Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 17 grudnia 2025 16:08
  • Data zakończenia: 17 grudnia 2025 16:40

Egzamin zdany!

Wynik: 33/40 punktów (82,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Który pomiar można wykonać w instalacji elektrycznej przedstawionym na rysunku przyrządem pomiarowym typu MRU-20?

Ilustracja do pytania
A. Prądu różnicowego wyłącznika różnicowoprądowego.
B. Rezystancji izolacji przewodów fazowych.
C. Rezystancji uziomu ochronnego.
D. Impedancji pętli zwarcia.
Wybrane odpowiedzi, takie jak pomiar impedancji pętli zwarcia czy rezystancji izolacji przewodów fazowych, są niewłaściwe w kontekście funkcji miernika MRU-20. Miernik ten nie jest przystosowany do pomiaru impedancji pętli zwarcia, która jest zazwyczaj wykonywana innymi urządzeniami, tj. multimetrami lub specjalistycznymi przyrządami do testowania pętli zwarciowych. Taki pomiar dotyczy oceny skuteczności zabezpieczeń od porażenia prądem i wymaga złożonego pomiaru, który nie może być przeprowadzony przez MRU-20. Kolejna niepoprawna opcja, czyli pomiar rezystancji izolacji przewodów fazowych, odnosi się do innego aspektu oceny bezpieczeństwa instalacji, który wymaga zastosowania osobnych narzędzi, takich jak megomierze, które są zaprojektowane do pomiaru rezystancji izolacji. Wyklucza to również możliwość zastosowania MRU-20 w tym kontekście. Ponadto, prąd różnicowy wyłącznika różnicowoprądowego nie może być mierzony za pomocą MRU-20, który nie jest przystosowany do pomiaru prądów, a jedynie do pomiaru rezystancji. Stąd, zrozumienie, że każdy przyrząd ma swoje określone zastosowanie oraz że nie można go używać do pomiarów, do których nie został zaprojektowany, jest kluczowe. Te błędne koncepcje mogą prowadzić do nieprawidłowej oceny stanu instalacji elektrycznych oraz potencjalnych zagrożeń.

Pytanie 2

Podczas wymiany uszkodzonego gniazda wtykowego w instalacji podtynkowej, prowadzonej w rurach karbowanych, zauważono, że w wyniku poluzowania zacisku, izolacja jednego z przewodów na długości kilku centymetrów straciła swoją elastyczność i zmieniła kolor. Jak powinno się naprawić to uszkodzenie?

A. Nałożyć gumowy wąż na uszkodzoną izolację przewodu
B. Wymienić uszkodzony przewód na nowy o takim samym przekroju
C. Wymienić wszystkie przewody na nowe o większym przekroju
D. Polakierować uszkodzoną izolację przewodu
Wymiana uszkodzonego przewodu na nowy o takim samym przekroju jest prawidłowym rozwiązaniem, ponieważ uszkodzenie izolacji przewodu może prowadzić do poważnych zagrożeń, takich jak zwarcia, przegrzewanie się oraz porażenia prądem. Przewody elektryczne muszą spełniać określone normy techniczne, a ich izolacja powinna być w dobrym stanie, aby zapewnić bezpieczeństwo użytkowania instalacji. W przypadku uszkodzenia izolacji, jak w tym przypadku, zaleca się wymianę całego przewodu, aby uniknąć ryzyka. Przykład zastosowania tej zasady można znaleźć w przepisach elektrycznych, takich jak normy PN-IEC dotyczące instalacji elektrycznych. Warto również pamiętać o tym, że przewody o różnym przekroju mają różne właściwości prądowe, co oznacza, że wymiana na przewód o innym przekroju może prowadzić do przekroczenia dopuszczalnych obciążeń prądowych. Dobrą praktyką w takich sytuacjach jest również przeprowadzenie przeglądu całej instalacji, aby zidentyfikować inne potencjalne problemy.

Pytanie 3

Który z poniższych przewodów powinien być użyty do zasilania ruchomego odbiornika w II klasie ochronności z sieci jednofazowej?

A. H05VV-K 3×1,5
B. H03VV-F 3×0,75
C. H05VV-U 2×1,5
D. H03VVH2-F 2×0,75
Odpowiedź H03VVH2-F 2×0,75 jest poprawna, ponieważ ten przewód jest przeznaczony do zasilania ruchomych odbiorników w systemach o napięciu do 300/500 V. Jego konstrukcja z podwójną izolacją zapewnia odpowiedni poziom bezpieczeństwa, co jest kluczowe dla urządzeń wykonanych w II klasie ochronności. W II klasie ochronności nie jest wymagane stosowanie przewodów z uziemieniem, co czyni H03VVH2-F idealnym rozwiązaniem. Przewód ten charakteryzuje się także elastycznością, co ułatwia jego stosowanie w aplikacjach ruchomych, takich jak elektronarzędzia czy sprzęt AGD. W praktyce stosuje się go często w sytuacjach, gdzie urządzenie może być przemieszczane, a także w warunkach, w których mobilność i elastyczność przewodu są kluczowe. Zgodnie z normą PN-EN 50525-2-21, przewody te powinny spełniać określone wymagania dotyczące odporności na działanie czynników zewnętrznych, co czyni je odpowiednimi do użytku w różnych środowiskach.

Pytanie 4

Jaki jest najmniejszy błąd pomiaru natężenia prądu wynoszącego 30 mA, gdy używamy cyfrowego miliamperomierza z wyświetlaczem do 2 miejsc po przecinku oraz miernika o określonej dokładności?

A. ±2,0% + 2 cyfry
B. ±1,5% + 3 cyfry
C. ±2,5% + 1 cyfra
D. ±1,0% + 4 cyfry
Wybór błędnych opcji wynika często z niepełnego zrozumienia zasad działania mierników oraz błędnego interpretowania wartości procentowych i cyfr. Na przykład odpowiedzi z dokładnością ±2,0% + 2 cyfry czy ±1,5% + 3 cyfry oferują znacznie większy margines błędu, co sprawia, że ​​są mniej odpowiednie do precyzyjnych pomiarów. Przy odpowiedzi ±2,0% + 2 cyfry, maksymalny błąd wyniósłby 30 mA × 2,0% + 2 cyfry, co daje 0,6 mA + 0,02 mA, czyli 0,62 mA, a to już znacznie przekracza akceptowalny poziom dokładności w wielu zastosowaniach. Podobnie, dla ±1,5% + 3 cyfry, obliczenia prowadzą do maksymalnego błędu 0,45 mA + 0,03 mA, czyli 0,48 mA. Te wartości są niewystarczające w kontekście aplikacji, które wymagają dużej precyzji. W praktyce, większa dokładność miernika pozwala na dokładniejsze przyrządzanie obwodów elektronicznych oraz zmniejsza ryzyko wystąpienia błędów w obliczeniach związanych z analizą danych. W branży inżynieryjnej, ważne jest, aby dobierać urządzenia zgodnie z wymaganiami pomiarowymi, co przekłada się na jakość i wiarygodność wyników.

Pytanie 5

Który sposób połączenia zacisków gniazda wtyczkowego jednofazowegow instalacji mieszkaniowejpracującej w sieci TN-S jest prawidłowy?

