Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik urządzeń i systemów energetyki odnawialnej
  • Kwalifikacja: ELE.10 - Montaż i uruchamianie urządzeń i systemów energetyki odnawialnej
  • Data rozpoczęcia: 9 grudnia 2025 11:49
  • Data zakończenia: 9 grudnia 2025 11:49

Egzamin niezdany

Wynik: 1/40 punktów (2,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jaką objętość może uzupełnić solarna stacja napełniająca, działająca z efektywnością 3 dm3/s, w ciągu dwóch godzin?

A. 6,00 m3
B. 10,80 m3
C. 21,60 m3
D. 32,40 m3

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to 21,60 m³, co można obliczyć w sposób następujący: stacja napełniająca ma wydajność 3 dm³/s. Aby obliczyć, ile wody stacja może napełnić w ciągu dwóch godzin, najpierw przeliczamy czas na sekundy. Dwa godziny to 2 × 60 minut × 60 sekund = 7200 sekund. Następnie obliczamy całkowitą objętość wody, mnożąc wydajność przez czas: 3 dm³/s × 7200 s = 21600 dm³. Przy przeliczeniu jednostek z dm³ na m³ (1 m³ = 1000 dm³) otrzymujemy 21,60 m³. W praktyce taki kalkulator objętości jest niezwykle przydatny przy projektowaniu systemów nawadniających, instalacji wodociągowych czy też w kontekście zarządzania zasobami wodnymi, gdzie precyzyjne obliczenia mają kluczowe znaczenie dla efektywności i oszczędności. Wiedza o wydajności systemów napełniających jest również istotna w regulacjach dotyczących ochrony środowiska oraz zasobów wodnych.

Pytanie 2

Jakie informacje mają kluczowe znaczenie przy przygotowywaniu oferty na instalację pompy ciepła w budynku jednorodzinnym?

A. Lokalizacja instalacji, koszt zakupu sprzętu i materiałów
B. Rodzaje instalowanych urządzeń, stawka za montaż oraz ilości potrzebnych materiałów
C. Ilość i wynagrodzenie zatrudnionych pracowników, wydatki wykonawcy i planowany zysk oraz termin realizacji
D. Czas potrzebny na montaż, liczba roboczogodzin pracowników

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wiesz, najważniejsze w ofercie na montaż pompy ciepła to te rzeczy, które mówią o tym, jakie urządzenia będą montowane, ich ceny i ilości materiałów. To tak jak fundamenty w budowie – bez nich nic się nie uda. Znając nazwy urządzeń, masz lepszy obraz tego, co dokładnie będzie użyte i jak to wpłynie na całą instalację. Klient musi wiedzieć, co dostaje, a także co do wydajności. Właściwa cena montażu to też ważny temat – precyzyjne określenie kosztów zapobiega nieporozumieniom na każdym kroku. No i nie zapominajmy o materiałach – ich ilości są kluczowe, żeby dobrze zaplanować zakupy i nie przepłacać. Prawdziwe profesjonalne podejście to przejrzystość i rzetelność, bo klient chce wiedzieć, co się dzieje. Niezły trik to też wspomnieć o normach, jak PN-EN 14511, bo to dodaje wiarygodności. Po prostu warto o tym pamiętać!

Pytanie 3

Która metoda transportu kolektorów słonecznych na dach wysokiego budynku jest najbardziej efektywna?

A. Ręcznie przez schody
B. Windą transportową
C. Wózkiem widłowym
D. Wciągarką linową

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Winda transportowa jest najefektywniejszym sposobem transportu kolektorów słonecznych na dach wysokiego budynku z kilku powodów. Po pierwsze, windy transportowe są projektowane do przewożenia ciężkich ładunków, co znacznie ułatwia operacje związane z instalacją, zmniejszając ryzyko uszkodzenia zarówno urządzeń, jak i samego budynku. Przykładowo, windy towarowe często mają większe wymiary i nośność, co pozwala na jednoczesne transportowanie kilku kolektorów, co przyspiesza cały proces. Po drugie, korzystanie z windy transportowej eliminować ryzyko kontuzji związanych z ręcznym transportem, szczególnie w przypadku dużych i nieporęcznych elementów, które mogą być trudne do przeniesienia. Standardy BHP i najlepsze praktyki branżowe, jak te zawarte w normach ISO, podkreślają znaczenie stosowania odpowiednich narzędzi i technologii w celu zapewnienia bezpieczeństwa pracowników. Dodatkowo, windy transportowe są często zaprojektowane z myślą o minimalnym wpływie na otoczenie, co sprawia, że są bardziej ekologicznym rozwiązaniem. W przypadku budynków o dużej wysokości, jak drapacze chmur, windy stanowią nie tylko praktyczne, ale i niezbędne rozwiązanie do sprawnego transportu materiałów budowlanych.

Pytanie 4

Jaką minimalną odległość powinny mieć rurociągi w poziomym wymienniku gruntowym, aby została zachowana odpowiednia normatywność?

A. 200 cm
B. 400 cm
C. 20 cm
D. 80 cm

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Minimalna odległość pomiędzy rurociągami poziomego wymiennika gruntowego wynosząca 80 cm jest zgodna z obowiązującymi standardami projektowania systemów geotermalnych. Ustalenie odpowiedniej odległości pomiędzy rurociągami jest kluczowe dla zapewnienia efektywności wymiany ciepła oraz uniknięcia problemów związanych z przepływem cieczy. Zbyt mała odległość może prowadzić do niedostatecznego przewodzenia ciepła, co w efekcie obniża wydajność instalacji. Na przykład, w zastosowaniach komercyjnych, takich jak ogrzewanie budynków, zachowanie tego odstępu może znacząco wpłynąć na koszty operacyjne i efektywność energetyczną systemu. Dodatkowo, w praktyce inżynieryjnej, projektanci uwzględniają również czynniki takie jak rodzaj gruntu, ciśnienie cieczy oraz warunki hydrologiczne, co podkreśla znaczenie właściwych odległości w kontekście bezpieczeństwa i wydajności. Warto również zaznaczyć, że normy techniczne, takie jak EN 15316-4-3, wskazują na te minimalne odległości jako standardowe praktyki, co sprawia, że ich przestrzeganie jest niezbędne dla zapewnienia prawidłowego funkcjonowania systemów geotermalnych.

Pytanie 5

Który typ kotła pozwala na odzyskanie ciepła z pary wodnej obecnej w spalinach?

