Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 17 grudnia 2025 12:51
  • Data zakończenia: 17 grudnia 2025 13:00

Egzamin niezdany

Wynik: 17/40 punktów (42,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jaka jest minimalna wartość rezystancji izolacji przewodu, gdy mierzymy induktorem w sieci o napięciu znamionowym badanego obwodu U < 500 V?

A. < 0,25 MΩ
B. < 0,5 MΩ
C. ≥ 0,25 MΩ
D. ≥ 0,5 MΩ
Odpowiedzi, które podają wartości rezystancji izolacji poniżej 0,5 MΩ, nie są odpowiednie. Nie spełniają one podstawowych wymagań, co może być niebezpieczne. Wartości < 0,25 MΩ czy < 0,5 MΩ nie dają dobrego poziomu izolacji, co prowadzi do ryzyka porażenia prądem lub uszkodzenia sprzętu. W zasadzie, jeżeli rezystancja jest poniżej 0,5 MΩ, to może to oznaczać problemy z izolacją przewodów. To z kolei może prowadzić do naprawdę poważnych konsekwencji, jak pożary. Często myli się wartości rezystancji, chcąc uprościć pomiary, ale to jest naprawdę ryzykowne w kontekście bezpieczeństwa elektrycznego. Należy pamiętać, że dobra izolacja chroni nie tylko osoby pracujące w pobliżu, ale również sprzęt i systemy. Gdy wartości rezystancji są niższe niż wymagane 0,5 MΩ, może to wynikać z niewłaściwego stanu instalacji lub zużycia materiałów izolacyjnych. To jeszcze bardziej podkreśla, jak ważne są regularne kontrole i pomiary, żeby wszystko było zgodne z normami bezpieczeństwa instalacji elektrycznych.

Pytanie 2

Którego z mierników pokazanych na rysunku należy użyć do pomiaru impedancji pętli zwarcia obwodu elektrycznego?

Ilustracja do pytania
A. D.
B. A.
C. C.
D. B.
Wybór odpowiedzi B jest trafiony, bo mierniki pętli zwarcia to te specjalne narzędzia, które dokładnie mierzą impedancję w obwodach elektrycznych. Używając takiego miernika, możemy sprawdzić rezystancję pętli zwarcia, co jest super ważne, gdy chodzi o bezpieczeństwo instalacji. Dzięki tym pomiarom możemy upewnić się, że wszystko jest w normie, tzn. nie przekraczamy wartości określonych w normach, jak PN-IEC 60364 – to coś, co każdy elektryk powinien znać. Ba, te mierniki potrafią też sprawdzić czas wyłączenia zabezpieczeń, co daje nam lepszy obraz tego, jak działa cała instalacja. Fajnym przykładem użycia takiego miernika jest testowanie nowej instalacji przed jej oddaniem do użytku – wtedy mamy pewność, że jest wszystko w porządku i bezpieczne dla użytkowników.

Pytanie 3

Na podstawie tabeli określ znamionowy prąd wyłącznika nadprądowego do zabezpieczenia jednofazowego obwodu oświetlenia złożonego z dwunastu lamp 2×36 W z kompensacją mocy biernej.

Ilustracja do pytania
A. 6 A
B. 4 A
C. 10 A
D. 13 A
Wybór 6 A, 13 A lub 4 A jako prądu znamionowego wyłącznika nadprądowego do zabezpieczenia obwodu oświetlenia złożonego z dwunastu lamp 2×36 W jest błędny z kilku powodów. Przede wszystkim, odpowiedni dobór wyłączników nadprądowych powinien opierać się na obliczeniach dotyczących całkowitej mocy obwodu oraz przewidywanego prądu roboczego. Prąd znamionowy 6 A jest zbyt niski, aby wytrzymać obciążenie 864 W, co stwarza ryzyko wyzwolenia wyłącznika w normalnych warunkach pracy, prowadząc do niepotrzebnych przerw w zasilaniu. Z kolei prąd 13 A, mimo że może wydawać się adekwatny, nie uwzględnia odpowiednich praktyk doboru, które sugerują, aby prąd znamionowy wyłącznika był nieprzekraczający 125% obliczonego prądu roboczego w celu stworzenia dodatkowego marginesu bezpieczeństwa. Prąd 4 A jest wprost nieadekwatny do obliczonej mocy obwodu, co może prowadzić do sytuacji, w której wyłącznik będzie nieustannie się załączał. Właściwe podejście do doboru wyłączników nadprądowych powinno uwzględniać nie tylko obliczenia teoretyczne, ale także praktyczne aspekty eksploatacji, takie jak zmiany obciążenia czy wpływ mocy biernej na wydajność obwodu. Dlatego kluczowe jest stosowanie wyłączników, które spełniają normy oraz zapewniają bezpieczeństwo i niezawodność instalacji elektrycznej.

Pytanie 4

Korzystając z podanego wzoru i tabeli wyznacz wartość rezystancji izolacji uzwojeń silnika w temperaturze 20 °C, jeżeli rezystancja izolacji uzwojeń tego silnika zmierzona w temperaturze 17 °C wyniosła 7,3 MΩ.

Współczynniki przeliczeniowe K₂₀ dla rezystancji izolacji uzwojeń silników
R₂₀ = K₂₀·Rₜ
Temperatura w °C01114172023262932
Współczynnik przeliczeniowy K₂₀0,670,730,810,901,001,101,211,341,48
A. 8,20 MΩ
B. 6,57 MΩ
C. 8,11 MΩ
D. 6,40 MΩ
Odpowiedzi, które sugerują wartości rezystancji izolacji silnika inne niż 6,57 MΩ, mogą wynikać z mylnych obliczeń oraz błędnego zrozumienia procesu przeliczania rezystancji w różnych temperaturach. Na przykład, jeśli ktoś oblicza rezystancję na podstawie nieodpowiednich współczynników temperatury, może dojść do fałszywego wyniku. Wartości 8,11 MΩ oraz 8,20 MΩ są wynikiem pomylenia współczynników lub niepoprawnego zastosowania wzoru. Często występującym błędem jest ignorowanie faktu, że rezystancja izolacji maleje wraz ze wzrostem temperatury, co jest odwrotnością niektórych parametrów elektrycznych, które mogą wzrastać w takich warunkach. Zrozumienie, jak temperatura wpływa na właściwości materiałów izolacyjnych, jest kluczowe w inżynierii elektrycznej. Dlatego ważne jest, aby nie tylko znać wzory, ale także rozumieć fizyczne zjawiska zachodzące w izolacji. W praktyce, błędne przeliczenie wartości oparte na niewłaściwych danych może prowadzić do poważnych usterek lub uszkodzenia urządzeń, co podkreśla znaczenie dokładności obliczeń i znajomości standardów branżowych, takich jak IEC 60034-1, które promują odpowiednie procedury konserwacyjne i diagnostyczne w obszarze elektrotechniki.

Pytanie 5

Jakim kolorem oznaczona jest wkładka topikowa, której wartość prądu znamionowego wynosi 20 A?

A. szary
B. niebieski
C. żółty
D. czerwony
Wybór innych kolorów wkładek topikowych może prowadzić do poważnych błędów w zabezpieczeniach instalacji elektrycznych. Szary kolor odpowiada wkładkom o prądzie znamionowym 6 A, co oznacza, że zastosowanie go w miejscu o pełnym obciążeniu 20 A może skutkować ich zbyt wczesnym przepaleniem, co z kolei może doprowadzić do uszkodzeń sprzętu oraz potencjalnych zagrożeń pożarowych. Żółty oznacza wkładki o wartości 10 A, co również jest niewystarczające dla prądów sięgających 20 A. Czerwony kolor jest przypisany wkładkom o prądzie znamionowym 16 A, co również nie zabezpiecza adekwatnie instalacji, która wymaga wytrzymałości 20 A. Kluczowym błędem myślowym jest błędne założenie, że każdy kolor mógłby być stosowany wymiennie w zależności od dostępności, co jest absolutnie nieprawidłowe. Przy wyborze wkładek topikowych należy kierować się nie tylko ich dostępnością, ale przede wszystkim normami oraz prądami znamionowymi, by uniknąć ryzyka awarii. Wiedza na temat tych norm oraz ich praktyczne zastosowanie jest niezbędne dla każdego profesjonalisty w branży elektrycznej.

