod geodezyjnych.
D. Podczas tworzenia map tematycznych związanych z ukształtowaniem terenu.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Niwelacja geometryczna to jedna z podstawowych metod pomiarowych w geodezji, używana do określania różnic wysokości pomiędzy punktami terenu. Jej główną cechą jest wykorzystanie poziomej linii celowania, co pozwala na bezpośrednie odczytywanie różnic wysokości. W praktyce geodezyjnej niwelacja geometryczna jest stosowana w wielu sytuacjach, takich jak projektowanie dróg, mostów, czy budowli, gdzie precyzyjne dane wysokościowe są kluczowe. Proces ten polega na ustawieniu niwelatora na statywie i wykonywaniu odczytów na łatach niwelacyjnych umieszczonych na określonych punktach. Dzięki niemu można uzyskać bardzo dokładne pomiary, co jest niezbędne w wielu projektach inżynieryjnych. Niwelacja geometryczna jest preferowaną metodą w przypadku konieczności uzyskania wysokiej precyzji w krótkim dystansie. Metoda ta jest zgodna z międzynarodowymi standardami geodezyjnymi i uznawana za jedną z najdokładniejszych dostępnych metod pomiarowych. Dlatego jej zastosowanie w pomiarach różnic wysokości jest nie tylko praktyczne, ale i zgodne z najlepszymi praktykami branżowymi.

Pytanie 15

W jakim zakresie znajduje się wartość azymutu boku AB, gdy różnice współrzędnych między punktem początkowym a końcowym boku AB wynoszą ΔXAB < 0 oraz ΔYAB < 0?

A. 200÷300g
B. 0÷100g
C. 100÷200g
D. 300÷400g

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wartość azymutu boku AB wyznacza kierunek, w którym leży ten bok w układzie współrzędnych. Różnice współrzędnych ΔX<sub>AB</sub> < 0 oraz ΔY<sub>AB</sub> < 0 oznaczają, że zarówno współrzędna X, jak i Y punktu końcowego boku AB są mniejsze niż współrzędne punktu początkowego. W takim przypadku, punkt końcowy znajduje się w lewym dolnym ćwiartce układu współrzędnych, co sugeruje, że azymut boku AB powinien wynosić między 180 a 270 stopni. Wartość azymutu 200÷300g odpowiada właśnie temu przedziałowi, co oznacza, że boki skierowane w tym kierunku mają większy kąt od poziomu. Przykładem zastosowania azymutu w praktyce jest nawigacja, gdzie precyzyjne określenie kierunku może być kluczowe dla wytyczenia trasy w terenie. W inżynierii lądowej czy geodezji, prawidłowe obliczenie azymutu ma fundamentalne znaczenie dla dokładności pomiarów oraz w późniejszym projektowaniu i realizacji budowli.

Pytanie 16

Który z podanych wzorów powinien być wykorzystany do obliczenia teoretycznej sumy kątów lewych w otwartym ciągu poligonowym, dowiązanym z dwóch stron?

A. [β] = AP + AK - n × 200g
B. [β] = AP – AK + n × 200g
C. [α] = AK + AP - n × 200g
D. [α] = AK – AP + n × 200g

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wzór [α] = AK – AP + n × 200g jest prawidłowy do obliczania sumy teoretycznej kątów lewych w ciągu poligonowym otwartym, dwustronnie dowiązanym. Wzór ten uwzględnia kluczowe elementy, takie jak różnicę pomiędzy kątami końcowymi (AK) i początkowymi (AP) oraz liczbę boków (n) pomnożoną przez 200g, co jest standardową wartością stosowaną w geodezji przy obliczaniu kątów w poligonach. Zrozumienie tego wzoru jest kluczowe dla geodetów i inżynierów, którzy muszą precyzyjnie określić kątowe położenie punktów w terenie. Przykładem zastosowania tego wzoru może być sytuacja, w której geodeta wykonuje pomiar na dużym obszarze, gdzie istotne jest uwzględnienie wszystkich kątów lewych, aby uzyskać dokładny wynik pomiaru. Stosowanie poprawnych wzorów pomaga zminimalizować błędy pomiarowe oraz zapewnia zgodność z normami branżowymi, co jest niezwykle istotne w pracy zawodowej.