A. Nadkrytyczny
B. Przepływowy
C. Odzyskowy
D. Kondensacyjny

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kocioł kondensacyjny jest zaprojektowany do odzyskiwania ciepła pary wodnej zawartej w spalinach, co znacząco zwiększa jego efektywność energetyczną. Działa na zasadzie kondensacji pary wodnej, co pozwala na wykorzystanie energii cieplnej, która byłaby w przeciwnym razie utracona w atmosferze. W praktyce, kocioł kondensacyjny potrafi osiągnąć sprawność przekraczającą 100% na podstawie wartości dolnej, co oznacza, że wykorzystuje więcej energii zawartej w paliwie niż tradycyjne kotły. Tego rodzaju urządzenia są zgodne z normami ekologicznymi, takimi jak dyrektywy unijne dotyczące efektywności energetycznej i emisji CO2. Przykładem zastosowania kotłów kondensacyjnych są nowoczesne systemy grzewcze w budynkach mieszkalnych, które dzięki nim mogą znacząco obniżyć koszty ogrzewania oraz zmniejszyć ślad węglowy. Dodatkowo, zastosowanie kotłów kondensacyjnych w przemyśle może przyczynić się do poprawy efektywności energetycznej procesów przemysłowych, co wpisuje się w ogólne trendy zrównoważonego rozwoju.

Pytanie 6

W instalacji grzewczej zasilanej energią słoneczną, która jest użytkowana bez przegrzewania, wymiana płynu solarnego na bazie glikolu powinna odbywać się co

A. 8 lat
B. 5 lat
C. 3 lata
D. 7 lat

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Jeżeli chodzi o wymianę płynu solarnego, to warto wiedzieć, że powinna ona odbywać się co 5 lat. To nie jest tylko przypadkowa liczba. Chodzi o to, że glikol, który jest używany, ma swoje właściwości chemiczne i termiczne, które z czasem mogą się pogarszać. Oprócz transportu ciepła, glikol chroni instalację przed zamarzaniem i korozją. Gdy zbyt długo go nie wymieniamy, może dojść do jego degradacji, co wpływa na efektywność całego systemu. Dlatego lepiej zadbać o regularną wymianę co pięć lat, żeby wszystko działało jak należy. Takie zalecenia są zgodne z normami i doświadczeniami profesjonalistów z branży. Warto więc pamiętać, że to kluczowe dla długotrwałej efektywności systemu grzewczego, a także dla jego bezpieczeństwa.

Pytanie 7

Jakie będzie pierwsze następstwo utraty zasilania w instalacji solarnej podczas słonecznego dnia?

A. wrzenie wody w zbiorniku
B. zapowietrzenie systemu solarnego
C. wzrost temperatury płynu solarnego
D. przeciek płynu solarnego przez zawór bezpieczeństwa
Wzrost temperatury płynu w instalacji solarnej, gdy zasilanie gaśnie, to dość istotny temat. Kiedy jest słońce i panele produkują energię, płyn, który zazwyczaj jest mieszanką wody z glikolem, nagrzewa się pod wpływem promieni słonecznych. Normalnie, dzięki pompom, płyn krąży przez wymienniki ciepła i przekazuje energię do zbiornika. Ale gdy zniknie zasilanie, pompy stają się bezużyteczne, płyn się nie rusza i zaczyna się nagrzewać. To może prowadzić do przegrzania i nawet uszkodzenia sprzętu. Dlatego nowoczesne systemy mają czujniki temperatury i różne zabezpieczenia, które mogą reagować na zmiany temperatury, żeby minimalizować ryzyko uszkodzeń. Normy, jak EN 12975, dostarczają metod, które pomagają monitorować systemy solarne, co jest naprawdę ważne, żeby działały sprawnie przez dłuższy czas.

Pytanie 8

Jakie kształtki należy wykorzystać do wykonania rozłącznych połączeń rur AluPex w systemie podłogowym zintegrowanym z pompą ciepła?

A. zaciskanie
B. skręcanie
C. zgrzewanie
D. klejenie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Skręcanie jest właściwą metodą łączenia rur AluPex w instalacjach podłogowych, zwłaszcza w systemach współpracujących z pompami ciepła. Ta technika pozwala na uzyskanie szczelnych połączeń, które są niezbędne w instalacjach hydraulicznych z niskim ciśnieniem roboczym. W przypadku rur AluPex, które charakteryzują się warstwą aluminium, połączenia skręcane zapewniają doskonałą wytrzymałość mechaniczną i odporność na zmiany temperatury. W praktyce, skręcanie polega na użyciu specjalnych złączek, które są montowane za pomocą klucza, co zapewnia pewność i trwałość połączenia. Zastosowanie tej metody jest zgodne z normami branżowymi, takimi jak PN-EN 12001, które kładą nacisk na bezpieczeństwo i efektywność instalacji. Warto również zaznaczyć, że prawidłowe skręcanie złączek minimalizuje ryzyko wystąpienia przecieków i zwiększa żywotność całego systemu grzewczego.

Pytanie 9

Obecność powietrza w systemie solarnym wynika głównie z

A. nieodpowietrzenia układu solarnego
B. nieprawidłowego montażu naczynia wzbiorczego
C. nieprawidłowego umiejscowienia grupy pompowej
D. uszkodzonej pompy obiegowej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Obecność powietrza w układzie solarnym jest najczęściej wynikiem nieodpowietrzenia układu, co oznacza, że powietrze nie zostało usunięte z systemu w odpowiednim czasie. To zjawisko może prowadzić do wielu problemów, takich jak spadek efektywności systemu grzewczego, hałas w instalacji czy nawet uszkodzenia komponentów, takich jak pompy, wymienniki ciepła czy rury. W praktyce, podczas montażu układów solarnych, kluczowe jest zastosowanie odpowiednich zaworów odpowietrzających oraz regularne serwisowanie, aby zapewnić pełne usunięcie powietrza. Zgodnie z normami branżowymi, zaleca się przeprowadzanie odpowietrzania systemu podczas uruchamiania oraz regularne kontrole, by upewnić się, że nie ma nagromadzenia powietrza. Dobre praktyki obejmują również stosowanie naczynia wzbiorczego, które ma na celu kompensację zmian objętości cieczy oraz umożliwienie skutecznego odpowietrzania. Warto pamiętać, że odpowiednie utrzymanie układu solarnego ma kluczowe znaczenie dla jego długowieczności i efektywności.

Pytanie 10

Podczas sporządzania przedmiaru robót dla systemów wodociągowych, długość rur określa się w metrach?

A. bez wyłączania długości łączników oraz armatury łączonej lutowaniem lub gwintowaniem
B. z wyłączeniem długości łączników oraz armatury
C. a liczba podejść ustalana jest wspólnie dla zimnej i ciepłej wody
D. wliczając armaturę z kołnierzami

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "bez odliczania długości łączników oraz armatury łączonej przez lutowanie lub gwintowanie" jest zgodna z praktykami stosowanymi w branży wodociągowej. W przypadku przedmiaru robót dla instalacji wodociągowych, długość rurociągów należy mierzyć wyłącznie jako długość prostych odcinków rur, co jest zgodne z zasadami określonymi w normach budowlanych oraz standardach dotyczących obliczeń hydraulicznych. W praktyce oznacza to, że nie uwzględniamy długości łączników, jak kolanka czy złączki, które nie wpływają na całkowitą długość rurociągu. Przykładowo, przy obliczaniu ilości materiałów potrzebnych do instalacji, koncentrujemy się na długościach rur, co pozwala na precyzyjne określenie zapotrzebowania na materiały. Dodatkowo, takie podejście ogranicza ryzyko nadmiernych zakupów lub marnotrawstwa materiałów, co jest kluczowe w budownictwie. Ponadto, standardy takie jak PN-EN 805 oraz PN-EN 12056 wskazują na konieczność dokonywania pomiarów zgodnie z określonymi zasadami, co podkreśla znaczenie niewliczania łączników w przedmiarze robót.