Pytanie 6

Które z poniższych wskazówek nie dotyczy przeprowadzania nowych instalacji elektrycznych w lokalach mieszkalnych?

A. Gniazda wtyczkowe w kuchni zasilane muszą być z oddzielnego obwodu
B. Gniazda wtyczkowe w każdym pomieszczeniu powinny być zasilane z osobnego obwodu
C. Oddzielić obwody oświetleniowe od obwodów gniazd wtyczkowych
D. Odbiorniki o dużej mocy należy zasilać z wyodrębnionych obwodów
Odpowiedź dotycząca zasilania gniazd wtyczkowych każdego pomieszczenia z osobnego obwodu jest prawidłowa, ponieważ takie podejście nie jest zgodne z zaleceniami w zakresie projektowania instalacji elektrycznych w budynkach mieszkalnych. W praktyce, stosowanie osobnych obwodów dla każdego pomieszczenia może prowadzić do nadmiernych kosztów i skomplikowania instalacji. Zgodnie z Polską Normą PN-IEC 60364-1, obwody powinny być projektowane w taki sposób, aby zapewnić bezpieczeństwo i funkcjonalność, a nie każdy obwód powinien być dedykowany dla jednego pomieszczenia. W standardowych rozwiązaniach gniazda wtyczkowe w poszczególnych pomieszczeniach, jak kuchnia czy salon, mogą być podłączane do wspólnych obwodów, co jest bardziej efektywne, a także ułatwia ewentualne naprawy czy modernizacje. Przykładowo, w kuchni, gdzie występuje wiele odbiorników, stosuje się osobny obwód, ale gniazda w innych pomieszczeniach mogą być zasilane z jednego wspólnego obwodu, co zmniejsza ilość potrzebnych przewodów oraz urządzeń zabezpieczających.

Pytanie 7

Jaki parametr trójfazowego gniazda wtyczkowego jest określany symbolem IP20?

A. Najwyższą temperaturę otoczenia podczas eksploatacji
B. Klasę ochronności przed porażeniem energią elektryczną
C. Minimalny przekrój przewodów podłączonych do zacisków
D. Stopień zabezpieczenia przed dostępem ciał stałych oraz wody
Symbol IP20 mówi nam o tym, jak dobrze urządzenia elektryczne są chronione przed różnymi rzeczami, jak np. kurz i woda. W praktyce oznacza to, że urządzenie jest ok, jeśli chodzi o duże obiekty (czyli te, które mają więcej niż 12,5 mm), ale niestety nie ma żadnej ochrony przed wodą. To jest ważne, zwłaszcza gdy myślimy o tym, gdzie te urządzenia będą używane. Na przykład gniazdka w biurze – nie jesteśmy tam narażeni na wodę, ale dobrze, że są zbudowane tak, żeby nikt nie mógł łatwo zajrzeć do środka. Fajnie, że istnieją standardy IEC 60529, bo dzięki nim można lepiej dobierać urządzenia do konkretnych miejsc, zwłaszcza tam, gdzie bezpieczeństwo elektryczne to mega ważna sprawa.

Pytanie 8

Który z wymienionych parametrów elementów instalacji elektrycznej można zmierzyć przyrządem, którego fragment pokazano na rysunku?

Ilustracja do pytania
A. Czas wyłączenia wyłącznika nadprądowego.
B. Rezystancję uziemienia.
C. Rezystancję izolacji.
D. Impedancję pętli zwarcia.
Odpowiedź "Impedancja pętli zwarcia" jest jak najbardziej na miejscu. Miernik z zdjęcia jest zaprojektowany właśnie do takich pomiarów w instalacjach elektrycznych. Ten miernik wielofunkcyjny, oznaczony jako "ZL-PE", wskazuje na to, że można nim zmierzyć impedancję pętli zwarcia, co jest mega ważne dla bezpieczeństwa systemów elektrycznych. Wartość impedancji wpływa na to, jak szybko i skutecznie działają zabezpieczenia, na przykład wyłączniki nadprądowe. Jak dojdzie do zwarcia, niska impedancja sprawia, że zabezpieczenie zadziała szybko, co zmniejsza ryzyko uszkodzenia instalacji. Zgodnie z normami PN-IEC 60364, regularne pomiary impedancji pętli zwarcia to standard w utrzymaniu i audytach instalacji elektrycznych, co naprawdę chroni ludzi i mienie. Osobiście uważam, że znajomość przeszłych pomiarów i umiejętność ich interpretacji to klucz do optymalizacji zabezpieczeń.

Pytanie 9

Który z symboli oznacza możliwość bezpośredniego montażu oprawy oświetleniowej wyłącznie na podłożu niepalnym?

Ilustracja do pytania
A. A.
B. D.
C. C.
D. B.
Wybór symbolu A., C. lub D. może prowadzić do nieprawidłowych wniosków na temat możliwości montażu opraw oświetleniowych. Na przykład, symbol A. może sugerować, że oprawy oświetleniowe są odpowiednie do montażu na podłożach palnych, co jest sprzeczne z podstawowymi zasadami bezpieczeństwa pożarowego. Montowanie oprawy na powierzchniach palnych zwiększa ryzyko wystąpienia pożaru, zwłaszcza w sytuacji, gdy oprawa generuje wysoką temperaturę. W praktyce, wiele osób może mylnie uważać, że wszystkie oprawy oświetleniowe są uniwersalne i mogą być instalowane w dowolnych warunkach. To podejście jest błędne, ponieważ wiele norm branżowych, takich jak PN-EN 60598, wyraźnie wskazuje, że instalacje powinny być dostosowane do specyfiki pomieszczeń oraz ich przeznaczenia. Wybór błędnego symbolu może wynikać z niedostatecznej wiedzy na temat klasyfikacji materiałów palnych oraz właściwego montażu opraw. Ponadto, niektóre oprawy mogą być zaprojektowane do pracy w trudnych warunkach, co wymaga dodatkowych zabezpieczeń. Dlatego przed dokonaniem wyboru, zawsze warto zapoznać się z dokumentacją techniczną oraz konsultować się z wykwalifikowanym specjalistą w dziedzinie instalacji elektrycznych.

Pytanie 10

Podaj rodzaj i miejsce uszkodzenia w trójfazowym silniku indukcyjnym o uzwojeniach połączonych w gwiazdę, jeżeli wyniki pomiarów rezystancji jego uzwojeń przedstawione są w tabeli.

Rezystancja między zaciskamiWynik
U - V15 Ω
V - W15 Ω
W - U20 Ω
A. Zwarcie międzyzwojowe w fazie V
B. Przerwa w uzwojeniu fazy V
C. Zwarcie międzyzwojowe w fazie W
D. Przerwa w uzwojeniu fazy W
Przerwa w uzwojeniu fazy V oraz zwarcie międzyzwojowe w fazie W to odpowiedzi, które mogą wydawać się logiczne na pierwszy rzut oka, jednak analiza pomiarów rezystancji wskazuje na błędne interpretacje. Przerwa w uzwojeniu fazy V skutkujełaby znacznie wyższą rezystancją między zaciskami U-V i V-W, co jest sprzeczne z danymi, które pokazują mniejsze wartości rezystancji. Taki błąd myślowy często wynika z niepoprawnego założenia, że wszystkie rezystancje powinny być jednorodne, co w praktyce nie zawsze ma miejsce, zwłaszcza w obliczu uszkodzeń. Natomiast zwarcie międzyzwojowe w fazie W, choć również może wydawać się możliwą przyczyną uszkodzenia, nie znajduje potwierdzenia w pomiarach, które jasno wskazują na asymetrię w rezystancjach, a nie na zjawisko zwarcia w fazie W. W przypadku zwarcia międzyzwojowego, oczekiwalibyśmy, że rezystancja tej fazy będzie znacznie niższa niż w innych fazach, co nie jest zgodne z wynikami. Takie nieporozumienia mogą prowadzić do niewłaściwego diagnozowania problemów w silnikach indukcyjnych, co w efekcie może skutkować dalszymi uszkodzeniami i kosztownymi naprawami. Ważne jest zrozumienie różnicy pomiędzy przerwą w uzwojeniu a zwarciami, oraz umiejętność analizy danych pomiarowych w kontekście ich praktycznego zastosowania.

Pytanie 11

Jakiej klasy ogranicznik przepięć powinno się montować w instalacjach mieszkalnych?