Ilustracja do pytania
A. B.
B. D.
C. A.
D. C.
Odpowiedź A jest prawidłowa, ponieważ zgodnie z obowiązującymi normami, w instalacjach elektrycznych jednofazowych w systemie TN-S, układ podłączenia przewodów w gniazdach wtyczkowych jest szczegółowo określony. Przewód fazowy oznaczany jako L powinien być zawsze podłączony po lewej stronie, co zapewnia odpowiednią orientację dla użytkowników. Przewód neutralny N powinien znajdować się po prawej stronie, natomiast przewód ochronny PE umieszczany jest na górze. Taki układ minimalizuje ryzyko pomylenia przewodów i zwiększa bezpieczeństwo użytkowania urządzeń elektrycznych. W przypadku zastosowania niepoprawnego połączenia istnieje ryzyko zwarcia elektrycznego lub porażenia prądem. Dobrze zaprojektowana instalacja zgodna z normami nie tylko zapewnia bezpieczeństwo, ale także ułatwia konserwację i naprawy, ponieważ technicy mają jasność co do orientacji przewodów. Zastosowanie tych standardów jest kluczowe dla zachowania wysokiego poziomu bezpieczeństwa w instalacjach elektrycznych.

Pytanie 6

Wymagana izolacja przewodów używanych w trójfazowej sieci niskiego napięcia 230/400 V powinna wynosić co najmniej

A. 450/750 V
B. 300/500 V
C. 300/300 V
D. 100/100 V
Izolacja przewodów stosowanych w sieci trójfazowej niskiego napięcia 230/400 V powinna być wykonana na poziomie co najmniej 300/500 V, co jest zgodne z obowiązującymi normami IEC 60227 oraz IEC 60502. Tego rodzaju izolacja zapewnia odpowiednią ochronę przed przebiciem i krótko-terminowymi napięciami, które mogą wystąpić w trakcie normalnej eksploatacji instalacji elektrycznej. Przykładowo, w systemach zasilania budynków komercyjnych, gdzie przewody muszą być odporne na różne warunki otoczenia, zastosowanie przewodów o klasie izolacji 300/500 V jest standardem, który zapewnia długotrwałość oraz bezpieczeństwo użytkowników. Warto również zauważyć, że wyższe klasy izolacji, takie jak 450/750 V, są stosowane w bardziej wymagających aplikacjach, jak instalacje przemysłowe, ale w przypadku typowych instalacji niskonapięciowych, klasa 300/500 V jest wystarczająca i zalecana.

Pytanie 7

Na którym rysunku przedstawiono oprawkę do źródła światła dużej mocy, nagrzewającego się do temperatur rzędu 300°C?

Ilustracja do pytania
A. C.
B. A.
C. D.
D. B.
Wybór oprawki oznaczonej innymi literami, oprócz D, może wynikać z niepełnego zrozumienia właściwości materiałowych używanych w konstrukcji opraw. Na przykład, wiele osób może sądzić, że materiały takie jak tworzywa sztuczne są wystarczające dla źródeł światła dużej mocy. Jednakże, tworzywa sztuczne mają ograniczoną odporność na wysokie temperatury i mogą się topnieć lub odkształcać w warunkach, gdzie temperatura przekracza 100°C. Ponadto, stosowanie metali do budowy opraw również nie jest zalecane, ponieważ ich właściwości przewodzenia ciepła mogą prowadzić do lokalnych przegrzań i uszkodzenia zarówno oprawki, jak i źródła światła. W praktyce, niewłaściwy dobór materiału może prowadzić do skrócenia żywotności żarówki, zwiększonego ryzyka awarii, a także potencjalnych zagrożeń dla użytkowników. Często spotykanym błędem jest również niedocenianie znaczenia odprowadzania ciepła, co w dłuższej perspektywie prowadzi do obniżenia efektywności energetycznej systemu oświetleniowego. Dlatego kluczowe jest, aby projektując oprawy do źródeł światła dużej mocy, kierować się sprawdzonymi standardami i praktykami, które zapewnią odpowiednią wydajność i bezpieczeństwo w użytkowaniu.

Pytanie 8

W przypadku instalacji elektrycznej o parametrach U0 = 230 V i Ia= 100 A, Zs = 3,1 Ω (ZsIa < U0), działającej w systemie TN-C, dodatkowa ochrona przed porażeniem prądem elektrycznym nie jest efektywna, ponieważ

A. impedancja pętli zwarcia jest zbyt wysoka
B. rezystancja izolacji miejsca pracy jest zbyt duża
C. rezystancja uziemienia jest zbyt niska
D. impedancja sieci zasilającej jest zbyt niska
Impedancja pętli zwarcia jest kluczowym parametrem w systemach elektrycznych, szczególnie w układach TN-C. W przypadku, gdy impedancja pętli zwarcia jest zbyt duża, może to prowadzić do niewystarczającego prądu zwarciowego, co z kolei wpływa na czas zadziałania zabezpieczeń. W układach TN-C przy wartościach U<sub>0</sub> = 230 V oraz I<sub>a</sub> = 100 A, impedancja pętli zwarcia powinna być na tyle niska, aby zapewnić skuteczne wyłączenie w przypadku zwarcia. W praktyce, jeśli impedancja pętli zwarcia przekracza określone wartości, na przykład zgodnie z normą PN-EN 60364, czas reakcji wyłączników automatycznych może być zbyt długi, co stwarza potencjalne zagrożenie dla bezpieczeństwa użytkowników. Dlatego właściwe pomiary impedancji pętli zwarcia są niezbędne w każdym projekcie instalacji elektrycznej, aby upewnić się, że system będzie dostatecznie chronił przed porażeniem prądem elektrycznym. W przypadku wykrycia zbyt dużej impedancji, zaleca się poprawę uziemienia oraz optymalizację konfiguracji instalacji, aby zwiększyć skuteczność zabezpieczeń.

Pytanie 9

Który element stosowany do sterowania w domowej instalacji elektrycznej przedstawiono na rysunku?

Ilustracja do pytania
A. Przekaźnik priorytetowy.
B. Regulator oświetlenia.
C. Sterownik rolet.
D. Przekaźnik bistabilny.
Przekaźnik priorytetowy, który został przedstawiony na rysunku, jest kluczowym elementem w nowoczesnych systemach automatyki budynkowej. Oznaczenie "PR-612" jednoznacznie wskazuje na ten typ urządzenia, które jest zaprojektowane do zarządzania priorytetami w zasilaniu różnych obwodów elektrycznych. W praktyce przekaźniki priorytetowe są wykorzystywane w sytuacjach, gdzie istnieje potrzeba zarządzania zasilaniem w sposób inteligentny, na przykład w przypadku awarii zasilania lub w celu oszczędności energii. Działają one na zasadzie automatycznego przełączania źródła zasilania na urządzenia o wyższym priorytecie, co zapewnia ciągłość pracy najważniejszych systemów w budynku. Zastosowanie przekaźników priorytetowych jest zgodne z normami EN 61000-3-2 dotyczącymi ograniczeń emisji harmonicznych dla urządzeń elektrycznych oraz IEC 61131-2, która reguluje normy dla urządzeń automatyki. Dzięki zastosowaniu tych elementów, można tworzyć bardziej efektywne i bezpieczne systemy zarządzania energią w budynkach.