Pytanie 11

Aby zabezpieczyć się przed niepełnym spalaniem w kotłach opalanych biomasą, powinno się zainstalować tzw. sondę lambda

A. w komorze paleniskowej
B. w przewodzie kominowym
C. w podajniku paliwa
D. na wentylatorze podmuchu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Sonda lambda jest kluczowym elementem systemu kontroli spalania w kotłach na biomasę, ponieważ jej zadaniem jest monitorowanie stężenia tlenu w spalinach. Montaż sondy w przewodzie kominowym pozwala na precyzyjne pomiary, które są niezbędne do optymalizacji procesu spalania. Dzięki tym pomiarom system może dostosować ilość powietrza dostarczanego do kotła, co z kolei wpływa na efektywność spalania oraz redukcję emisji szkodliwych substancji. Przykładowo, w przypadku, gdy sonda wykrywa zbyt niskie stężenie tlenu, system automatycznie zwiększa podmuch powietrza, co pozwala na uzyskanie pełniejszego spalania paliwa. W praktyce, zastosowanie sondy lambda w odpowiednim miejscu, jakim jest przewód kominowy, przyczynia się do poprawy efektywności energetycznej całego systemu grzewczego oraz spełnienia norm środowiskowych, co jest zgodne z najlepszymi praktykami branżowymi. Rekomendacje dotyczące instalacji sondy lambda w przewodach kominowych są również zgodne z wytycznymi wielu organizacji zajmujących się ochroną środowiska.

Pytanie 12

Jakich informacji nie jest konieczne zawarcie w "Księdze obmiaru" przy instalacji ogniwa fotowoltaicznego?

A. Typu urządzeń
B. Jednostki pomiarowej
C. Liczby zainstalowanych urządzeń
D. Kubatury pomieszczenia

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Książka obmiaru dla montażu ogniwa fotowoltaicznego jest dokumentem, który ma za zadanie szczegółowe zarejestrowanie informacji dotyczących zamontowanych urządzeń oraz ich parametrów technicznych. W kontekście tej książki, informacje dotyczące ilości zamontowanych urządzeń, rodzaju urządzeń oraz jednostek miary są kluczowe. Ilość zamontowanych paneli fotowoltaicznych oraz ich rodzaj (np. monokrystaliczne, polikrystaliczne) mają bezpośredni wpływ na efektywność systemu oraz jego zgodność z przyjętymi normami. Jednostki miary są istotne do precyzyjnego określenia wydajności, mocy oraz rozmiarów komponentów instalacji. Natomiast kubatura pomieszczenia, w którym znajdują się urządzenia, nie jest informacją niezbędną w kontekście księgi obmiaru, ponieważ nie ma bezpośredniego wpływu na funkcjonowanie paneli fotowoltaicznych. Przykładowo, w przypadku montażu paneli na dachu, kubatura pomieszczenia nie ma znaczenia dla samej wydajności instalacji. Zgodnie z najlepszymi praktykami branżowymi, Książka obmiaru powinna być starannie prowadzona, aby zapewnić zgodność z wymaganiami prawnymi oraz normami jakości.

Pytanie 13

W rozwinięciu systemu grzewczego na energię słoneczną w skali 1:50, długość odcinka pionowego z miedzi wynosi 100 mm. Jaką długość przewodu miedzianego trzeba nabyć do zainstalowania tego pionu?

A. 50,0 m
B. 5,0 m
C. 500,0 m
D. 0,5 m

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 5,0 m jest poprawna, ponieważ skala 1:50 oznacza, że każdy 1 mm na rysunku odpowiada 50 mm w rzeczywistości. Dlatego długość pionu miedzianego wynosząca 100 mm na planie należy przeliczyć na metry, co daje 0,1 m. Następnie, aby uzyskać rzeczywistą długość, musimy pomnożyć tę wartość przez 50. W rezultacie 0,1 m x 50 = 5,0 m. W praktyce, taka umiejętność przeliczania wymiarów jest niezbędna przy projektowaniu instalacji grzewczych, aby zapewnić odpowiednią ilość materiałów do montażu. Ponadto, znajomość skali jest kluczowa w kontekście standardów branżowych, takich jak PN-EN 12831, które dotyczą obliczeń zapotrzebowania na ciepło budynków. Wiedza ta pozwala na precyzyjne oszacowanie potrzebnych materiałów i zminimalizowanie strat materiałowych, co jest istotne z perspektywy efektywności kosztowej i środowiskowej.

Pytanie 14

Rekuperator to urządzenie służące do odzyskiwania energii cieplnej z

A. ciepłej wody użytkowej
B. ścieków
C. gruntu
D. gazów

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Rekuperator to fajne urządzenie, które naprawdę dobrze odzyskuje ciepło z powietrza wydobywającego się z budynków. W skrócie, działa to tak, że ciepło z powietrza, które wychodzi, przenika do świeżego powietrza, które jest wprowadzane do środka. Dzięki temu, budynki mogą lepiej wykorzystywać energię, co z kolei obniża rachunki za ogrzewanie i chłodzenie. W praktyce, rekuperatory są super w budynkach pasywnych i energooszczędnych, bo tam liczy się każde ciepło. No i co ważne, są zgodne z różnymi normami efektywności energetycznej, jak ISO 50001, więc są po prostu nowoczesnym rozwiązaniem w wentylacji.

Pytanie 15

Odległość gruntowa pomiędzy sondami pionowymi nie może być mniejsza niż

A. 6 m
B. 24 m
C. 12 m
D. 18 m

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 6 m jest poprawna, ponieważ zgodnie z aktualnymi normami i najlepszymi praktykami w inżynierii geotechnicznej, odległość między sondami pionowymi powinna wynosić co najmniej 6 m. Taka odległość pozwala na uzyskanie reprezentatywnych próbek gruntu, co jest kluczowe dla przeprowadzenia dokładnych badań geotechnicznych. W praktyce oznacza to, że jeśli sondy są umieszczone zbyt blisko siebie, mogą wystąpić zjawiska interferencji, które mogą zniekształcić wyniki badań. Na przykład, w przypadku przeprowadzania badań nośności gruntu, zbyt mała odległość między sondami może prowadzić do błędnych ocen parametrów gruntowych, co w konsekwencji wpłynie na bezpieczeństwo i stabilność projektowanych obiektów budowlanych. W związku z tym, zachowanie odpowiedniej odległości jest kluczowe dla zapewnienia dokładności wyników oraz ich interpretacji w kontekście projektowania i budowy infrastruktury. W praktyce, wiele instytucji i organizacji branżowych zaleca stosowanie tej odległości jako standardu w projektach geotechnicznych.

Pytanie 16

Który z poniższych rodzajów zbiorników nie powinien być używany do przechowywania biogazu?