A. Klasy B
B. Klasy A
C. Klasy C
D. Klasy D
Odpowiedzi wskazujące na klasy B, D oraz A jako odpowiednie dla rozdzielnic mieszkalnych są niepoprawne głównie z powodu różnic w charakterystyce i zastosowaniach tych ograniczników. Klasa B, według normy IEC 61643-11, jest zaprojektowana do ochrony przed bardzo wysokimi przepięciami, które mogą występować w sieciach zasilających, co czyni je bardziej odpowiednimi do zastosowań w instalacjach przemysłowych, gdzie ryzyko wystąpienia takich zdarzeń jest znacznie wyższe. Ograniczniki klasy A z kolei są przeznaczone do ochrony przed bardzo niskimi, ale szybko zmieniającymi się przepięciami, co również nie odpowiada typowym wymaganiom dla mieszkań. Klasa D, zdefiniowana jako ogranicznik przeznaczony do instalacji w obiektach specjalistycznych, takich jak centra danych, również nie jest zalecana do użytku domowego. Sugerowanie tych klas ograniczników dla zastosowań w rozdzielnicach mieszkaniowych może prowadzić do niewłaściwej ochrony i potencjalnych uszkodzeń sprzętu, co jest wynikiem niepełnego zrozumienia standardów ochrony przeciwprzepięciowej oraz różnorodności warunków, w jakich te urządzenia są używane. Kluczowe jest, aby przy wyborze odpowiedniego ogranicznika kierować się wymaganiami specyfikacji technicznych oraz dobrą praktyką inżynieryjną, co pomoże uniknąć kosztownych błędów i zapewni skuteczną ochronę instalacji elektrycznych.

Pytanie 12

Którego z narzędzi należy użyć do wkręcenia przedstawionego elementu w nagwintowany otwór?

Ilustracja do pytania
A. Klucza ampulowego.
B. Wkrętaka krzyżowego.
C. Wkrętaka typu torks.
D. Klucza nasadowego.
Klucz ampulowy, znany także jako klucz imbusowy, jest narzędziem przeznaczonym do pracy z śrubami i wkrętami, które mają łeb sześciokątny wewnętrzny. W przypadku opisanej sytuacji, użycie klucza ampulowego jest kluczowe, ponieważ idealnie pasuje do profilu łba śruby, co zapewnia skuteczne i bezpieczne wkręcanie lub wykręcanie. Tego typu klucze są szeroko stosowane w różnych dziedzinach, takich jak mechanika, elektronika czy budownictwo, co czyni je niezastąpionym narzędziem w zestawie każdego profesjonalisty. W praktyce, klucz ampulowy pozwala na uzyskanie dużego momentu obrotowego przy niewielkim wysiłku, co jest szczególnie ważne przy pracy z metalowymi elementami, które mogą być narażone na korozję lub inne uszkodzenia. Dodatkowo, klucze te są dostępne w różnych rozmiarach, co umożliwia ich dopasowanie do różnych śrub, zgodnie z normami ISO i DIN. Użycie odpowiedniego narzędzia z pewnością przyczyni się do wydajności pracy oraz do ograniczenia ryzyka uszkodzeń elementów montażowych.

Pytanie 13

Na którym rysunku przedstawiono oprawę oświetleniową rastrową?

Ilustracja do pytania
A. B.
B. A.
C. D.
D. C.
Oprawa oświetleniowa rastrowa, jak wskazuje poprawna odpowiedź, odgrywa kluczową rolę w zapewnieniu efektywnego oświetlenia w różnych przestrzeniach, takich jak biura, hale produkcyjne czy sale wykładowe. Charakteryzuje się ona specyficzną konstrukcją rastrową, której celem jest równomierne rozprowadzanie światła oraz zmniejszenie efektu olśnienia. W oprawie oznaczonej jako B dostrzegamy zastosowanie takiej osłony, co jest zgodne z normami oświetleniowymi, np. PN-EN 12464-1, które podkreślają znaczenie komfortu użytkowników w środowisku pracy. Praktycznym zastosowaniem oświetlenia rastrowego jest jego umiejscowienie w przestrzeniach biurowych, gdzie odpowiednie rozproszenie światła zmniejsza zmęczenie wzroku oraz poprawia efektywność pracy. Warto również zaznaczyć, że tego typu oprawy są dostępne w różnych wariantach, co pozwala na ich dopasowanie do specyficznych potrzeb architektonicznych i użytkowych, przy jednoczesnym zachowaniu estetyki wnętrza.

Pytanie 14

Jaką klasę mają oprawy stosowane do oświetlenia miejscowego?

A. III
B. IV
C. II
D. I
Wybór opraw klasy II, III lub IV wskazuje na nieporozumienie dotyczące standardów bezpieczeństwa i funkcji oświetlenia miejscowego. Klasa II opisuje oprawy, które są podwójnie izolowane, co sprawia, że nie wymagają uziemienia, ale nie są one rekomendowane do zastosowań, gdzie istnieje ryzyko kontaktu z wodą lub innymi cieczyami, co często ma miejsce w miejscach pracy. Wybierając te oprawy na stanowiska robocze, narażamy użytkowników na potencjalne zagrożenia elektryczne. Klasa III z kolei odnosi się do urządzeń zasilanych z niskonapięciowych źródeł, co może być stosowane w niektórych aplikacjach, ale nie jest odpowiednie do typowego oświetlenia miejscowego, które wymaga wyższego napięcia dla efektywnego działania. Klasa IV dotyczy produktów przeznaczonych do zastosowań specjalnych, które są często chronione przed czynnikami zewnętrznymi, ale nie mają zastosowania w standardowych warunkach biurowych czy przemysłowych. Wybór niewłaściwej klasy oprawy może prowadzić do poważnych konsekwencji zdrowotnych i bezpieczeństwa, dlatego zrozumienie tych różnic jest kluczowe w procesie projektowania efektywnego oświetlenia miejscowego. Podstawowym błędem myślowym jest zakładanie, że wszystkie oprawy mogą być stosowane zamiennie, co ignoruje różnice w wymaganiach bezpieczeństwa i funkcjonalności. W kontekście standardów branżowych, stosowanie opraw klasy I jest najlepszą praktyką, ponieważ minimalizuje ryzyko porażenia prądem i zapewnia bezpieczeństwo pracy.

Pytanie 15

Na tynku wykonanym na ścianie działowej z cegły pełnej wytyczono miejsce dla rurek PVC. Jakie narzędzia należy zgromadzić, aby zapewnić szybki i precyzyjny montaż rurek?

A. Wiertarkę, punktak, zestaw wkrętaków
B. Taśmę mierniczą, wiertarkę, piłę do metalu, młotek
C. Punktak, młotek, wiertarka udarowa, wiertło widiowe dostosowane do średnicy kołka rozporowego, piła do metalu, zestaw wkrętaków
D. Taśmę mierniczą, młotek, wiertarkę udarową, wiertło widiowe dostosowane do średnicy kołka rozporowego, poziomicę, zestaw wkrętaków
Wybór narzędzi zaproponowany w innych odpowiedziach, takich jak tylko taśma miernicza i młotek, bądź jedynie wiertarka i komplet wkrętaków, jest niewłaściwy dla tego konkretnego zadania. Taśma miernicza, mimo że jest przydatna do pomiarów, nie zastępuje potrzeby precyzyjnego wyznaczenia miejsc wiercenia, co może prowadzić do błędów w montażu. Młotek sam w sobie nie jest wystarczający do pracy z cegłą pełną, gdzie konieczne jest użycie punktaka do wstępnego oznaczenia otworów. Wiertarka bez odpowiedniego wiertła widiowego może nie sprostać twardości cegły, co skutkuje trudnościami w procesie wiercenia oraz możliwym uszkodzeniem narzędzia. Piła do metalu może być używana, lecz w kontekście montażu rurek PVC, kluczowe jest posiadanie narzędzi do obróbki i mocowania, a nie tylko cięcia. Ostatecznie, brak poziomnicy w zestawie narzędzi jest istotnym błędem, ponieważ precyzyjne wypoziomowanie rurek jest kluczowe dla prawidłowego funkcjonowania instalacji. Takie nieprzemyślane podejście do przygotowania narzędzi może prowadzić do poważnych błędów w instalacji, co w dłuższym czasie może generować dodatkowe koszty związane z poprawkami i ponownym montażem.