Pytanie 10

Na zdjęciu przedstawiono kabel

Ilustracja do pytania
A. elektroenergetyczny z żyłami miedzianymi o izolacji polwinitowej, na napięcie 0,6/1 kV.
B. kontrolny z żyłami wielodrutowymi na napięcie 300/500 V w izolacji z tworzywa bezhalogenowego, ekranowany.
C. sygnalizacyjny z żyłami wielodrutowymi o wiązkach parowych na napięcie 300/500 V.
D. sygnalizacyjny z żyłami jednodrutowymi na napięcie 0,6/1 kV w osłonie polwinitowej.
Analizując niepoprawne odpowiedzi, można zauważyć szereg istotnych nieporozumień związanych z klasyfikacją kabli i ich zastosowaniami. W pierwszej z nich sugerowany kabel sygnalizacyjny z żyłami jednodrutowymi na napięcie 0,6/1 kV nie pasuje do charakterystyki przedstawionego kabla. Kable sygnalizacyjne na ogół operują na niższych napięciach, a ich budowa z żyłami jednodrutowymi nie jest typowa dla aplikacji wymagających elastyczności i odporności na zakłócenia. Podobnie, drugi typ kabla, czyli kontrolny z żyłami wielodrutowymi na napięcie 300/500 V, z ekranowaniem, nie odpowiada wizualnym cechom przedstawionego kabla. Ekranowanie jest kluczowe w redukcji zakłóceń, jednak brak takiej ochrony w analizowanym przypadku wskazuje na inne przeznaczenie. Odpowiedź dotycząca kabla elektroenergetycznego również jest błędna, gdyż odnosi się do wyższych napięć, co nie zgadza się z widocznymi cechami izolacyjnymi i konstrukcją kabla. Typowe błędy myślowe prowadzące do tych niepoprawnych wniosków obejmują nadmierne generalizowanie właściwości kabli oraz ignorowanie specyfikacji technicznych. Niezrozumienie różnic między typami kabli oraz ich zastosowaniem w praktyce może prowadzić do niewłaściwych wyborów w projektowaniu instalacji elektrycznych i sygnalizacyjnych, co w konsekwencji może wpływać na niezawodność i bezpieczeństwo systemów.

Pytanie 11

Brodzik zostanie osłonięty kabiną prysznicową. W której strefie można zainstalować gniazda z kołkiem ochronnym w łazience, aby było to zgodne z przepisami bezpieczeństwa i higieny pracy oraz przepisami przeciwporażeniowymi?

Ilustracja do pytania
A. W l i 3.
B. Tylko w 2.
C. Tylko w 3.
D. W 1 i 2.
Odpowiedź "Tylko w 3" jest poprawna, ponieważ zgodnie z polskimi normami dotyczącymi bezpieczeństwa instalacji elektrycznych w pomieszczeniach narażonych na wilgoć, gniazda z kołkiem ochronnym mogą być instalowane tylko w strefie 3. Strefa ta jest usytuowana najdalej od wszelkich źródeł wody, co minimalizuje ryzyko porażenia prądem. Strefa 3 zaczyna się od 2,4 metra od krawędzi brodzika czy wanny, co oznacza, że w tym obszarze ryzyko kontaktu z wodą jest zdecydowanie mniejsze. W praktyce oznacza to, że gniazda elektryczne powinny być umiejscowione w taki sposób, aby użytkownik mógł z nich korzystać bez obaw o bezpieczeństwo, np. do podłączenia suszarki do włosów. Stosując się do tych zasad, można zapewnić bezpieczeństwo użytkowników łazienek, co jest kluczowe w kontekście ochrony przed porażeniem elektrycznym i zgodności z przepisami przeciwporażeniowymi. Warto również zapoznać się z odpowiednimi normami, takimi jak PN-IEC 60364, które szczegółowo opisują wymagania dotyczące instalacji elektrycznych w strefach zagrożonych wilgocią.

Pytanie 12

Która z podanych czynności jest częścią inspekcji wirnika maszyny komutatorowej?

A. Pomiar oporu izolacji
B. Weryfikacja stanu szczelin komutatora
C. Kontrola braku zwarć międzyzwojowych
D. Wyważenie
Sprawdzenie stanu wycinków komutatora jest kluczowym elementem oględzin wirnika maszyny komutatorowej. Wycinki komutatora, które są wykonane najczęściej z miedzi, muszą być w dobrym stanie, aby zapewnić prawidłowe przewodzenie prądu i minimalizować straty energii. Ich uszkodzenie, zarysowania czy pęknięcia mogą prowadzić do poważnych problemów, takich jak przegrzewanie się wirnika, co z kolei może skutkować uszkodzeniem całej maszyny. W praktyce należy zwrócić uwagę na bliskość wycinków, ich stopień zużycia oraz jakiekolwiek osady czy zanieczyszczenia, które mogą wpływać na działanie komutatora. Regularne oględziny stanu wycinków komutatora są zalecane w ramach okresowych przeglądów technicznych, co jest zgodne z dobrą praktyką w utrzymaniu ruchu i zaleceniami producentów. Dzięki tym kontrolom można zapobiec awariom, które mogą prowadzić do przestojów w pracy maszyny oraz generować dodatkowe koszty związane z naprawami i utratą wydajności.

Pytanie 13

Który z rodzajów kabli ma zewnętrzną osłonę wykonaną z polwinitu?

A. XzTKMXpw
B. YADY
C. LgY
D. DYt
Typ przewodu YADY jest powszechnie stosowany w instalacjach elektrycznych, a jego charakterystyczną cechą jest powłoka zewnętrzna wykonana z polwinitu (PVC). Polwinit jest materiałem o wysokiej odporności na działanie czynników atmosferycznych oraz chemicznych, dzięki czemu przewody tego typu znajdują zastosowanie zarówno w instalacjach wewnętrznych, jak i zewnętrznych. Stosuje się je w budownictwie, w infrastrukturze przemysłowej oraz w systemach automatyki. Przewody YADY charakteryzują się także elastycznością, co ułatwia ich instalację w trudnodostępnych miejscach. Zgodnie z normami PN-EN 50525, przewody te mogą być używane do zasilania urządzeń elektrycznych, a ich budowa zapewnia odpowiednią izolację oraz bezpieczeństwo użytkowania. Warto również zwrócić uwagę na specyfikację dostosowaną do różnych warunków pracy, co czyni je uniwersalnym rozwiązaniem w wielu branżach.

Pytanie 14

Jakie z poniższych działań jest uznawane za czynność konserwacyjną w instalacji elektrycznej?

A. Wymiana uszkodzonych źródeł światła
B. Instalacja dodatkowego gniazda elektrycznego
C. Modernizacja rozdzielnicy instalacji elektrycznej
D. Zmiana rodzaju użytych przewodów
Wymiana uszkodzonych źródeł światła to naprawdę ważna sprawa, jeśli chodzi o dbanie o instalację elektryczną. To nie tylko poprawia oświetlenie, co jest kluczowe dla komfortu ludzi, ale także dba o ich bezpieczeństwo. Uszkodzone żarówki czy świetlówki mogą być niebezpieczne, bo mogą prowadzić do pożarów czy porażenia prądem, jeśli ich nie wymienimy na czas. Z tego, co wiem, zgodnie z normami PN-IEC 60364, regularne sprawdzanie i konserwacja, w tym wymiana źródeł światła, powinny się odbywać w ustalonych odstępach czasowych. Dzięki temu wszystko działa sprawnie i bez pieprzenia. Przykładowo, zamiana tradycyjnych żarówek na LEDy nie tylko oszczędza prąd, ale też dłużej działają, a to jest korzystne zarówno dla portfela, jak i dla środowiska.

Pytanie 15

Narzędzie przedstawione na ilustracji przeznaczone jest

Ilustracja do pytania
A. do zaciskania końcówek oczkowych.
B. do zaciskania końcówek tulejkowych.
C. do docinania przewodów.
D. do ściągania izolacji z żył przewodów.
Odpowiedź jest prawidłowa, ponieważ narzędzie przedstawione na ilustracji to szczypce do ściągania izolacji, które są specjalistycznym narzędziem używanym w elektryce do precyzyjnego usuwania izolacji z przewodów elektrycznych. Dzięki charakterystycznemu kształtowi ostrzy oraz zastosowanemu mechanizmowi regulacji, te szczypce umożliwiają bezpieczne usuwanie izolacji bez ryzyka uszkodzenia samej żyły przewodowej. W praktyce, umiejętność prawidłowego użycia tego narzędzia jest kluczowa w instalacjach elektrycznych, gdzie niezbędne jest zachowanie integralności przewodów. Standardy branżowe, takie jak IEC 60079 lub ANSI/NFPA 70E, podkreślają znaczenie stosowania odpowiednich narzędzi do zapewnienia bezpieczeństwa i efektywności pracy. W związku z tym, znajomość i umiejętność korzystania z narzędzi do ściągania izolacji przyczynia się do jakości i bezpieczeństwa wykonania instalacji elektrycznych.