A. Suchego tłokowego niskociśnieniowego
B. Sferycznego membranowego
C. Membranowego dachowego
D. Suchego stalowego wysokociśnieniowego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'Suchego stalowego wysokociśnieniowego' jest poprawna, gdyż zbiorniki te nie są odpowiednie do magazynowania biogazu, który jest mieszaniną gazów o zróżnicowanej kompozycji, w tym metanu i dwutlenku węgla. Biogaz jest zwykle przechowywany w warunkach niskiego ciśnienia, co zapewnia bezpieczeństwo oraz minimalizuje ryzyko eksplozji. Zbiorniki membranowe dachowe i sferyczne membranowe są projektowane z myślą o takich wymaganiach, gdyż potrafią dostosować swoją objętość do zmieniającej się ilości gazu oraz regulować ciśnienie wewnętrzne, umożliwiając efektywne zarządzanie biogazem. Na przykład, w systemach biogazowych wykorzystywanych w rolnictwie, stosowanie zbiorników niskociśnieniowych pozwala na efektywne przechowywanie oraz późniejsze wykorzystanie biogazu jako źródła energii, co jest zgodne ze standardami dotyczącymi zrównoważonego rozwoju. Wybór odpowiedniego zbiornika w kontekście bezpieczeństwa i efektywności energetycznej jest kluczowy dla skutecznego funkcjonowania systemów wykorzystujących biogaz.

Pytanie 17

Pomiar prędkości wiatru dla turbiny wiatrowej realizowany jest dzięki urządzeniu umieszczonemu w systemie instalacyjnym?

A. oscyloskop
B. anemometr
C. stereometr
D. anemostat

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Anemometr to mega ważne urządzenie, które pomaga mierzyć prędkość wiatru, a to jest kluczowe, szczególnie przy turbinach wiatrowych. Działa tak, że nic z wiatru, co wieje, powoduje ruch wirujących części, najczęściej są to albo kulki, albo łopatki. No i generalnie, prędkość wiatru to jeden z tych parametrów, które są na czołowej liście, jeśli chodzi o wydajność systemów energii wiatrowej. Zauważ, że w farmach wiatrowych anemometry stawia się na różnych wysokościach, żeby uzyskać dokładny profil wiatru, co pomaga w odpowiednim ulokowaniu turbin. Jak to mówią, według norm IEC 61400-12, pomiary wiatru powinny trwać przynajmniej 12 miesięcy, żeby dać reprezentatywne dane, a to jest niezbędne do sensownego planowania instalacji. Osobiście uważam, że zastosowanie anemometrów to świetny sposób na analizę efektywności energetycznej oraz prognozowanie, ile energii można by wyprodukować.

Pytanie 18

Na podstawie tabeli określ, z których rur należy wykonać kolektor gruntowy, jeżeli wymagana średnica wewnętrzna przewodu to 32,6 mm.

Wymiary rur polietylenowych
Średnica zewnętrznaTyposzereg SDR 7,25Typoszereg SDR 11
Grubość ściankiPojemnośćGrubość ściankiPojemność
mmmmdm3/mmmdm3/m
324,40,4152,90,531
405,50,6513,70,834
506,91,0294,61,307
A. PE – HD SDR 7,25 d x g: 40 x 5,5 mm
B. PE – HD SDR 7,25 d x g: 50 x 6,9 mm
C. PE – HD SDR 11 d x g: 50 x 4,6 mm
D. PE – HD SDR 11 d x g: 40 x 3,7 mm

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "PE – HD SDR 11 d x g: 40 x 3,7 mm" jest poprawna, ponieważ średnica wewnętrzna tej rury wynosi dokładnie 32,6 mm, co jest zgodne z wymaganiami przedstawionymi w pytaniu. Wybór odpowiedniej rury do budowy kolektora gruntowego jest kluczowy, ponieważ ma to bezpośredni wpływ na efektywność systemu. Rury o niskim współczynniku SDR (Standard Dimension Ratio) charakteryzują się większą wytrzymałością, co jest istotne w zastosowaniach gruntowych, gdzie rury są poddawane różnym obciążeniom. W praktyce, dla efektywnego działania kolektora, należy również wziąć pod uwagę materiał rury, jej odporność na korozję oraz właściwości termiczne, które wpływają na przewodzenie ciepła. Wybór rury o odpowiedniej średnicy wewnętrznej jest zgodny z normami branżowymi, takimi jak PN-EN 12201, które określają wymogi dotyczące rur z tworzyw sztucznych przeznaczonych do instalacji wodociągowych i kanalizacyjnych. Warto również zaznaczyć, że odpowiednia średnica wewnętrzna wpływa na przepływ medium, co jest kluczowe dla optymalizacji systemu grzewczego opartego na energii geotermalnej.

Pytanie 19

Jaki powinien być minimalny czas trwania testu szczelności kolektora słonecznego?

A. 10 minut
B. 15 minut
C. 12 minut
D. 5 minut

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Minimalny czas trwania próby szczelności kolektora słonecznego wynoszący 15 minut jest zgodny z zaleceniami wielu standardów branżowych, w tym normy EN 12975 dotyczącej kolektorów słonecznych. Taki okres jest wystarczający, aby upewnić się, że wszelkie potencjalne wycieki powietrza lub cieczy zostały wykryte, a także aby system osiągnął stabilny stan pracy. Przykładowo, w praktyce inżynierskiej, próby szczelności przeprowadza się poprzez zastosowanie ciśnienia wyższego od normalnego, co pozwala na identyfikację miejsc nieszczelnych. W przypadku kolektorów słonecznych, prawidłowe przeprowadzenie próby szczelności jest kluczowe dla zapewnienia ich efektywności oraz długowieczności. Nieprawidłowe uszczelnienia mogą prowadzić do strat energii, a w skrajnych przypadkach do poważnych uszkodzeń systemu. Dlatego kluczowe jest przestrzeganie zalecanych czasów trwania prób, co zapewnia zgodność z procedurami jakości oraz bezpieczeństwa.

Pytanie 20

Która z boków dachu jest najodpowiedniejsza do instalacji kolektorów słonecznych?

A. Północna
B. Wschodnia
C. Zachodnia
D. Południowa

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Montaż kolektorów słonecznych na dachu południowym jest uważany za najbardziej efektywny, ponieważ ta strona dachu otrzymuje najwięcej promieniowania słonecznego w ciągu dnia. W zależności od lokalizacji geograficznej, dachy skierowane na południe mogą korzystać ze słońca przez większą część dnia, co znacznie zwiększa wydajność systemu solarnego. Na przykład, w Polsce, instalacje na dachu południowym mogą osiągać ponad 80% efektywności w porównaniu z innymi kierunkami. W praktyce oznacza to, że kolektory słoneczne zamontowane na tej stronie będą produkować więcej energii cieplnej, co przekłada się na niższe rachunki za energię i szybszy zwrot z inwestycji. Ponadto, zgodnie z dobrymi praktykami i standardami branżowymi, zaleca się unikanie zacienienia dachu, co jest istotne na południowej stronie, gdzie słońce jest najbardziej intensywne. Instalacja powinna być również skierowana pod odpowiednim kątem, aby maksymalizować eksponowanie na promieniowanie słoneczne przez cały rok.