Pytanie 16

Którego osprzętu instalacyjnego dotyczy przedstawiony fragment opisu?

Fragment opisu osprzętu instalacyjnego
W celu zabezpieczenia przed porażeniem prądem elektrycznym małych dzieci instaluje się modele ze specjalnymi przesłonami torów prądowych. Konstrukcja mechaniczna przesłony uniemożliwia włożenie długopisu, kredki czy innego przewodnika do toru prądowego.

Do uzyskania pełnego bezpieczeństwa stosuje się przesłony torów prądowych wyposażone dodatkowo w tzw. klucz uprawniający, uchylający przesłony torów prądowych.
A. Wtyczki kabla zasilającego.
B. Gniazda wtykowego.
C. Puszki łączeniowej.
D. Oprawki źródła światła.
Gniazda wtykowe to naprawdę ważny element w każdej instalacji elektrycznej, zwłaszcza gdy mowa o bezpieczeństwie, szczególnie dla dzieci. Opisujesz modele gniazd, które mają specjalne przesłony na torach prądowych, co naprawdę chroni przed przypadkowym dotknięciem tych niebezpiecznych części. Te gniazda, które są zgodne z różnymi normami, są stworzone z myślą o tym, żeby minimalizować ryzyko porażenia prądem. Na przykład, gniazda z systemem przesłon pozwalają na wsunięcie wtyczki tylko w konkretnej pozycji, co znacznie ogranicza ryzyko kontaktu z prądem. Używanie takich gniazd jest super ważne w pomieszczeniach, gdzie bywają dzieci, a wiele standardów branżowych, jak np. normy IEC 60884, to potwierdza. To naprawdę praktyczne podejście do projektowania osprzętu zwiększa bezpieczeństwo w naszych domach i miejscach publicznych, gdzie kontakt z prądem może być poważnym zagrożeniem.

Pytanie 17

Na wyłączniku różnicowoprądowym są następujące oznaczenia:

CIF-6 30/4/003
IΔn= 0,03 A
In=30 A
~230/400 V
Prąd różnicowy i znamionowy tego wyłącznika wynoszą odpowiednio
A. 0,003 A i 30 A
B. 3 A i 0,03 A
C. 0,03 A i 30 A
D. 30 A i 0,03 A
Poprawna odpowiedź to 0,03 A i 30 A, co jest zgodne z oznaczeniami przedstawionymi na wyłączniku różnicowoprądowym. Prąd różnicowy, oznaczany jako IΔn, wynoszący 0,03 A, jest kluczowy dla ochrony przed porażeniem elektrycznym, gdyż wykrywa niewielkie różnice w prądzie między przewodami fazowymi a neutralnym. Taki wyłącznik jest stosowany w obwodach z urządzeniami narażonymi na kontakt z wodą, co zwiększa ryzyko porażenia. Z kolei prąd znamionowy In, wynoszący 30 A, definiuje maksymalne obciążenie, jakie wyłącznik może bezpiecznie obsłużyć. Dobre praktyki branżowe zalecają stosowanie wyłączników różnicowoprądowych o prądzie różnicowym 0,03 A w obwodach z urządzeniami wrażliwymi, takimi jak łazienki czy kuchnie, aby zapewnić odpowiednią ochronę. Ważne jest, aby przed instalacją wyłącznika sprawdzić, czy jego parametry są zgodne z wymaganiami określonymi w normach, takich jak PN-EN 61008-1, co gwarantuje wysoką jakość i bezpieczeństwo instalacji.

Pytanie 18

Jakie właściwości definiują wyłącznik instalacyjny nadprądowy?

A. Prąd obciążenia, rezystancja zestyku, czas wyłączenia
B. Napięcie dopuszczalne, prąd różnicowy, czas zadziałania
C. Prąd zwarciowy, typ zestyku, napięcie podtrzymania
D. Napięcie znamionowe, prąd znamionowy, rodzaj charakterystyki
Wyłącznik instalacyjny nadprądowy jest kluczowym elementem zabezpieczeń w instalacjach elektrycznych. Parametry takie jak napięcie znamionowe, prąd znamionowy oraz rodzaj charakterystyki definiują jego właściwości i funkcjonalność. Napięcie znamionowe określa maksymalne napięcie, przy którym wyłącznik może pracować bezawaryjnie, co jest istotne w kontekście doboru urządzeń do konkretnej instalacji. Prąd znamionowy to wartość prądu, przy której wyłącznik powinien funkcjonować poprawnie, ale również powinien zareagować w przypadku przekroczenia tej wartości, co jest kluczowe dla ochrony instalacji przed przeciążeniem. Rodzaj charakterystyki (np. A, B, C, D) wskazuje na czas reakcji oraz sposób działania wyłącznika w obliczu przeciążeń oraz zwarć, co pozwala na optymalne dopasowanie do różnych aplikacji, takich jak domowe instalacje, przemysłowe czy zastosowania specjalistyczne. Przykładowo, charakterystyka typu B jest powszechnie stosowana w instalacjach domowych, gdzie występują małe prądy rozruchowe, natomiast typ C jest odpowiedni dla obciążeń z wyższymi prądami rozruchowymi, np. w urządzeniach elektrycznych. Stosowanie wyłączników zgodnie z tymi parametrami jest zgodne z normami IEC 60898 oraz IEC 60947, co zapewnia bezpieczeństwo i niezawodność instalacji elektrycznych.

Pytanie 19

Pomiar rezystancji uzwojenia silnika elektrycznego przy użyciu omomierza wykazał wartość ∞ Ω. Co oznacza ten wynik dla uzwojenia silnika?

A. działa prawidłowo.
B. jest uszkodzone.
C. izolacja jest uszkodzona.
D. występuje zwarcie między zwojami.
Stwierdzenia sugerujące, że uzwojenie silnika jest sprawne, posiada zwarcie międzyzwojowe lub ma uszkodzoną izolację, są błędne i mogą prowadzić do poważnych konsekwencji w diagnostyce i eksploatacji silników elektrycznych. Uzwojenie, które jest sprawne, charakteryzuje się rezystancją w normatywnym zakresie, co zazwyczaj oscyluje wokół wartości określonej przez producenta, a jego pomiar powinien wykazywać konkretne, mierzalne wartości. W przypadku zwarcia międzyzwojowego, pomiar rezystancji nie wykazywałby nieskończoności, lecz niższą wartość, co świadczyłoby o problemie w strukturze uzwojenia. Tego rodzaju uszkodzenia są często skutkiem przegrzania lub niewłaściwej eksploatacji, a ich objawami są zniekształcenia w pracy silnika, takie jak wzrost poboru prądu czy zmniejszenie momentu obrotowego. Uszkodzenie izolacji również nie prowadziłoby do nieskończonej rezystancji; zamiast tego mogłoby objawiać się jako spadek rezystancji, co skutkowałoby ryzykiem zwarcia do ziemi. Ponadto, ignoracja przerwanego uzwojenia może prowadzić do poważnych uszkodzeń silnika lub rozległych awarii systemu, co jest niezgodne z dobrymi praktykami w zakresie utrzymania ruchu, które zalecają bieżącą kontrolę i natychmiastowe reagowanie na wszelkie nieprawidłowości w działaniu urządzeń elektrycznych.

Pytanie 20

Miernik rezystancji włączony do układu jak na rysunku służy do

Ilustracja do pytania
A. pomiaru impedancji pętli zwarciowej.
B. sprawdzenia ciągłości przewodu miejscowego połączenia wyrównawczego.
C. pomiaru rezystancji uziemienia.
D. sprawdzenia ciągłości przewodu głównego połączenia wyrównawczego.
Wybór odpowiedzi niezgodnej z rzeczywistym przeznaczeniem miernika rezystancji może prowadzić do poważnych konsekwencji w pracy z instalacjami elektrycznymi. Pomiar impedancji pętli zwarciowej, choć istotny, dotyczy innego aspektu analizy instalacji elektrycznej. Impedancja pętli zwarciowej jest parametrem, który pozwala zrozumieć, jak instalacja zareaguje w przypadku zwarcia. Pomiar ten wykonuje się zwykle w celu oceny skuteczności zabezpieczeń, a nie do sprawdzenia ciągłości przewodów ochronnych. Także, pomiar rezystancji uziemienia, mimo że istotny dla zapewnienia ochrony przed porażeniem, odnosi się do innego elementu instalacji, a nie do samej ciągłości przewodu. Dodatkowo, sprawdzenie ciągłości przewodu miejscowego połączenia wyrównawczego także nie jest właściwe w kontekście użycia miernika w opisywanym układzie. Mierzony przewód w tym przypadku jest przewodem głównym, który odgrywa kluczową rolę w bezpiecznym funkcjonowaniu całej instalacji. Zrozumienie różnicy pomiędzy tymi rodzajami pomiarów jest kluczowe dla każdego specjalisty zajmującego się elektryką, ponieważ pomyłka w identyfikacji celu pomiaru może prowadzić do poważnych problemów z bezpieczeństwem instalacji, a także do nieprawidłowej oceny stanu technicznego systemu elektrycznego.