Pytanie 16

Który element rozdzielnicy przedstawiono na ilustracji?

Ilustracja do pytania
A. Przekaźnik czasowy.
B. Regulator temperatury.
C. Czujnik zaniku fazy.
D. Lampkę sygnalizacyjną trójfazową.
Lampka sygnalizacyjna trójfazowa, przedstawiona na ilustracji, jest kluczowym elementem w każdej rozdzielnicy elektrycznej. Jej główną funkcją jest wizualna sygnalizacja obecności napięcia w trzech fazach instalacji. Dzięki zastosowaniu kilku diod LED lub żarówek, użytkownik może szybko zidentyfikować, czy wszystkie fazy są pod napięciem. To istotne w kontekście zapewnienia stabilności i bezpieczeństwa działania urządzeń trójfazowych, takich jak silniki elektryczne czy maszyny przemysłowe. W przypadku braku napięcia w którejkolwiek z faz, zdradza to problem, który może prowadzić do uszkodzeń sprzętu lub przestojów w produkcji. Dobre praktyki w zakresie instalacji elektrycznych zalecają umieszczanie lamp sygnalizacyjnych w widocznych miejscach, co umożliwia szybkie reagowanie na ewentualne awarie. Ważne jest także, aby lampki były zgodne z normami bezpieczeństwa i odporne na warunki panujące w danym środowisku pracy.

Pytanie 17

Z instrukcji obsługi przedstawionego na rysunku miernika wynika, że przed pomiarem rezystancji należy wyzerować omomierz. W tym celu należy przełącznikiem funkcji wybrać pomiar rezystancji i ustawić wskazówkę na 0 Ω przy pomocy pokrętła oznaczonego cyfrą

Ilustracja do pytania
A. 2 przy odłączonych przewodach pomiarowych.
B. 1 przy odłączonych przewodach pomiarowych.
C. 2 przy zwartych przewodach pomiarowych.
D. 1 przy zwartych przewodach pomiarowych.
Poprawna odpowiedź to 2 przy zwartych przewodach pomiarowych. Aby uzyskać dokładny pomiar rezystancji, konieczne jest wyzerowanie omomierza przed przystąpieniem do pomiarów. W tym celu należy ustawić przewody pomiarowe w pozycji zwartej, co eliminuje wpływ ich własnej oporności na pomiar. Użycie pokrętła oznaczonego cyfrą 2 w tej konfiguracji pozwala na precyzyjne ustawienie wskazówki miernika na zerową wartość. W praktyce, przed każdym pomiarem rezystancji, zaleca się przeprowadzanie tego kroku, aby zapewnić rzetelność wyników. W branży elektrycznej i elektronicznej, zgodnie z najlepszymi praktykami, takie działanie minimalizuje błędy pomiarowe i zwiększa dokładność urządzeń pomiarowych. Dokładne wyzerowanie omomierza jest kluczowe, zwłaszcza w aplikacjach wymagających dużej precyzji, jak pomiary w obwodach elektronicznych czy analiza materiałów. Warto również pamiętać, że nieprawidłowe przeprowadzenie tego procesu może prowadzić do błędnych wniosków i dalszych problemów w analizie diagnostycznej.

Pytanie 18

Jakiego rodzaju przewód powinno się użyć do instalacji elektrycznej umieszczonej w drewnianych ścianach?

A. OMYp
B. YDYt
C. HDGs
D. SMYp
Wybór przewodów typu HDGs do instalacji elektrycznej w drewnianych ścianach jest zasadny z kilku powodów. Przewody te charakteryzują się wysoką odpornością na uszkodzenia mechaniczne oraz działanie wysokich temperatur, co jest szczególnie istotne w kontekście drewnianych konstrukcji, które mogą być bardziej narażone na ryzyko pożaru. Przewody HDGs są wykonane z miedzi, co zapewnia doskonałą przewodność elektryczną oraz odporność na korozję. Instalacje elektryczne w drewnie powinny być przeprowadzane zgodnie z normami, takimi jak PN-IEC 60083, które uwzględniają wymagania dotyczące bezpieczeństwa i ochrony przed porażeniem prądem. W praktyce, użycie przewodów HDGs w takich instalacjach zapewnia zarówno bezpieczeństwo, jak i trwałość. Przykłady zastosowania to wszelkiego rodzaju oświetlenie i gniazda elektryczne zamontowane w drewnianych ścianach domów jednorodzinnych oraz budynków użyteczności publicznej, gdzie odpowiednie zabezpieczenia są kluczowe dla zapewnienia długotrwałej eksploatacji.

Pytanie 19

Który zestaw oznaczeń literowych barw izolacji żył jest właściwy dla przewodu przedstawionego na rysunku?

Ilustracja do pytania
A. BN, BK, GNYE
B. BU, GY, GNYE
C. BK, BU, GY
D. BN, BK, GY
Odpowiedź "BN, BK, GY" jest prawidłowa, ponieważ odpowiada kolorom izolacji przewodów przedstawionych na rysunku. Przewód brązowy (BN) jest powszechnie stosowany jako przewód fazowy w instalacjach elektrycznych, podczas gdy przewód czarny (BK) również może być używany w tej roli, szczególnie w konfiguracjach wielofazowych. Przewód szary (GY) jest zazwyczaj stosowany jako przewód neutralny, co jest zgodne z normą PN-IEC 60446, która określa zasady oznaczania kolorami przewodów elektrycznych. Zastosowanie odpowiednich kolorów jest istotne dla bezpieczeństwa i efektywności instalacji, umożliwiając identyfikację funkcji każdego przewodu w systemie. Dobrą praktyką w projektowaniu i wykonawstwie instalacji elektrycznych jest stosowanie ustalonych kolorów izolacji, co ułatwia późniejsze prace konserwacyjne oraz diagnostyczne, zmniejszając ryzyko błędów.

Pytanie 20

W przypadku układu elektrycznego, w którym z jednego punktu zasilane są przynajmniej dwie wewnętrzne linie zasilające, konieczne jest zastosowanie

A. rozdzielnicę główną
B. przyłącze
C. złącze
D. instalacje odbiorcze
Złącze jest kluczowym elementem w instalacjach elektrycznych, gdyż umożliwia efektywne połączenie różnych linii zasilających w jednym punkcie. W przypadku, gdy jedna linia zasilająca rozdziela się na co najmniej dwie, złącze pozwala na zorganizowane i bezpieczne zarządzanie tymi połączeniami. Przykładowo, w budynkach mieszkalnych złącze jest często wykorzystywane do podłączenia linii zasilających do różnych sekcji obwodów, takich jak oświetlenie i gniazdka. Stosowanie złącz zgodnych z normami PN-IEC 60947-1, zapewnia, że instalacja będzie bezpieczna i zgodna z dobrymi praktykami branżowymi. Złącza powinny być również odpowiednio oznakowane i dostosowane do przewodów, co zwiększa bezpieczeństwo oraz ułatwia ewentualną konserwację lub modernizację instalacji. Warto podkreślić, że dobór odpowiednich złącz zgodnych z wymaganiami technicznymi znacznie redukuje ryzyko awarii oraz poprawia efektywność energetyczną całego systemu.