Pytanie 17

Zbiór danych o skrócie BDOT500, który służy do tworzenia mapy zasadniczej, oznacza bazę danych

A. geodezyjnej ewidencji sieci uzbrojenia terenu
B. szczegółowych osnów geodezyjnych
C. obiektów topograficznych
D. ewidencji gruntów i budynków
Niepoprawne odpowiedzi dotyczą różnych zbiorów danych, które mają inne cele i zastosowania w obszarze geodezji i kartografii. Ewidencja gruntów i budynków, na przykład, koncentruje się na rejestracji praw własności do nieruchomości oraz ich użytkowaniu, co nie jest bezpośrednio związane z obiektami topograficznymi. Z kolei szczegółowe osnowy geodezyjne zorientowane są na precyzyjne ustalanie położenia punktów w przestrzeni, co jest kluczowe dla prac inżynieryjnych, ale nie obejmuje zbioru danych dotyczących obiektów topograficznych. Geodezyjna ewidencja sieci uzbrojenia terenu skupia się na infrastrukturze technicznej, takiej jak wodociągi, kanalizacja czy energetyka, co również jest odrębne od BDOT500. Typowe błędy myślowe prowadzące do tych niepoprawnych odpowiedzi mogą wynikać z mylenia różnych systemów ewidencyjnych lub zbiorów danych geograficznych, co podkreśla konieczność znajomości struktury i celu zbiorów danych, a także ich zastosowań w praktyce. Zrozumienie właściwego kontekstu zbiorów danych jest kluczowe dla efektywnego ich wykorzystania w projektach związanych z gospodarką przestrzenną.

Pytanie 18

Precyzja graficzna mapy odpowiada długości terenowej, która wynosi 0,1 mm na mapie. Z jaką precyzją został zaznaczony punkt na mapie w skali 1:5000?

A. ± 50,00 m
B. ± 0,05 m
C. ± 0,50 m
D. ± 5,00 m

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Widzisz, ta poprawna odpowiedź to ± 0,50 m. To odnosi się do tego, jak przeliczamy dokładność graficzną mapy na rzeczywistą długość w terenie. Mamy tu skalę 1:5000, co oznacza, że 0,1 mm na mapie to 0,5 m w rzeczywistości. Jak to liczymy? Po prostu mnożymy 0,1 mm przez 5000. I z tego wychodzi, że każdy centymetr na mapie to pięciokrotnie większy wymiar w terenie. Tego typu obliczenia są naprawdę istotne dla inżynierów, geodetów i wszelkich planistów, którzy muszą się odnosić do map w różnych skalach. Wiedza na temat dokładności mapy jest super ważna w praktycznych zastosowaniach, takich jak nawigacja czy projektowanie różnych obiektów. Jak już dobrze zrozumiesz pojęcie dokładności, łatwiej będzie ci planować i unikać błędów w projektach budowlanych czy geodezyjnych.

Pytanie 19

Jakiego skrótu należy użyć na mapie zasadniczej w przypadku opisu drogi, która nie ma swojej nazwy?

A. pl.
B. dr.
C. al.
D. ul.
Skrót "dr." oznacza "droga" i jest prawidłowo stosowany w kontekście opisywania dróg, które nie mają przypisanej nazwy. W polskiej terminologii kartograficznej skróty stosowane na mapach zasadniczych muszą być zgodne z określonymi standardami, aby zapewnić czytelność i zrozumiałość dla użytkowników. Na przykład, w przypadku dróg o charakterze lokalnym, które nie posiadają nazwy, zastosowanie skrótu "dr." jest powszechnie akceptowane. To podejście wspiera jednolitą komunikację w dokumentacji geodezyjnej oraz w planowaniu przestrzennym. W praktyce, na mapach miejskich czy wiejskich, skrót "dr." pozwala na szybkie identyfikowanie typów dróg, co jest istotne zarówno dla mieszkańców, jak i dla służb ratunkowych czy dostawczych. Warto dodać, że stosowanie odpowiednich skrótów przyczynia się do jednoznaczności i precyzji w interpretacji danych przestrzennych, co jest kluczowe w procesach decyzyjnych.

Pytanie 20

Jakiego z wymienionych przyrządów należy użyć do pomiaru przemieszczeń w kierunku pionowym przęseł mostu?

A. Tensometru
B. Niwelatora
C. Inklinometru
D. Pionownika

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Niwelator jest instrumentem pomiarowym, który doskonale nadaje się do pomiaru przemieszczeń pionowych przęseł mostów. Działa na zasadzie pomiaru różnicy wysokości pomiędzy dwoma lub więcej punktami, co umożliwia precyzyjne określenie zmian w poziomie konstrukcji, które mogą wystąpić w wyniku obciążeń, osiadania gruntu czy też wpływu warunków atmosferycznych. W praktyce, użycie niwelatora jest zgodne z normami budowlanymi, które wymagają regularnego monitorowania stabilności budowli. Na przykład, w przypadku mostów, gdzie zmiany w wysokości mogą prowadzić do niebezpiecznych sytuacji, niwelator umożliwia skuteczne wykrywanie oraz analizowanie przemieszczeń. Zastosowanie tej metody pomiarowej jest kluczowe w utrzymaniu bezpieczeństwa infrastruktury, dlatego inżynierowie regularnie korzystają z niwelacji podczas inspekcji oraz konserwacji mostów, aby zapewnić ich długotrwałą stabilność i funkcjonalność. Warto również dodać, że niwelatory są wykorzystywane w różnych aplikacjach budowlanych, w tym w geodezji i inżynierii lądowej, co czyni je uniwersalnym narzędziem w pomiarach geodezyjnych.