Pytanie 21

Silnika klatkowego, którego fragment tabliczki znamionowej przedstawiono na ilustracji, nie należy zasilać napięciem międzyfazowym o wysokości

Ilustracja do pytania
A. 230 V, gdy jego uzwojenia skojarzy się w gwiazdę.
B. 230 V, gdy jego uzwojenia skojarzy się w trójkąt.
C. 400 V, gdy jego uzwojenia skojarzy się w gwiazdę.
D. 400 V, gdy jego uzwojenia skojarzy się w trójkąt.
Wybór zasilania 230 V dla silnika z uzwojeniami połączonymi w trójkąt jest niepoprawny z kilku kluczowych powodów. Po pierwsze, połączenie w trójkąt (Δ) w silnikach klatkowych oznacza, że wszelkie napięcia zasilające muszą być zgodne z wartościami podanymi na tabliczce znamionowej. 230 V jest napięciem, które odpowiada połączeniu w gwiazdę (Y), co oznacza, że zasilanie silnika w ten sposób spowoduje niewystarczające napięcie na uzwojeniach, co prowadzi do obniżenia mocy silnika oraz zwiększenia ryzyka jego zatrzymania. Kiedy zasilamy silnik napięciem niższym niż wymagane, uzwojenia nie osiągają swoich nominalnych parametrów, co skutkuje niemożnością efektywnego wykonywania zamierzonych zadań. Ponadto, istnieje ryzyko, że silnik nie włączy się w ogóle lub przy obciążeniu dojdzie do nadmiernego nagrzewania, co może prowadzić do uszkodzenia izolacji uzwojeń. Technicy często popełniają błąd, nie zwracając uwagi na wskazania tabliczki znamionowej oraz nie rozumiejąc, że zasilanie silnika wymaga precyzyjnego dopasowania do jego konstrukcji i przeznaczenia. Zrozumienie zasad różnicowania połączeń oraz ich konsekwencji dla pracy silników jest kluczowe dla każdego inżyniera zajmującego się projektowaniem i konserwacją systemów napędowych.

Pytanie 22

Jakie urządzenie jest używane do pomiaru rezystancji izolacyjnej przewodu?

A. omomierz
B. megaomomierz
C. miernik indukcyjny uziemień
D. miernik obwodu zwarcia
Megaomomierz to taki specjalny sprzęt, który używamy do sprawdzania, jak dobrze izolowane są przewody i inne części w elektryce. Działa na zasadzie pomiaru rezystancji przy użyciu wysokiego napięcia, dzięki czemu możemy wychwycić uszkodzenia izolacji, które mogą prowadzić do jakichś awarii lub nawet zagrożeń. W praktyce megaomomierz jest bardzo popularny w budownictwie i energetyce do testowania instalacji elektrycznych. Często używa się go też w serwisach, gdzie naprawiają różne urządzenia elektryczne. Są normy, takie jak IEC 60034-1 czy PN-EN 61557-1, które mówią nie tylko o tym, jak mierzyć, ale też o wymaganiach bezpieczeństwa. Dobrze jest na przykład zmierzyć izolację silników elektrycznych przed ich uruchomieniem – to ważne, żeby zapewnić, że będą działały długo i bezpiecznie.

Pytanie 23

Na której ilustracji przedstawiono symbol graficzny przewodu ochronnego?

Ilustracja do pytania
A. Na ilustracji 3.
B. Na ilustracji 1.
C. Na ilustracji 2.
D. Na ilustracji 4.
Ilustracja 2 przedstawia symbol graficzny przewodu ochronnego zgodny z normami i przepisami dotyczącymi oznaczeń w instalacjach elektrycznych. Przewód ochronny, zwany również przewodem uziemiającym, ma kluczowe znaczenie w zapewnieniu bezpieczeństwa instalacji oraz ochrony przed porażeniem elektrycznym. Oznaczenie to składa się z linii prostej oraz przylegającej do niej linii ukośnej, co jednoznacznie wskazuje na funkcję ochronną tego przewodu. Zgodnie z normą PN-EN 60446, symbole powinny być tak zaprojektowane, aby były łatwe do rozpoznania i zrozumienia dla wszystkich osób zajmujących się instalacjami elektrycznymi. Użycie poprawnego oznaczenia przewodu ochronnego jest kluczowe, aby upewnić się, że instalacje są realizowane zgodnie z najlepszymi praktykami, co w konsekwencji minimalizuje ryzyko wystąpienia awarii oraz wypadków. W praktyce, właściwe oznaczenie przewodów ochronnych można spotkać na placach budowy, w dokumentacji technicznej oraz w instrukcjach obsługi urządzeń elektrycznych, co potwierdza ich znaczenie w codziennej pracy specjalistów branży elektrycznej.

Pytanie 24

Które z poniższych oznaczeń dotyczy wyłącznika silnikowego?

A. FRCdM-63/4/03
B. SM 25-40
C. Ex9BP-N 4P C10
D. Z-MS-16/3
Pozostałe oznaczenia, takie jak SM 25-40, Ex9BP-N 4P C10 oraz FRCdM-63/4/03, nie odnoszą się do wyłączników silnikowych, co może prowadzić do nieporozumień w zakresie ich funkcji i zastosowania. Oznaczenie SM 25-40 zazwyczaj odnosi się do styczników, które służą do załączania i wyłączania obwodów elektrycznych, ale nie mają funkcji ochrony silnika przed przeciążeniem lub zwarciem. Styki w takich urządzeniach są zaprojektowane do pracy w określonych warunkach, lecz nie zrealizują funkcji zabezpieczenia, jaką oferuje wyłącznik silnikowy. Z kolei Ex9BP-N 4P C10 to oznaczenie wyłącznika automatycznego, który może być używany w obwodach elektrycznych, ale nie są one dedykowane do ochrony silników. Zastosowanie tego typu wyłącznika do zabezpieczenia silników może prowadzić do niewłaściwego działania i potencjalnych uszkodzeń. Natomiast oznaczenie FRCdM-63/4/03 wskazuje na urządzenie, które najprawdopodobniej jest wyłącznikiem różnicowoprądowym, stosowanym głównie do ochrony przed porażeniem prądem elektrycznym, a nie przed przeciążeniem silników. Tego typu wyłączniki mają zupełnie inne zastosowanie i nie spełniają wymogów ochrony silników. Właściwe rozróżnienie pomiędzy tymi urządzeniami jest kluczowe w kontekście bezpieczeństwa oraz efektywności pracy instalacji elektrycznych. Użytkownicy powinni być świadomi, że niewłaściwe dobranie urządzenia ochronnego może prowadzić do poważnych konsekwencji, zarówno w aspekcie bezpieczeństwa, jak i wydajności systemów elektrycznych.

Pytanie 25

Który z pokazanych na rysunkach przewodów należy zastosować do wykonania instalacji zasilającej odbiornik prądu stałego w układzie 2/M DC 220/110 V?

Ilustracja do pytania
A. B.
B. A.
C. C.
D. D.
Wybór innych przewodów, takich jak A, B czy C, do instalacji zasilającej odbiornik prądu stałego w układzie 2/M DC 220/110 V jest nieodpowiedni z kilku istotnych powodów. Przede wszystkim, nie każdy przewód jest przystosowany do pracy w warunkach napięcia stałego, co jest kluczowe w tym przypadku. Przewody A, B i C mogą mieć różne właściwości izolacyjne, które nie są wystarczające do ochrony przed skutkami działania napięcia stałego, co może prowadzić do porażenia prądem lub zwarcia. Typowe błędy przy wyborze przewodów do instalacji DC to pomijanie specyfikacji dotyczących odporności na przebicia oraz nieprzestrzeganie norm bezpieczeństwa, takich jak IEC 60228. Osoby wybierające te przewody często kierują się jedynie ich wyglądem lub ceną, ignorując fundamentalne różnice w konstrukcji, które są kluczowe dla bezpieczeństwa całego systemu. W praktyce, stosowanie niewłaściwego przewodu w instalacjach DC może prowadzić do poważnych awarii oraz zwiększa ryzyko pożaru. Warto również pamiętać o tym, że instalacje elektryczne muszą być projektowane z uwzględnieniem lokalnych przepisów i norm, co dodatkowo podkreśla konieczność starannego doboru komponentów instalacji.