Pytanie 21

Przedstawione w tabeli parametry techniczne dotyczą

Parametry techniczne
  • Moc przyłączeniowa
  • Rodzaj przyłącza
  • Rodzaj uziomu
  • Typy przewodów
  • Liczba obwodów
A. instalacji elektrycznej.
B. instalacji odgromowej budynku.
C. linii kablowej zasilającej budynek.
D. linii napowietrznej niskiego napięcia.
Wybór instalacji elektrycznej jako poprawnej odpowiedzi jest zasłużony, ponieważ parametry techniczne przedstawione w tabeli, takie jak moc przyłączeniowa, rodzaj przyłącza, uziemienie oraz liczba obwodów, są kluczowe dla prawidłowego zaprojektowania i funkcjonowania instalacji elektrycznej w obiektach budowlanych. Moc przyłączeniowa wskazuje na maksymalne zapotrzebowanie na energię elektryczną, co jest istotne przy doborze odpowiednich przewodów i zabezpieczeń. Rodzaj przyłącza oraz system uziemienia są niezwykle ważne dla bezpieczeństwa użytkowników, gdyż wpływają na właściwe odprowadzenie ładunków elektrycznych i ochronę przed porażeniem prądem. Typy przewodów oraz liczba obwodów są również kluczowe dla zapewnienia stabilności i elastyczności instalacji, umożliwiając podział obciążenia oraz efektywne zarządzanie energią w budynku. Zgodność z normami PN-IEC 60364 oraz innymi standardami branżowymi jest niezbędna dla osiągnięcia wysokich standardów bezpieczeństwa oraz efektywności energetycznej.

Pytanie 22

Z instrukcji obsługi przedstawionego na ilustracji miernika wynika, że przed pomiarem rezystancji należy wyzerować omomierz. W tym celu należy przełącznikiem funkcji wybrać pomiar rezystancji i ustawić wskazówkę na 0 Ω przy pomocy pokrętła oznaczonego

Ilustracja do pytania
A. cyfrą 2 przy zwartych przewodach pomiarowych.
B. cyfrą 1 przy odłączonych przewodach pomiarowych.
C. cyfrą 1 przy zwartych przewodach pomiarowych.
D. cyfrą 2 przy odłączonych przewodach pomiarowych.
Poprawna odpowiedź to cyfrą 2 przy zwartych przewodach pomiarowych. Wyzerowanie omomierza jest kluczowym krokiem przed pomiarem rezystancji, ponieważ pozwala na zredukowanie wpływu wszelkich błędów pomiarowych. Przy zwartych przewodach pomiarowych nie ma żadnej rezystancji, co umożliwia ustawienie wskazówki miernika na 0 Ω. Dzięki temu uzyskujemy dokładniejsze wyniki pomiarów. W praktyce, wiele urządzeń pomiarowych, w tym profesjonalne omomierze, mają wbudowane funkcje umożliwiające automatyczne wyzerowanie, co jest zgodne z najlepszymi praktykami pomiarowymi. Prawidłowe wyzerowanie miernika przed przystąpieniem do pomiarów jest również zgodne z normami branżowymi, co podkreśla znaczenie tego procesu w zapewnieniu dokładności i wiarygodności wyników. Pamiętaj, że pomiar bez wcześniejszego wyzerowania może prowadzić do nieprecyzyjnych odczytów, co w kontekście pracy inżynierskiej lub domowego majsterkowania ma istotne znaczenie.

Pytanie 23

Którą rolę pełni w styczniku element wskazany na ilustracji czarną strzałką?

Ilustracja do pytania
A. Likwiduje magnetyzm szczątkowy.
B. Zmniejsza napięcie podtrzymania cewki.
C. Likwiduje drgania zwory.
D. Zmniejsza siłę docisku zwory.
W kontekście analizowanej ilustracji oraz roli elementu w styczniku, ważne jest zrozumienie, dlaczego pozostałe opcje są nieprawidłowe. Pierwsza z błędnych odpowiedzi sugeruje, że element ten likwiduje magnetyzm szczątkowy. Magnetyzm szczątkowy to zjawisko, które występuje po odłączeniu zasilania i najczęściej jest związane z materiałem rdzenia elektromagnesu. Eliminacja tego efektu wymaga zastosowania odpowiednich materiałów magnetycznych oraz projektowania, a nie tłumika drgań. Kolejna opcja mówi o zmniejszeniu siły docisku zwory, co nie jest rolą opisanego elementu. Siła docisku zwory jest istotna dla prawidłowego działania stycznika i wpływa na jakość kontaktu elektrycznego. Zmniejszenie jej mogłoby prowadzić do przegrzewania lub niestabilności kontaktów. Ostatnia odpowiedź odnosi się do zmniejszenia napięcia podtrzymania cewki. Napięcie podtrzymania jest kluczowe dla utrzymania zwory w pozycji załączonej i jego zmniejszenie mogłoby skutkować przypadkowym wyłączeniem stycznika, co jest niepożądane w aplikacjach wymagających ciągłej pracy. Warto zauważyć, że poszczególne pomyłki w odpowiedziach wynikają często z niepełnego zrozumienia działania mechanizmów styczników oraz ich elementów składowych. Kluczowe jest, aby w procesie nauki zwracać uwagę na detale techniczne oraz zasady działania urządzeń, co pozwoli uniknąć mylnych interpretacji w przyszłości.

Pytanie 24

Na podstawie przedstawionego schematu połączeń określ, kiedy nastąpi zadziałanie wyłącznika różnicowoprądowego?

Ilustracja do pytania
A. Po załączeniu wyłącznika w obwodzie gniazd pokoi.
B. Po załączeniu wyłącznika w obwodzie łazienki.
C. Po załączeniu wyłącznika w obwodzie gniazd pokoi i podłączeniu odbiornika.
D. Po załączeniu wyłącznika w obwodzie łazienki i podłączeniu odbiornika.
Wyłącznik różnicowoprądowy (RCD) ma kluczową rolę w zapewnieniu bezpieczeństwa w obwodach elektrycznych, szczególnie w obszarach o dużym ryzyku, jak łazienki czy kuchnie. Prawidłowa odpowiedź wskazuje, że wyłącznik zadziała po załączeniu wyłącznika w obwodzie gniazd pokoi i podłączeniu odbiornika. RCD działa na zasadzie pomiaru różnicy prądów, które przepływają przez przewody fazowy i neutralny. Gdy różnica przekracza określony próg (najczęściej 30 mA), wyłącznik natychmiast przerywa obwód, co zapobiega porażeniu prądem. Na schemacie widać, że przewody fazowe są zamienione miejscami, co zwiększa ryzyko wystąpienia upływu prądu, zwłaszcza przy podłączeniu odbiornika. Zastosowanie RCD jest zgodne z normami, takimi jak PN-EN 61008, które regulują zasady zabezpieczeń w instalacjach elektrycznych. Dlatego kluczowe jest, by każdy użytkownik instalacji elektrycznej miał świadomość, jak ważne jest ich prawidłowe działanie oraz regularne testowanie ich sprawności.

Pytanie 25

Wybierz zestaw narzędzi koniecznych do zamocowania listew instalacyjnych w natynkowej instalacji elektrycznej z użyciem kołków szybkiego montażu?

A. Osadzak gazowy, młotek, obcinaczki
B. Wiertarka z zestawem wierteł, szczypce płaskie, piła
C. Wiertarka z zestawem wierteł, młotek, piła
D. Osadzak gazowy, wkrętak, obcinaczki
Wybór zestawu narzędzi obejmującego wiertarkę z kompletem wierteł, młotek i piłę jest trafny, ponieważ te narzędzia są kluczowe w procesie montażu listew instalacyjnych w natynkowej instalacji elektrycznej. Wiertarka z wiertłami pozwala na precyzyjne wykonanie otworów w materiałach budowlanych, co jest niezbędne do umiejscowienia kołków szybkiego montażu. Użycie młotka może być konieczne do delikatnego wbijania kołków lub kotew w przypadku materiałów, które wymagają większej siły. Piła natomiast może być używana do przycinania listew do odpowiednich długości, co jest często wymagane w praktycznych zastosowaniach, aby idealnie dopasować je do wymiarów instalacji. Dobór narzędzi powinien opierać się na standardach bezpieczeństwa i ergonomii pracy, aby zminimalizować ryzyko kontuzji oraz zwiększyć efektywność montażu. Dzięki zastosowaniu właściwych narzędzi, prace instalacyjne mogą przebiegać sprawnie i zgodnie z obowiązującymi normami. Przykładem dobrych praktyk jest również stosowanie podkładek lub dystansów przy montażu, co pozwala na uzyskanie estetycznego i funkcjonalnego efektu końcowego.