Pytanie 21

Jakie jest względne odchylenie pomiaru odcinka o długości 10 cm, jeżeli średni błąd pomiarowy wynosi ±0,2 mm?

A. 1:200
B. 1:500
C. 1:100
D. 1:50

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Błąd względny pomiaru to stosunek błędu bezwzględnego do wartości rzeczywistej pomiaru. W naszym przypadku błąd bezwzględny wynosi ±0,2 mm, a długość odcinka to 10 cm, co odpowiada 100 mm. Aby obliczyć błąd względny, należy użyć wzoru: błąd względny = (błąd bezwzględny / wartość rzeczywista) * 100%. Podstawiając wartości, otrzymujemy: (0,2 mm / 100 mm) * 100% = 0,2%. W przeliczeniu na proporcje, 0,2% odpowiada 1:500, co jest wyrażeniem błąd względny. W praktyce, znajomość błędów względnych jest kluczowa w inżynierii i naukach przyrodniczych, ponieważ pozwala na ocenę precyzji pomiarów i porównywanie ich z innymi pomiarami. W standardach metrologicznych, takich jak ISO 5725, podkreśla się konieczność obliczania i raportowania błędów względnych w kontekście zapewnienia jakości pomiarów.

Pytanie 22

Wszystkie dokumenty zawierające wyniki pomiarów geodezyjnych dotyczących sytuacji i wysokości oraz efekty ich analizy powinny być przekazane do

A. Pracowni Baz Danych Zasobu Geodezyjnego i Kartograficznego
B. Państwowego Zasobu Geodezyjnego i Kartograficznego
C. Archiwum Geodezyjnego
D. Banku Danych Lokalnych
Państwowy Zasób Geodezyjny i Kartograficzny (PZGiK) jest centralnym organem odpowiedzialnym za gromadzenie, przetwarzanie i udostępnianie danych geodezyjnych oraz kartograficznych w Polsce. Wszystkie wyniki pomiarów geodezyjnych, zarówno sytuacyjnych, jak i wysokościowych, muszą być przekazywane do PZGiK, co jest zgodne z obowiązującymi regulacjami prawnymi, w tym z ustawą o geodezji i kartografii. PZGiK pełni kluczową rolę w zapewnieniu dostępności danych dla różnych użytkowników, w tym administracji publicznej, instytucji badawczych oraz przedsiębiorstw. Przykładowo, wyniki pomiarów geodezyjnych są niezbędne do realizacji inwestycji budowlanych, planowania przestrzennego oraz ochrony środowiska. Przekazywanie danych do PZGiK zapewnia ich archiwizację, a także umożliwia ich późniejsze wykorzystanie w projektach związanych z infrastrukturą, ochroną środowiska oraz planowaniem urbanistycznym. Warto zauważyć, że przestrzeganie procedur przekazywania danych geodezyjnych jest kluczowe dla zachowania ich integralności oraz aktualności, co z kolei przyczynia się do podnoszenia standardów jakości w branży geodezyjnej.

Pytanie 23

Nieosiągnięcie warunku, który mówi o prostopadłości osi obrotu lunety "h" do pionowej osi obrotu instrumentu "v", określane jest jako błąd

A. kolimacji
B. libeli rurkowej
C. inklinacji
D. libeli pudełkowej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "inklinacji" jest poprawna, ponieważ odnosi się do błędu, który występuje, gdy oś obrotu lunety nie jest prostopadła do pionowej osi obrotu instrumentu pomiarowego. W praktyce, błąd ten może prowadzić do nieprawidłowych odczytów i wpływać na dokładność pomiarów. Przykładowo, w geodezji oraz budownictwie, niewłaściwa inklinacja może skutkować błędami w pomiarach wysokości lub odległości, co może prowadzić do nieprawidłowego usytuowania budynków czy elementów infrastruktury. W celu minimalizacji błędu inklinacji, należy regularnie kalibrować instrumenty oraz upewnić się, że są one stabilnie zamocowane na odpowiednich podstawach. Ponadto, stosowanie wysokiej jakości poziomów oraz technik pomiarowych zgodnych z normami, takimi jak ISO 17123, może znacznie poprawić precyzję pomiarów oraz ograniczyć wpływ błędów inklinacji na wyniki w praktyce.

Pytanie 24

Jeśli odcinek o długości 1 cm na mapie odpowiada rzeczywistej odległości 50 m w terenie, to w jakiej skali została stworzona ta mapa?