Pytanie 26

Schemat którego aparatu elektrycznego przedstawiono na rysunku?

Ilustracja do pytania
A. Wyłącznika nadmiarowo-prądowego.
B. Przekaźnika impulsowego.
C. Przekaźnika termicznego.
D. Wyłącznika różnicowoprądowego.
Wyłącznik różnicowoprądowy, który został przedstawiony na schemacie, jest kluczowym elementem systemów elektroinstalacyjnych, mającym na celu ochronę przed porażeniem prądem elektrycznym. Jego działanie opiera się na monitorowaniu różnicy prądów między przewodem fazowym a neutralnym. W przypadku, gdy prąd w przewodach różni się, co może wskazywać na wyciek prądu do ziemi, wyłącznik natychmiast odłącza zasilanie. Taki mechanizm jest niezwykle istotny w miejscach, gdzie występuje wilgoć, jak łazienki czy kuchnie, zgodnie z normami IEC 61008 i IEC 60947-2. Ponadto, wyłączniki różnicowoprądowe są często wyposażone w przycisk testowy, co umożliwia regularne sprawdzanie ich działania i zapewnia dodatkowe bezpieczeństwo. Dzięki takim urządzeniom możemy skutecznie minimalizować ryzyko wypadków związanych z porażeniem prądem, co czyni je niezbędnym elementem nowoczesnych instalacji elektrycznych.

Pytanie 27

Którym symbolem graficznym należy oznaczyć łącznik świecznikowy na schemacie ideowym instalacji elektrycznej?

Ilustracja do pytania
A. C.
B. A.
C. B.
D. D.
Wybór symbolu D. jako oznaczenia łącznika świecznikowego jest prawidłowy, ponieważ ten symbol odpowiada branżowym standardom reprezentującym urządzenia do sterowania oświetleniem. Łącznik świecznikowy, znany również jako łącznik grupowy, umożliwia kontrolowanie kilku obwodów oświetleniowych jednocześnie, co jest szczególnie przydatne w dużych pomieszczeniach, takich jak sale konferencyjne lub przestrzenie otwarte. W takich zastosowaniach zastosowanie łącznika grupowego pozwala na efektywne zarządzanie oświetleniem, a także oszczędność energii. Zgodnie z normą PN-IEC 60617 dotyczącą symboli graficznych w elektrotechnice, symbol D. jest uznawany za standardowy sposób przedstawiania tego typu urządzenia. W praktyce, poprawne użycie symboli graficznych na schematach ideowych jest kluczowe dla zrozumienia i prawidłowego wykonania instalacji elektrycznych, co pozwala na bezpieczne i efektywne korzystanie z oświetlenia w różnych środowiskach.

Pytanie 28

Stosując kryterium obciążalności prądowej, dobierz na podstawie tabeli minimalny przekrój przewodu do zasilenia grzejnika elektrycznego o danych: PN = 4,6 kW, UN = 230 V.

S, mm21,01,52,54,06,0
Idd, A1519243242
A. 2,5 mm2
B. 6,0 mm2
C. 1,5 mm2
D. 4,0 mm2
Wybór nieodpowiedniego przekroju przewodu, szczególnie mniejszych wartości, może prowadzić do niebezpieczeństw, jak przegrzewanie lub pożar. Odpowiedzi 1,5 mm², 4,0 mm² i 6,0 mm² na pierwszy rzut oka mogą wydawać się w porządku, ale każda z nich ma swoje minusy. Przekrój 1,5 mm² nie jest wystarczający, bo zwykle udźwignie tylko 16 A, a potrzebujemy 20 A dla grzejnika 4,6 kW. Taki przewód mógłby się przegrzewać, co w najgorszym przypadku doprowadzi do uszkodzenia i ryzyka pożaru. Z kolei 4,0 mm² może generować zbędne koszty i może nie być idealnie dopasowany do istniejącej instalacji, a 6,0 mm², no cóż, to już za dużo, nie jest to ekonomiczne dla zwykłych grzejników o tej mocy. Ważne, aby przy wyborze przewodów kierować się nie tylko mocą, ale też normami i tabelami obciążalności. Ignorowanie tych zasad może nam przynieść problemy w przyszłości.

Pytanie 29

Na podstawie tabeli dobierz dopuszczalny prąd znamionowy zabezpieczenia nadprądowego w instalacji jednofazowej dla przewodu YDY 3x1,5 mm2 przy sposobie ułożenia A2?

Ilustracja do pytania
A. 25 A
B. 20 A
C. 13 A
D. 16 A
Wybór niewłaściwego prądu znamionowego zabezpieczenia nadprądowego może prowadzić do poważnych konsekwencji w zakresie bezpieczeństwa i funkcjonowania instalacji elektrycznej. Z odpowiedziami takimi jak 20 A, 13 A czy 25 A wiąże się kilka kluczowych błędów myślowych. W przypadku prądu 20 A, użytkownik może sądzić, że wyższy prąd zabezpieczenia jest korzystny, co w rzeczywistości może prowadzić do sytuacji, gdzie przewody będą narażone na przeciążenia, gdyż zabezpieczenie nie zareaguje na wzrost prądu. Z kolei odpowiedź 13 A, mimo że może być uznana za bardziej konserwatywną, nie spełnia wymagań dla tego konkretnego przekroju i metody układania, co skutkuje zbyt dużym ryzykiem uszkodzenia instalacji. Natomiast 25 A, będąc jeszcze bardziej niebezpiecznym wyborem, może całkowicie zignorować prawidłowe normy bezpieczeństwa, prowadząc do przegrzania przewodów i w konsekwencji do zagrożeń pożarowych. Ważne jest, aby zrozumieć, że dobór zabezpieczeń nie powinien opierać się na intuicji czy przybliżeniu, ale na dokładnych danych technicznych, które są dostępne w normach branżowych. Wszystkie te czynniki podkreślają znaczenie przestrzegania przepisów i dobrych praktyk w projektowaniu i eksploatacji instalacji elektrycznych.

Pytanie 30

Które z narzędzi przedstawionych na ilustracji służy do obcinania kabli?

Ilustracja do pytania
A. D.
B. C.
C. B.
D. A.
Narzędzia oznaczone literami A, B i D, które mogłeś wybrać, pełnią różne funkcje, ale nie są odpowiednie do obcinania kabli. Szczypce boczne, które są narzędziem oznaczonym literą A, zostały zaprojektowane głównie do cięcia i manipulowania cienkimi drutami oraz do prostych prac w zakresie elektroniki, jednak ich kształt i konstrukcja nie są idealne do obcinania grubych kabli, co może prowadzić do trudności w pracy oraz ich uszkodzenia. Z kolei narzędzie do zdejmowania izolacji, oznaczone literą B, jest używane do usuwania izolacji z przewodów, co jest istotne w kontekście przygotowywania przewodów do podłączenia, ale nie ma funkcji cięcia, co czyni je nieodpowiednim wyborem do obcinania kabli. Natomiast szczypce zaciskowe typu 'mole', oznaczone literą D, są przeznaczone do zaciśniania różnych elementów, takich jak końcówki przewodów, ale nie mogą być skutecznie używane do cięcia. Wybór niewłaściwego narzędzia do danego zadania jest częstym błędem, który może prowadzić do nieefektywności oraz zwiększonego ryzyka uszkodzeń i wypadków. Dlatego kluczowe jest, aby dobrze zrozumieć specyfikę narzędzi oraz ich zastosowanie przed przystąpieniem do pracy, co jest zgodne z najlepszymi praktykami branżowymi. Pracując z narzędziami, warto również zawsze kierować się zasadą, że użycie odpowiedniego narzędzia do konkretnego zadania jest podstawą efektywności i bezpieczeństwa w pracy.