Pytanie 26

Które oznaczenie dotyczy przedstawionego trzonka elektrycznego źródła światła?

Ilustracja do pytania
A. E14
B. GU10
C. G9
D. MR16
Trzonek typu GU10, który został przedstawiony na zdjęciu, jest powszechnie stosowany w oświetleniu halogenowym oraz LED. Cechą charakterystyczną trzonka GU10 są dwa bolce o średnicy 10 mm, które umożliwiają łatwe i pewne zamocowanie w gniazdach. Ten rodzaj trzonka jest szczególnie popularny w reflektorach, co czyni go idealnym do zastosowań w oświetleniu akcentującym, gdzie istotne jest skierowanie światła na konkretne obszary. Standard GU10 jest zgodny z normami międzynarodowymi dotyczącymi wymiany i instalacji źródeł światła, co zapewnia uniwersalność i łatwość w stosowaniu. Użytkownicy powinni zwrócić uwagę na to, że trzonki GU10 są dostępne w różnych wariantach mocy oraz barwie światła, co pozwala na dostosowanie oświetlenia do indywidualnych potrzeb. Warto również zauważyć, że trzonek GU10 jest szczególnie efektywny pod względem energetycznym, zwłaszcza w wersjach LED, co wpisuje się w aktualne trendy w zakresie zrównoważonego rozwoju i oszczędności energii.

Pytanie 27

Na podstawie wybranych informacji dobierz wyłącznik nadprądowy do zabezpieczenia obwodu silnika trójfazowego klatkowego o prądzie znamionowym In = 5,5 A?

A. In = 6 A, charakterystyka C, krotność In = 5 do 10
B. In = 16 A, charakterystyka B, krotność In = 3 do 5
C. In = 6 A, charakterystyka B, krotność In = 3 do 5
D. In = 16 A, charakterystyka C, krotność In = 5 do 10
Wybrany wyłącznik nadprądowy o prądzie znamionowym In = 6 A z charakterystyką C oraz krotnością In w przedziale 5 do 10 jest odpowiedni do zabezpieczenia obwodu silnika trójfazowego klatkowego o prądzie znamionowym 5,5 A. Charakterystyka C oznacza, że wyłącznik jest przystosowany do tolerowania dużych prądów rozruchowych, które mogą występować podczas uruchamiania silnika indukcyjnego. Silniki klatkowe często mają prąd rozruchowy wielokrotnie przekraczający ich prąd znamionowy, co czyni wyłącznik z charakterystyką C idealnym wyborem. Krotność In w przedziale 5 do 10 pozwala na bezpieczne i efektywne działanie wyłącznika, zabezpieczając obwód przed skutkami przeciążeń, ale jednocześnie zapewniając możliwość rozruchu silnika. W praktyce oznacza to, że wyłącznik nie zadziała podczas normalnego rozruchu silnika, a zadziała w przypadku rzeczywistego przeciążenia lub zwarcia. Stosując się do zasad normy PN-EN 60947-2, można zapewnić optymalne działanie oraz bezpieczeństwo instalacji elektrycznej.

Pytanie 28

Jakiej kategorii urządzeń elektrycznych dotyczą przekładniki pomiarowe?

A. Do prądnic tachometrycznych
B. Do indukcyjnych sprzęgieł dwukierunkowych
C. Do wzmacniaczy maszynowych
D. Do transformatorów
Przekładniki pomiarowe są urządzeniami elektrycznymi, które zaliczają się do grupy transformatorów. Ich głównym zadaniem jest przekształcanie wysokich wartości prądu lub napięcia na niższe, co umożliwia ich bezpieczne i precyzyjne pomiary. Przekładniki pomiarowe są niezwykle istotne w systemach elektroenergetycznych, gdzie zapewniają ciągłość i dokładność pomiarów w stacjach transformatorowych oraz w rozdzielniach. Na przykład, przekładniki prądowe mogą być używane do monitorowania prądu w liniach przesyłowych, co pozwala na wczesne wykrywanie nieprawidłowości oraz optymalizację działania systemów. W kontekście standardów, przekładniki są zgodne z normami IEC 61869, które regulują wymagania dotyczące ich konstrukcji i testowania. Dzięki temu inżynierowie mogą być pewni, że stosowane urządzenia spełniają określone kryteria jakości i bezpieczeństwa. Zrozumienie roli przekładników pomiarowych w systemach energetycznych jest kluczowe dla każdego specjalisty w dziedzinie elektrotechniki.

Pytanie 29

Na którym rysunku przedstawiono typ schematu, na podstawie którego istnieje możliwość lokalizacji braku ciągłości rzeczywistych połączeń w instalacji elektrycznej?

Ilustracja do pytania
A. A.
B. D.
C. C.
D. B.
Wybór innych schematów, takich jak A, C lub D, nie dostarcza wystarczających informacji do lokalizacji braków ciągłości w połączeniach elektrycznych. Schemat A może przedstawiać ogólny zarys instalacji, ale brak w nim szczegółowych oznaczeń, które są kluczowe dla identyfikacji problemów. W przypadku schematu C, być może ilustruje on różne komponenty, ale ich rozmieszczenie i brak wyraźnych połączeń uniemożliwiają efektywną diagnostykę. Schemat D z kolei może dotyczyć innego aspektu instalacji, co wprowadza w błąd, ponieważ nie odnosi się bezpośrednio do problemu lokalizacji awarii. W praktyce, niektóre schematy nie uwzględniają standardów, które nakładają obowiązek na techników przedstawiania instalacji w sposób umożliwiający łatwe zrozumienie i diagnozowanie. Problemy te mogą prowadzić do nieporozumień i wydłużenia czasu potrzebnego na naprawę, co jest nieefektywne i kosztowne. Oparcie się na schematach, które nie spełniają tych norm, generuje ryzyko dla bezpieczeństwa i niezawodności instalacji elektrycznych. Niezrozumienie różnicy między detalami przedstawionymi na schemacie a ich praktycznym zastosowaniem może skutkować nieprawidłowym podejściem do diagnozowania awarii, co może być szkodliwe zarówno dla instalatora, jak i dla użytkowników danego systemu.

Pytanie 30

W układzie instalacji mieszkaniowej przedstawionej na rysunku, ochrona wyłącznikiem różnicowoprądowym RCD nie obejmuje gniazd w

Ilustracja do pytania
A. łazience i pokoju 1
B. pokoju 1 i pokoju 2
C. łazience i pokoju 2
D. kuchni i pokoju 2
Odpowiedź, w której zaznaczyłeś "pokoju 1 i pokoju 2", jest rzeczywiście trafna. W schemacie instalacji elektrycznej widać, że obwody gniazd w tych pomieszczeniach nie mają ochrony wyłącznika różnicowoprądowego (RCD). To ważne, bo RCD powinno się stosować w miejscach, gdzie ryzyko porażenia prądem jest większe, jak w łazienkach czy kuchniach, gdzie woda może być problemem. Normy mówią, że tam, gdzie może wystąpić kontakt z wodą, trzeba mieć RCD, żeby zapewnić bezpieczeństwo. W pokojach 1 i 2 brakuje tej ochrony, co oznacza, że gniazda nie są tak dobrze zabezpieczone. Dobrze zaprojektowana instalacja powinna zawsze brać to pod uwagę, zwłaszcza przy układzie gniazd w miejscach, gdzie może być wilgoć. Jakbyś planował przerobić te pomieszczenia lub dodać nowe urządzenia elektryczne, warto by było przemyśleć, czy nie trzeba coś zmienić w systemie ochrony.