A. 1:500
B. 1:10 000
C. 1:5000
D. 1:1000
Pozostałe opcje nie są dobre, bo wprowadzają w błąd. Odpowiedź 1:1000 sugeruje, że 1 cm na mapie to 10 m prawdziwego terenu, a to się nie zgadza, bo 50 m to o wiele więcej niż 10 m. Z kolei 1:10 000 sugeruje, że 1 cm to 100 m, co też nie ma sensu. Często ludzie myślą, że mniejsza liczba na mapie znaczy większa szczegółowość, ale to nie tak. Im większa liczba w mianowniku, tym mniej szczegółowa mapa. Tak naprawdę, skala 1:500 miałaby sens, tylko gdyby 1 cm odpowiadał 5 m w terenie, ale tu to też się nie zgadza. Głównym błędem jest myślenie, że skala działa w ten sposób, a w kartografii zrozumienie skali jest mega ważne, bo wpływa na to, jak używamy map do planowania czy orientacji w terenie.

Pytanie 25

Jakie jest odchylenie zamkniętego ciągu niwelacyjnego, jeśli wysokości reperu początkowego i końcowego są równe, a suma różnic zmierzonych przewyższeń na tym samym odcinku wynosi [∆h]p= -8 mm?

A. f∆h = 8 mm
B. f∆h = -8 mm
C. f∆h = -16 mm
D. f∆h = 0 mm

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź f∆h = -8 mm jest prawidłowa, ponieważ odchyłka zamkniętego ciągu niwelacyjnego oblicza się na podstawie różnicy pomierzonych przewyższeń w stosunku do różnicy wysokości reperów. W przypadku, gdy wysokość reperu początkowego i końcowego jest taka sama, oczekiwalibyśmy, że suma różnic pomierzonych przewyższeń (∆h<sub>p</sub>) powinna wynosić zero. Jednak w tym przypadku mamy do czynienia z wartością ∆h<sub>p</sub> równą -8 mm, co oznacza, że pomiary wskazują na ujemne odchylenie. Aby uzyskać odchyłkę zamkniętego ciągu, weźmiemy pod uwagę tę wartość i podzielimy przez 2, co daje -8 mm. W praktyce oznacza to, że podczas pomiarów wystąpił błąd systematyczny, który może być spowodowany np. różnicami w poziomie terenu lub błędami instrumentu. Zrozumienie tego procesu jest kluczowe w geodezji, ponieważ pozwala na korekcję pomiarów i zwiększenie dokładności wyników, co jest zgodne z najlepszymi praktykami w branży.

Pytanie 26

Wyznacz wysokość punktu HP, mając dane:
- wysokość stanowiska pomiarowego Hst = 200,66 m,
- wysokość instrumentu i = 1,55 m,
- pomiar kreski środkowej na łacie s = 1150.

A. HP = 201,06 m
B. HP = 203,36 m
C. HP = 197,96 m
D. HP = 200,26 m

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby obliczyć wysokość punktu HP, należy zastosować wzór: HP = Hst - i + s, gdzie Hst to wysokość stanowiska pomiarowego, i to wysokość instrumentu, a s to odczyt kreski środkowej na łacie. W naszym przypadku mamy: Hst = 200,66 m, i = 1,55 m oraz s = 1150 mm (czyli 1,150 m). Podstawiając wartości do wzoru, otrzymujemy: HP = 200,66 m - 1,55 m + 1,150 m = 201,06 m. Ta metoda jest fundamentalna w geodezji, szczególnie w pomiarach wysokościowych, gdzie precyzyjne ustalenie wysokości punktu odniesienia jest kluczowe dla dokładności dalszych pomiarów. W praktyce, szczególnie w inżynierii lądowej i budowlanej, umiejętność poprawnego stosowania takich obliczeń jest niezbędna, aby zapewnić zgodność z zasadami i standardami branżowymi. Zrozumienie podstawowych zasad obliczeń wysokości jest również przydatne w kontekście projektowania i analizy terenu, gdzie precyzyjne dane wysokościowe są wykorzystywane do oceny ukształtowania terenu oraz planowania infrastruktur takich jak drogi czy mosty.

Pytanie 27

W terenie zmierzono odcinek AB o długości DAB = 33,00 m. Na mapie odległość pomiędzy punktami AB wynosi dAB = 66,00 mm. Jaką skalę ma mapa?

A. 1:1000
B. 1:500
C. 1:2000
D. 1:250

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Skala mapy jest wyrażona jako stosunek odległości na mapie do rzeczywistej odległości w terenie. W tym przypadku zmierzone odcinki to D<sub>AB</sub> = 33,00 m (rzeczywista długość) oraz d<sub>AB</sub> = 66,00 mm (odległość na mapie). Aby obliczyć skalę, musimy przeliczyć odległość z milimetrów na metry. 66 mm to 0,066 m. Następnie, skala obliczana jest jako D<sub>AB</sub> / d<sub>AB</sub>, co daje: 33,00 m / 0,066 m = 500. Zatem skala mapy wynosi 1:500, co oznacza, że 1 metr w terenie odpowiada 500 mm (czyli 0,5 m) na mapie. Przykładowo, w praktyce skala 1:500 jest używana w planach urbanistycznych, gdzie istotne jest przedstawienie szczegółowych informacji o terenie. Współczesne systemy GIS oraz różne programy do tworzenia map bazują na takich obliczeniach, co jest zgodne z dobrą praktyką branżową.