Pytanie 21

Jaka jest najbardziej korzystna wartość współczynnika efektywności pompy ciepła COP?

A. 3,50
B. 0,25
C. 4,35
D. 0,35

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wartość współczynnika efektywności pompy ciepła (COP) na poziomie 4,35 oznacza, że na każdą jednostkę energii elektrycznej zużytej przez pompę, uzyskuje się 4,35 jednostek energii cieplnej. Tak wysoki wskaźnik COP jest charakterystyczny dla nowoczesnych systemów grzewczych, które są projektowane z myślą o maksymalnej efektywności energetycznej. Przykładem mogą być pompy ciepła typu powietrze-woda lub grunt-woda, które przy odpowiednich warunkach zewnętrznych osiągają bardzo korzystne wartości COP. W kontekście standardów branżowych, warto zauważyć, że pompy ciepła powinny być zgodne z normą EN 14511, która określa metody badań i klasyfikacji tych urządzeń. Dzięki stosowaniu pomp ciepła o wysokim COP można znacząco obniżyć koszty ogrzewania, jednocześnie przyczyniając się do zmniejszenia emisji CO2, co jest zgodne z duchem zrównoważonego rozwoju i polityki ekologicznej wielu krajów.

Pytanie 22

Zasobnik w kotle na biomasę ma pojemność 250 kg peletów. Kocioł uzupełniany jest co 3 dni. Jaki jest całkowity koszt paliwa zużywanego w ciągu 30 dni, jeśli cena 1 kg peletu wynosi 1,10 zł?

A. 275 zł
B. 8 250 zł
C. 2 750 zł
D. 825 zł

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby obliczyć koszt paliwa zużywanego w ciągu 30 dni, należy najpierw określić, ile razy kocioł zostanie napełniony w tym czasie. Zasobnik kotła na biomasę ma pojemność 250 kg peletu, a kocioł napełniany jest co 3 dni. W ciągu 30 dni kocioł będzie napełniany 10 razy (30 dni / 3 dni = 10 napełnień). Ponieważ każde napełnienie wymaga 250 kg peletu, łączna ilość peletów zużytych w ciągu 30 dni wynosi 250 kg x 10 = 2500 kg. Koszt 1 kg peletu wynosi 1,10 zł, więc całkowity koszt paliwa wyniesie 2500 kg x 1,10 zł = 2750 zł. Takie obliczenia są standardem w zarządzaniu kosztami energii w systemach ogrzewania, szczególnie przy stosowaniu biomasy jako odnawialnego źródła energii. Zrozumienie tego procesu pozwala na efektywne planowanie wydatków oraz optymalizację zużycia paliwa w instalacjach grzewczych, co jest kluczowe dla zrównoważonego rozwoju i ograniczenia emisji CO2.

Pytanie 23

Zbyt niskie natężenie przepływu czynnika roboczego w układzie solarnym, realizowane przez pompę obiegową, może prowadzić do

A. zwiększenia efektywności kolektorów
B. zapowietrzenia systemu
C. wzrostu temperatury czynnika roboczego
D. zatrzymania pompy obiegowej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Jak widzę, jeśli przepływ czynnika roboczego w instalacji solarnej jest za mały, to czynnikiem roboczym zaczyna być problem, bo może się przegrzewać. Dzieje się tak, bo czas przebywania czynnika w kolektorze jest zbyt długi. Wtedy pompa obiegowa nie ma szans na skuteczne przetransportowanie energii cieplnej do zbiornika, co prowadzi do wzrostu temperatury czynnika ponad optymalne wartości. W dobrze działających instalacjach solarnych, które są zaprojektowane zgodnie z normami, powinno się zapewnić odpowiedni przepływ, żeby efektywnie odbierać energię ze słońca. Z mojego doświadczenia, te parametry często można znaleźć w dokumentacji projektowej, co pomaga uniknąć problemów z przegrzewaniem. I pamiętaj, że odpowiednie ustawienie i regulacja pompy obiegowej, zgodnie z tym, co mówi producent, jest kluczowa, żeby wszystko działało jak należy i żeby instalacja była efektywna.

Pytanie 24

Czynności przedstawione w instrukcji dotyczą przeprowadzenia

Instrukcja
Otworzyć zawór odcinający i zawór zasilania oraz poprowadzić wąż od zaworu do zbiornika.
Zamknąć zawór 3-drogowy i otworzyć odpowietrznik.
Pompować płyn solarny (gotowa mieszanka) ze zbiornika przez zawór KFE, aż z zaworu wypłynie płyn solarny.
Jednocześnie odpowietrzyć obieg solarny (włącznie z wymiennikiem ciepła).
Zamknąć zawór KFE.
Podnieść ciśnienie do ok. 4,5-5 bar.
Zamknąć również zawór KFE.
Następnie przeprowadzić kontrolę wzrokową rur i połączeń.
Usunąć ewentualne nieszczelności i sprawdzić ponownie.
A. przeglądu technicznego.
B. odbioru technicznego.
C. płukania instalacji.
D. próby szczelności.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Próba szczelności jest kluczowym krokiem w procesie zapewnienia bezpieczeństwa i funkcjonalności instalacji. Czynności opisane w instrukcji, takie jak otwieranie i zamykanie zaworów, pompowanie płynu solarnego oraz podnoszenie ciśnienia, są typowe dla tego etapu. Celem próby szczelności jest upewnienie się, że instalacja nie ma żadnych nieszczelności, co mogłoby prowadzić do wycieków, a tym samym do poważnych uszkodzeń systemu lub nawet zagrożeń dla użytkowników. Zgodnie z normami branżowymi, każdy system hydrauliczny powinien przejść próbę szczelności przed jego oddaniem do użytku. W praktyce, jeśli podczas kontroli wzrokowej rur i połączeń zauważysz jakiekolwiek nieszczelności, powinieneś je natychmiast usunąć, aby uniknąć przyszłych problemów. Dbałość o szczegóły w tym zakresie jest nie tylko zgodna z najlepszymi praktykami, ale również może znacznie zwiększyć żywotność instalacji oraz obniżyć koszty eksploatacyjne.

Pytanie 25

W jakiej temperaturze, zgodnie z normami STC, dokonuje się oceny parametrów paneli fotowoltaicznych?