Pytanie 31

Pomiar impedancji pętli zwarciowych wykonuje się w przypadku

A. aktywnie działającej sieci, co uwzględnia impedancje transformatorów zasilających
B. wyłączonej sieci, co uwzględnia impedancje transformatorów zasilających
C. wyłączonej sieci, co nie uwzględnia impedancji transformatorów zasilających
D. aktywnie działającej sieci, co nie uwzględnia impedancji transformatorów zasilających
Pomiar impedancji pętli zwarciowej przy załączonej sieci jest kluczowy dla oceny bezpieczeństwa systemów elektroenergetycznych. W takiej konfiguracji, wszystkie elementy systemu, w tym transformatory, przewody oraz urządzenia zabezpieczające, działają w rzeczywistych warunkach operacyjnych. Uwzględnienie impedancji transformatorów zasilających jest istotne, ponieważ ich właściwości mogą znacząco wpływać na wartość impedancji pętli zwarciowej. W praktyce, taka analiza pozwala na poprawne zaprojektowanie zabezpieczeń przeciwprądowych, co jest kluczowe dla szybkiej reakcji systemu na awarie. Dobre praktyki, takie jak stosowanie norm IEC 60909, podkreślają znaczenie pomiaru impedancji w warunkach załączonych, co prowadzi do bardziej rzetelnych wyników i lepszej ochrony instalacji. Ostatecznie, znajomość rzeczywistych warunków pracy systemu przekłada się na większe bezpieczeństwo oraz niezawodność instalacji elektrycznych.

Pytanie 32

Jakie rury instalacyjne powinny być używane do kładzenia przewodów na łatwopalnym podłożu?

A. Z PVC lub gumowe
B. Tylko metalowe
C. Metalowe lub gumowe
D. Tylko z PVC
Kiedy stosujemy metalowe rury do układania przewodów na podłożu palnym, to tak naprawdę działamy zgodnie z normami bezpieczeństwa, które mówią, że musimy chronić instalacje elektryczne przed ryzykiem pożaru. Metalowe rury, na przykład stalowe, są odporne na wysokie temperatury i są niepalne, co czyni je super opcją w miejscach, gdzie mogą mieć kontakt z materiałami palnymi. Dodatkowo te rury lepiej chronią przewody przed mechanicznymi uszkodzeniami, co jest bardzo ważne, gdy instalacje eksploatowane są w trudnych warunkach. Wiele budynków przemysłowych i publicznych korzysta z metalowych rur, bo to nie tylko podnosi bezpieczeństwo, ale także spełnia różne przepisy budowlane i normy, jak PN-IEC 60364 dla instalacji elektrycznych. Co więcej, w razie awarii metalowe rury mogą być łatwiejsze do naprawy niż te z plastiku.

Pytanie 33

Jaką minimalną wartość powinno mieć napięcie probiercze miernika używanego do pomiaru rezystancji izolacji w instalacji elektrycznej pracującej pod napięciem 230/400 V?

A. 1 000 V
B. 2 500 V
C. 250 V
D. 500 V
Minimalna wartość napięcia probierczego miernika używanego do pomiaru rezystancji izolacji w instalacjach elektrycznych o napięciu 230/400 V powinna wynosić 500 V. Taka wartość jest zgodna z międzynarodowymi standardami, takimi jak IEC 61557, które określają wymagania dotyczące pomiaru rezystancji izolacji. Przy napięciu probierczym wynoszącym 500 V, można skutecznie ocenić stan izolacji przewodów oraz innych elementów instalacji, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. Pomiar przy tym napięciu pozwala na wykrycie potencjalnych uszkodzeń izolacji, które mogą prowadzić do zwarć czy porażenia prądem. W praktyce, testowanie izolacji w instalacjach elektrycznych wykonywane jest regularnie, szczególnie przed oddaniem do użytkowania nowych instalacji oraz podczas przeglądów okresowych. Użycie napięcia 500 V zapewnia odpowiednią reprezentatywność stanu izolacji, co jest istotne dla dalszej eksploatacji i bezpieczeństwa całej instalacji elektrycznej.

Pytanie 34

Którą lampę przedstawiono na rysunku?

Ilustracja do pytania
A. Żarową.
B. Sodową.
C. Rtęciową.
D. Ledową.
Odpowiedź "Ledową" jest poprawna, ponieważ na zdjęciu widoczna jest lampa LED, która charakteryzuje się wieloma małymi diodami emitującymi światło. W przeciwieństwie do lamp żarowych, które mają jedno większe źródło światła, lampy LED oferują szereg zalet. Przykładowo, ich wydajność energetyczna jest znacznie wyższa, co prowadzi do oszczędności energii i dłuższej żywotności. W praktycznym zastosowaniu oznacza to, że lampy LED mogą być wykorzystywane w różnych kontekstach, jak oświetlenie wnętrz, iluminacje zewnętrzne, a także w instalacjach przemysłowych. Zgodnie z normami branżowymi, lampy LED nie emitują promieniowania UV, co czyni je bezpiecznymi w zastosowaniach, gdzie istotna jest ochrona przed szkodliwym wpływem światła. Warto również dodać, że technologia LED jest zgodna z trendami zrównoważonego rozwoju, co czyni je preferowanym wyborem w nowoczesnych budynkach.

Pytanie 35

Montaż gniazda wtykowego pozbawionego styku ochronnego oraz podłączenie do niego urządzenia elektrycznego klasy I ochronności może prowadzić do

A. przeciążenia obwodu elektrycznego
B. uszkodzenia podłączonego urządzenia elektrycznego
C. zwarcia w obwodzie elektrycznym
D. zagrożenia porażeniem prądem elektrycznym
Zamontowanie gniazda wtykowego bez styku ochronnego i podłączenie do niego urządzenia elektrycznego klasy I stwarza poważne zagrożenie porażeniem prądem elektrycznym. Urządzenia tej klasy mają metalowe obudowy, które są w związku z tym potencjalnie niebezpieczne w przypadku awarii izolacji. Styk ochronny w gniazdku jest kluczowy, ponieważ zapewnia bezpieczeństwo poprzez uziemienie obudowy urządzenia, co zapobiega gromadzeniu się ładunków elektrycznych. W przypadku braku styku ochronnego, w sytuacji, gdy izolacja urządzenia ulegnie uszkodzeniu, napięcie może pojawić się na obudowie, co prowadzi do ryzyka porażenia prądem podczas kontaktu z użytkownikiem. Przykładowo, w przypadku użycia sprzętu AGD, takiego jak pralka, która nie ma odpowiedniej ochrony, użytkownik może być narażony na niebezpieczeństwo. Dlatego kluczowe jest stosowanie gniazd zgodnych z normami, takimi jak PN-EN 60309, które uwzględniają zabezpieczenia w instalacjach elektrycznych. Przeprowadzając prace instalacyjne, należy zawsze upewnić się, że gniazda są zgodne ze standardami i posiadają odpowiednie elementy ochronne.

Pytanie 36

W celu sprawdzenia poprawności wykonania fragmentu instalacji oświetleniowej, przystosowanej do zasilania napięciem 230 V, zwarto łączniki P1 i P2 i zmierzono rezystancję obwodu. Schemat instalacji wraz z włączonym omomierzem pokazano na rysunku.

