Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 17 grudnia 2025 00:56
  • Data zakończenia: 17 grudnia 2025 01:20

Egzamin zdany!

Wynik: 21/40 punktów (52,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Który proces technologiczny przedstawiono na rysunku?

Ilustracja do pytania
A. Toczenie.
B. Struganie.
C. Dłutowanie.
D. Frezowanie.
Wybór odpowiedzi nieprawidłowej wiąże się z mylnym zrozumieniem różnic pomiędzy poszczególnymi procesami obróbczych. Frezowanie, toczenie i dłutowanie, chociaż również są procesami usuwania materiału, różnią się znacznie od strugania zarówno pod względem techniki, jak i zastosowań. Frezowanie to proces, w którym narzędzie obracające się usuwa materiał z obrabianego przedmiotu, co czyni go sposobem na uzyskanie skomplikowanych kształtów i profili. Toczenie z kolei, to proces, w którym to przedmiot obrabiany wykonuje ruch obrotowy, a narzędzie przesuwa się wzdłuż osi, co typowo wykorzystywane jest do produkcji cylindrycznych elementów takich jak wały czy tuleje. Dłutowanie natomiast polega na usuwaniu materiału za pomocą narzędzia, które porusza się w sposób podobny do dłuta, ale z różnymi parametrami i technikami, co powoduje, że nie można go mylić z procesem strugania, który charakteryzuje się innymi ruchami roboczymi. Zrozumienie tych różnic jest kluczowe dla skutecznej obróbki materiałów i wyboru odpowiednich technologii w kontekście przemysłowym. Typowe błędy w myśleniu mogą wynikać z braku znajomości standardów obróbczych oraz niedostatecznego zrozumienia specyficznych zastosowań poszczególnych technik obróbczych.

Pytanie 2

Do pomiaru której wielkości charakteryzującej drgania ustawiono miernik przedstawiony na rysunku?

Ilustracja do pytania
A. Prędkości.
B. Przesunięcia.
C. Przyspieszenia.
D. Częstotliwości.
Miernik drgań AS63B, który został przedstawiony na zdjęciu, jest specjalistycznym narzędziem służącym do pomiaru przyspieszenia drgań. Mierniki tego typu są powszechnie stosowane w inżynierii do monitorowania stanu maszyn i urządzeń, gdzie drgania mogą prowadzić do uszkodzeń lub nieprawidłowego działania. Przyspieszenie drgań, mierzone w jednostkach m/s², jest kluczowe dla oceny dynamiki obiektów, ponieważ pozwala na identyfikację problemów zanim przerodzą się one w poważniejsze awarie. W praktyce, regularne pomiary przyspieszenia drgań pomagają w planowaniu działań serwisowych, a także w optymalizacji wydajności procesów produkcyjnych. W przemyśle, zwłaszcza w obszarze utrzymania ruchu, monitorowanie drgań jest częścią strategii prewencyjnego utrzymania, co pozwala na zwiększenie niezawodności sprzętu i zmniejszenie przestojów.

Pytanie 3

Na rysunku przedstawiono tabliczkę znamionową

Ilustracja do pytania
A. autotransformatora.
B. silnik indukcyjnego.
C. transformatora.
D. silnika prądu stałego.
Wybór odpowiedzi związanej z transformatorem, silnikiem prądu stałego lub autotransformatorem wskazuje na pewne nieporozumienia dotyczące podstawowych właściwości tych urządzeń elektrycznych. Transformator, na przykład, jest urządzeniem, które zmienia poziom napięcia w obwodzie prądu przemiennego, a jego tabliczka znamionowa zawiera zazwyczaj informacje na temat przekładni napięciowej oraz mocy. Jeżeli na tabliczce znajduje się moc w kilowatach oraz prędkość obrotowa, to nie są to dane stosowane do transformatorów. Silniki prądu stałego działają na zasadzie innej niż silniki indukcyjne, wykorzystując różne mechanizmy do przemiany energii elektrycznej w mechaniczną. Typowe oznaczenia dla silników prądu stałego obejmują inne parametry, takie jak wartość napięcia oraz charakterystyki prądu, które nie są widoczne w przedstawionym przypadku. Z kolei autotransformator to rodzaj transformatora, który ma wspólne uzwojenie dla obu poziomów napięcia, co również nie odpowiada charakterystyce silnika indukcyjnego. Zrozumienie podstawowych różnic między tymi urządzeniami jest kluczowe dla ich prawidłowego zastosowania w praktyce. Osoby, które mylą te urządzenia, często nie zdają sobie sprawy z ich unikalnych właściwości i zastosowań, co może prowadzić do niewłaściwego doboru sprzętu oraz problemów w działaniu systemów elektrycznych.

Pytanie 4

Jak definiuje się natężenie przepływu Q cieczy w rurociągu?

A. iloczyn prędkości cieczy oraz czasu jej przepływu.
B. stosunek objętości cieczy, która przechodzi przez przekrój do czasu, w jakim dokonuje się ten przepływ.
C. stosunek pola przekroju rurociągu do prędkości, z jaką ciecz przepływa.
D. iloczyn ciśnienia cieczy oraz pola przekroju rurociągu.
Natężenie przepływu Q w rurociągu jest często mylone z innymi pojęciami związanymi z dynamiką cieczy. Przykładowo, odniesienie do stosunku pola przekroju rurociągu do prędkości przepływu cieczy jest błędne, ponieważ nie uwzględnia ono istoty natężenia jako miary objętości w jednostce czasu. Z kolei iloczyn ciśnienia cieczy i pola przekroju rurociągu odnosi się do mocy hydraulicznej, a nie do natężenia przepływu. Ten błąd w interpretacji może prowadzić do nieporozumień w projektowaniu systemów hydraulicznych, gdzie kluczowe jest zrozumienie różnic pomiędzy tymi wielkościami. Podobnie, iloczyn prędkości i czasu przepływu cieczy nie odpowiada definicji natężenia, ponieważ czas musi być rozumiany jako jednostka, a nie jako wartość, która w sposób bezpośredni łączy się z prędkością. Typowym błędem myślowym w tym kontekście jest skupienie się na jednostkach zamiast na fizycznym znaczeniu przepływu. W praktyce inżynieryjnej, właściwe zrozumienie i stosowanie definicji natężenia przepływu jest kluczowe dla obliczeń związanych z projektowaniem rur, pomp oraz całych instalacji, co wpływa na ich efektywność i funkcjonalność.

Pytanie 5

Ciśnienie o wartości 1 N/m2 to

A. 1 Pa
B. 1 mmHg
C. 1 at
D. 1 bar
Odpowiedzi takie jak 1 at, 1 mmHg czy 1 bar są jednostkami ciśnienia, ale ich wartość nie jest równa 1 N/m². Jednostka 'atmosfera' (at) jest miarą ciśnienia, która wynosi około 101325 Pa, co oznacza, że 1 at to znacznie więcej niż 1 N/m². Z kolei milimetr słupa rtęci (mmHg) jest także jednostką ciśnienia, która wynosi około 133,32 Pa, co czyni ją również znacznie większą niż 1 Pa. Bar, z definicji równy 100000 Pa, również nie jest porównywalny z wartością 1 N/m². Typowym błędem myślowym w przypadku tych odpowiedzi jest pomieszanie różnych jednostek miary bez zrozumienia ich kontekstu. Ważne jest, aby pamiętać, że jednostki ciśnienia różnią się znacznie w skali, co prowadzi do mylnych wniosków. Prowadzi to do błędnych obliczeń w inżynierii oraz naukach przyrodniczych, gdzie precyzyjne określenie ciśnienia jest kluczowe dla efektywności projektów oraz bezpieczeństwa procesów. Dlatego znajomość konwersji i relacji między tymi jednostkami jest istotna w pracy profesjonalistów zajmujących się tymi dziedzinami.