Pytanie 31

Na którym schemacie przedstawiono prawidłowy sposób połączenia rozdzielnicy mieszkaniowej z wewnętrzną linią zasilającą?

Ilustracja do pytania
A. A.
B. C.
C. D.
D. B.
Wybór złych schematów do połączenia z wewnętrzną linią zasilającą to poważna sprawa, bo może prowadzić do niebezpieczeństwa i problemów z działaniem całej instalacji. Często można zobaczyć błędy w podłączeniu przewodów neutralnych i ochronnych, co stwarza ryzyko porażenia prądem oraz może sprawić, że zabezpieczenia będą działać nieprawidłowo. Na przykład, jeśli licznik energii elektrycznej jest umieszczony po zabezpieczeniu nadmiarowoprądowym, to nie tylko pomiar będzie utrudniony, ale i cała instalacja może być na ryzyko uszkodzenia w przypadku zwarcia. Wiele osób nie zwraca na to uwagi, myśląc, że kolejność podłączenia nie ma znaczenia, a to błąd. Normy, jak PN-IEC 60364, jasno mówią, że przewody muszą być odpowiednio podłączone i rozmieszczone. Błędy w tym zakresie mogą prowadzić do awarii i zagrożenia dla zdrowia użytkowników, więc lepiej zwracać uwagę na detale.

Pytanie 32

Do której czynności należy użyć narzędzie przedstawione na rysunku?

Ilustracja do pytania
A. Docinania przewodu.
B. Ściągania izolacji z przewodu.
C. Zaciskania końcówek oczkowych.
D. Zaciskania końcówek tulejkowych.
Narzędzie przedstawione na zdjęciu to szczypce do ściągania izolacji, które są kluczowe w procesie przygotowywania przewodów elektrycznych do dalszego wykorzystania. Ich głównym przeznaczeniem jest usunięcie izolacyjnej warstwy zewnętrznej z przewodów, co umożliwia ich prawidłowe podłączenie do gniazd, wtyczek lub innych elementów instalacji elektrycznej. Użycie tych szczypiec zapewnia dokładność oraz minimalizuje ryzyko uszkodzenia samego przewodu, co jest szczególnie ważne w kontekście standardów bezpieczeństwa przy instalacjach elektrycznych. Przykładem praktycznego zastosowania jest przygotowanie przewodów do montażu gniazdka elektrycznego, gdzie odpowiednie ściągnięcie izolacji jest niezbędne do zapewnienia solidnych połączeń elektrycznych. Dobrze wykonane połączenie nie tylko zwiększa efektywność przesyłu energii, ale również zmniejsza ryzyko wystąpienia awarii czy zwarć. W branży elektrycznej, przestrzeganie dobrych praktyk przy używaniu tego rodzaju narzędzi jest kluczowe dla zapewnienia bezpieczeństwa i niezawodności instalacji.

Pytanie 33

Zmywarka, która jest na stałe zainstalowana, powinna być podłączona do obwodu

A. oddzielnego dla urządzeń gospodarstwa domowego
B. oddzielnego dla zmywarki
C. zasilającego gniazdka w łazience oraz kuchni
D. zasilającego gniazdka jedynie w kuchni
Zasilanie zmywarki z oddzielnego obwodu jest niezbędne ze względów bezpieczeństwa oraz zgodności z obowiązującymi normami elektrycznymi, takimi jak PN-IEC 60364. Zwiększa to nie tylko bezpieczeństwo użytkowania, ale także zapewnia odpowiednią moc dla urządzenia bez ryzyka przeciążenia innych obwodów. Zmywarki zazwyczaj wymagają większej mocy, zwłaszcza podczas cykli podgrzewania wody, co może powodować przeciążenie, jeśli są zasilane z ogólnych obwodów, zwłaszcza tych współdzielonych z innymi urządzeniami. Przykładowo, korzystając z oddzielnego obwodu, można uniknąć sytuacji, w której włączenie zmywarki podczas pracy innych urządzeń, takich jak piekarnik czy mikrofalówka, prowadzi do wyłączenia bezpieczników. Dobrą praktyką jest również stosowanie odpowiednich zabezpieczeń, takich jak wyłączniki różnicowoprądowe, które dodatkowo chronią przed porażeniem elektrycznym. Takie podejście nie tylko jest zgodne z regulacjami, ale również zwiększa komfort użytkowania w codziennym życiu.

Pytanie 34

Której klasy ogranicznik przepięć przedstawiono na rysunku?

Ilustracja do pytania
A. Klasy A
B. Klasy D
C. Klasy C
D. Klasy B
Wybór odpowiedzi spośród klas A, B czy C jest nieprawidłowy, ponieważ te klasy ograniczników przepięć mają inne zastosowania i nie odpowiadają na konkretne potrzeby ochrony końcowych urządzeń elektronicznych. Ograniczniki klasy A są przeznaczone do ochrony instalacji przed przepięciami, które mogą wystąpić w wyniku wyładowań atmosferycznych, co czyni je bardziej odpowiednimi dla systemów zasilających i infrastruktury budowlanej, a nie dla urządzeń użytkowych. Klasa B z kolei jest zarezerwowana dla zastosowań przemysłowych, gdzie konieczne jest ograniczenie przepięć na poziomie wyższym niż w przypadku klasy D, co czyni je niewłaściwym wyborem dla urządzeń codziennego użytku. Klasa C, stosowana w instalacjach niskonapięciowych, również nie zapewnia odpowiedniej ochrony dla końcowych urządzeń, które wymagają bardziej specyficznej i bezpośredniej ochrony. Kluczowym błędem, który często prowadzi do wyboru niewłaściwej klasy, jest mylenie ogólnych właściwości ograniczników z ich specyfiką zastosowania. Każda klasa ograniczników ma określone parametry i przeznaczenie, które powinny być zgodne z wymaganiami danego systemu. Zrozumienie różnic między tymi klasami jest kluczowe dla właściwego doboru urządzeń ochronnych w celu zapewnienia optymalnej ochrony i wydajności systemów elektronicznych.

Pytanie 35

Wyznacz minimalny przekrój żył miedzianych przewodu, kierując się kryterium obciążalności długotrwałej, przy maksymalnej dopuszczalnej gęstości prądu wynoszącej 8 A/mm2, dla odbiornika o prądzie znamionowym 15,5 A.

A. 6 mm2
B. 1,5 mm2
C. 4 mm2
D. 2,5 mm2
Odpowiedź 2,5 mm² jest poprawna, ponieważ obciążalność długotrwała przewodów miedzianych powinna być dobrana na podstawie maksymalnej gęstości prądu, która wynosi 8 A/mm². Aby obliczyć minimalny wymagany przekrój żyły dla prądu znamionowego 15,5 A, należy podzielić ten prąd przez maksymalną gęstość prądu: 15,5 A / 8 A/mm² = 1,9375 mm². W praktyce zaokrąglamy wynik do najbliższego standardowego rozmiaru, co daje 2,5 mm². Zgodnie z normami, dobór odpowiedniego przekroju żyły jest kluczowy dla zapewnienia bezpieczeństwa i efektywności w instalacjach elektrycznych. Zbyt mały przekrój może prowadzić do przegrzewania się przewodów, co zwiększa ryzyko pożaru oraz uszkodzeń sprzętu. W zastosowaniach praktycznych, takich jak zasilanie urządzeń przemysłowych czy domowych, wybór właściwego przekroju żył jest niezbędny dla długotrwałej niezawodności systemu zasilania. Przykładem może być instalacja elektryczna w budynkach mieszkalnych, gdzie przewody muszą być odpowiednio dobrane do obciążenia, aby zapewnić komfort i bezpieczeństwo użytkowników.

Pytanie 36

Którą funkcję pomiarową powinien posiadać miernik, aby można było wyznaczyć impedancję pętli zwarcia w układzie przedstawionym na schemacie?