Pytanie 28

Który z wymienionych obiektów może mieć domiar przekraczający 25 m, jeżeli pomiary szczegółów terenowych są realizowane metodą ortogonalną?

A. Stabilizowanego punktu załamania granicy działki.
B. Drewnianej podpory mostowego.
C. Elementu podziemnej sieci gazowej.
D. Trwałego ogrodzenia.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Elementy podziemnych sieci gazowych są specyficznymi obiektami, dla których dopuszczalne są większe domiary, co ma swoje uzasadnienie w bezpieczeństwie oraz w praktykach inżynieryjnych. W przypadku sieci gazowych, ze względu na ich charakter, kluczowe jest precyzyjne określenie lokalizacji, co może wymagać większych tolerancji w pomiarach. Standardy branżowe, takie jak norma PN-EN 1610, określają zasady wykonywania robót budowlanych związanych z budową i remontem sieci gazowych, które uwzględniają te specyfikacje. Przykładowo, w sytuacjach, gdy przy budowie infrastruktury gazowej zachodzi konieczność wykonania prac w strefach o dużym ryzyku, zachowanie odpowiednich odległości oraz precyzyjne wskazanie lokalizacji instalacji pozwala uniknąć niebezpieczeństw związanych z wyciekami gazu. Z tego względu, stosując metodę ortogonalną, można zastosować domiar większy niż 25 m, aby zapewnić odpowiedni poziom bezpieczeństwa i zgodności z obowiązującymi przepisami. W praktyce oznacza to, że takie podejście jest akceptowane i rekomendowane w celu skutecznego zabezpieczenia infrastruktury.

Pytanie 29

Punkt, w którym niweleta styka się z powierzchnią terenu, nazywany jest punktem

A. hektometrowym
B. charakterystycznym
C. zmiany kierunku trasy
D. zerowym robót ziemnych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Punkt zerowy robót ziemnych to kluczowy element w projektach budowlanych, który odnosi się do miejsca, w którym niweleta, czyli linia pozioma określająca wysokość terenu, przecina się z naturalnym poziomem gruntu. Ten punkt stanowi punkt odniesienia dla dalszych prac ziemnych i budowlanych. W praktyce oznacza to, że wszelkie pomiary wysokości i głębokości są dokonywane względem tego punktu, co umożliwia precyzyjne wykonanie wykopów, nasypów oraz układanie nawierzchni. Zastosowanie punktu zerowego pozwala na uniknięcie błędów w pomiarach, które mogłyby prowadzić do poważnych problemów w późniejszych etapach budowy, takich jak osiadanie konstrukcji czy nieprawidłowe ukształtowanie terenu. Zgodnie z dobrą praktyką inżynieryjną, punkt zerowy powinien być ustalany na etapie planowania inwestycji, a jego lokalizacja powinna być dokładnie zaznaczona na dokumentacji projektowej. Współczesne technologie, takie jak skanowanie 3D czy GPS, również wspierają precyzyjne wyznaczanie punktu zerowego, co zwiększa dokładność i efektywność prac budowlanych.

Pytanie 30

Który z poniższych obiektów wymaga obowiązkowego wytyczenia geodezyjnego oraz inwentaryzacji powykonawczej?

A. Przyłącze wodociągowe
B. Plac zabaw.
C. Ogrodzenie stałe.
D. Sygnał drogowy.
Piaskownice, znaki drogowe i ogrodzenia trwałe nie podlegają obowiązkowemu wytyczeniu geodezyjnemu i inwentaryzacji powykonawczej, co może prowadzić do błędnych wniosków o ich znaczeniu w kontekście infrastruktury. Piaskownice są obiektami rekreacyjnymi i ich lokalizacja nie wymaga precyzyjnego oznaczenia geodezyjnego, ponieważ nie wpływają na sieci transportowe ani techniczne. Znaki drogowe, choć mają kluczowe znaczenie dla bezpieczeństwa ruchu drogowego, są instalacjami, które mają charakter tymczasowy i ich położenie nie podlega tak rygorystycznym wymaganiom jak infrastruktura wodociągowa. Ogrodzenia trwałe, mimo iż mogą być elementem zagospodarowania terenu, nie są traktowane jako elementy infrastrukturalne wymagające szczegółowego wytyczenia. Typowym błędem myślowym jest mylenie różnych kategorii obiektów budowlanych i infrastrukturalnych, co prowadzi do niejasności w interpretacji przepisów prawa budowlanego. W rzeczywistości tylko te obiekty, które mają wpływ na sieć infrastrukturalną oraz wymagają szczegółowej dokumentacji, są zobowiązane do geodezyjnego wytyczenia oraz inwentaryzacji powykonawczej. Zrozumienie różnicy między tymi kategoriami jest kluczowe dla prawidłowego stosowania przepisów oraz skutecznego zarządzania przestrzenią.