Pytanie 6

Element przedstawiony na rysunku uzyskano w wyniku

Ilustracja do pytania
A. walcowania.
B. frezowania.
C. toczenia.
D. tłoczenia.
Odpowiedź "tłoczenia" jest jak najbardziej trafna. To, co widzimy na rysunku, naprawdę pasuje do obróbki plastycznej zwanej tłoczeniem. W dużym skrócie, chodzi o to, że materiał formuje się pod wpływem siły, co pozwala na wyprodukowanie różnych kształtów i detali, jak wgłębienia czy wypukłości, które są widoczne na tym obrazku. Tłoczenie to super metoda, którą często wykorzystuje się w przemyśle, na przykład w motoryzacji, elektronice czy przy produkcji części do konstrukcji. Te branże potrzebują bardzo precyzyjnych i powtarzalnych efektów, więc tłoczenie się świetnie sprawdza. No i warto wspomnieć, że można je stosować zarówno na zimno, jak i na gorąco, co daje jeszcze większe możliwości, jeśli chodzi o różne materiały, jak stal, aluminium czy różne tworzywa sztuczne.

Pytanie 7

Silnik indukcyjny zasilany z przemiennika częstotliwości o ustawieniach przedstawionych na rysunku, będzie pracował z prędkością obrotową

Ilustracja do pytania
A. 400 obr./min
B. 50 obr./min
C. 1500 obr./min
D. 4,8 obr./min
Odpowiedź 1500 obr./min jest poprawna, ponieważ silnik indukcyjny zasilany z przemiennika częstotliwości pracuje z prędkością obrotową zgodną z wartością wskazaną na wyświetlaczu. Zgodnie z zasadami działania silników indukcyjnych, prędkość obrotowa jest ściśle związana z częstotliwością zasilania oraz liczbą biegunów w silniku. W przypadku standardowych silników indukcyjnych zasilanych z sieci 50 Hz, wartość prędkości obrotowej oblicza się przy użyciu wzoru: n = (120 * f) / p, gdzie n to prędkość obrotowa, f to częstotliwość zasilania, a p to liczba par biegunów. Dla silników z 2 parami biegunów (p=2) zasilanych częstotliwością 50 Hz, prędkość obrotowa wynosi 1500 obr./min. Przemienniki częstotliwości umożliwiają precyzyjne sterowanie prędkością silnika, co jest niezwykle istotne w aplikacjach przemysłowych, takich jak napędy wentylatorów, pomp czy transportu materiałów, gdzie kontrola prędkości wpływa na efektywność i oszczędność energii. Zastosowanie odpowiednich ustawień w przemienniku zapewnia optymalne działanie urządzeń, co jest zgodne z najlepszymi praktykami w dziedzinie automatyki i sterowania.

Pytanie 8

Dławienie zaworów dławiąco-zwrotnych przedstawionych na schemacie ustawiono odpowiednio
1V1 – 50% i 1V2 - 100%. Określ prędkość wysuwania tłoczyska A1 przyjmując, że 0% oznacza całkowite dławienie, 100% oznacza brak dławienia.

Ilustracja do pytania
A. Dwa razy mniejsza niż wsuwania.
B. Dwa razy większa niż wsuwania.
C. Cztery razy większa niż wsuwania.
D. Równa prędkości wsuwania.
Wiele osób może błędnie sądzić, że prędkość wysuwania tłoczyska jest równa prędkości wsuwania lub, że jest mniejsza niż ta prędkość. To wynik niepełnego zrozumienia działania zaworów dławiających oraz ich wpływu na przepływ oleju. Odpowiedzi sugerujące, że prędkość wysuwania jest równa prędkości wsuwania, ignorują fakt, że podczas wsuwania tłoczyska zawór 1V1 dławienie ogranicza przepływ oleju o 50%. To ograniczenie skutkuje wolniejszym ruchem tłoczyska. Podobnie, twierdzenie, że prędkość wysuwania jest mniejsza niż prędkość wsuwania, jest rażącym błędem, ponieważ w rzeczywistości, z uwagi na pełny przepływ oleju podczas wysuwania (brak dławienia w zaworze 1V2), tłoczysko będzie poruszać się szybciej. Typowym błędem myślowym jest pomijanie wpływu ustawień zaworów na dynamikę systemu hydraulicznego. Dlatego tak ważne jest, aby dokładnie analizować każdy składnik systemu hydraulicznego oraz jego ustawienia, aby móc prawidłowo ocenić ich wpływ na efektywność działania całości. Wiedza ta jest fundamentalna w kontekście projektowania i eksploatacji systemów hydraulicznych, a niepoprawne interpretacje mogą prowadzić do poważnych błędów w praktyce inżynieryjnej.

Pytanie 9

Jakie narzędzia są potrzebne do dokręcania przewodów hydraulicznych?

A. Kluczy płaskich
B. Szczypiec uniwersalnych
C. Kluczy oczkowych
D. Szczypiec płaskich
Klucze płaskie to narzędzia, które są szczególnie zaprojektowane do przykręcania i odkręcania nakrętek oraz śrub o płaskich kształtach. W kontekście przewodów hydraulicznych, klucze płaskie są niezwykle istotne, ponieważ pozwalają na precyzyjne dopasowanie do nakrętek, które często mają ograniczony dostęp. Umożliwiają one właściwe i bezpieczne dokręcenie połączeń, co jest kluczowe dla zachowania szczelności systemu hydraulicznego. Dobrym przykładem zastosowania kluczy płaskich w praktyce jest ich użycie w instalacjach hydraulicznych w maszynach budowlanych, gdzie odpowiednie dokręcenie połączeń może zapobiec wyciekom płynów roboczych. Użycie kluczy płaskich jest zgodne z najlepszymi praktykami inżynieryjnymi, które podkreślają znaczenie stosowania odpowiednich narzędzi do zapewnienia trwałości oraz bezpieczeństwa instalacji hydraulicznych. Warto pamiętać, że stosując klucze płaskie, należy dobierać odpowiedni rozmiar narzędzia do nakrętki, aby uniknąć uszkodzeń zarówno narzędzia, jak i elementów instalacji. W przypadku kluczy płaskich, ich konstrukcja zapewnia odpowiednią dźwignię, co przekłada się na efektywność pracy.

Pytanie 10

Na rysunku zamieszczono symbol graficzny

Ilustracja do pytania
A. stycznika.
B. wyłącznika silnikowego.
C. ochronnika przeciwprzepięciowego.
D. przekaźnika.
W przypadku odpowiedzi wskazujących na stycznik, przekaźnik lub ochronnik przeciwprzepięciowy, warto zauważyć, że te urządzenia pełnią zupełnie inne funkcje. Stycznik, na przykład, jest używany do zdalnego włączania i wyłączania obwodów elektrycznych, ale nie chroni silników przed przeciążeniem czy zwarciem. Przekaźnik z kolei działa na zasadzie automatycznego przełączania obwodów w odpowiedzi na zmiany w parametrach elektrycznych, ale również nie oferuje zabezpieczeń, które zapewnia wyłącznik silnikowy. Ochronnik przeciwprzepięciowy natomiast ma na celu ochronę urządzeń elektrycznych przed przepięciami, ale nie ma nic wspólnego z funkcjami sterowania silnikami, jakie oferuje wyłącznik silnikowy. Błędne podejście do rozumienia symboli graficznych może prowadzić do poważnych konsekwencji w instalacjach elektrycznych. W obwodach, gdzie są stosowane silniki elektryczne, kluczowym jest, aby wybrać odpowiednie urządzenie zabezpieczające, takie jak wyłącznik silnikowy, które może wykryć i zareagować na niebezpieczne warunki. Ignorowanie tych różnic oraz mylenie funkcji tych urządzeń może prowadzić do uszkodzenia sprzętu oraz narazić użytkowników na niebezpieczeństwo. W związku z tym istotne jest, aby zrozumieć nie tylko działanie poszczególnych elementów, ale także ich rolę w szerszym kontekście systemów sterowania i bezpieczeństwa.