A. 20°C
B. 15°C
C. 25°C
D. 30°C

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Właściwości paneli fotowoltaicznych według warunków STC (Standard Test Conditions) są sprawdzane w temperaturze 25°C. Jest to kluczowa informacja, ponieważ STC stanowią bazę odniesienia dla producentów i instalatorów systemów fotowoltaicznych, umożliwiając porównywanie wydajności różnych paneli w jednakowych warunkach. Warto zaznaczyć, że temperatura ma istotny wpływ na wydajność ogniw fotowoltaicznych; wyższe temperatury często prowadzą do spadku efektywności. Przykładowo, przy temperaturze wynoszącej 40°C, wydajność paneli może zmniejszyć się o kilka procent w porównaniu do warunków STC. Dobre praktyki branżowe zalecają, aby podczas projektowania instalacji fotowoltaicznych brać pod uwagę lokalne warunki klimatyczne, aby przewidzieć rzeczywistą wydajność systemu, a także odpowiednio dostosować rozwiązania inżynieryjne. Zrozumienie STC jest kluczowe dla osób zajmujących się projektowaniem i instalacją systemów PV, a także dla inwestorów, którzy chcą ocenić opłacalność takich inwestycji.

Pytanie 26

Jaki materiał posiada najwyższy współczynnik rozszerzalności liniowej?

A. Polipropylen
B. Miedź
C. Stal
D. Mosiądz

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Polipropylen to materiał termoplastyczny, który cechuje się najwyższym współczynnikiem rozszerzalności liniowej spośród wymienionych opcji. Współczynnik rozszerzalności liniowej dla polipropylenu wynosi około 100-150 x 10^-6/K, co oznacza, że pod wpływem zmian temperatury, jego długość zmienia się znacznie bardziej niż w przypadku metali, takich jak stal czy miedź. Taka właściwość polipropylenu sprawia, że jest on często wykorzystywany w aplikacjach, gdzie występują znaczące zmiany temperatur. Na przykład, w przemyśle motoryzacyjnym polipropylen jest używany do produkcji elementów wnętrz samochodów, które muszą być odporne na wysokie temperatury oraz zmiany wielkości. W konstrukcjach budowlanych polipropylen jest wykorzystywany w systemach rur, gdzie jego elastyczność i zdolność do rozszerzania się bez pękania są kluczowe. Zgodnie z normami PN-EN, materiały termoplastyczne muszą spełniać określone parametry, aby zapewnić bezpieczeństwo i trwałość w zastosowaniach przemysłowych. Polipropylen jest więc doskonałym przykładem materiału, który łączy w sobie właściwości mechaniczne i termiczne, co czyni go popularnym wyborem w wielu branżach.

Pytanie 27

Łopaty wirnika turbiny wiatrowej o mocy 3,5 MW powinny być wytwarzane

A. ze stali
B. z miedzi
C. z włókien szklanych
D. z aluminium

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Łopaty wirników w turbinach wiatrowych z włókien szklanych to naprawdę dobry wybór. Mają świetne właściwości mechaniczne i aerodynamiczne. Włókna szklane są super lekkie, a mimo to bardzo wytrzymałe, co pozwala na zrobienie dużych łopat, które nie ważą zbyt dużo. To ważne, bo dzięki temu turbina mniej się obciąża i działa lepiej. Dodatkowo, te włókna są odporne na różne niekorzystne warunki, jak deszcz czy słońce, co sprawia, że łopaty są trwałe i niezawodne przez długi czas. Wiesz, normy IEC mówią, żeby stosować kompozyty, w tym włókna szklane, by osiągnąć najlepsze wyniki. Przykłady to nowoczesne turbiny, które muszą być zarówno wydajne, jak i bezpieczne w eksploatacji.

Pytanie 28

Odbiór części robót, które zostają zakryte, należy zaliczyć do odbiorów

A. pogwarancyjnych
B. końcowych
C. częściowych
D. przejściowych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź częściowych jest poprawna, ponieważ odbiór fragmentu robót, które ulegają zakryciu, jest częścią procesu odbiorowego, który ma na celu potwierdzenie, że zrealizowane prace są zgodne z umową oraz obowiązującymi normami. Odbiór częściowy dotyczy fragmentów robót, które mogą być już wykonane, a ich zakrycie uniemożliwia późniejszą ocenę jakości wykonania. W praktyce, na przykład podczas budowy budynku, instalacje elektryczne czy hydrauliczne muszą być odebrane przed ich zasłonięciem przez ściany, co pozwala na zweryfikowanie ich zgodności z projektem oraz jakości wykonania. Taki odbiór jest zgodny z normami budowlanymi oraz dobrymi praktykami w zarządzaniu projektami budowlanymi, które zalecają regularne i etapowe sprawdzanie wykonania robót. W przypadku problemów stwierdzonych podczas odbioru częściowego, wykonawca ma możliwość ich naprawy przed przystąpieniem do dalszych etapów budowy, co chroni inwestora przed późniejszymi kosztami napraw.

Pytanie 29

Zalecana objętość zbiornika solarnego wynosi

A. od 1,5 do 2 razy większa niż dzienne zapotrzebowanie na ciepłą wodę użytkową
B. od 2 do 2,5 razy większa niż dzienne zapotrzebowanie na ciepłą wodę użytkową
C. taka sama jak dzienne zapotrzebowanie na ciepłą wodę użytkową
D. mniejsza niż dzienne zapotrzebowanie na ciepłą wodę użytkową

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zalecana pojemność zasobnika solarnego powinna być większa od dziennego zapotrzebowania na ciepłą wodę użytkową, aby umożliwić efektywne wykorzystanie energii słonecznej. W praktyce, pojemność zasobnika od 1,5 do 2 razy większa od zapotrzebowania zapewnia, że woda jest odpowiednio podgrzewana w ciągu dnia, a nadmiar ciepła może być magazynowany na wieczór lub noc. Takie podejście jest zgodne z wytycznymi i normami zawartymi w standardach budowlanych oraz praktykami w zakresie systemów grzewczych. Dla przykładu, jeśli średnie dzienne zapotrzebowanie na ciepłą wodę wynosi 100 litrów, to pojemność zasobnika powinna wynosić od 150 do 200 litrów. Umożliwia to nie tylko zaspokojenie bieżącego zapotrzebowania, ale także buforowanie ciepła, co jest niezbędne w okresach niskiej inszolacji słonecznej. Dodatkowo, zwiększona pojemność zasobnika przyczynia się do lepszej stabilności systemu, minimalizując ryzyko przegrzania i strat ciepła.

Pytanie 30

W Polsce płaskie kolektory słoneczne powinny być umieszczane na dachu budynku, skierowane w stronę

A. wschodnią
B. zachodnią
C. południową
D. północną

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kolektory słoneczne płaskie powinny być zorientowane na południe, aby maksymalizować ilość otrzymywanego promieniowania słonecznego przez cały dzień. Dzięki takiej orientacji, kolektory są w stanie wykorzystać maksymalne nasłonecznienie, zwłaszcza w godzinach szczytowych, kiedy słońce znajduje się najwyżej na niebie. W Polsce, ze względu na nasze położenie geograficzne, orientacja południowa jest kluczowa dla uzyskania optymalnej efektywności energetycznej. Przykładowo, instalacje w orientacji południowej mogą zwiększyć wydajność kolektorów o 15-30% w porównaniu do innych kierunków. Dobre praktyki wskazują, że przy projektowaniu systemów solarnych należy także uwzględniać kąt nachylenia kolektorów, który powinien wynosić od 30 do 45 stopni, co dodatkowo wspiera efektywność zbierania energii. W związku z tym, podejmowanie decyzji o lokalizacji i orientacji kolektorów powinno być oparte na analizach nasłonecznienia oraz lokalnych warunkach klimatycznych, co przyczynia się do maksymalizacji zysków energetycznych.