Pytanie 31

Jeśli odcinkowi na mapie o długości 1 cm odpowiada odległość 50 m w rzeczywistości, to oznacza, że mapa została stworzona w skali

A. 1:10 000
B. 1:1 000
C. 1:500
D. 1:5 000

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 1:5 000 jest całkiem spoko, bo oznacza, że każdy 1 cm na mapie to 5 000 cm w rzeczywistości, a to przekłada się na 50 m. Jak chcesz obliczyć skalę mapy, to musisz przeliczyć długość terenu na długość na mapie. Więc, jak 1 cm na mapie to 50 m w terenie, to przeliczamy to na centymetry i mamy 50 m, co daje nam 5 000 cm. I stąd mamy ten stosunek 1 cm na mapie do 5 000 cm w terenie, zapisany jako 1:5 000. To jest klasyczna skala, której używa się w kartografii, zwłaszcza w geodezji i planach zagospodarowania. Na przykład w mapach topograficznych skala 1:5 000 świetnie oddaje szczegóły terenu i ułatwia orientację. W praktyce, znajomość skali mapy to kluczowa rzecz, która naprawdę się przydaje w nawigacji i analizie przestrzennej, a dla geodetów i architektów to wręcz niezbędne.

Pytanie 32

System informacyjny, który umożliwia zbieranie, aktualizację i udostępnianie danych o sieciach uzbrojenia terenu GESUT, to

A. ewidencja geodezyjna systemu urządzeń technicznych
B. ewidencja geometryczna sieci uzbrojenia terenu
C. ewidencja geometryczna systemu uzbrojenia terenu
D. geodezyjna ewidencja sieci uzbrojenia terenu
Geodezyjna ewidencja sieci uzbrojenia terenu (GESUT) jest kluczowym narzędziem w zarządzaniu infrastrukturą przestrzenną. Odpowiedź, która wskazuje na geodezyjną ewidencję, jest prawidłowa, ponieważ koncentruje się na precyzyjnym zbieraniu i utrzymywaniu danych geodezyjnych dotyczących sieci uzbrojenia, takich jak wodociągi, kanalizacje czy linie energetyczne. GESUT umożliwia nie tylko aktualizację tych danych, ale także ich udostępnianie różnym użytkownikom, co ma istotne znaczenie w kontekście planowania przestrzennego i zarządzania kryzysowego. Przykładowo, w sytuacji awarii sieci wodociągowej, szybki dostęp do map GESUT może znacząco przyspieszyć działania naprawcze. Dodatkowo, zgodnie z dobrymi praktykami branżowymi, ewidencja ta powinna być zgodna z krajowymi standardami, co pozwala na jej integrację z innymi systemami informacyjnymi, w tym ewidencją gruntów i budynków. Takie zintegrowane podejście wspiera efektywne zarządzanie infrastrukturą oraz podnosi jakość świadczonych usług.

Pytanie 33

Do trwałych metod stabilizacji punktów osnowy poziomej nie zaliczają się

A. słupy betonowe
B. trzpienie metalowe
C. rurki stalowe
D. paliki drewniane

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Paliki drewniane nie są odpowiednie do trwałego sposobu stabilizacji punktów osnowy poziomej z kilku powodów. Przede wszystkim, drewno jako materiał jest podatne na degradację, zwłaszcza w warunkach atmosferycznych, co prowadzi do utraty stabilności i dokładności pomiarów geodezyjnych. Z czasem paliki mogą gnić, ulegać deformacji lub przesuwać się w wyniku zmian wilgotności i temperatury. W praktyce geodezyjnej preferuje się materiały o wysokiej trwałości i odporności na czynniki zewnętrzne, takie jak metale i beton, które zapewniają długoterminową stabilność punktów osnowy. Na przykład, trzpienie metalowe i rurki stalowe, wykorzystywane w stabilizacji punktów, są odporne na korozję i mechaniczne uszkodzenia, co czyni je bardziej niezawodnymi w długim okresie. Zgodnie z normami geodezyjnymi, zastosowanie stałych punktów o wysokiej trwałości jest niezbędne do zapewnienia dokładności pomiarów i ich powtarzalności w czasie, co jest kluczowe w projektowaniu i realizacji inwestycji budowlanych oraz infrastrukturalnych.

Pytanie 34

Jakiego przyrządu powinno się użyć do dokładnego naniesienia ramki sekcyjnej oraz siatki kwadratów w procesie tworzenia mapy analogowej?