Pytanie 11

Sterowanie za pomocą Pulse Width Modulation (PWM) w systemach kontrolnych odnosi się do regulacji przez

A. częstotliwości
B. zmianę fazy impulsu
C. amplitudy impulsu
D. zmianę szerokości impulsu
Twoja odpowiedź na temat zmiany szerokości impulsu jest naprawdę na miejscu! Pulse Width Modulation, czyli PWM, to świetna technika, gdzie szerokość impulsu sygnału zmienia się, żeby lepiej sterować mocą dostarczaną do różnych urządzeń. W przypadku PWM okres sygnału zostaje taki sam, a to, co się zmienia, to właśnie szerokość impulsu, co bezpośrednio wpływa na średnią moc. Dzięki temu można precyzyjnie kontrolować na przykład silniki, regulować jasność diod LED, albo przekształcać sygnały cyfrowe w analogowe. Weźmy przykładowo regulację prędkości silnika DC – zmieniając szerokość impulsu, można fajnie ustawić obroty silnika. To naprawdę przydatne, bo PWM pozwala efektywnie wykorzystywać energię i ograniczać straty w systemach elektronicznych, co jest mega ważne w inżynierii.

Pytanie 12

Aby dokładnie zmierzyć średnicę wałka, należy użyć

A. mikroskopu technicznego
B. śruby mikrometrycznej
C. przymiaru kreskowego
D. przymiaru średnicowego
Przymiar kreskowy to narzędzie miernicze, które służy do przeprowadzania pomiarów liniowych, jednak jego dokładność jest ograniczona i zazwyczaj nie przekracza kilku dziesiątych milimetra. Dlatego nie jest on odpowiedni do dokładnego pomiaru średnicy wałków, gdzie wymagana jest znacznie większa precyzja. Użytkownicy, którzy wybierają przymiar kreskowy, mogą napotkać problemy związane z błędami odczytu oraz wpływem warunków zewnętrznych, takich jak temperatura czy zanieczyszczenia. Przymiar średnicowy, z kolei, jest narzędziem służącym do pomiaru średnicy otworów, a nie wałków, dlatego również nie jest odpowiedni w tym kontekście. Użycie mikroskopu technicznego może dostarczyć informacji o mikrostrukturze powierzchni, ale nie jest to narzędzie do pomiaru średnicy w sensie mechanicznym. Błędem myślowym jest zakładanie, że każde narzędzie miernicze może być używane zamiennie do różnych zastosowań, co prowadzi do obniżenia jakości pomiarów. Zrozumienie specyfiki narzędzi pomiarowych i ich zastosowań jest kluczowe dla uzyskania wiarygodnych wyników, dlatego istotne jest, aby wybierać odpowiednie przyrządy do konkretnych zadań pomiarowych.

Pytanie 13

Jaką wartość ciśnienia wskazuje miernik przedstawiony na ilustracji?

Ilustracja do pytania
A. 570 barów
B. 850 barów
C. 12 300 barów
D. 8 500 barów
Wartość ciśnienia wskazana na mierniku wynosi 850 barów, co jest zgodne z jego wskazaniem na skali. Mierniki ciśnienia są kluczowymi urządzeniami w różnych dziedzinach inżynierii i technologii, gdzie precyzyjne pomiary są niezbędne do zapewnienia bezpieczeństwa oraz efektywności procesów. W przemyśle naftowym, gazowym oraz chemicznym, dokładne pomiary ciśnienia są istotne dla monitorowania i kontrolowania procesów, co pomaga uniknąć awarii oraz zwiększa wydajność produkcji. Wartości ciśnienia są istotne dla obliczeń dotyczących przepływu, a także dla doboru odpowiednich materiałów i sprzętów, które muszą wytrzymać określone warunki pracy. Używając mierników ciśnienia, ważne jest, aby zwracać uwagę na ich kalibrację oraz zgodność z normami branżowymi, takimi jak ISO 6789, które określają wymagania dotyczące dokładności i niezawodności pomiarów. Wiedza o aktualnych wartościach ciśnienia może również wspierać procesy diagnostyczne w systemach hydraulicznych i pneumatycznych, co jest niezbędne do ich prawidłowego funkcjonowania.

Pytanie 14

Na którym rysunku przedstawiono szkic przekroju prawidłowo zaciśniętej końcówki przewodu w obszarze z izolacją?

Ilustracja do pytania
A. C.
B. B.
C. A.
D. D.
Wybór innych odpowiedzi może prowadzić do licznych problemów związanych z bezpieczeństwem i efektywnością instalacji elektrycznych. Wiele z tych niepoprawnych opcji może sugerować błędy w zakresie izolacji lub niewłaściwego zaciskania końcówek przewodów. Na przykład, gdy końcówka przewodu jest zaciśnięta nieprawidłowo, może to powodować, że izolacja nachodzi na nitki przewodu. Taki stan prowadzi do ryzyka zwarcia, ponieważ może dojść do kontaktu przewodów z elementami metalowymi, co jest szczególnie niebezpieczne w instalacjach wysokoprądowych. Ponadto, nieodpowiednie zaciśnięcie może skutkować zwiększonym oporem na styku, co może prowadzić do przegrzewania się i w konsekwencji do uszkodzenia materiałów izolacyjnych. W praktyce, wiele błędów wynika z nieuwagi lub braku odpowiedniej wiedzy na temat standardów technicznych dotyczących zaciskania. Kluczowe jest, aby osoby pracujące z instalacjami elektrycznymi były świadome tych zasad i regularnie poszerzały swoją wiedzę na temat najlepszych praktyk w branży. Ignorowanie tych wskazówek może prowadzić do poważnych konsekwencji, w tym do awarii instalacji czy nawet zagrożenia życia.

Pytanie 15

Interfejs komunikacyjny umożliwia połączenie

A. modułu rozszerzającego z grupą siłowników
B. siłownika z programatorem
C. sterownika z programatorem
D. pompy hydraulicznej z silnikiem
Interfejs komunikacyjny jest kluczowym elementem systemów automatyki, który umożliwia wymianę danych pomiędzy sterownikami a programatorami. W kontekście automatyki przemysłowej, sterownik (np. PLC) zarządza procesami, a programator służy do jego programowania oraz monitorowania. Interfejsy komunikacyjne, takie jak Ethernet, Modbus, Profibus czy CAN, pozwalają na efektywne przesyłanie sygnałów i danych, co jest niezbędne do optymalizacji pracy systemów. Przykładowo, w nowoczesnych zakładach produkcyjnych, sprawna komunikacja pomiędzy sterownikami a programatorami jest kluczowa dla zdalnego monitorowania stanu maszyn oraz szybkiego reagowania na ewentualne awarie. Dobre praktyki w zakresie projektowania interfejsów komunikacyjnych obejmują zapewnienie odpowiedniej przepustowości, niezawodności oraz bezpieczeństwa przesyłu danych. Właściwe zrozumienie funkcji i zastosowania interfejsów komunikacyjnych jest niezbędne dla inżynierów zajmujących się automatyką, by tworzyć wydajne i bezpieczne systemy sterowania.