Pytanie 31

W jaki sposób oraz w jakim miejscu powinno się zainstalować fotoogniwo, aby osiągnąć najlepszą wydajność przez cały rok?

A. Pod kątem 55 stopni do poziomu gruntu, na południowej części dachu
B. W poziomie, na tarasie
C. Pod kątem 45 stopni do poziomu gruntu, na wschodniej części dachu
D. Prostopadle, na południowej ścianie obiektu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Montaż fotoogniw pod kątem 55 stopni do powierzchni terenu na południowej połaci dachu jest optymalnym rozwiązaniem, które zapewnia maksymalną efektywność ich pracy przez cały rok. Pod kątem 55 stopni panel słoneczny jest w stanie lepiej wykorzystać promieniowanie słoneczne, szczególnie w miesiącach zimowych, kiedy Słońce znajduje się nisko na horyzoncie. Południowa ekspozycja dachu zapewnia, że panele będą miały największy dostęp do światła słonecznego w ciągu dnia, co przekłada się na wyższą produkcję energii. Warto również zauważyć, że taki kąt montażu minimalizuje ryzyko gromadzenia się śniegu i zanieczyszczeń na powierzchni paneli, co mogłoby wpłynąć na ich wydajność. Dodatkowo, stosowanie się do zaleceń branżowych dotyczących montażu, takich jak standardy IEC 61215 i IEC 61730, gwarantuje bezpieczeństwo i trwałość instalacji. Odpowiedni dobór kąta i miejsca montażu jest kluczowy dla długoterminowej efektywności systemów fotowoltaicznych oraz ich opłacalności ekonomicznej.

Pytanie 32

Najlepszym surowcem, z którego powinny być zrobione łopaty wirnika turbiny wiatrowej o mocy 2 MW, jest

A. aluminium
B. stal
C. włókna szklane
D. miedź

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Włókna szklane są materiałem o doskonałych właściwościach mechanicznych i niskiej masie, co czyni je idealnym wyborem do produkcji łopat wirników turbin wiatrowych o mocy 2 MW. Ich wysoka wytrzymałość na rozciąganie oraz odporność na działanie warunków atmosferycznych, w tym korozji, sprawiają, że są one bardziej trwałe w porównaniu do innych materiałów, takich jak stal czy aluminium. Wykorzystanie włókien szklanych w konstrukcji łopat pozwala na osiągnięcie większej efektywności energetycznej, ponieważ umożliwia produkcję dłuższych i lżejszych łopat, co z kolei zwiększa powierzchnię do chwytania wiatru. Przykładem zastosowania tego materiału mogą być nowoczesne turbiny wiatrowe, które korzystają z kompozytów z włókien szklanych w połączeniu z żywicami epoksydowymi, co pozwala na osiągnięcie wysokiej wydajności i długowieczności. Standardy branżowe, takie jak IEC 61400, zalecają stosowanie materiałów kompozytowych w konstrukcji łopat, co potwierdza ich przewagę nad innymi materiałami.

Pytanie 33

Który z typów kolektorów słonecznych, używany w systemie do wspierania ogrzewania wody użytkowej i ogrzewania obiektu, charakteryzuje się najwyższą efektywnością w czasie wspomagania ogrzewania obiektu?

A. Rurowy typu heat-pipe
B. Płaski gazowy
C. Płaski cieczowy
D. Rurowy próżniowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Rurowe kolektory typu heat-pipe to naprawdę mocny wybór, zwłaszcza zimą. Ich sprawność wtedy jest na najwyższym poziomie, co czyni je świetnym wsparciem dla ogrzewania budynku. Działają tak, że ciecz w rurze paruje, gdy dostaje ciepło ze słońca, a potem skrapla się w wymienniku ciepła. Z mojego doświadczenia wynika, że to super rozwiązanie, bo nawet w niskich temperaturach potrafią skutecznie odbierać ciepło. Warto wspomnieć, że takie kolektory świetnie sprawdzają się w miejscach jak baseny czy hotele, gdzie zapotrzebowanie na ciepło jest spore. Jeśli chodzi o normy branżowe, to przy pomocy takich jak EN 12975 można sprawdzić ich skuteczność w różnych warunkach. No i coraz częściej pojawiają się w projektach ekologicznych, gdzie efektywność energetyczna to podstawa. Czyli, generalnie, bardzo dobry wybór na dziś.

Pytanie 34

W przypadku, gdy źródłem ciepła są wody gruntowe lub powierzchniowe, a temperatura może być niższa od zera, którą z pomp ciepła należy zastosować?

A. woda - woda
B. powietrze - woda
C. solanka - woda
D. grunt - woda

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pompa ciepła typu solanka - woda jest odpowiednia, gdy źródłem ciepła są wody gruntowe lub powierzchniowe, szczególnie w obszarach, gdzie temperatura może spadać poniżej zera. W tym systemie ciepło jest pobierane z gruntu za pomocą obiegu solanki, która krąży w układzie zamkniętym. Zastosowanie solanki jako medium antyzamarzającego pozwala na efektywne wykorzystanie energii geotermalnej, nawet przy niskich temperaturach. Często stosuje się takie rozwiązania w budynkach jednorodzinnych, gdzie instalacja gruntowych wymienników ciepła jest w stanie zapewnić odpowiednią efektywność grzewczą. Dzięki swojej wydajności i możliwości pracy w trudnych warunkach, pompy te są zgodne z normami ECODESIGN, a ich zastosowanie pozytywnie wpływa na redukcję emisji CO2. Ponadto, wykorzystując grunt jako źródło energii, można uzyskać stabilne i przewidywalne źródło ciepła przez cały rok, co jest niezmiernie ważne w kontekście zrównoważonego rozwoju oraz oszczędności energii.

Pytanie 35

Jakie urządzenie wykorzystuje się do określenia temperatury krzepnięcia płynu solarnego?

A. manometr
B. higrometr
C. refraktometr
D. rotametr

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Refraktometr jest urządzeniem używanym do pomiaru wskaźnika załamania światła, co umożliwia określenie stężenia substancji rozpuszczonych w cieczy. W kontekście płynów solarnych, refraktometr jest szczególnie przydatny do pomiaru temperatury zamarzania, ponieważ pozwala na precyzyjne określenie właściwości płynów, takich jak ich stężenie glikolu. Wysokiej jakości refraktometry wykorzystywane w aplikacjach solarnych są skalibrowane w odpowiednich zakresach temperatur, co czyni je niezastąpionym narzędziem w ocenie efektywności systemów solarnych. Dzięki zastosowaniu refraktometru, inżynierowie mogą monitorować właściwości płynów roboczych, co jest kluczowe dla utrzymania optymalnych warunków pracy instalacji. Zrozumienie, jak zmienia się gęstość i inne właściwości cieczy w różnych temperaturach, ma bezpośredni wpływ na wydajność systemów solarnych. W branży energetycznej, przestrzeganie standardów i dobrych praktyk pomiarowych jest kluczowe dla zapewnienia niezawodności systemów, a refraktometr stanowi narzędzie do osiągnięcia tych celów.