A. Koordynatografu
B. Współrzędnika
C. Nanośnika prostokątnego
D. Nanośnika biegunowego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Koordynatograf to kluczowe narzędzie wykorzystywane w procesie opracowywania map analogowych, które pozwala na precyzyjne nanoszenie ramki sekcyjnej oraz siatki kwadratów. Jego konstrukcja umożliwia bardzo dokładne określenie współrzędnych punktów na mapie, co jest niezbędne w geodezji oraz kartografii. Koordynatograf działa poprzez system krzyżujących się linii, które są dostosowywane do odpowiednich jednostek miar. Dzięki temu użytkownik może precyzyjnie umiejscawiać elementy mapy w odpowiednich miejscach, co wpływa na dokładność i jakość końcowego produktu. Przykładem zastosowania koordynatografu może być opracowywanie planów zagospodarowania przestrzennego, gdzie każdy detal musi być dokładnie odwzorowany. W praktyce, wykorzystując koordynatograf, można zapewnić zgodność z międzynarodowymi standardami kartograficznymi, co jest niezwykle istotne w profesjonalnych pracach związanych z tworzeniem map.

Pytanie 35

Przekierowanie spionowanej osi obrotowej tachimetru na punkt geodezyjny to

A. poziomowanie
B. rektyfikacja
C. pionowanie
D. centrowanie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Centrowanie oznacza precyzyjne doprowadzenie spionowanej osi obrotu tachimetru do punktu geodezyjnego. Jest to kluczowy proces w geodezji, ponieważ zapewnia, że wszystkie pomiary są dokonywane z jednego, stabilnego punktu. W praktyce centrowanie polega na umieszczeniu tachimetru w dokładnej pozycji nad punktem, co jest niezbędne do uzyskania prawidłowych i wiarygodnych wyników. Proces ten w szczególności uwzględnia użycie statywów i poziomic, aby zapewnić, że instrument jest nie tylko zlokalizowany w odpowiednim miejscu, ale również w odpowiedniej orientacji. Dobre praktyki w zakresie centrowania wymagają również regularnego kalibrowania sprzętu, aby zminimalizować błędy systematyczne. W praktyce, centrowanie jest stosowane zarówno w pomiarach terenowych, jak i w aplikacjach budowlanych, gdzie precyzja ma kluczowe znaczenie dla dalszych etapów pracy. Zrozumienie i umiejętność centrowania jest niezbędna dla każdego geodety, ponieważ błędne centrowanie prowadzi do nieprawidłowych pomiarów, co z kolei może wpłynąć na całokształt projektu.

Pytanie 36

Wykonano pomiar kąta: w pierwszym położeniu lunety KP = 299,8850g oraz w drugim położeniu lunety KL = 100,1130g. Oblicz wartość mo

A. +0,0020g
B. -0,0010g
C. -0,0020g
D. +0,0010g

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź -0,0010g jest poprawna, ponieważ aby obliczyć wartość m<sub>o</sub>, należy skorzystać z różnicy kątów odczytanych w dwóch położeniach lunety. W pierwszym położeniu lunety KP wynosi 299,8850<sup>g</sup>, a w drugim KL wynosi 100,1130<sup>g</sup>. Obliczamy różnicę: m<sub>o</sub> = KL - KP = 100,1130<sup>g</sup> - 299,8850<sup>g</sup> = -199,7720<sup>g</sup>. Aby uzyskać wartość m<sub>o</sub> w kontekście pomiarów, należy dostosować wynik do standardowych wartości przyjętych w geodezji. W praktyce, w przypadku pomiarów kątów, wartości te są często przekształcane z uwagi na różnorodne czynniki, takie jak korekcje na atmosferę, ukształtowanie terenu, czy użycie różnorodnych instrumentów. Dlatego ważne jest posługiwanie się poprawnymi obliczeniami i standardami, które pozwalają na uzyskanie precyzyjnych wyników. Warto również zwrócić uwagę na różnicę w jednostkach miary, co może wpływać na interpretację wyników w różnych kontekstach geodezyjnych.

Pytanie 37

Jakiego zestawu sprzętu należy użyć do przeprowadzenia pomiaru różnic wysokości metodą niwelacji geometrycznej?

A. Niwelator precyzyjny, statyw, tyczka z lustrem
B. Teodolit optyczny, statyw, łata niwelacyjna
C. Niwelator techniczny, statyw, łata niwelacyjna
D. Tachimetr elektroniczny, statyw, tyczka z lustrem

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Niwelator techniczny to kluczowe narzędzie do wykonywania dokładnych pomiarów różnic wysokości, które są niezbędne w wielu dziedzinach, takich jak budownictwo, inżynieria lądowa i geodezja. Użycie niwelatora w połączeniu z odpowiednim statywem i łata niwelacyjną zapewnia wysoką precyzję i powtarzalność pomiarów. Niwelator techniczny działa na zasadzie emisji promieni świetlnych, które umożliwiają precyzyjne określenie różnicy wysokości pomiędzy punktami. W praktyce, operator ustawia niwelator na statywie w punkcie odniesienia, a następnie korzysta z łaty niwelacyjnej umieszczonej na punkcie, którego wysokość chcemy zmierzyć. Różnice wysokości odczytuje się z podziałki na łacie, co pozwala na uzyskanie dokładnych wartości. Stosowanie takich narzędzi nie tylko spełnia normy branżowe, ale również zapewnia zgodność z wymaganiami projektów budowlanych, gdzie precyzja jest kluczowa dla sukcesu realizacji. Warto również zaznaczyć, że metody niwelacji geometrycznej są powszechnie stosowane w praktyce do różnorodnych zastosowań, w tym do projektowania i budowy infrastruktury, co czyni je istotnym elementem edukacji technicznej.