Pytanie 16

Ile napędów jest zastosowanych w manipulatorze, którego schemat przedstawiono na rysunku?

Ilustracja do pytania
A. 5 napędów.
B. 3 napędy.
C. 6 napędów.
D. 4 napędy.
Odpowiedź 4 napędy jest prawidłowa, ponieważ na schemacie manipulatora widać cztery różne elementy napędowe, które pełnią kluczowe funkcje w jego działaniu. Dwa siłowniki są odpowiedzialne za ruch wzdłuż osi, co jest niezbędne do precyzyjnego operowania narzędziami manipulatora. Silnik, który jest przedstawiony jako prostokąt z krzyżem, zapewnia dynamiczny napęd, co jest istotne dla skuteczności i szybkości pracy manipulatora. Ponadto, zawór, symbolizowany przez romb, reguluje przepływ medium, co również jest kluczowe dla poprawnego działania napędów pneumatycznych lub hydraulicznych. W praktyce, wiedza na temat liczby i rodzaju napędów w manipulatorze pozwala inżynierom projektować bardziej wydajne i funkcjonalne systemy automatyzacji, które spełniają wysokie standardy jakości i bezpieczeństwa. Zarówno w przemyśle, jak i w zastosowaniach robotów współpracujących, zrozumienie działania poszczególnych komponentów napędowych jest kluczowe dla optymalizacji procesów produkcyjnych.

Pytanie 17

Jak należy nastawić amperomierz, aby zmierzyć prąd w układzie pokazanym na rysunku?

Ilustracja do pytania
A. DC, zakres 5 A
B. DC, zakres 10 A
C. AC, zakres 10 A
D. AC, zakres 5 A
Aby prawidłowo zmierzyć prąd w układzie zasilanym napięciem przemiennym, należy ustawić amperomierz na zakres AC, co oznacza, że mierzymy prąd przemienny. Wybór zakresu 10 A jest kluczowy, ponieważ prąd w gospodarstwach domowych często oscyluje w okolicy kilku amperów, a ustawienie z zapasem pozwala uniknąć uszkodzenia przyrządu. W praktyce, stosowanie amperomierzy do pomiaru prądu przemiennego jest powszechne w instalacjach elektrycznych, w tym w diagnostyce i konserwacji urządzeń. Ważne jest, aby przed pomiarem upewnić się, że amperomierz posiada odpowiednie oznaczenia oraz certyfikaty, które potwierdzają jego zdolność do pomiaru prądu przemiennego. Zrozumienie, jak prawidłowo ustawić przyrząd, jest nie tylko kwestą techniczną, ale także kluczowym elementem bezpieczeństwa, co jest szczególnie istotne w kontekście użytkowania urządzeń elektrycznych w naszych domach.

Pytanie 18

Pierścienie uszczelniające siłownika dwustronnego działania są oznaczone cyframi

Ilustracja do pytania
A. 4 i 7
B. 1 i 9
C. 5 i 8
D. 2 i 3
Pierścienie uszczelniające oznaczone cyframi 5 i 8 są kluczowymi elementami siłownika dwustronnego działania, ponieważ odpowiadają za zapewnienie szczelności pomiędzy tłokiem a cylindrem. Właściwe uszczelnienie jest niezwykle istotne dla efektywności działania siłownika, ponieważ minimalizuje straty ciśnienia oraz zapobiega przedostawaniu się płynów do niezamierzonych obszarów. Na podstawie analizy schematu można stwierdzić, że pierścienie te są umieszczone w odpowiednich miejscach, gdzie tłok zmienia kierunek, co podkreśla ich znaczenie w utrzymaniu stabilności pracy siłownika. W kontekście praktycznym, poprawne uszczelnienie wpływa na wydajność systemu hydraulicznego, co jest zgodne z normami branżowymi dotyczącymi projektowania siłowników. Użycie odpowiednich materiałów uszczelniających, takich jak elastomery czy PTFE, również przyczynia się do długowieczności i niezawodności układu. Dlatego znajomość tych elementów oraz ich oznaczeń jest niezbędna dla każdego inżyniera zajmującego się hydrauliką.

Pytanie 19

Jaką średnicę powinien mieć otwór, aby pomieścić nit o średnicy 2 mm?

A. 1,9 mm
B. 2,1 mm
C. 2,0 mm
D. 2,3 mm
Odpowiedź 2,1 mm jest poprawna, ponieważ przy wykonywaniu otworów pod nity ważne jest, aby zapewnić odpowiedni luz montażowy. Nit o średnicy 2 mm wymaga otworu o nieco większej średnicy, aby umożliwić właściwe wprowadzenie nitu oraz zapewnić odpowiednią przestrzeń do rozprężenia. Zgodnie z normami dotyczącymi montażu nitów, zaleca się, aby średnica otworu była o 0,1 mm do 0,3 mm większa od średnicy samego nitu. W praktyce, luz ten pozwala na łatwiejsze osadzenie nitu oraz eliminuje ryzyko uszkodzenia materiału, w który wprowadzany jest nit. Zbyt wąski otwór może prowadzić do trudności w montażu i do uszkodzeń. W przypadku materiałów o dużej twardości lub w zastosowaniach wymagających precyzyjnego zamocowania, zachowanie odpowiednich standardów luzu jest kluczowe dla długowieczności połączenia. Warto również zwrócić uwagę na materiały, z których wykonane są elementy, ponieważ różne rodzaje metali mogą wymagać różnych tolerancji w zakresie średnicy otworu, co jest podkreślone w standardach takich jak ISO 286-1.

Pytanie 20

Jakie urządzenie jest używane do pomiaru temperatury płynów?

A. termostat
B. termoelement
C. czujnik termiczny
D. urządzenie do regulacji temperatury z cyfrowym wyświetlaczem
Regulator temperatury z wyświetlaczem cyfrowym to urządzenie, które monituruje i kontroluje temperaturę, ale nie mierzy jej bezpośrednio. Głównie utrzymuje zadaną temperaturę, kontrolując inne urządzenia, jak grzałki czy wentylatory. Temperatura zazwyczaj pochodzi z czujników, a one same nie są do pomiaru. Termostat też jest urządzeniem sterującym, ale raczej zajmuje się kontrolowaniem ciepła niż pomiarem. Przekaźnik termiczny włącza lub wyłącza obwody elektryczne w zależności od temperatury, ale również nie mierzy temperatury. Często ludzie mylą te funkcje, co prowadzi do błędnych wniosków. W praktyce to, że te urządzenia mogą zarządzać temperaturą, nie znaczy, że potrafią ją zmierzyć. Żeby prawidłowo mierzyć temperaturę, potrzeba dedykowanych urządzeń, jak termoelementy, które są dokładne i niezawodne.

Pytanie 21

Tachometryczna prądnica działa z prędkością obrotową wynoszącą 1000 obr/min. Jaką prędkość obrotową należy osiągnąć, aby napięcie na wyjściu prądnicy wyniosło 7,3 V?