Pytanie 36

Pompa ciepła przez 20 dni dostarczała do domu jednorodzinnego energię równą 2 040 kWh. Jaki jest wskaźnik efektywności energetycznej, jeśli średnia moc pobrana wynosi 2,5 kW?

A. 40,80
B. 1,70
C. 4,08
D. 17,00

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wskaźnik efektywności energetycznej, czyli ten COP (Coefficient of Performance), to ważny element, gdy mówimy o wydajności pompy ciepła. Tutaj mamy do obliczenia, ile energii pompa dostarcza, a ile sama zużywa. Jeśli weźmiemy 2 040 kWh jako energię dostarczoną, to musimy policzyć, ile energii elektrycznej pompa zużyła. Robimy to, mnożąc średnią moc pompy (2,5 kW) przez czas, w którym pracowała. Pracując przez 20 dni, czyli 480 godzin (20 dni x 24h), uzyskujemy 2,5 kW x 480 h = 1 200 kWh. Więc nasz COP wyjdzie 2 040 kWh / 1 200 kWh = 1,70. To fajny przykład, bo pokazuje, jak pompy ciepła mogą pomóc w oszczędzaniu energii, a to ważne nie tylko dla budownictwa, ale i dla środowiska. Wysoki COP oznacza, że system działa dobrze, a to przecież jest istotne, gdy myślimy o zrównoważonym rozwoju.

Pytanie 37

Jaką funkcję pełni zbiornik buforowy?

A. przechowywać biopaliwo
B. wyrównywać ciśnienie w systemie solarnym
C. przechowywać nadmiar ciepłej wody
D. wyrównywać ciśnienie w systemie centralnego ogrzewania

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zbiornik buforowy pełni kluczową rolę w systemach ogrzewania, szczególnie w instalacjach solarnych oraz centralnego ogrzewania. Jego głównym zadaniem jest magazynowanie nadmiaru ciepłej wody, co umożliwia efektywne wykorzystanie energii, a także stabilizację pracy systemu. Przykładowo, w instalacjach solarnych, w ciągu dnia, kiedy produkcja ciepła jest wysoka, zbiornik buforowy gromadzi nadmiar ciepłej wody. Dzięki temu, w godzinach wieczornych, gdy zapotrzebowanie na ciepło wzrasta, możliwe jest wykorzystanie zgromadzonej energii, co przekłada się na oszczędności oraz efektywność energetyczną. Zgodnie z normami branżowymi, odpowiednie zaprojektowanie i umiejscowienie zbiornika buforowego pozwala na optymalizację pracy całego systemu grzewczego i zwiększa jego żywotność. W praktyce, niezależnie od typu źródła ciepła, użycie zbiornika buforowego jest standardem, który przyczynia się do bardziej zrównoważonego i ekologicznego podejścia do ogrzewania budynków.

Pytanie 38

W porowatych skałach o niskiej wilgotności znajdują się zasoby zmagazynowanej energii

A. petrotermalnej
B. nieodnawialnej
C. hydrotermalnej
D. konwencjonalnie nieodnawialnej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'petrotermicznej' jest jak najbardziej trafna, bo chodzi o energię, która jest przechowywana w suchych skałach z porami, a te często mają złoża węglowodorów, takich jak ropa czy gaz. W petrofizyce bada się, jakie właściwości mają te skały, a ich porowatość i przepuszczalność to kluczowe rzeczy, które wpływają na wydobycie tych surowców. Jeśli mówimy o wydobyciu, to istotne jest, żeby rozumieć, jakie są warunki geologiczne i właściwości skał, bo to pomaga w projektowaniu odwiertów i systemów wydobywczych. Dobrym przykładem może być szczelinowanie hydrauliczne, które znacznie zwiększa możliwości wydobycia ropy i gazu z miejsc, gdzie jest ciężej dotrzeć. Standardy jak te od SPE (Society of Petroleum Engineers) podkreślają, jak ważne są badania geologiczne i technologia w ocenie tego, co możemy wydobyć, co w pełni potwierdza sens tej odpowiedzi o energii petrotermicznej.

Pytanie 39

Aby zainstalować system rur PP, jakie narzędzia są potrzebne?

A. nożyce do rur, gratownik i zgrzewarka
B. obcinaki do rur, kalibrator oraz zaciskarka
C. nożyce do rur, gratownik oraz zestaw kluczy płaskich
D. obcinaki do rur, gratownik oraz klej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź, że do montażu instalacji w systemie rur PP należy dysponować nożycami do rur, gratownikiem i zgrzewarką, jest prawidłowa ze względu na specyfikę materiału i metody łączenia. Nożyce do rur umożliwiają precyzyjne cięcie rur PP, co jest kluczowe dla zachowania integralności połączeń. Gratownik służy do wygładzania krawędzi, co zapobiega uszkodzeniom materiału i zapewnia lepszą jakość połączenia. Zgrzewarka, natomiast, jest niezbędna do efektywnego łączenia rur PP poprzez zgrzewanie, co jest jedną z najlepszych praktyk w instalacjach wodno-kanalizacyjnych. Zgrzewanie rur PP pozwala na uzyskanie trwałego, szczelnego połączenia, które wytrzymuje wysokie ciśnienie oraz zmiany temperatury. Stosowanie tych narzędzi jest zgodne z normami branżowymi, które kładą nacisk na bezpieczeństwo oraz efektywność instalacji. Dobrze przeprowadzony montaż nie tylko przedłuża żywotność instalacji, ale również minimalizuje ryzyko awarii.

Pytanie 40

Jak należy przechowywać kolektory słoneczne?

A. pod wiatą, umieszczone szybą w dół
B. pod wiatą, umieszczone szybą do góry
C. w zamkniętych pomieszczeniach, umieszczone szybą w dół
D. w zamkniętych pomieszczeniach, umieszczone szybą do góry

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kolektory słoneczne fajnie jest przechowywać w zamkniętych pomieszczeniach, w pozycji szybą do góry. Dzięki temu są mniej narażone na działanie różnych warunków atmosferycznych i uszkodzenia. Jak się je trzyma w suchym i wentylowanym miejscu, to zmniejsza się ryzyko kondensacji i korozji, co jest bardzo ważne, bo wilgoć może zniszczyć te urządzenia. Ułożenie szybą do góry zapobiega zarysowaniom, co jest super ważne, zwłaszcza, że te kolektory są dosyć drogie. Wiele firm, które zajmują się energią odnawialną, sugeruje używanie specjalnych stojaków, żeby je lepiej zabezpieczyć. Dobrze jest też co jakiś czas sprawdzić ich stan, żeby wcześnie zauważyć ewentualne problemy. Wiedza na temat tego, jak dobrze przechowywać kolektory, jest kluczowa dla ich długiego życia i efektywności.