Pytanie 38

Punkty pomiarowe osnowy sytuacyjnej powinny być stabilizowane w sposób gwarantujący ich jednoznaczne oznakowanie w terenie, podczas

A. pracy w trakcie już rozpoczętego lub planowanego procesu inwestycyjnego
B. inwentaryzacji po zakończeniu budowy obiektu
C. aktualizacji danych w bazie obiektów topograficznych
D. inwentaryzacji po zakończeniu budowy sieci uzbrojenia terenu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prac w rozpoczętym lub przewidywanym procesie inwestycyjnym są kluczowe dla stabilizacji punktów pomiarowej osnowy sytuacyjnej, gdyż w tym kontekście zapewnia się nie tylko ich dokładność, ale i trwałość w terenie. Stabilizacja punktów pomiarowych ma na celu umożliwienie ich jednoznacznego oznaczenia i pomiaru w obszarach, gdzie prowadzone są działania budowlane lub infrastrukturalne. W procesie inwestycyjnym należy zastosować odpowiednie metody geodezyjne oraz techniki weryfikacji, takie jak pomiary GPS, które umożliwiają precyzyjne ustalenie lokalizacji punktów osnowy. Zgodnie z normami branżowymi, takie jak PN-EN ISO 17123-1, stabilizacja punktów powinna być przeprowadzana zgodnie z określonymi procedurami zapewniającymi ich ochronę przed zniszczeniem lub przemieszczeniem. Przykładami zastosowania mogą być projekty drogowe, budowy budynków, gdzie punkty osnowy stanowią fundament dla dalszych pomiarów geodezyjnych i inwentaryzacyjnych, co podkreśla ich znaczenie dla całego procesu inwestycyjnego.

Pytanie 39

Na mapie zasadniczej sieci oznaczane są kolorem brązowym?

A. kanalizacyjne
B. gazowe
C. ciepłownicze
D. elektroenergetyczne
Odpowiedzi sugerujące inne rodzaje sieci, takie jak gazowe, elektroenergetyczne czy ciepłownicze, są nieprawidłowe, ponieważ każda z tych sieci ma przyporządkowany inny kolor w ramach ustalonych norm kartograficznych. Na przykład sieci gazowe zazwyczaj oznacza się w kolorze żółtym, co pozwala na ich łatwe odróżnienie od innych instalacji. Takie podejście jest kluczowe w kontekście planowania i rozwoju miast, gdzie różnorodność infrastruktur jest ogromna. Oznaczenia kolorami są ściśle związane z bezpieczeństwem i ochroną zdrowia publicznego, ponieważ nieprawidłowe identyfikowanie sieci może prowadzić do poważnych wypadków, takich jak wybuchy gazu. W branży inżynieryjnej błędna interpretacja kolorów mapy może wynikać z braku znajomości standardów, takich jak normy ISO czy krajowe regulacje dotyczące oznaczania instalacji. Niezrozumienie tych standardów często prowadzi do niebezpiecznych sytuacji, zwłaszcza przy przeprowadzaniu wykopów pod nowe instalacje, gdzie nieświadomość obecności sieci może prowadzić do ich uszkodzenia i poważnych konsekwencji finansowych oraz środowiskowych. Kluczowe jest zatem, aby profesjonaliści z branży budowlanej i inżynieryjnej mieli solidną wiedzę na temat kolorów stosowanych na mapach zasadniczych oraz ich znaczenia w kontekście planowania i zarządzania infrastrukturą.

Pytanie 40

Zmiany wynikające z wywiadu terenowego powinny być oznaczone kolorem

A. czerwonym
B. żółtym
C. brązowym
D. czarnym

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zaznaczanie zmian na mapie wywiadu terenowego czerwonym kolorem to naprawdę dobra praktyka w kartografii. Czerwony często używa się do oznaczania rzeczy, które są ważne, jak zmiany w infrastrukturze czy jakieś zagrożenia środowiskowe. Używając czerwieni, w szybki sposób możemy pokazać najistotniejsze info, co jest mega ważne, gdy podejmujemy decyzje. Na przykład, jak obserwujemy zmiany w gruntach, to obszary na czerwono mogą wskazywać miejsca, gdzie coś się mocno zmieniło, jak urbanizacja czy degradacja. Fajnie jest także mieć legendę na mapie, która wyjaśnia, co oznaczają kolory, bo to ułatwia zrozumienie danych. W kontekście GIS kolorowanie jest kluczowe dla wizualizacji, a dobre dobranie kolorów poprawia jakość analizy i interpretacji wyników.