A. 7,3 obr/min
B. 7 300 obr/min
C. 73 obr/min
D. 730 obr/min
Wybór 7,3 obr/min, 730 obr/min oraz 73 obr/min jako odpowiedzi na pytanie o prędkość obrotową prądnicy tachometrycznej prowadzi do kilku błędnych wniosków, które są wynikiem nieprawidłowego zrozumienia zasad działania prądnic. Przede wszystkim, prądnica tachometryczna wytwarza napięcie, które jest proporcjonalne do prędkości obrotowej wału. Oznacza to, że im wyższa prędkość obrotowa, tym wyższe napięcie. Odpowiedzi 7,3 obr/min i 73 obr/min sugerują ekstremalnie niskie prędkości, które są nieadekwatne do standardowego działania prądnicy. Dla prędkości 1000 obr/min napięcie wynosi 7,3 V; zatem prędkości obrotowe niższe od 1000 obr/min nie mogą generować napięcia wyjściowego wyższego niż 7,3 V. Z kolei odpowiedź 730 obr/min również jest błędna, ponieważ przy tej prędkości napięcie wyniesie mniej niż 7,3 V. Typowym błędem myślowym jest przyjęcie, że mniejsze prędkości mogą wytwarzać wyższe napięcia, co jest sprzeczne z zasadami fizyki. Kluczowe jest zrozumienie, że prądnice tachometryczne są wykorzystywane w systemach, gdzie precyzyjne mierzenie prędkości obrotowej jest kluczowe, na przykład w systemach regulacji i kontroli procesów przemysłowych, a ich działanie opiera się na proporcjonalności między prędkością a napięciem.

Pytanie 22

Które kolory przewodów należy zastosować do połączenia urządzenia z siecią pokazaną na rysunku?

Ilustracja do pytania
A. PE - żółto-zielony, N - niebieski, LI - czarny.
B. PE - żółto-zielony, N - czarny, LI - niebieski.
C. PE - niebieski, N - żółto-zielony, LI - brązowy.
D. PE - brązowy, N - niebieski, LI - czarny.
Poprawna odpowiedź to PE - żółto-zielony, N - niebieski, LI - czarny. W instalacjach elektrycznych zgodnie z normami PN-EN 60446 oraz PN-IEC 60446, kolory przewodów są ściśle określone dla zapewnienia bezpieczeństwa i poprawności wykonania połączeń. Przewód ochronny (PE) zawsze powinien być oznaczony kolorem żółto-zielonym, co wskazuje na jego funkcję ochronną, zabezpieczającą przed porażeniem prądem. Przewód neutralny (N) powinien mieć kolor niebieski, co jest standardem międzynarodowym, ułatwiającym identyfikację i poprawne podłączenie urządzeń. Przewód fazowy (L1) w tym przypadku oznaczono kolorem czarnym, co jest jedną z akceptowanych opcji. Te standardy nie tylko zwiększają bezpieczeństwo, ale również ułatwiają prace konserwacyjne, gdyż wyraźna kolorystyka pozwala na szybkie rozpoznanie funkcji poszczególnych przewodów. Dla przykładu, w przypadku awarii systemu elektrycznego, znajomość tych standardów pozwala technikom na sprawne diagnozowanie problemów i ich eliminowanie, co jest kluczowe dla zapewnienia ciągłości pracy urządzeń.

Pytanie 23

Jaki zawór powinien być użyty, aby umożliwić przepływ czynnika wyłącznie w jednym kierunku?

A. Rozdzielający
B. Dławiący
C. Regulacyjny
D. Zwrotny
Wybór niewłaściwego zaworu w systemie hydraulicznym lub pneumatycznym może prowadzić do poważnych problemów operacyjnych. Zawór rozdzielający ma na celu kierowanie przepływu czynnika do różnych sekcji systemu, ale nie ma właściwości zabezpieczających przed cofaniem się medium. Jego główną rolą jest zatem dystrybucja, a nie kontrola kierunku przepływu, co czyni go nieodpowiednim do zastosowań wymagających zapobiegania cofaniu. Zawór regulacyjny, z drugiej strony, jest zaprojektowany do kontrolowania ciśnienia lub przepływu, ale nie zapewnia jednoznacznej blokady cofaniu się medium. Tego rodzaju zawory są stosowane w aplikacjach, gdzie istotne jest dostosowanie parametrów pracy, a nie ochrona przed odwrotnym przepływem. Zawór dławiący również nie spełnia wymagań dotyczących kierunku przepływu; jego funkcją jest ograniczanie przepływu, co może prowadzić do niekontrolowanych warunków w układzie. Użycie niewłaściwego zaworu, takiego jak rozdzielający, regulacyjny czy dławiący, może prowadzić do uszkodzenia systemu, awarii sprzętu lub nawet zagrożeń dla bezpieczeństwa. W związku z tym, przy projektowaniu systemów hydraulicznych czy pneumatycznych, kluczowe jest dobieranie odpowiednich zaworów zgodnie z ich funkcjami i zastosowaniami w oparciu o normy branżowe i najlepsze praktyki.

Pytanie 24

Który opis siłowników hydraulicznych przedstawionych na rysunkach jest poprawny?

Siłownik hydraulicznyA.B.C.D.
TeleskopowyRys. 1Rys. 4Rys. 3Rys. 4
Jednostronnego działaniaRys. 2Rys. 1Rys. 4Rys. 1
Dwustronnego działania z dwustronnym tłoczyskiemRys. 3Rys. 2Rys. 1Rys. 3
Dwustronnego działania z jednostronnym tłoczyskiemRys. 4Rys. 3Rys. 2Rys. 2
Ilustracja do pytania
A. C.
B. D.
C. B.
D. A.
Poprawna odpowiedź to D, ponieważ rysunek 4 przedstawia siłownik teleskopowy, który jest konstrukcją wykorzystywaną w wielu zastosowaniach inżynieryjnych i przemysłowych. Siłowniki teleskopowe charakteryzują się tym, że składają się z kilku segmentów, które mogą się wysuwać jeden z drugiego, co pozwala na uzyskanie dużych skoków przy stosunkowo niewielkich wymiarach konstrukcyjnych. Tego typu siłowniki znajdują zastosowanie w budownictwie, automatyce przemysłowej, a także w systemach transportowych, gdzie przestrzeń jest ograniczona. W kontekście standardów branżowych, siłowniki teleskopowe muszą spełniać określone normy dotyczące wytrzymałości i bezpieczeństwa, co zapewnia ich niezawodność i długą żywotność w trudnych warunkach pracy. Zrozumienie różnych typów siłowników hydraulicznych, takich jak jednostronne czy dwustronne, jest kluczowe dla prawidłowego doboru komponentów w systemach hydraulicznych.

Pytanie 25

Silnik zębaty przedstawiono na rysunku

Ilustracja do pytania
A. B.
B. C.
C. D.
D. A.
Silnik zębaty, przedstawiony na rysunku D, jest kluczowym elementem stosowanym w wielu aplikacjach mechanicznych, gdzie wymagana jest precyzyjna kontrola napędu. Jego konstrukcja oparta na zębatych kołach pozwala na efektywne przekazywanie momentu obrotowego między różnymi komponentami. Zębate koła, które widzimy na rysunku, są fundamentalne dla działania tego typu silników, ponieważ umożliwiają synchronizację ruchu oraz redukcję luzów, co jest szczególnie istotne w aplikacjach wymagających wysokiej dokładności. W praktyce, silniki zębate znajdują zastosowanie w robotyce, automatyce przemysłowej oraz w pojazdach, gdzie ich zdolność do przenoszenia obciążeń w połączeniu z kompaktową budową sprawia, że są one niezastąpione. Dodatkowo, zgodnie z normami branżowymi, silniki zębate powinny być projektowane z uwzględnieniem parametrów takich jak trwałość, efektywność energetyczna oraz minimalizacja hałasu, co wpływa na ich wydajność i długowieczność.

Pytanie 26

Na rysunku przedstawiono zrzut ekranu i ustawienia oscyloskopu. Jaka jest amplituda sygnału przedstawionego na ekranie?