Ilustracja do pytania
A. ZL-N
B. ZL-PE
C. ZL-L
D. ZL-PE(RCD)
Odpowiedź ZL-PE(RCD) jest prawidłowa, ponieważ pomiar impedancji pętli zwarcia powinien uwzględniać zarówno przewód fazowy (L), jak i przewód ochronny (PE), a dodatkowo obecność wyłącznika różnicowoprądowego (RCD), który może wpływać na wynik pomiaru. W praktyce, aby uzyskać wiarygodne wyniki, konieczne jest zastosowanie funkcji, która uwzględnia te warunki. Pomiar impedancji pętli zwarcia ma kluczowe znaczenie dla zapewnienia bezpieczeństwa elektrycznego i powinien być wykonywany zgodnie z obowiązującymi normami, takimi jak PN-EN 61010 czy PN-HD 60364. Użycie funkcji ZL-PE(RCD) pozwala na dokładne określenie wartości impedancji, co jest istotne w kontekście doboru odpowiednich zabezpieczeń oraz weryfikacji poprawności instalacji. Dzięki temu można zminimalizować ryzyko porażenia prądem oraz zapewnić prawidłowe działanie systemów ochronnych, co jest szczególnie ważne w obiektach użyteczności publicznej oraz w instalacjach przemysłowych.

Pytanie 37

Na zdjęciu przedstawiono kabel

Ilustracja do pytania
A. elektroenergetyczny z żyłami miedzianymi o izolacji polwinitowej, na napięcie 0,6/1 kV.
B. kontrolny z żyłami wielodrutowymi na napięcie 300/500 V w izolacji z tworzywa bezhalogenowego, ekranowany.
C. sygnalizacyjny z żyłami jednodrutowymi na napięcie 0,6/1 kV w osłonie polwinitowej.
D. sygnalizacyjny z żyłami wielodrutowymi o wiązkach parowych na napięcie 300/500 V.
Analizując niepoprawne odpowiedzi, można zauważyć szereg istotnych nieporozumień związanych z klasyfikacją kabli i ich zastosowaniami. W pierwszej z nich sugerowany kabel sygnalizacyjny z żyłami jednodrutowymi na napięcie 0,6/1 kV nie pasuje do charakterystyki przedstawionego kabla. Kable sygnalizacyjne na ogół operują na niższych napięciach, a ich budowa z żyłami jednodrutowymi nie jest typowa dla aplikacji wymagających elastyczności i odporności na zakłócenia. Podobnie, drugi typ kabla, czyli kontrolny z żyłami wielodrutowymi na napięcie 300/500 V, z ekranowaniem, nie odpowiada wizualnym cechom przedstawionego kabla. Ekranowanie jest kluczowe w redukcji zakłóceń, jednak brak takiej ochrony w analizowanym przypadku wskazuje na inne przeznaczenie. Odpowiedź dotycząca kabla elektroenergetycznego również jest błędna, gdyż odnosi się do wyższych napięć, co nie zgadza się z widocznymi cechami izolacyjnymi i konstrukcją kabla. Typowe błędy myślowe prowadzące do tych niepoprawnych wniosków obejmują nadmierne generalizowanie właściwości kabli oraz ignorowanie specyfikacji technicznych. Niezrozumienie różnic między typami kabli oraz ich zastosowaniem w praktyce może prowadzić do niewłaściwych wyborów w projektowaniu instalacji elektrycznych i sygnalizacyjnych, co w konsekwencji może wpływać na niezawodność i bezpieczeństwo systemów.

Pytanie 38

Na którym rysunku przedstawiono prawidłowe połączenie łącznika świecznikowego z żyrandolem?

Ilustracja do pytania
A. D.
B. B.
C. A.
D. C.
Wybór odpowiedzi, która nie przedstawia poprawnego połączenia łącznika świecznikowego z żyrandolem, może wynikać z kilku typowych nieporozumień związanych z zasadami działania obwodów elektrycznych. W przypadku, gdy przewód fazowy L nie jest podłączony do łącznika, a zamiast tego łącznik jest połączony bezpośrednio z przewodem neutralnym N, obwód nie będzie działał prawidłowo. Taki układ może prowadzić do sytuacji, w której żyrandol nie świeci, ponieważ brak jest możliwości włączenia zasilania. Ponadto, jeśli przewód neutralny jest podłączony tylko do żarówki, a nie do łącznika, dochodzi do nieprawidłowego rozdzielenia obwodu, co może prowadzić do uszkodzeń instalacji oraz zwiększonego ryzyka pożaru. Innym typowym błędem jest pominięcie istotnych zasad bezpieczeństwa, takich jak stosowanie odpowiednich izolacji czy zabezpieczeń. To może skutkować nie tylko nieprawidłowym działaniem obwodu, ale również stwarzać zagrożenie dla użytkowników. Niezrozumienie roli przewodów fazowych i neutralnych w obwodzie elektrycznym jest kluczowym czynnikiem prowadzącym do tych błędów. W każdym przypadku, fundamentalne zasady dotyczące instalacji elektrycznych powinny być przestrzegane, aby zapewnić ich bezpieczeństwo i niezawodność.

Pytanie 39

Symbol graficzny przedstawiony na rysunku oznacza łącznik

Ilustracja do pytania
A. świecznikowy.
B. dwubiegunowy.
C. hotelowy.
D. schodowy.
Wybór jednego z pozostałych typów łączników, takich jak dwubiegunowy, hotelowy czy świecznikowy, prowadzi do nieporozumień dotyczących ich funkcji oraz zastosowania. Łącznik dwubiegunowy, w przeciwieństwie do schodowego, służy głównie do włączania i wyłączania zasilania w obwodzie, ale nie umożliwia zdalnej kontroli z dwóch miejsc. Jego zastosowanie zazwyczaj ogranicza się do pojedynczego miejsca, co nie jest odpowiednie w kontekście schodów lub długich korytarzy. Z kolei łącznik hotelowy jest wykorzystywany w specyficznych aplikacjach w hotelach, gdzie ma inną funkcjonalność, najczęściej związaną z systemami zarządzania pokojami. Natomiast łącznik świecznikowy, używany do podłączenia świeczników i lamp, również nie spełnia roli łącznika schodowego, ponieważ nie jest skonstruowany do obsługi oświetlenia z dwóch miejsc jednocześnie. Wybierając nieodpowiedni typ łącznika, można narazić użytkowników na niewygodę lub wręcz niebezpieczeństwo, jeśli oświetlenie będzie nietypowo skonfigurowane. Użycie właściwego oznaczenia ma kluczowe znaczenie w zapewnieniu poprawności instalacji elektrycznej, co jest zgodne z obowiązującymi normami branżowymi.

Pytanie 40

W instalacji elektrycznej wykorzystującej przekaźnik priorytetowy, po osiągnięciu ustawionej w tym przekaźniku wartości natężenia prądu w obwodzie

A. niepriorytetowym, zostaje wyłączony obwód niepriorytetowy
B. niepriorytetowym, zostaje wyłączony obwód priorytetowy
C. priorytetowym, zostaje wyłączony obwód priorytetowy
D. priorytetowym, zostaje wyłączony obwód niepriorytetowy
Wyjątkowo istotne jest zrozumienie, jak działają przekaźniki priorytetowe i jakie mają zastosowanie w instalacjach elektrycznych. Nieprawidłowe odpowiedzi sugerują, że obwód priorytetowy może być wyłączany lub że obwód niepriorytetowy nie jest wyłączany w odpowiedzi na przekroczenie natężenia prądu. Te koncepcje są mylne, ponieważ przekaźniki priorytetowe zostały zaprojektowane właśnie po to, aby chronić obwody priorytetowe przed opróżnieniem z energii lub przeciążeniem, co mogłoby prowadzić do poważnych awarii. Zamiast tego, w momencie, gdy prąd w obwodzie priorytetowym wzrasta, przekaźnik powinien odciąć zasilanie z obwodu, który nie jest kluczowy dla działania systemu. Wiele osób myli tę funkcję, zakładając, że priorytetowe obwody są te, które zawsze muszą być zasilane, co nie jest zgodne z rzeczywistością. Typowy błąd myślowy polega na nazywaniu obwodu priorytetowego jako tego, który w każdej sytuacji powinien mieć dostęp do energii, co jest niezgodne z zasadami zarządzania energią. W rzeczywistości, kluczowym celem przekaźników priorytetowych jest ochrona zasobów i ich racjonalne zarządzanie, co oznacza, że w sytuacji zagrożenia ważniejsze staje się odłączenie obwodu niepriorytetowego. W instalacjach elektrycznych, szczególnie w kontekście norm branżowych i dobrych praktyk, zrozumienie hierarchii obwodów jest kluczowe dla zapewnienia efektywności energetycznej i bezpieczeństwa systemów.