Ilustracja do pytania
A. nieprawidłowo odczytano wynik pomiaru.
B. w obwodzie zastosowano żarówki o napięciu znamionowym U = 24 V.
C. w obwodzie wykonano dodatkowe połączenia nieuwzględnione na schemacie.
D. obwód połączony jest prawidłowo.
Obwód został połączony tak, jak należy, co można łatwo zauważyć, analizując schemat instalacji oświetleniowej. Z mojego doświadczenia wynika, że każda żarówka powinna działać niezależnie, dlatego stosujemy połączenia równoległe. Dzięki temu, jak jedna żarówka padnie, reszta nadal świeci. Gdy łączniki P1 i P2 są zwarte, obwód zamyka się, co pozwala na mierzenie rezystancji. W domowych instalacjach standardowe napięcie to 230 V, i to jest całkiem zgodne z normami. Dobrze jest też regularnie sprawdzać instalację, żeby wyłapać ewentualne błędy wcześniej. A przy pomiarach rezystancji, pamiętaj, że wyniki zależą od tego, jakie elementy zastosowano i jak są one połączone, co w tym przypadku masz na właściwym poziomie.

Pytanie 37

Posługując się tabelą dobierz wyłącznik nadmiarowo-prądowy o największym prądzie znamionowym, który może zabezpieczać obwód jednofazowy, wykonany przewodami o przekroju 1,5 mm2, ułożonymi w sposób B2.

Tabela: Obciążalność długotrwała I, [A] przewodów miedzianych o izolacji polwinitowej przy obliczeniowej temperaturze 25oC
UłożenieA1A2B1B2CE
Liczba jednocześnie obciążonych żył232323232323
Przekrój mm2Dopuszczalna obciążalność długotrwała, A
1,515,514,515,51418,516,517,5162118,52319,5
2,5211918,519,52522242129253227
4282527243430322928344236
A. C6
B. B16
C. B6
D. B20
Wybór nieprawidłowego wyłącznika nadmiarowo-prądowego może prowadzić do poważnych konsekwencji dla bezpieczeństwa instalacji elektrycznej. W przypadku odpowiedzi C6, sugerującej wyłącznik o prądzie znamionowym 6 A, jest to zdecydowanie zbyt mała wartość, biorąc pod uwagę, że obciążalność długotrwała przewodu o przekroju 1,5 mm² w ułożeniu B2 wynosi 16,5 A. Taki wybór może prowadzić do częstych wyłączeń, co staje się uciążliwe dla użytkowników i może być oznaką nieprawidłowego doboru zabezpieczeń. Z kolei wyłącznik B20, mający prąd znamionowy 20 A, przekracza dopuszczalną obciążalność przewodów, co naraża je na ryzyko przegrzania i uszkodzenia. Zastosowanie takiego wyłącznika w obwodzie może w dłuższym okresie prowadzić do poważnych zagrożeń, w tym pożaru. Warto także zauważyć, że wyłącznik B6 również nie jest odpowiedni, gdyż jego nominalny prąd jest zbyt niski, co skutkuje brakiem właściwej ochrony w przypadku obciążeń typowych dla instalacji domowej. Wybór odpowiedniego wyłącznika wymaga zrozumienia obciążenia obwodu oraz zastosowania właściwych norm, takich jak PN-IEC 60898-1, które jasno określają, jak dobierać wyłączniki w zależności od przewodów oraz ich zastosowania. Niezrozumienie tych zasad może prowadzić do poważnych błędów w instalacji, wpływających na bezpieczeństwo użytkowników.

Pytanie 38

Źródło światła pokazane na zdjęciu to lampa

Ilustracja do pytania
A. rtęci owo-żarowa.
B. halogenowa.
C. rtęciowa.
D. sodowa.
Lampa halogenowa, jaką widzisz na zdjęciu, jest doskonałym przykładem nowoczesnego źródła światła, które charakteryzuje się wyższą efektywnością energetyczną oraz dłuższą żywotnością w porównaniu do tradycyjnych żarówek. Jej budowa składa się z małej bańki, w której znajduje się drucik wolframowy, oraz ze specjalnego naczynia kwarcowego lub szklanego wypełnionego gazem halogenowym, co pozwala na regenerację wolframu i zmniejsza jego parowanie. Dzięki temu, lampa halogenowa emituje jasne i naturalne światło, które jest doskonałe do oświetlenia wnętrz oraz zastosowań w oświetleniu akcentującym. Warto dodać, że lampy halogenowe są powszechnie stosowane w domach, biurach oraz w oświetleniu wystawowym, a ich zastosowanie w przemyśle i motoryzacji jest również znaczące. Przemiany w sektorze oświetleniowym wskazują na rosnącą popularność źródeł LED, jednak lampy halogenowe pozostają cenione za swoje unikalne właściwości w określonych zastosowaniach, takich jak reflektory czy lampy punktowe.

Pytanie 39

Jaką najwyższą wartość powinien mieć wyłącznik silnikowy, chroniący trójfazowy silnik indukcyjny klatkowy o prądzie znamionowym równym 11,1 A, aby zabezpieczyć go przed przeciążeniem przy jednoczesnym zachowaniu możliwości znamionowego obciążenia momentem hamującym?

A. 11,7 A
B. 10,5 A
C. 12,2 A
D. 11,1 A
Wyłącznik silnikowy powinien być ustawiony na wartość, która umożliwi ochronę silnika przed przeciążeniem, ale równocześnie pozwoli na jego pełne wykorzystanie w warunkach znamionowych. Dla silnika indukcyjnego klatkowego o prądzie znamionowym 11,1 A, maksymalna wartość, na którą należy nastawić wyłącznik, wynosi 12,2 A. To podejście jest zgodne z dobrą praktyką stosowania wyłączników silnikowych, gdzie zaleca się ustawienie ich na wartości o 10% wyższej od prądu znamionowego. Taka regulacja zapewnia, że w normalnych warunkach pracy silnik nie będzie się wyłączał, a jednocześnie w sytuacjach przeciążeniowych zostanie skutecznie zabezpieczony. W praktyce oznacza to, że przy pełnym obciążeniu, które może wystąpić w momencie rozruchu lub przy chwilowych wzrostach obciążenia, wyłącznik nie zareaguje, a silnik będzie mógł pracować bez zakłóceń. Ustawienie wyłącznika na 12,2 A jest również zgodne z normami IEC oraz lokalnymi przepisami dotyczącymi instalacji elektrycznych, które podkreślają znaczenie zabezpieczeń przed przeciążeniem.

Pytanie 40

Jaką kategorię urządzeń elektrycznych reprezentują przekładniki prądowe?

A. Do prądnic tachometrycznych
B. Do wzmacniaczy maszynowych
C. Do transformatorów
D. Do indukcyjnych sprzęgieł dwukierunkowych
Przekładniki prądowe są urządzeniami elektrycznymi, które zaliczają się do kategorii transformatorów. Ich podstawową funkcją jest pomiar prądu elektrycznego poprzez jego przekształcenie na mniejszy, proporcjonalny prąd, co pozwala na łatwiejsze i bezpieczniejsze wykonanie pomiarów oraz ochronę obwodów. Przekładniki prądowe są szeroko stosowane w systemach elektroenergetycznych, a ich zastosowanie jest kluczowe dla zapewnienia precyzyjnych odczytów w urządzeniach takich jak liczniki energii, systemy zabezpieczeń oraz różnego rodzaju apparatura kontrolno-pomiarowa. Standard IEC 61869 określa wymagania dotyczące budowy i testowania przekładników prądowych, co zapewnia ich wysoką jakość oraz niezawodność w eksploatacji. Umożliwiają one również zdalny monitoring, co zwiększa efektywność zarządzania infrastrukturą energetyczną, a ich poprawne zastosowanie ma istotne znaczenie dla bezpieczeństwa instalacji oraz optymalizacji kosztów eksploatacji.