Ilustracja do pytania
A. 4V
B. 8V
C. 6V
D. 2V
Wybór innej odpowiedzi niż 4V świadczy o nieporozumieniu w zrozumieniu pojęcia amplitudy sygnału. Na oscyloskopie, sygnał jest reprezentowany graficznie, a jego amplituda to maksymalne odchylenie od osi zerowej. Wartości takie jak 8V, 2V czy 6V mogą wydawać się odpowiednie, ale nie są one zgodne z przedstawionym sygnałem na zrzucie ekranu. Amplituda 8V sugerowałaby, że sygnał mógłby się wychylać nawet bardziej, co nie znajduje potwierdzenia w pomiarach, ponieważ sygnał nie przekracza 4V. Odpowiedź 2V z kolei mogłaby sugerować, że sygnał osiąga tylko jedno wychylenie, co również jest błędne, ponieważ na oscyloskopie widoczne są zarówno wychylenia dodatnie, jak i ujemne. Z kolei 6V jako odpowiedź również nie ma podstaw, ponieważ suma wychyleń nie osiąga takiej wartości. Typowym błędem logicznym prowadzącym do tych odpowiedzi jest pomijanie zasady, że amplituda to maksymalne wychylenie w stosunku do zera, a nie suma dwóch niezależnych odchyleń. Kluczowe jest zrozumienie, że amplituda sygnału jest miarą jego intensywności oraz że każde odchylenie powinno być analizowane w kontekście skali oscyloskopu. Z tego względu, nauka interpretacji sygnałów na oscyloskopie ma fundamentalne znaczenie dla inżynierów i techników w dziedzinie elektroniki.

Pytanie 27

Aby zobrazować funkcjonowanie systemu mechatronicznego na panelu HMI, należy zainstalować oprogramowanie typu

A. CAM
B. CAE
C. CAD
D. SCADA
Wybór odpowiedzi CAM (Computer-Aided Manufacturing), CAE (Computer-Aided Engineering) lub CAD (Computer-Aided Design) nie jest właściwy w kontekście wizualizacji działania systemu mechatronicznego na panelu HMI. CAM odnosi się do technologii wspomagającej procesy produkcyjne, gdzie oprogramowanie używane jest do sterowania maszynami i urządzeniami w celu ich efektywnej obsługi w procesie wytwarzania. Choć CAM jest niezwykle istotny w produkcji, nie dostarcza narzędzi do wizualizacji i monitorowania procesów na poziomie systemowym, co jest kluczowe w kontekście SCADA. Podobnie, CAE koncentruje się na inżynieryjnej analizie i symulacji, co jest ważne w fazie projektowania i testowania, ale również nie zapewnia odpowiednich narzędzi do wizualizacji i monitorowania w czasie rzeczywistym. CAD natomiast, skupia się głównie na projektowaniu graficznym i tworzeniu dokumentacji technicznej, co, mimo że jest fundamentalne w inżynierii, nie zaspokaja potrzeby wizualizacji danych z systemów mechatronicznych. Powszechnym błędem jest mylenie funkcji tych narzędzi z funkcjami SCADA, co prowadzi do nieprawidłowego przypisania ich roli w zarządzaniu procesami. SCADA, jako system nadzoru, łączy wszystkie te podejścia, oferując nie tylko wizualizację, ale i aktywne zarządzanie danymi oraz procesami, co czyni go niezastąpionym w nowoczesnym przemyśle.

Pytanie 28

Na rysunku przedstawiono symbol graficzny siłownika pneumatycznego

Ilustracja do pytania
A. udarowego.
B. mieszkowego.
C. ciągnącego jednostronnego działania.
D. pochającego jednostronnego działania.
Poprawna odpowiedź to siłownik pneumatyczny jednostronnego działania, co jest zgodne z przedstawionym symbolem graficznym. Siłowniki jednostronnego działania są wykorzystywane w aplikacjach, gdzie potrzebna jest siła w jednym kierunku, a powrót do pozycji wyjściowej jest realizowany za pomocą sprężyny. Przykładem zastosowania takich siłowników są systemy automatyki przemysłowej, gdzie często stosuje się je do podnoszenia lub przesuwania elementów. Ich konstrukcja pozwala na efektywną pracę, zmniejszając jednocześnie zużycie energii. W branży pneumatycznej standardy, takie jak ISO 6431, definiują konkretne wymiary i parametry dla takich siłowników, co zapewnia ich wymienność oraz ułatwia projektowanie systemów. Dlatego zrozumienie symboli graficznych siłowników jest kluczowe dla inżynierów pracujących nad projektami związanymi z automatyką i pneumatyka, co podkreśla znaczenie właściwego odczytywania schematów.

Pytanie 29

Do podłączenia przewodów do uzwojeń silnika przedstawionego na ilustracji należy użyć

Ilustracja do pytania
A. wkrętaka krzyżowego.
B. klucza nasadowego.
C. wkrętaka płaskiego.
D. klucza imbusowego.
Klucz nasadowy to naprawdę super narzędzie, gdy mówimy o dużych nakrętkach, a to jest ważne, kiedy podłączamy przewody do silnika. Na obrazku widać złącza, gdzie właśnie taki klucz będzie najbardziej przydatny, bo daje lepszą siłę dokręcania i stabilność. Fajnie, że klucz nasadowy ma wymienne nasadki – dzięki temu możemy dopasować go do różnych nakrętek, co zdecydowanie ułatwia pracę, zwłaszcza w trudnych miejscach. W przemyśle mechanicznym i elektrycznym klucze nasadowe to niemal standard, bo zapewniają bezpieczeństwo i efektywność mocowania elementów. Korzystanie z tego narzędzia jest zgodne z tym, co zalecają producenci, więc sprzęt dłużej działa i lepiej funkcjonuje. Pamiętaj też, że przy pracy z silnikami ważne jest przestrzeganie zasad bezpieczeństwa, bo to zmniejsza ryzyko uszkodzeń i kontuzji.

Pytanie 30

Wskaż zawór, który należy zamontować w miejsce szarego prostokąta, aby w układzie przedstawionym na schemacie zapewnić uruchomienie siłownika wyłącznie po jednoczesnym naciśnięciu obu zaworów rozdzielających.

Ilustracja do pytania
A. B.
B. C.
C. A.
D. D.
W przypadku wybrania niepoprawnej odpowiedzi, na przykład A, B lub D, występują istotne nieporozumienia dotyczące funkcji zaworów oraz ich zastosowania w układach pneumatycznych. Zawory te nie są zaprojektowane do realizacji logiki AND, co oznacza, że nie mogą zapewnić wymaganego działania siłownika tylko po jednoczesnym naciśnięciu obu zaworów. Wybór zaworu, który nie odpowiada na logikę AND, prowadzi do sytuacji, w której aktywacja siłownika może nastąpić po naciśnięciu jednego z zaworów, co jest niezgodne z wymaganiami bezpieczeństwa. Tego typu błędy mogą wynikać z mylnego zrozumienia działania zaworów lub braku wiedzy na temat ich podstawowych funkcji. Wiele osób może zakładać, że każdy zawór rozdzielający będzie w stanie zrealizować złożone operacje logiczne, co nie jest prawdą. Kluczowe jest zrozumienie, że w układach pneumatycznych różne zawory mają różne funkcje i nie każdy typ zaworu nadaje się do realizacji specyficznych wymagań operacyjnych. Błędne podejście do projektowania takich układów może prowadzić do nie tylko do awarii systemu, ale także do poważnych zagrożeń dla bezpieczeństwa użytkowników. Dlatego tak ważne jest dokładne zapoznanie się z zasadami działania poszczególnych komponentów oraz ich zastosowaniem w kontekście całego układu.

Pytanie 31

Silniki, które mają największy moment rozruchowy to

A. bocznikowe prądu stałego
B. asynchroniczne prądu przemiennego
C. synchroniczne prądu przemiennego
D. szeregowe prądu stałego
Silniki szeregowe prądu stałego charakteryzują się największym momentem rozruchowym spośród różnych typów silników elektrycznych. Dzieje się tak, ponieważ w silniku szeregowym wirnik i uzwojenie wzbudzenia są połączone szeregowo, co prowadzi do zmaksymalizowania prądu, który płynie przez uzwojenie wzbudzenia podczas rozruchu. W rezultacie moment obrotowy generowany w chwilach niskich prędkości jest znacznie większy niż w innych typach silników. Praktycznie rzecz biorąc, silniki te są często stosowane w aplikacjach, gdzie wymagany jest wysoki moment obrotowy przy niskich prędkościach, takich jak wózki widłowe, dźwigi czy pojazdy elektryczne. Dzięki ich konstrukcji, silniki te mogą przekazywać dużą moc przy niewielkich prędkościach, co czyni je idealnym wyborem w sytuacjach, gdzie siła jest kluczowa. W branży inżynieryjnej standardy dotyczące doboru silników pod kątem momentu rozruchowego są ściśle przestrzegane, co pozwala na optymalne dobieranie urządzeń do konkretnych zadań.

Pytanie 32

Podanie napięcia na zaciski przedstawionego na rysunku mostka prostowniczego powoduje zadziałanie zabezpieczenia B, W celu usunięcia usterki należy

Ilustracja do pytania
A. odwrotnie wlutować diodę D3
B. odwrotnie wlutować kondensator C
C. odwrotnie wlutować diodę D2
D. wymienić bezpiecznik aparatowy B
Odwrotne wlutowanie diody D3 jest kluczowe dla prawidłowego działania mostka prostowniczego. W mostkach prostowniczych diody muszą być zainstalowane w odpowiedniej orientacji, aby skutecznie prostować prąd zmienny na prąd stały. Jeśli dioda D3 jest wlutowana odwrotnie, może to prowadzić do zwarcia, co skutkuje zadziałaniem zabezpieczenia B i uniemożliwia poprawne funkcjonowanie układu. W praktyce, odwrotne wlutowanie diody może wystąpić podczas montażu lub serwisowania, dlatego ważne jest, aby zawsze podążać za schematem połączeń oraz stosować się do zasad montażu obwodów elektronicznych. Przykłady dobrych praktyk obejmują podwójne sprawdzanie orientacji diod przed ich lutowaniem oraz używanie diod z oznaczeniem kierunku na obudowie. Dzięki temu można zminimalizować ryzyko błędów i zapewnić długotrwałe oraz niezawodne działanie układów elektronicznych.

Pytanie 33

Co może się zdarzyć, gdy w trakcie montażu silnika trójfazowego nastąpi przerwanie przewodu ochronnego PE?

A. wzrostu temperatury silnika podczas pracy, co może prowadzić do zapalenia się silnika
B. pojawienia się napięcia na obudowie silnika, co grozi porażeniem prądem elektrycznym
C. awarii stojana silnika
D. przeciążenia instalacji elektrycznej, co może skutkować pożarem
Odpowiedź dotycząca pojawienia się napięcia na obudowie silnika oraz ryzyka porażenia prądem elektrycznym jest prawidłowa, ponieważ przewód ochronny PE (ochronny) ma kluczowe znaczenie w zapewnieniu bezpieczeństwa użytkowania urządzeń elektrycznych. W przypadku przerwania tego przewodu, obudowa silnika może znaleźć się pod napięciem, ponieważ nie będzie możliwości odprowadzenia prądów upływowych do ziemi. Taki stan stwarza zagrożenie dla osób pracujących w pobliżu, gdyż kontakt z obudową, która jest na potencjale elektrycznym, może prowadzić do porażenia prądem. W praktyce, aby zminimalizować ryzyko tego typu zdarzeń, zaleca się stosowanie systemów detekcji uszkodzeń izolacji oraz regularne przeglądy instalacji elektrycznej. Ponadto, zgodnie z normą PN-EN 61140, urządzenia powinny być wyposażone w odpowiednie zabezpieczenia, takie jak wyłączniki różnicowoprądowe, które mogą zareagować na niebezpieczne różnice napięcia i wyłączyć zasilanie w sytuacji awaryjnej.

Pytanie 34

W układzie przedstawionym na ilustracji wykonano pomiary rezystancji pomiędzy punktem zasilania +24 V a kolejnymi punktami wejściowymi sterownika PLC. Otrzymane wyniki zapisano w tabeli. Które elementy (łączniki sterownicze, kontaktrony) powinny zostać wymienione?

Mierzony
odcinek
Wartość zmierzonej
rezystancji
+24 V / WE11,02 Ω
+24 V / WE2
+24 V / WE3
+24 V / WE42,04 Ω
+24 V / WE5
+24 V / WE62,12 Ω
Ilustracja do pytania
A. B3 i B5
B. S0 i S1
C. B2 i B4
D. S0 i B2
Wybór odpowiedzi B3 i B5 jest poprawny ze względu na analizę wartości rezystancji zmierzonych pomiędzy punktem zasilania a wejściami sterownika PLC. Normą dla sprawnych połączeń jest niska rezystancja, co wskazuje na prawidłowe funkcjonowanie obwodu. Wartości rezystancji dla WE2 oraz WE5 wynoszą nieskończoność, co sugeruje, że występuje przerwa w obwodzie. W tym przypadku należy skupić się na łącznikach B3 i B5, które są odpowiedzialne za te połączenia. Wymiana tych elementów jest kluczowa dla zapewnienia ciągłości pracy systemu i unikania błędów w sterowaniu. W kontekście stosowania urządzeń automatyki, ważne jest, aby regularnie przeprowadzać pomiary rezystancji oraz analizować wyniki, co pozwala na wczesne wykrywanie usterek i planowanie konserwacji. Praktyczne przykład to regularne inspekcje instalacji, które mogą zapobiec awariom i wpłynąć na wydajność całego układu.

Pytanie 35

Aby zdemontować sterownik PLC z szyny DIN (TS-35), potrzebne jest

A. wkrętaka krzyżowego
B. klucza imbusowego
C. wkrętaka płaskiego
D. klucza płaskiego
Użycie wkrętaka krzyżowego do demontowania sterownika PLC z szyny DIN to nie najlepszy pomysł. Te narzędzia są zaprojektowane bardziej do pracy z krzyżowymi gniazdami, a nie do zwalniania zatrzasków. Jak się mocno pchnie wkrętak krzyżowy, to można uszkodzić zatrzaski, a potem będzie problem z montowaniem z powrotem sterownika. Klucz imbusowy z kolei jest do śrub sześciokątnych, więc do szyn DIN się nie nadaje. A klucz płaski też nie zda egzaminu, bo nie jest do zatrzasków, co może być mylone przez osoby, które nie wiedzą, jak to działa. Używanie złych narzędzi wydłuża czas demontażu i może prowadzić do różnych uszkodzeń. W sytuacjach awaryjnych, kiedy potrzebna jest szybka wymiana, źle dobrane narzędzia mogą wywołać poważne problemy, zarówno techniczne, jak i finansowe. Dlatego trzeba się dobrze zapoznać z tym, co jest potrzebne i używać narzędzi, które poleca producent.

Pytanie 36

Jaką czynność należy przeprowadzić, aby zwiększyć średnicę otworu i umożliwić osadzenie w nim łba śruby?

A. Wiercenie wtórne
B. Wiercenie
C. Rozwiercanie
D. Pogłębianie
Wiercenie to proces robienia otworów, ale w tym przypadku to nie jest najlepszy wybór do powiększania średnicy otworu. Ono bardziej nadaje się do tworzenia nowych otworów, a nie do zmiany tych, które już są. Wiercenie wtórne też nie jest idealne, bo koncentruje się na uzupełnianiu istniejących otworów, a my potrzebujemy coś więcej. Rozwiercanie może działać w tej sytuacji, ale jest trudniejsze i może uszkodzić materiał, bo wymaga większej precyzji. Kiedy wybierasz metodę obróbcą, musisz brać pod uwagę wymagania projektu i materiał, z którego zrobiony jest element. Wiele osób myśli, że można te metody stosować zamiennie, a to prowadzi do problemów jak źle dobrane średnice otworów, co może zrujnować konstrukcję lub utrudnić montaż.

Pytanie 37

Ile napędów jest zastosowanych w manipulatorze, którego schemat przedstawiono na rysunku?

Ilustracja do pytania
A. 3 napędy
B. 4 napędy
C. 6 napędów
D. 5 napędów
Wybór innej liczby napędów, takich jak trzy, cztery lub sześć, może wynikać z nieporozumień dotyczących podstawowych zasad działania manipulatorów. Trzy napędy mogą wydawać się wystarczające w prostych aplikacjach, jednak w praktyce ograniczają one zakres ruchu i precyzję, co nie jest wystarczające w bardziej złożonych zadaniach. Warto zauważyć, że manipulatory zwykle wymagają co najmniej czterech napędów, aby uzyskać podstawowe możliwości ruchowe. Jednak cztery napędy mogą prowadzić do obszarów martwych, gdzie manipulator nie jest w stanie osiągnąć określonych pozycji. Z kolei wybór sześciu napędów, chociaż teoretycznie może zwiększyć możliwości robota, może prowadzić do nadmiaru i skomplikowania systemu, co nie zawsze jest uzasadnione w kontekście efektywności i kosztów. Niekiedy zaawansowane systemy operacyjne mogą wprowadzać dodatkowe trudności w programowaniu i konfiguracji robota. W praktyce, wybór liczby napędów powinien być starannie przemyślany w kontekście specyficznych wymagań aplikacji oraz zgodności z normami branżowymi, takimi jak ISO 9283, które podkreślają znaczenie optymalizacji w projektowaniu systemów robotycznych. Właściwe dobranie liczby napędów jest kluczowe dla uzyskania równowagi między wydajnością a prostotą operacyjną, co jest istotne dla każdego inżyniera zajmującego się robotyką.

Pytanie 38

Jakie złącza zostały zastosowane w rozdzielaczu przedstawionym na rysunku?

Ilustracja do pytania
A. Wtykowe i zakręcane.
B. Zakręcane i zaciskowe.
C. Szybkozłącze i wtykowe.
D. Zaciskowe i szybkozłącze.
Wybór odpowiedzi, która nie wskazuje na zastosowanie szybkozłączy i wtykowych, wskazuje na niedostateczne zrozumienie funkcji złączy w układach hydraulicznych i pneumatycznych. Na przykład, złącza zakręcane, chociaż są popularne w wielu aplikacjach, wymagają użycia narzędzi do ich montażu i demontażu, co może wydłużać czas operacji. W układach, gdzie czas jest kluczowy, jak w przypadku konserwacji maszyn, może to prowadzić do opóźnień i zwiększonego ryzyka błędów. Z kolei złącza zaciskowe również nie spełniają wymagań szybkiego łączenia, ponieważ ich konstrukcja nie pozwala na błyskawiczne podłączenie przewodów bez użycia narzędzi. W praktyce, wykorzystanie nieodpowiednich złączy może prowadzić do nieefektywności i problemów z ciśnieniem w systemie, co może zagrażać bezpieczeństwu operacji. Wszelkie działania w obszarze hydrauliki i pneumatyki powinny być zgodne z przyjętymi standardami, takimi jak ISO, które zapewniają, że używane komponenty są odpowiednie do konkretnego zastosowania. Zrozumienie tego kontekstu jest kluczowe dla wyboru odpowiednich komponentów i efektywnego funkcjonowania systemów.

Pytanie 39

Jakiego rodzaju cieczy hydraulicznej powinno się użyć w urządzeniu hydrauliczny, które może być narażone na kontakt z otwartym ogniem?

A. HV - dla urządzeń funkcjonujących w zmiennych warunkach temperatury
B. HFA - emulsja olejowo-wodna, mająca w składzie ponad 80 % wody
C. HT - ester syntetyczny, najlepiej ulegający biodegradacji
D. HTG - produkowana na bazie olejów roślinnych, rozpuszczalna w wodzie
Wybór odpowiedzi związanych z HT, HTG oraz HV nie odpowiada wymaganiom stawianym cieczy hydraulicznej pracującej w warunkach zagrożenia pożarowego. Ciekłe estry, takie jak HT, mimo że są bardziej ekologiczne i biodegradowalne, nie zapewniają wystarczającej ochrony przed ryzykiem pożaru, gdyż ich palność, choć obniżona, wciąż może stwarzać zagrożenie. Cieczy HTG, wytwarzane na bazie olejów roślinnych, oferują pewne korzyści ekologiczne, jednak ich nierozpuszczalność w wodzie sprawia, że w przypadku wycieku nie można liczyć na efekt chłodzący, co w warunkach kontaktu z ogniem jest niezwykle istotne. Z kolei ciecz HV, przeznaczona dla urządzeń pracujących w zróżnicowanych temperaturach, nie spełnia wymagań dla środowisk, gdzie kluczowe jest zachowanie niskiej palności. W kontekście bezpieczeństwa pożarowego, wybór niewłaściwej cieczy hydraulicznej może prowadzić do niebezpiecznych sytuacji, w których wycieki mogą zapalić się, narażając na straty materialne oraz zdrowotne. Zatem kluczowym błędem w myśleniu jest brak uwzględnienia aspektów związanych z palnością i bezpieczeństwem cieczy hydraulicznych w kontekście pracy w warunkach zagrożenia pożarowego.

Pytanie 40

Analogowy czujnik ultradźwiękowy umożliwia bezdotykowy pomiar odległości przeszkody od samego czujnika. Zjawisko, które jest tu wykorzystywane, polega na tym, że fala o wysokiej częstotliwości, napotykając przeszkodę, ulega

A. wzmocnieniu
B. pochłonięciu
C. rozproszeniu
D. odbiciu
Ultradźwiękowy czujnik analogowy działa na fajnej zasadzie odbicia fal dźwiękowych, które są praktycznie niesłyszalne dla nas, ale doskonale sprawdzają się w pomiarze odległości. Kiedy czujnik wysyła impuls ultradźwiękowy w stronę jakiejś przeszkody, to ta fala odbija się od niej i wraca. Mierzymy czas, jaki upływa od momentu wysłania sygnału do powrotu i na tej podstawie obliczamy, jak daleko jest ta przeszkoda. Tego typu czujniki wykorzystujemy w różnych dziedzinach, na przykład w robotyce, automatyce czy w systemach parkowania. Dobrym przykładem może być monitorowanie poziomu cieczy w zbiornikach – czujnik świetnie określa poziom wody, mierząc czas, który falę zajmuje na pokonanie drogi tam i z powrotem. W motoryzacji też są popularne, bo pomagają kierowcom parkować, informując ich o odległości do przeszkód. Ogólnie, użycie ultradźwiękowych czujników jest zgodne z normami jakości i bezpieczeństwa, jak na przykład ISO 9001, co gwarantuje, że są one naprawdę niezawodne.